
Incentive-Based Modeling and Inference of Attacker Intent,
Objectives, and Strategies

Peng Liu
School of Information Sciences and Technology

Penn State University
University Park, PA 16802

pliu@ist.psu.edu

Wanyu Zang
School of Information Sciences and Technology

Penn State University
University Park, PA 16802

wyzang@psu.edu

ABSTRACT
Although the ability to model and infer Attacker Intent, Ob-
jectives and Strategies (AIOS) may dramatically advance
the literature of risk assessment, harm prediction, and pre-
dictive or proactive cyber defense, existing AIOS inference
techniques are ad hoc and system or application specific. In
this paper, we present a general incentive-based method to
model AIOS and a game theoretic approach to infer AIOS.
On one hand, we found that the concept of incentives can
unify a large variety of attacker intents; the concept of utili-
ties can integrate incentives and costs in such a way that at-
tacker objectives can be practically modeled. On the other
hand, we developed a game theoretic AIOS formalization
which can capture the inherent inter-dependency between
AIOS and defender objectives and strategies in such a way
that AIOS can be automatically inferred. Finally, we use a
specific case study to show how AIOS can be inferred in real
world attack-defense scenarios.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Security
and protection

General Terms
Security, Theory

Keywords
Attack Prediction, Game Theory, Computer Security

1. INTRODUCTION
The ability to model and infer Attacker Intent, Objectives

and Strategies (AIOS) may dramatically advance the state-
of-art of computer security for several reasons. First, for
many “very difficult to prevent” attacks such as DDoS, given
the specification of a system protected by a set of specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’03, October 27–30, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-738-9/03/0010 ...$5.00.

security mechanisms, this ability could tell us which kind
of strategies are more likely to be taken by the attacker
than the others, even before such an attack happens. Such
AIOS inferences may lead to more precise risk assessment
and harm prediction.

Second, AIOS modeling and inference could be more ben-
eficial during run time. A big security challenge in coun-
tering a multi-phase, well planned, carefully hided attack
from either malicious insiders or outside attackers is “how to
make correct proactive (especially predictive) real-time de-
fense decisions during an earlier stage of the attack in such
a way that much less harm will be caused without consum-
ing a lot of resources”? Although many proactive defense
techniques are developed such as sandboxing [21] and iso-
lation [18], making the right proactive defense decisions in
real-time is very difficult primarily due to the fact that in-
trusion detection during the early stage of an attack can lead
to many false alarms, which could make these proactive de-
fense actions very expensive in terms of both resources and
denial-of-service.

Although alert correlation techniques [7, 26] may reduce
the number of false alarms by correlating a set of alerts into
an attack scenario (i.e., steps involved in an attack) and may
even tell which kind of attack actions may follow a given ac-
tion [8], they are limited in supporting proactive intrusion
response in two aspects. (1) When many types of (subse-
quences of) legitimate actions may follow a given suspicious
action, alert correlation can do nothing except waiting until
a more complete attack scenario emerges. However, intru-
sion response at this moment could be “too late”. (2) When
many types of attack actions may follow a given (prepara-
tion) action, alert correlation cannot tell which actions are
more likely to be taken by the attacker next. As a result,
since taking proactive defense actions for each of the at-
tack actions can be too expensive, the response may have to
wait until it is clear what attack actions will happen next
- perhaps during a later stage of the attack. However, late
intrusion response usually means more harm. By contrast,
with the ability to model and infer AIOS, given any suspi-
cious action, we can predict the harm that could be caused;
then we can make better and affordable proactive intrusion
response decisions based on the corresponding risk, the cor-
responding cost (e.g., due to the possibility of false alarms),
and the attack action inferences. Moreover, the intrusion
response time is substantially shortened.

However, with a focus on attack characteristics [17] and
attack effects [2, 33], existing AIOS inference techniques are

ad hoc and system or application specific [28, 11]. To sys-
tematically model and infer AIOS, we need to distinguish
AIOS from both attack actions and attack effects. Since the
same attack action can be issued by two attackers with very
different intents and objectives, AIOS cannot be directly
inferred from the characteristics of attacks. Although the
attacker achieves his or her intents and objectives through
attacks and their effects, the mapping from attack actions
and/or effects to attacker intents and/or objectives is usu-
ally not one-to-one but one-to-many, and more interesting,
the (average) cardinality of this mapping can be much larger
than the mapping from attacker intents and/or objectives
to attack actions and/or effects. This asymmetry nature
indicates that in many cases using AIOS models to predict
attack actions can be more precise than using the set of ac-
tions already taken by the attacker based on either their
effects or the causal relationship between them and some
other attack actions∗. As a result, although a variety of
attack taxonomies and attribute databases have been devel-
oped, people’s ability to model and infer AIOS, to predict
attacks, and to do proactive intrusion response is still very
limited. Nevertheless, a good understanding of attacks is
the foundation of practical AIOS modeling and inference.

In this paper, we present a systematic incentive-based
method to model AIOS and a game theoretic approach to
infer AIOS. On one hand, we found that the concept of
incentives can unify a large variety of attacker intents; the
concept of utilities can integrate incentives and costs in such
a way that attacker objectives can be practically modeled.
On the other hand, we developed a game theoretic AIOS for-
malization which can capture the inherent inter-dependency
between AIOS and defender objectives and strategies in such
a way that AIOS can be automatically inferred. Finally, we
use a specific case study to show how AIOS can be inferred
in real world attack-defense scenarios. The proposed frame-
work, in some sense, is an economics-based framework since
it is based on economic incentives, utilities, and payoffs.

The rest of the paper is organized as follows. In Section 2,
we discuss the related work. Section 3 presents a conceptual,
incentive-based framework for AIOS modeling. In Section 4,
we present a game-theoretic formalization of this framework.
Section 5 shows how to compute AIOS inferences in real
world attack-defense scenarios. In Section 6, we mention
several future research issues.

2. RELATED WORK
The use of game theory in modeling attackers and defend-

ers has been addressed in several other research. In [28],
Syverson talks about “good” nodes fighting “evil” nodes in
a network and suggests using stochastic games for reason-
ing and analysis. In [20], Lye et al. precisely formalize this
idea using a general-sum stochastic game model and give a
concrete example in detail where the attacker is attacking a
simple enterprise network that provides some Internet ser-
vices such as web and FTP. A set of specific states regarding
this example are identified, state-transition probabilities are

∗To illustrate, consider a large space of strategies the at-
tacker may take according to his or her intent and objec-
tives where each strategy is simply a sequence of actions.
An attack action may belong to many strategies, and the
consequences of the action could satisfy the preconditions of
many other actions, but each strategy usually contains only
a small number of actions.

assumed, and the Nash equilibrium or best-response strate-
gies for the players are computed.

In [3], Browne describes how static games can be used
to analyze attacks involving complicated and heterogeneous
military networks. In his example, a defense team has to
defend a network of three hosts against an attacking team’s
worms. The defense team can choose either to run a worm
detector or not. Depending on the combined attack and
defense actions, each outcome has different costs. In [4],
Burke studies the use of repeated games with incomplete in-
formation to model attackers and defenders in information
warfare. In [13], Hespanha and Bohacek discuss zero-sum
routing games where an adversary (or attacker) tries to in-
tersect data packets in a computer network. The designer
of the network has to find routing policies that avoid links
that are under the attacker’s surveillance. In [34], Xu and
Lee use game-theoretical framework to analyze the perfor-
mance of their proposed DDoS defense system and to guide
its design and performance tuning accordingly.

