
C-2-1

The Design of an Adaptive Intrusion Tolerant Database System

Pramote Luenam
Dept. of Info. Systems
UMBC, Baltimore, MD

pluena1@umbc.edu

Peng Liu
Dept. of Info. Systems
UMBC, Baltimore, MD

pliu@umbc.edu

Abstract

This paper presents the design of an adaptive
intrusion tolerant database system, called AITDB. The
goal of AITDB is to provide database applications with
a stabilized level of data integrity and availability in
face of attacks. Using a rule-based adaptation
mechanism and a set of reconfiguration operators,
AITDB automatically adapts itself to the dynamic
changes of environment according to a specific set of
adaptation criteria, which are determined based on the
current situation of the damage (i.e., data integrity
level), the attacks, the workload, the availability level,
the performance, and the cost.

1 Introduction

A DBMS must provide the security, integrity,
concurrency, and recovery controls to protect the
database against a variety of possible threats that are
either intentional or accidental. However, it is difficult,
perhaps impossible to build a DBMS that can protects
the database from every unauthorized use, misuse, or
abuse. Many security techniques are proposed,
developed, deployed, and evaluated both in academic
research and commercial DBMS development, for
example, login authentication, access and inference
controls [1,4,5,10], encryption, multilevel secure
databases [11,12] and multilevel secure transaction
processing [2]. These techniques focus on preventing
users from gaining access beyond their authorities. Such
a preventive approach is very limited to handle
successful attacks, or intrusions, which can seriously
jeopardize the integrity and availability of databases. An
intrusion tolerant database system, on the other hand,
arms a prevention-centric secure database system with
the ability to survive intrusions, hence it evolves a
prevention-centric secure database system into a
defense-in-depth resilient database system.

In our previous research [7,8], we have
designed and implemented ITDB, an intrusion tolerant
database system (prototype), using “off-the-shelf”

components. ITDB illustrates intrusion tolerance design
principles in three ways: (1) using multiple intrusion
tolerance phases to achieve defense-in-depth; (2) using
isolation and multi-phase damage containment to
tolerate a not so good intrusion detector; (3) on-the-fly
intrusion tolerance transparent to applications. ITDB
focuses on (a) the data integrity and availability loss
caused by authorized but malicious transactions, which
according to the fact that most attacks are from insiders
should be the major threat to database systems, and (b)
transaction level intrusion tolerance mechanisms.
Although ITDB does not directly address processor, OS,
or DBMS level attacks, existing lower level database
intrusion tolerance mechanisms such as those proposed
in [9,13] can be easily integrated to enable ITDB to
survive lower lever attacks.

In this paper, we present the design of an
adaptive intrusion tolerant database system called
AITDB. AITDB is designed to enhance the cost-
effectiveness of ITDB through dynamic reconfiguration.
Using a rule-based adaptation mechanism and a set of
reconfiguration operators, AITDB automatically adapts
itself to the dynamic changes of environment according
to a specific set of adaptation (or tuning) criteria, which
are determined based on the current situation of the
damage (i.e., the data integrity level), the attacks, the
workload, the availability level, the performance, and
the cost.

The rest of the paper is organized as follows. In
this section, we present the overview of ITDB and
justify the need for adaptive intrusion tolerance. Section
2 presents the AITDB architecture. Section 3 presents
the AITDB adaptation model. Section 4 describes
AITDB rule-based reconfiguration mechanism. In
section 5, we describe the major reconfiguration
operators of AITDB. In Section 6, we present the
system design of AITDB. Finally, we conclude the
paper in Section 7.

1.1 ITDB Overview

AITDB is developed in the context of ITDB. ITDB
is a transaction-level intrusion tolerant database system

C-2-2

that can survive attacks. The architecture of ITDB
architecture is shown in