Our work is different from the above game theoretic at-
tacker modeling works in several aspects. First, these works
focus on specific attack-defense scenarios, while our work
focuses on general AIOS modeling. Second, these works
focus on specific types of game models, e.g., static games,
repeated games, or stochastic games, while our work focuses
on the fundamental characteristics of AIOS, and game mod-
els are only one possible formalization of our AIOS frame-
work. In addition, our AIOS framework shows the inher-
ent relationship between AIOS and the different types of
game models, and identifies the conditions under which a
specific type of game models will be feasible and desirable.
Third, our work systematically identifies the properties of a
good AIOS formalization. These properties not only can be
used to evaluate the merits and limitations of game theo-
retic AIOS models, but also can motivate new AIOS models
that can improve the above game-theory models or even go
beyond standard game-theoretic models.

In [11], information security is used as a response to game
theoretic Competitor Analysis Systems (CAS) for the pur-
pose of protecting a firm’s valuable business data from its
competitors. Although understanding and predicting the
behavior of competitors are key aspects of competitor analy-
sis, the behaviors CAS want to predict are not cyber attacks.
Moreover, security is what our game theoretic system wants
to model while security is used in [11] to protect a game
theoretic system.

The computational complexity of game theoretic analysis
is investigated in several research. For example, [6] shows
that both determining whether a pure-strategy Bayes-Nash
equilibrium exists and determining whether a pure-strategy
Nash equilibrium exists in a stochastic (Markov) game are
NP-hard. Moreover, [16] shows that some specific knowledge
representations, in certain settings, can dramatically speed
up equilibrium finding.

The marriage of economics and information security has
attracted a lot of interests recently (a lot of related work can
be found at the economics and security resource page main-
tained by Ross Anderson at http://www.cl.cam.ac.uk/∼rja14
/econsec.html). However, these work focuses on the eco-
nomics perspective of security (e.g., security market, secu-
rity insurance), while our approach is to apply economics
concepts to model and infer AIOS.

In recent years, it is found that economic mechanism de-

sign theory [30, 5, 12] can be very valuable in solving a vari-
ety of Internet computing problems such as routing, packet
scheduling, and web caching [9, 32, 27]. Although when
market-based mechanisms are used to defend against attack-
ers [31], the AIOS are incentive-based, which is consistent
with our framework, market-based computing does not im-
ply an in-depth AIOS model.

Finally, it should be noticed that AIOS modeling and in-
ference are very different from intrusion detection[19, 25,
23]. Intrusion detection is based on the characteristics of
attacks, while AIOS modeling is based on the characteris-
tics of attackers. Intrusion detection focuses on the attacks
that have already happened, while AIOS inference focuses
on that attacks that may happen in the future.

3. AN INCENTIVE-BASED FRAMEWORK
FOR AIOS MODELING

We build our AIOS models on top of the relationships
between the attacker and a computer system (i.e., the de-
fender). In our model, the computer system can be be
any kind (e.g., a network system, a distributed system, a
database system). We call it the system for short. The at-
tacker issues attacks to the system. Each attack is a sequence
of attack actions associated with the system. For example,
an action can be the sending of a message, the submission of
a transaction, the execution of a piece of code, etc. An at-
tack will cause some effects on the system, i.e., transforming
the system from one state to another state. Part of the sys-
tem is a set of specific security mechanisms. A mechanism
can be a piece of software or hardware (e.g., a firewall, an
access controller, an IDS). A mechanism usually involves a
sequence of defense actions associated with the system when
being activated. A security mechanism is activated when an
event arrives which causes a set of specific conditions to be
satisfied. Many of these conditions are associated with the
effects of an attack action in reactive defense, or the pre-
diction of an incoming attack action in proactive defense.
Finally, a defense posture of the system is defined by the set
of security mechanisms and the ways they are activated.

There are several unique characteristics of the attacker-
system relationship which we will exploit shortly.
�Intentional Attack Property. Attacks are typically not ran-
dom. They are planned by the attacker based on some intent
and objectives.
�Strategy-Interdependency Property. Whether an attack
can succeed is dependent on how the system is protected.
Whether a security mechanism is effective is dependent on
how the system is attacked. In other words, the capacity of
either an attack or a defense posture should be measured in
a relative way. Note that we will define the notion of strat-
egy shortly.
�Uncertainty Property. The attacker usually has incomplete
information or knowledge about the system, and vice versa.

3.1 Incentive-Based Attacker Intent Modeling
Different attackers usually have different intents even when

they they issue the same attack. For example, some attack-
ers attack the system to show off their hacking capacity,
some hackers attack the system to remind the administra-
tor of a security flaw, cyber terrorists attack our cyberspace
for creating terrors, business competitors may attack each
other’s information systems to increase their market shares,

just to name a few It is clear that investigating the charac-
teristics of each kind of intents involves a lot of effort and
complexity, and such complexity actually prevents us from
building a general, robust connection between attacker in-
tents and attack actions. This connection is necessary to do
almost every kind of attacker behavior inference.

We focus on building general, simple intent models. In
particular, we believe that the concept of economic “incen-
tive” can be used to model attacker intent in a general way.
In our model, the attacker’s intent is simply to maximize his
or her incentives. In other words, the attacker is motivated
by the possibility of gaining some incentives. Most, if not
all, kinds of intents can be modeled as incentives such as the
amount of profit earned, the amount of terror caused, and
the amount of satisfaction because of a nice show-off. We
may use economics theory to classify incentives into such
categories as money, emotional reward and fame.

To infer attacker intents, we need to be able to compare
one incentive with another. Incentives can be compared with
each other either qualitatively or quantitatively. Incentives
can be quantified in several ways. For example, profits can
be quantified by such monetary units as dollars. One critical
issue in measuring and comparing incentives is that under
different value systems, different comparison results may be
obtained. For example, different types of people value such
incentives as time, fame and faith differently. As a result,
very misleading attacker intent inferences could be produced
if we use our value system to evaluate the attacker’s incen-
tives.

After an attack is enforced, the incentives (e.g., money,
fame) earned by the attacker are dependent on the effects of
the attack, which are typically captured by the degradation
of a specific set of security measurements that the system
cares. Each such measurement is associated with a specific
security metric. Some widely used categories of security
metrics include but not limited to confidentiality, integrity,
availability (against denial-of-service), non-repudiation, and
authentication. In our model, we call the set of security
metrics that a system wants to protect the metric vector of
the system. (Note that different systems may have differ-
ent metric vectors.) At time t, the measurements associated
with the system’s metric vector are called the security vector
of the system at time t, denoted V s

t . As a result, assume an
attack starts at time t1 and ends at t2, then the incentives
earned by the attacker (via the attack) can be measured
by degradation(V s

t1 , V s
t2), which basically computes the dis-

tance between the two security vectors.
The above discussion indicates the following property of

AIOS inference.
� Attack effect property. Effects of attacks usually yield
more insights about attacker intent and objectives than at-
tack actions.

3.2 Incentive-Based Attacker Objective Mod-
eling

In real world, many attackers face a set of constraints
when issuing an attack, for example, an attacker may have
limited resources; a bad insider may worry about the risk
of being arrested and put into jail. However, our intent
model assumes no constraints. To model attacker motiva-
tions in a more realistic way, we incorporate constraints in
our attack objective model. In particular, we classify con-
straints into two categories: cost constraints and non-cost

constraints. (a) Cost constraints are constraints on things
that the attacker can “buy” or “trade” such as hardware,
software, Internet connection, and time. Such things are
typically used to measure the cost of an attack. (b) Non-
cost constraints are constraints on things that the attacker
cannot buy such as faith-related constraints and top secret
attacking tools.

The cost of an attack is not only dependent on the re-
sources needed to enforce the attack, but also dependent
on the risk for the attacker to be traced-back, arrested, and
published. Based on the relationship between incentives and
costs, we classify attackers into two categories: (a) rational
attackers have concerns about the costs associated with their
attacks. That is, when the same incentive can be obtained
by two attacks with different costs, rational attackers will
pick the one with a lower cost. (b) Irrational attackers have
no concerns about the costs associated with their attacks.
They only want to maximize the incentives.

Given a set of (cost) constraints, inferring the attack ac-
tions of an irrational attacker is not so difficult a task since
we need only to find out “what are the most rewarding at-
tack actions in the eyes of the attacker without violating
the constraints?” By contrast, we found that inferring the
attack actions of a rational attacker is more challenging. In
this paper, we will focus on how to model and infer the IOS
of rational attackers.

In our model, an attacker’s objective is to maximize his or
her utilities through an attack without violating the set of
cost and non-cost constraints associated with the attacker.
The utilities earned by an attacker indicate a distance be-
tween the incentives earned by the attacker and the cost of
the attack. The distance can be defined in several ways, for
example, utilities = incentives−cost; utilities = incentives

cost
.

Note that the cost of an attack can be measured by a set
of cost metrics which capture both attacking resources and
risk.

3.3 Incentive-Based Attacker Strategy Mod-
eling

Strategies are taken to achieve objectives. The strategy-
interdependency property indicates that part of a good at-
tacker strategy model should be the defense strategy model
because otherwise we will build our AIOS models on top of
the assumption that the system never changes its defense
posture, which is too restrictive. See that whenever the
system’s defense posture is changed, the defense strategy is
changed.

In our model, attack strategies are defined based on the
“battles” between the attacker and the system. Each at-
tack triggers a battle which usually involves multiple phases.
(For example, many worm-based attacks involve such phases
as reconnaissance, probe and attack, toehold, advancement,
stealth, and takeover.) In each phase, the attacker may take
some attack actions and the system may take some defense
actions (automatically). How such attack actions are taken
in each phase of the battle defines the attacker’s strategy
for the battle. How such defense actions are taken defines
the system’s defense strategy. We will show some concrete
attack and defense strategies in Section 5. Not that an at-
tack strategy is not simply a sequence of attack actions; it
may also include such dynamic, strategic decision making
rules as “what action should be taken under what state or
condition”. Hence, during two different battles with the

system, the same attack strategy may result in two differ-
ent sequences of attack actions. When a battle has multiple
phases, we could have two possible types of attack or defense
strategies: (1) static strategies take exactly the same set of
actions in every phase; (2) dynamic strategies adjust actions
when a new phase arrives based on what has happened.

In our model, each defense posture defines a defense strat-
egy since it specifies how a set of security mechanisms be-
have in the face of an attack. Some security mechanisms are
adaptive, but adaptations do not indicate a different defense
strategy because the adaptation rules are not changed. The
way we define defense postures is general enough to sup-
port a variety of defense strategies. The definition allows
us to (dynamically) add, activate, de-activate, or remove a
security mechanism. It also allows us to reconfigure a secu-
rity mechanism by “replacing” an old mechanism with the
reconfigured mechanism.

In our model, an attacker’s strategy space includes every
possible attack strategy of the attacker under the set of con-
straints associated with the attacker. To infer an attacker’s
strategy space, a good understanding of the system’s vul-
nerabilities and the attack/threat taxonomy is necessary.
Moreover, constraints and costs help infer the boundary of
a strategy space, since they imply which kind of attacks will
not be enforced. Similarly, the system’s strategy space is de-
termined by the set of defense postures of the system. Due
to the constraints associated with the system and the cost
of security†, the system’s strategy space is usually bounded.

A key issue in modeling attacker strategies is to help com-
pare two attack strategies in terms of “which one is bet-
ter (for the attacker)?” Based on why attack strategies are
taken, the answer is dependent on the degree to which the
attacker objectives can be achieved with a strategy. Based
on the definition of attacker objectives, the answer is then
dependent on “which strategy can bring in more utilities to
the attacker?” Based on the definition of utilities, if we as-
sume that the costs for these two strategies are the same,
the answer is then dependent on “which strategy can bring
in more incentives to the attacker?” Since attacker incen-
tives are determined by degradation(V s

t1 , V s
t2), the answer is

then dependent on “which strategy can cause more degrada-
tion to the system’s security vector?” However, the answer
to this question is in general determined by “which defense
strategy will be taken by the system?”, since different bat-
tles may lead to different amount of security degradation.
Therefore, the overall answer is that “which one is a bet-
ter attack strategy?” is dependent on “what are the two
defense strategies taken by the system respectively?” This
answer confirms the strategy-interdependency property.

The above discussion implies the following property of
AIOS inference.
� Dual property. (a) “Which one is a better attack (defense)
strategy?” is dependent on “what are the defense (attack)
strategies taken?” (b) Each type of information useful for the
attacker (system) to choose a good attack (defense) strategy
will be useful for the system (attacker) to choose a good
defense (attack) strategy.

4. A GAME-THEORETIC FORMALIZATION

†Security mechanisms not only consume resources but also
can have a negative impact on the system’s functionality
and performance.

Our goal is to formalize the AIOS models developed in
the previous section in such a way that good inferences of
AIOS can be automatically computed. For this purpose, we
first propose a game-theoretic AIOS formalization, then we
show why it is a good formalization.
Our game-theoretic AIOS formalization is shown in Figure
1(b), where
� Instead of neglecting the attacker and viewing attacks as
part of the system’s environment, we model the attacker as
a “peer” of the system, namely the attacking system.
� The environment only includes the set of good accesses
by a legitimate user.
� We further split the system into two parts: the service part
includes all and only the components that provide comput-
ing services to users; and the protection part includes the set
of security mechanisms.
� Instead of passively monitoring, detecting, and reacting
to attacks, the relation between the system and the attacker
is modeled as a game (or battle) across the time dimension
where the system may actively take defense actions.
� The game is a 6-tuple. (1) The two players, namely
the system and the attacking system. Note that the “real”
player for the system is the set of security mechanisms.
(2) The game type (e.g., a Bayesian game or a stochastic
game) and the set of type-specific parameters of the game.
(3) The two strategy spaces of the two players, defined in the
same say as in Section 3. The attacker’s strategy space is
denoted as Sa = {sa

1 , ..., sa
m} where sa

i is an attack strategy.
The system’s strategy space is denoted as Sd = {sd

1, ..., s
d
m}

where sd
i is a defense strategy. Note that the constraints as-

sociated with the attacker and the cost of each attack imply
the boundary of Sa. A more detailed formalization of attack
strategies is described in Section 5.
(4) A set of game plays. A play is a function pli : Sa×Sd →
O where O is the set of outcomes which indicate the effects
of an attack. Each play involves one battle due to an attack.
Each play may have several phases. We assume each player
uses a game engine to determine which strategy should be
taken in a specific play.
(5) The two utility (or payoff) functions which calculate the
utilities earn by the two players out of each play. The at-
tacker’s utility function is ua : Sa × Sd → R where R is the
set of utility measurements. Given a play (sa

i , sd
i), the attack

cost is an attribute of sa
i , denoted cost(sa

i). The attacker’s
incentives are determined by degradation(V s

t1 , V s
t2) where t1

is the time when the play starts; t2 is the time when the play
ends; and security vector V s

t2 is dependent on the outcome

of the play, namely pli(s
a
i , sd

i). And ua(sa
i , sd

i) is a distance
between cost(sa

i) and the attacker’s incentives. By contrast,
the system’s utility function is ud : Sa × Sd → R. Given
a play (sa

i , sd
i), the system’s cost is cost(sd

i). The system’s
incentives are determined by improvement(V s

∅ , V s
sd

i
) where

V s
∅ is the security vector resulted after the attack when no

security mechanisms are deployed; V s
sd

i
is the vector resulted

after the attack when strategy sd is taken. And ud(sa
i , sd

i)
is still a distance between the system’s incentives and cost.
(6) A knowledge base maintained by each player. The at-
tacker’s (system’s) knowledge base maintains the attacker’s
(system’s) knowledge about the system’s (attacker’s) strat-
egy space (including the system’s (attacker’s) cost and con-
straints), the system’s (attacker’s) value system, the sys-
tem’s metric and security vectors. Note that the attacker’s

of intrusion detection

Low Medium High

Low

Medium

High

Correlation among attack actions

1 2 3

4 5 6

7 8 9

Agility and accuracy

(a) A Taxonomy of Game Theoretic AIOS Mod-
els

utilities

Game

Time

defense
strategy

good accesses

strategy
space

engineknowledge
base

engine

strategy
space

knowledge
base

attack
strategy

payoff payoff
utilities

An attacking systemA secure system

(b) A Game Theoretic Formalization

Figure 1:

(system’s) knowledge may not always be true; it in fact cap-
tures the attacker’s (system’s) beliefs.
� Note that for clarify, only the game-relevant components
are shown in Figure 1(b). Note also that the game model
can be extended to cover multiple attackers who are either
cooperating with other attackers (i.e., cooperative) or not
(i.e., non-cooperative). This extension is out of the scope of
this paper.
Discussion. We believe a game theoretic formalization can
be very valuable for AIOS modeling and inference because
(1) such a formalization shifts the focus of traditional AIOS
modeling from attacks to attackers; (2) such a formalization
captures every key property of the attacker-system relation
such as the Intentional Attack Property and the Strategy In-
terdependency Property; (3) such a formalization captures
every key elements of our incentive-based AIOS modeling
framework such as incentives, utilities, costs, risks, con-
straints, strategies, security mechanisms, security metrics,
defense postures, vulnerabilities, attacks, threats, knowl-
edge, and uncertainty; (4) such a formalization can be used
to infer AIOS. The rationale is that (a) non-cooperative
game theory is the primary tool to handle strategic inter-
dependence[22], which is the fundamental property of the
attacker-system relation; (4b) game-theoretic models have
been successfully used to predict rational behaviors in many
applications such as auctions and their rationality notion
(that each player plays an expected-utility maximizing best-
response to every other player) is consistent with the goals
of many, if not most, attackers and systems; (4c) Nash equi-
libria of attacker-system games can lead to good AIOS in-
ferences since Nash equilibria indicate the “best” rational
behaviors of a player, and when the system always takes a
Nash equilibrium defense strategy, only a Nash equilibrium
attack strategy can maximize the attacker’s utilities.

5. GAME THEORETIC AIOS INFERENCE
In real world, how to model and infer AIOS? The previous

presentation implies the following pipeline:
� (1) Make assumptions about the system and the (types
of) attacks that concern the system. Note that practical
AIOS inferences may only be able to be computed within
some domain or scope (due to the complexity).
� (2) Model the attacker intent, objectives and strategies
(conceptually). Specify the attacker’s utility function and
strategy space. Estimate the attacker’s knowledge base.
� (3) Specify the system’s metric vector and security vec-
tor. Specify the system’s utility function and strategy space.
Build the system’s knowledge base.
� (4) Determine the game type of the game theoretic AIOS
inference model that will be developed, then develop the
model accordingly.
� (5) Compute the set of Nash equilibrium strategies of the
AIOS inference game model developed in Step 4. A key task
is to handle the computation complexity. If the complexity is
too much, we need to do (inference) precision-performance
tradeoffs properly using some (semantics-based) approxi-
mate algorithms.
� (6) Validate the inferences generated in Step 5. The rele-
vant tasks include but not limited to accuracy analysis (i.e.,
how accurate are the inferences?) and sensitivity analysis
(i.e., are the inferences sensitive to some specific model pa-
rameters?). The relevant validation techniques include but
not limited to (a) investigating the degree to which the in-
ferences match the real world intrusions; (b) extracting a set
of high-level properties or features from the set of inferences
and asking security experts to evaluate if the set of proper-
ties match their experiences, beliefs, or intuitions.
� (7) If the validation results are not satisfactory, go back
to Step 1 to rebuild or improve the inference model.

In the following, before we do the case study to show how
AIOS can be inferred in real world attack-defense scenarios,
we would first show how to choose the right game type for
a real world AIOS inference task.

5.1 How to Choose the Right Game Theoretic
AIOS Model?

A good AIOS inference model must be built on top of
the real characteristics of the attack-defense (A-D) scenario.
Different A-D scenarios may require different inference mod-
els. Hence, to develop a taxonomy of game theoretic AIOS
inference models, we need a general, simple model to clas-
sify the characteristics of A-D scenarios. For this purpose,
we will start with two critical factors of the attacker-system
relation, namely state and time. In our model, there are two
categories of states:
� System state: At one point of time, the state of a system is
determined by the state of each component of the system’s
service part. A component of the system’s service part can
be a piece of data or a piece of code. Note that sometimes a
piece of code can be handled as a piece of data. It should be
noticed that the system’s state has nothing to do with the
system’s defense posture, which is determined by the state
of each component of the system’s protection part.
� Attack state: Attack states classify system states from the
attack-defense perspective. Every attack action, if success-
fully taken, will have some effects on the system state. Such
effects are usually determined by the characteristics of the
attack. After a specific attack happens, the resulted effects

are specified as an attack state. For example, all the possible
states of a web server system after its Ftpd service is hacked
can be denoted as the Ftpd hacked attack state. Hence each
attack state usually covers a cluster of system states.

It is clear that the attacker is always clear about the cur-
rent attack state, but the defender (i.e., the system) is usu-
ally not. The system uses an intrusion detector to learn the
current attack state. Due to the latency of intrusion detec-
tion, the system may know an attack state with some delay.
Due to the false alarms, the system may have wrong belief
about the current attack state.

The relation between states and times is simple. At one
point of time, the system must be associated with a specific
system state and attack state. Good accesses, attack ac-
tions, and defense actions can all change the system state,
however, only attacks and defense operations can change
attack states. Changes of both system states and attack
states indicate changes of time. An interesting question
here is: when should we terminate an attack state? One
way to solve this problem is to give each attack a life time.
When the life time of an attack is over, we make the cor-
responding attack state part of the history. The life time
of an attack should involve some defense actions or opera-
tions, since when the life of the attack is over, the system
should have already been recovered from the attack in many
possible ways, e.g., replacing the system with a new system,
repairing the damaged part of the system, etc..

We model the battles between the attacker and the system
as follows.

Definition 1. (General Model) A battle between the
attacker and the system is an interleaved sequence of system
states and actions such that
� Each action belongs to one of three possible types: (a)
the action can be an attack action which is part of an at-
tack strategy, (b) the action can be an action or operation
taken by a legitimate user which indicates a good access, (c)
the action can be a defense action which is part of a defense
strategy. We denote an attack action as oi

b. We denote a
good access action as oi

g. We denote a defense action as oi
d.

� There must be either one attack action or one good ac-
cess action between two adjacent states. No more than one
attack action can happen between two adjacent states. No
more than one good access action can happen between two
adjacent states either.
� There is exactly one defense action between two adjacent
states. However, a defense action can be a null action, but
neither an attack action nor a good access action can be a
null action.

Under some specific conditions, the above model can be
further simplified. In particular, when every attack action
can be detected instantly after it happens with accuracy, the
fights between the attacker and the system can be modeled
as follows. Here, we model an intrusion as a sequence of
attack actions, namely Ij = {o1

b , o
2
b , ..., o

n
b }. Note that here

since we can distinguish bad actions from good ones, a set
of system states can be clustered into a specific attack state,
and good actions need not be explicitly modeled.

Definition 2. (Under Instant Accurate Intrusion
Detection) A battle between the attacker and the system
is an interleaved sequence of attack states and actions such
that

� Each action belongs to one of two possible types: (a) an
attack action; or (b) a defense action.
� There is exactly one attack action between two adjacent
states. No more than one attack action can happen between
two adjacent states.
� There is exactly one defense action between two adjacent
states. A defense action can be a null action.
� A fight is composed of two adjacent attack states and the
pair of actions between them. It is clear that every pair of
attack and defense actions (oi

b, o
i
d) can transform the system

from one attack state to another.

When intrusions can be instantly detected with accuracy,
it is clear that both the system and the attacker know the
current attack state for sure. The system’s utility earned
after each fight, denoted ud(oi

b, o
i
d), is computable if we know

which good actions are involved in the fight, so is ua(oi
b, o

i
d).

Note that the system is clear about the set of good actions
involved in each fight, but the attacker could have some
uncertainty about the good actions.

However, when intrusion detection has delay or when the
detection is not 100% accurate, the simplified model can-
not realistically model the fights between the attacker and
the system, and the general model is the model we should
use. Why? When the accuracy is low, even if you can in-
stantly raise alarms, the simplified model still has too much
uncertainty which makes the inferences generated by the
model difficult to be validated. See that because of the in-
accuracy, the system is actually not sure about the current
attack state, and taking the defense action as if the raised
alarm is true is not only not secure but also very expen-
sive. When the detection latency is long, after an attack
action is detected, several attack states may have already
been bypassed, and as a result, the system can only take a
null defense action for every bypassed state. This indicates
that the attacker can take a lot of advantage if the simplified
model is used to guide the defense.

The above discussion shows that (a) if the game model
is not properly chosen and followed, the system can lose a
lot of security and assurance, and that (b) the agility and
accuracy of intrusion detection play a critical role in finding
optimal AIOS game models. In addition, we found that the
correlation among attack actions also plays a critical role in
finding optimal AIOS game models. Based on these two fac-
tors, the taxonomy of AIOS models can follow the regions
shown in Figure 1(a), and the taxonomy can be simply sum-
marized as follows:
� In region 9, stochastic games should be used together with
reactive defense. When intrusion detection is highly effec-
tive, stochastic games become feasible. See that not also
that each attack state can be accurately identified by the
system with agility, which enables effective reactive defense,
but only that the transition probability among attack states
can be estimated with good accuracy. When there is strong
correlation among attack actions, stochastic game models
are better than repeated game models, since they can model
the correlation relation among attack actions, but repeated
game models cannot.
� In region 1, Bayesian multistage games should be used to-
gether with proactive defense. When the intrusion detection
effectiveness is poor, the system can have substantial uncer-
tainty about the current attack state, and such uncertainty
usually makes stochastic game models infeasible, since the
utility of stochastic game models is dependent on the as-

sumption that each attack state can be instantly identified
by each player. In this case, Bayesian game models are a
robust, realistic solution, since they do not require accuracy
detection, and they do not require instant detection either.
� In Region 7, Bayesian multistage games should be used.
� In region 3, normal dynamic multistage games should be
used, and sub-game perfect strategies should be taken by
the players. In this case, compared with the combination
of probabilistic “attack states” and stochastic game models,
simple dynamic multistage games are easier, cheaper, having
a smaller search space, more accurate, and having no need
to know all the attack states.
� Finally, the gray areas usually need a tradeoff between the
extreme cases when we need to build a good game theoretic
AIOS model for such a region. The tradeoffs are depen-
dent on many factors, such as the amount of uncertainty,
accuracy, and sensitivity, as we will discuss shortly.
� Note that every type of AIOS inference games can support
both pure strategies and mixed strategies.

5.2 Bayesian Game-Theoretic AIOS Models
In this section, we present a concrete Bayesian game-

theoretic AIOS model, which can be used to handle regions
1 and 7. This model will be used shortly to do the case
study.

A Bayesian game-theoretic AIOS inference model is com-
posed of two parts: a Bayesian game model that charac-
terizes the attacker-system relation, and a set of AIOS in-
ferences generated by the game model. In particular, the
game model is a specific 2-player finitely repeated Bayesian
game between the system and a subject, where (a) there
can be multiple types of subjects. And the type space is
denoted T sub = {good, bad}. A subject’s type is privately
known by the subject. (b) Asys is the action space of the
system, and Asub is the action space of the subject. One
or more actions can build a strategy. (c) The game has
a finite number of plays (or stages) and each play include
a pair of simultaneous actions (asys, asub). And each play
will have an outcome denoted o(asys, asub). (d) The sys-
tem is uncertain about the type of the subject. This un-
certainty is measured by the system’s type belief, denoted
ptype

sys . For example, ptype
sys (bad), a probability, denotes the

system’s belief about the statement that the subject is a bad
guy. (e) For each outcome o, the system’s utility function
is usys(o) = ptype

sys (good)ugood
sys (o) + ptype

sys (bad)ubad
sys(o). If the

subject is a good guy, his or her utilities are determined by
usub(o; good), otherwise, his or her utilities are determined
by usub(o; bad).

On the other hand, the set of AIOS inferences are de-
termined by the Nash equilibria of the game model based
on the rationality notion of an expected-utility maximizer‡.
In particular, for each Nash equilibrium of the game, de-
noted (a∗

sys, a
∗
bad, a∗

good), the game model will output {a∗
sys,

a∗
bad, usys(a

∗
sys, a

∗
bad), usub(a

∗
sys, a

∗
bad; bad)} as the AIOS in-

ferences, where usub(a
∗
sys, a

∗
bad; bad) can be mapped to the

amount of security vector degradation caused by the attack,
which clearly indicates the attacker intent and objectives;
a∗

bad indicates the kind of strategies that are more likely to
be taken by the attacker. Moreover, as side benefits, a∗

sys

‡The Nash equilibrium theory can be found in [24]. Note
that mixed strategy Nash equilibria exist for every Bayesian
game, although sometimes no pure strategy Nash equilib-
rium exists. Also a game may have multiple Nash equilibria.

indicates a better defense posture and usys(a
∗
sys, a

∗
bad) indi-

cates the overall resilience of the system.
Discussion. Bayesian AIOS inference models are simple,
robust and may work well even when a very little amount of
information is available. For example, in Region 1, although
neither the intrusion detector nor the previous actions (of a
subject) can provide hints, timely inferences could still be
generated based on a probabilistic estimation of how intense
the attacks are. Since a small number of disturbing attacks
will not affect the estimated intensity degree much, Bayesian
AIOS inference models are very robust to disturbing alerts.

5.3 Case Study : Inferring the AIOS of DDoS
Attackers

In this study, we want to infer the AIOS of the attack-
ers that enforce brute-force DDoS attacks. (Although DDoS
attacks with clear signatures, such as SYN flooding, can
be effectively countered, DDoS attacks without clear signa-
tures, such as brute-force DDoS attacks, are very difficult to
defend against since the system is not clear which packets
are DDoS packets and which are not.) An example scenario
is shown in Figure 2 where many zombies (i.e., a subset of
source hosts {S0, ..., S64}) are flooding a couple of web sites
(i.e., the victims) using normal HTTP requests. Note that
the web sites may stay on different subnets.

Although our AIOS inferring technique can handle almost
every DDoS defense mechanism, to make this case study
more tangible, we select pushback [15], a popular technique,
as the security mechanism. Pushback uses aggregates, i.e., a
collection of packets from one or more flows that have some
property in common, to identify and rate-limit the packets
that are most likely to cause congestion or DoS. Pushback
is a coordinated defense mechanism which typically involves
multiple routers. To illustrate, consider Figure 2 again,
when router R1.0 detects a congestion caused by a set of
aggregates, R1.0 will not only rate-limit these aggregates,
but also request adjacent upstream routers (e.g., R2.1) to
rate-limit the corresponding aggregates via some pushback
messages.

Now, we are ready to present the specific Bayesian game-
theoretic AIOS inference model. To save space, we only
mention the differences from the generic model proposed in
the previous section. In this model,
� (a) V = {v1, ..., vl} is the set of victims of the DDoS
attack (note that our inference model only handles a single
DDoS attack). Note that the victims may stay on different
subnets. The system is composed of every router that is part
of the pushback defense, denoted {R1, ..., Rn}. The subject
is the set of hosts that send packets to V . The type of a
host is either good or bad (i.e., a zombie), but not both.
� (b) Asub = {T1, ..., Tm}, where Ti is a communication
task, e.g., visiting a web site, transferring a file, sending out
a set of DDoS packets, etc.
� (c) Asys is determined by the pushback postures of each
router in the system. In particular, the pushback behav-
ior of a router is determined by the following configurable
parameters: [p1

sys] congestion checking time (default value:
2s) is the interval time that the router checks congestion.
When serious congestion is detected, the router will identify
(and rate-limit) the aggregate(s) responsible for the conges-
tion and send out some pushback messages. Note that in
this study the thresholds for “reporting” serious congestion
and for determining who should receive pushback messages

are fixed. Note also that how the rate limits (for each ag-
gregate) are set up is also fixed. [p2

sys] Cycle time (default
value: 5s) is the interval time that the router reviews the
limits imposed on its aggregates and sends refresh messages
to the adjacent upstream routers to update their rate lim-
its. Note that how such rate limits are updated is fixed
in this study. [p3

sys] Target drop rate (default value: 5%)
determines the upper-bound drop rate of the router’s out-
put queue. To achieve this upper-bound, the rate limiter
should make the bit rate towards the output queue less than
B/(1 − target drop rate), where B is the bandwidth of the
output link. [p4

sys] Free time (default value: 20s) is the ear-
liest time to release a rate-limited aggregate after it goes
below the limit imposed on it. [p5

sys] Rate limit time (de-
fault value: 30s) determines how long a newly identified
aggregate must be rate-limited. After the period, the router
may release an aggregate. [p6

sys] Maximum number of ses-
sions (default value: 3) determines the maximum number of
aggregates the rate limiter can control. [p7

sys] Aggregate pat-
tern (default value: destination address prefix) determines
which kinds of properties will be used to identify aggregates.
�(d) Abad

sub is determined by the following parameters: (d.1)
The set of victims, i.e., V . (d.2) the number of zombies.
For simplicity, we assume each zombie does the same thing.
(d.3) The location of each zombie. (d.4) The traffic volume
generated by each zombie. (d.5) The traffic pattern used by
each zombie.
�(e) ptype

sys (bad) = θ. In this paper, we set θ = 0.01.
�(f) For each outcome o of a game play, usub(o; good) =
Blo/Blw and usub(o; bad) = αBao/BN +(1−α)(1−Blo/Blw),
where Blo is the bandwidth occupied by the legitimate users;
Blw is the bandwidth that legitimate users want to occupy;
Bao is the bandwidth occupied by the attacker; BN is the
bandwidth capacity. For simplicity, Blo, Blw, Bao, and BN

are all measured based on the incoming links to the victims,
as shown in Figure 2. Note that Bao/BN indicates the ab-
solute impact of the attack on the (whole) network, while
1 − Blo/Blw indicates the relative impact of the attack on
legitimate users. α is the weight that balances these two
aspects. In this study we let α = 0.5.
� (g) usub(o) is defined in the standard way.
Simulation. In order to obtain concrete AIOS inferences of
real world DDoS attackers, we have done extensive simula-
tions on the game plays specified above using ns-2 [1]. The
network topology of our experiments is shown in Figure 2,
which is the same as the topology used in [15]. There are
64 source hosts and 4 levels of routers. Except the routers
at the lowest level, each router has a fan-in of 4. The link
bandwidths are shown in the figure. Each router uses a ns-
2 pushback-module to enforce the pushback mechanism. It
should be noticed that although there can be multiple vic-
tims staying on different subnets, we assume all the victims
share the same incoming link, namely R1.0 − R0.0.

In our experiments, Asys is materialized as follows. Asys

includes 10 defense strategies. The default value combina-
tion of {p1

sys, ..., p
7
sys} is the 7th defense strategy. The 1st

strategy is the same as the 7th except that p1
sys = 4s. The

2nd is the same as the 7th except that the cycle time is 10s.
The 3rd is different in that that the target drop rate is 0.03.
The difference of the 4th is that the target drop rate is 0.07.
The 5th is different in that the free time is 10s. The 6th is
different in that the free time is 30s. The 8th is different in
that the rate limit time is 15s. The 9th is different in that

Victims

R3.15

... ...

...

... ...

... ...

S31

R3.11

R2.2

R0.0

2Mbps

20Mbps

Monitor here

R3.0 R3.3 R3.7R3.4 R3.8 R3.12

R2.3R2.1R2.0

R1.0

S32 S63S0

2Mbps

20Mbps

... ...

Figure 2: Network topology

the rate limit time is 50s. The 10th is different in that the
maximum number of sessions is 5.

In our experiments, Abad
sub is materialized as follows. (a) We

set the number of zombies as 12 (FewBad) or 32 (Many-
Bad). (b) The zombies are randomly chosen from the 64
hosts. (c) The traffic volume and pattern are determined
based on several real world Internet traces posted at http://
ita.ee.lbl.gov/html/traces.html. These traces show three typ-
ical volume patterns when there are no attacks: rate1 =
67.1kbps (the rates to a web site during the rush hour);
rate2 = 290kbps (the average rates from an Intranet to the
Internet); rate3 = 532kbps (the rates from an Intranet to
the Internet during the rush hour). Based on these statis-
tics, we let the total traffic volume of the good source hosts
to the victims be 67.1kbps, 290kbps, or 532kbps. (Note that
here we do not count the packets that go from a good host
to a destination that is not a victim.) Since the aggregate
pattern is “destination address prefix”, every good packet
to the victims will be put into the same set of rate-limiting
aggregates (if any) as the DDoS packets. Hence, such good
packets are called poor packets. To illustrate, when the poor
traffic volume is 290kbps and when there are 12 zombies,
each good host will send out 290/52 bps traffic to the vic-
tims besides the good traffic sent to other destinations. (d)
We determine the total attack traffic volume based on a pa-
rameter called the bad-to-poor ratio. For example, when the
ratio is 30 and the poor traffic volume is 290kbps, the to-
tal attack traffic volume is 30*290 bps. Moreover, if there
are 32 zombies, each zombie will send out 30*290/32 bps
traffic to the victims. (e) When the poor traffic volume is
67.1kbps or 290kbps, we let the ratio be 30, 35, 40, 45, or
50. When the poor volume is 532kbps, we let the ratio be
30, 35, or 40. In this way, we totally get 13 possible attack
traffic volumes. (f) The traces also show 4 kinds of traffic
patterns. They are: Constant bits rate (CBR), Exponential
(EXP), ICMP, and Mixed (i.e., half CBR and half ICMP).
We let the attack traffic patterns be of these four types. (g)
If we count the number of value combinations of these attack
strategy parameters, we can know that there are 40 possible
strategies under rate1 or rate2, and they are 24 possible
strategies under rate3. We number the attack strategies as
follows. In the first 20 (12) strategies of the 40 (24) strate-
gies, the number of zombies is few. In the second 20 (12)
strategies, the number of zombies is many. Within each
20 (12) strategy group, the first 5 (3) strategies use CBR
traffic, the 2nd use Exponential traffic, the 3rd use ICMP
traffic, and the 4th use Mixed traffic. Within each such 5
(3) strategy group, the strategies are ordered according to
the bad-to-poor ratio, and the order is 30, 35, 40, 45 and 50

0
2

4
6

8
10

0

10

20

30

40
0.38

0.4

0.42

0.44

0.46

0.48

0.5

The system strategiesThe attacker strategies

P
ay

of
fs

 o
f t

he
 a

tta
ck

er

(a) rate1

0
2

4
6

8
10

0

10

20

30

40
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

The system strategiesThe attacker strategies

P
ay

of
fs

 o
f t

he
 a

tta
ck

er

(b) rate2

0
2

4
6

8
10

0

5

10

15

20

25
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

The system strategiesThe attacker strategies

P
ay

of
fs

 o
f t

he
 a

tta
ck

er

(c) rate3

0
2

4
6

8
10

0

10

20

30

40
0.88

0.9

0.92

0.94

0.96

0.98

1

The system strategiesThe attacker strategies

P
ay

of
fs

 o
f l

eg
iti

m
at

e
us

er
s

(d) rate1

0
2

4
6

8
10

0

10

20

30

40
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

The system strategiesThe attacker strategies

P
ay

of
fs

 o
f l

eg
iti

m
at

e
us

er
s

(e) rate2

0
2

4
6

8
10

0

5

10

15

20

25

0.65

0.7

0.75

0.8

The system strategiesThe attacker strategies

P
ay

of
fs

 o
f l

eg
iti

m
at

e
us

er
s

(f) rate3

Figure 3: The attacker’s and legitimate users’ pay-
offs under different defense and attack strategies

(30, 35 and 40). Finally, it should be noticed that when the
system takes strategy 10, the attacker will target 4 victims
in each of the 40 (24) strategies, although in every other
case the attacker will target only one victim.

Moreover, we assume the good traffics that do not go to
the victims will not cause any congestion by themselves.
Hence, they will not be involved in any aggregate in our
experiments and their influence can be neglected.
Payoffs and their AIOS implications. Figure 3 shows
the attacker’s and legitimate users’ payoffs under different
network scenarios (i.e., poor traffic volumes). We found that
�(a) The attacker’s payoffs are dependent upon not only
attack strategies, but also network scenarios and defense
postures. For example, when the poor traffic volume is low
and the target drop rate is 0.07, the attacker prefers using
many zombies, while in some other situations the attacker
prefers using few zombies.
�(b) From Figure 3, we found that the bad-to-poor ratio
does not affect the attacker’s payoffs much in each network
scenario. It seems when the attacker sends more packets to
the victims, the attacker should occupy more bandwidth and
get more payoffs. However, based on the results, the attack
traffic volume does not affect the payoffs much. This indi-
cates that pushback will still be effective even under intense
DDoS attacks.
�(c) Regarding the traffic pattern, the attacker earns signif-
icantly less payoffs when the traffic pattern is ICMP, there
are many zombies, and the poor traffic rate is 67.1kbps (see
Figure 3(a)). Under other situations, traffic patterns have
little impact on the attacker’s payoffs.
�(d) Except the case when the traffic pattern is ICMP and
the poor traffic rate is low, the attacker gets high pay-

Table 1: Nash equilibria Strategies
system strategy LS AS
dp0.03 rate1, mf many, 40, CBR, OA
dp0.03 rate1, mm many, 45, CBR, OA
sess5 rate1, mm few, 50, EXP, MA
sess5 rate1, mf many, 45, CBR, MA
sess5 rate1, mm many, 50, CBR, MA
sess5 rate1, mm many, 35, ICMP, MA
sess5 rate1, mm many, 30, EXP, MA
sess5 rate2, mm many, 50, CBR, MA
dp0.03 rate3, mm many, 35, EXP, OA
dp0.03 rate3, mm many, 30, Mixed, OA
sess5 rate3, mm many, 40, EXP, MA

offs when using many zombies. When using few zombies,
some poor traffic may not share the same route with the at-
tack traffic and the poor traffic may be “protected” by the
routers in such a way that minimum dropping is suffered.
Hence, when using fewer zombies, more attack packets can
be dropped. Therefore, the attacker should intend to use
many zombies in most cases.
�(e) The payoffs earned by the system and the legitimate
users are dependent not only on the defense strategies and
the legitimate users’ strategies, but also on the attack strate-
gies. For example, legitimate users earn higher payoffs when
there are few zombies and many good hosts, and the drop
rate is 0.03.
Nash equilibria and their AIOS implications. We get
48 Nash equilibria based on the payoffs we got when the
relative error is 0.005§. Some of them are shown in Ta-
ble 1, where “LS” means the legitimate users’ strategy; “AS”
means the attacker’s strategy; “OA” means the attacking
traffic has one aggregate; “MA” means the attacking traf-
fic has multiple aggregates; “FM” means FewGoodMany-
Poor, that is, there are many poor hosts (i.e., hosts that
send packets to the victims) and few unaffected hosts (i.e.,
hosts that send packets to another destination); “dp0.03”
means that the target-drop-rate is 0.03; and “sess5” means
that the maximum number of sessions is 5.

We found that several interesting AIOS inferences can be
obtained from the distributions of the Equilibria. In partic-
ular,
� (a) in terms of the traffic pattern, the distribution is
{0.22(CBR), 0.32(EXP), 0.19(ICMP), 0.27(Mixed)}. This
indicates that the attacker would most likely use EXP traf-
fic, since most Nash equilibria occur when the attack traffic
pattern is EXP (based on UDP).
� (b) The distribution under bad-to-poor ratio is {0.25(30),
0.31(35), 0.07(40), 0.07(45), 0.30(50)}, that is, the most un-
likely used ratio is 40.
� (c) The distribution under different combinations of the
number of zombies, poor hosts and unaffected hosts is {0(FFF),
0(FFM), 0.01(FMF), 0(FMM), 0.12(MFF), 0(MFM), 0.24(MMF),
0.63(MMM)}. This indicates that the attacker will typically
use many zombies.
� (d) The distribution under different defense strategies in-
dicates that most Nash equilibria occur when the target-
drop-rate is 0.03 (22%); or when the max-number-of-sessions
is 5 (57%). This indicates that to be more resilient, the sys-

§When we reduce the computing error, we get fewer Nash
equilibria but the distributions of the Nash equilibria are
still almost the same.

tem can increase the number of sessions and decrease the
target-drop-rate.

6. STATUS AND FUTURE WORK
In this paper, we have developed an incentive-based con-

ceptual framework for AIOS modeling. We have developed a
game theoretic formalization of the conceptual framework.
We have investigated how to practically model and infer
AIOS. And we have done a real world case study to gain
more insights about how to infer AIOS.

Nevertheless, our work in inferring AIOS is still prelimi-
nary and several important research issues need to be further
explored in order to get better AIOS inferences. In particu-
lar, (a) model level inference accuracy analysis and sensitiv-
ity analysis that can model and predict the influence of in-
complete information, asymmetric information (between the
attacker and the system), and uncertainty; (b) approximate
algorithms that can do optimal, quantitative tradeoffs be-
tween inference precision and efficiency during Nash equilib-
ria estimation; (c) AIOS inference models beyond Bayesian
games (i.e., the ones identified by our taxonomy).

Acknowledgement. This work was supported by
DARPA and AFRL, AFMC, USAF, under award number
F20602-02-1-0216, and by Department of Energy Early Ca-
reer PI Award.

7. REFERENCES
[1] The network simulator ns-2.

http://www.isi.edu/nsnam/ns/.

[2] H. Browne, W. A. Arbaugh, J. McHugh, and W. L.
Fithen. A trend analysis of exploitations. In Proc.
2001 IEEE Symposium on Security and Privacy, pages
214–229, May 2001.

[3] R. Browne. C4i defensive infrastructure for
survivability against multi-mode attacks. In Proc. 21st
Century Military Communications - Architectures and
Technologies for Information Superiority, 2000.

[4] D. Buike. Towards a game theory model of
information warfare. Technical report, Airforce
Institute of Technology, 1999. Master’s Thesis.

[5] E. H. Clarke. Multipart pricing of public goods. Public
Choice, 11:17–33, 1971.

[6] V. Conitzer and T. Sandholm. Complexity results
about nash equilibria. Technical report, Carnegie
Mellon University, 2002. CMU-CS-02-135.

[7] F. Cuppens and A. Miege. Alert correlation in a
cooperative intrusion detection framework. In Proc.
IEEE Symposium on Security and Privacy, 2002.

[8] H. Debar and A. Wespi. Aggregation and correlation
of intrusion detection alerts. In Recent Advances in
Intrusion Detection, LNCS 2212, pages 85–103. 2001.

[9] J. Feigenbaum, C. Papadimitriou, R. Sami, and
S. Shenker. A bgp-based mechanism for lowest-cost
routing. In Proc. 21st ACM Symposium on Principles
of Distributed Computing, 2002.

[10] A. M. Fink. Equilibrium in a stochastic n-person
game. Journal of Science in Hiroshima University,
Series A-I, (28):89–93, 1964.

[11] L. A. Gordon and M. P. Loeb. Using information
security as a response to competitor analysis systems.
Communications of the ACM, 44(9):70–75, 2001.

[12] T. Groves. Incentives in teams. Econometrica,
41:617–663, 1973.

[13] J. P. Hespanha and S. Bohacek. Preliminary results in
routing games. In Proc. 2001 American Control
Conference, 2001.

[14] J. Nash. Equilibrium Points in n-Person Games
Proceedings of the National Academy of Sciences, 36,
1950.

[15] J. Ioannidis and S. M. Bellovin. Implementing
pushback: Router-based defense against ddos attacks.
In Proc. 2002 Network and Distributed Systems
Security, 2002.

[16] D. Koller and B. Milch. Multi-agent influence
diagrams for representing and solving games. In Proc.
17th International Joint Conference on Artificial
Intelligence, 2001.

[17] C. E. Landwehr, A. R. Bull, J. P. McDermott, and
W. S. Choi. A taxonomy of computer program
security flaws. ACM Computing Surveys, 26(3), 1994.

[18] P. Liu, S. Jajodia, and C.D. McCollum. Intrusion
confinement by isolation in information systems.
Journal of Computer Security, 8(4):243–279, 2000.

[19] T.F. Lunt. A Survey of Intrusion Detection
Techniques. Computers & Security, 12(4):405–418,
June 1993.

[20] K. Lye and J. M. Wing. Game strategies in network
security. In Proc. 15th IEEE Computer Security
Foundations Workshop, 2002.

[21] D. Malkhi and M. K. Reiter. Secure execution of java
applets using a remote playground. IEEE
Transactions on Software Engineering, 26(12), 2000.

[22] A. Mas-Colell, M. D. Whinston, and J. R. Green.
Microeconomic Theory. Oxford University Press, 1
edition, 1995.

[23] J. McHugh. Intrusion and intrusion detection.
International Journal of Information Security,
(1):14–35, 2001.

[24] M. Mesterton-Gibbons. An Introduction to
Game-Theoretic Modeling. Addison-Wesley Publishing
Company, 1992.

[25] B. Mukherjee, L. T. Heberlein, and K.N. Levitt.
Network intrusion detection. IEEE Network, pages
26–41, June 1994.

[26] P. Ning, Y. Cui, and D. S. Reeves. Constructing
attack scenarios through correlation of intrusion
alerts. In ACM Int’l Conf. on Computer and
Communications Security, 2002.

[27] N. Nisan and A. Ronen. Algorithmic mechanism
design. Games and Economic Behavior, 35, 2001.

[28] P. F. Syverson. A different look at secure distributed
computation. In Proc. 10th IEEE Computer Security
Foundations Workshop, 1997.

[29] F. Thusijsman. Optimality and Equilibria in
Stochastic Games. Gentrum voor Wiskunde en
Information, Amsterdam, 1992.

[30] W. Vickrey. Counterspeculation, auctions, and
competitive sealed tenders. Journal of Finance,
16:8–37, 1961.

[31] X. Wang and M. Reiter. Defending against
denial-of-service attacks with puzzle auctions. In
IEEE Symposium on Security and Privacy, 2003.

[32] M. P. Wellman and W. E. Walsh. Auction protocols
for decentralized scheduling. Games and Economic
Behavior, 35, 2001.

[33] C. Zou, W. Gong, and D. Towsley. Code red worm
propagation modeling and analysis. In Proc. ACM
Conference on Computer and Communication
Security, 2002.

[34] J. Xu and W. Lee. Sustaining availability of web
services under distributed denial of service attacks. In
IEEE Transactions on Computer, 52(4):195–208,
February 2003.

APPENDIX

A. A SIMPLE REVIEW OF GAME THE-
ORY

The normal-form representation of an n-player game specifies
the players’ strategy spaces S1, ..., Sn and their payoff functions
u1, ..., un. We denote this game by G = {S1, ..., Sn; u1, ..., un}.
In this game, the strategies (s∗1, ..., s∗n) are a Nash equilibrium
if, for each player i, s∗i is (at least tied for) player i’s best re-
sponse to the strategies specified for the n-1 other players, (s∗1,
..., s∗i−1, s∗i+1, ..., s∗n). That is, s∗i solves maxsi∈Si

ui(s
∗
1, ...,

s∗i−1, si, s
∗
i+1, ..., s∗n).

A pure strategy for player i is an element of set Si. Suppose
Si = {si1, ..., sik}, then a mixed strategy for player i is a prob-
ability distribution pi = (pi1, ..., pik), where o ≤ pik ≤ 1 for
k = 1, ..., K and pi1 + ... + pik = 1. Although a game does not
always have a pure strategy Nash equilibrium, Nash [14] proved
that a game always has at least one mixed strategy Nash equilib-
rium.

The static Bayesian game theory is mentioned in Section 5.2.
Note that a Bayesian Nash equilibrium can be defined in a way
very similar to a normal Nash equilibrium.

Given a stage game G (e.g., a static (Bayesian) game), let G(T)
denote the finitely repeated game in which G is played T times,
with the outcomes of all preceding plays observed before the next
play begins. The payoffs for G(T) are simply the sum of the
payoffs from the T stage games. If the stage game G has a unique
Nash equilibrium then, for any finite T , the repeated game G(T)
has a unique subgame-perfect outcome: the Nash equilibrium of
G is played in every stage.

Moreover, in a finitely repeated game G(T), a player’s multi-
stage strategy specifies the action the player will take in each
stage, for each possible history of play through the previous stage.
In G(T), a subgame beginning at stage t+1 is the repeated game
in which G is played T−t times, denoted G(T−t). There are many
subgames that begin at stage t + 1, one for each of the possible
histories of play through stage t. A Nash equilibrium is subgame-
perfect if the player’s strategies constitute a Nash equilibrium in
every subgame.

Finally, a standard formal definition of stochastic games is as
follows. An n-player stochastic game Γ is a tuple 〈 S, A1, ..., An, r1,
..., rn, p 〉, where S is the state space, Ai is the action space of
player i for k = 1, ..., n, ri : S × A1 × ... × An → R is the payoff
function for player i, p : S × A1 × ... × An → ∇ is the transition
probability map, where ∇ is the set of probability distributions
over state space S [29]. In Γ, a strategy π = (π0, ..., πt, ...) is
defined over the entire course of the game, where πi is called the
decision rule at time t. A decision rule is a function πt : Ht →
σ(Ai), where Ht is the space of possible histories at time t, with
each Ht ∈ Ht, Ht = (s0, a1

0, ..., an
0 , ..., st−1, a1

t−1, ..., an
t−1, st),

and σ(Ai) is the space of probability distributions over agent
i’s actions. π is called a stationary strategy if πt = π for all
t, that is, the decision rule is independent of time. Otherwise,
π is called a behavior strategy. In Γ, a Nash equilibrium point
is tuple of n strategies (π1∗, ..., πn∗) such that for all s ∈ S and

i = 1, ..., n, vi(s, π1∗, ..., πn∗) ≥ vi(s, π1∗, ..., πi−1∗ , πi, πi+1∗ , ..., πn∗)
for all πi ∈ Pii, where where Πi is the set of strategies available
to agent i.

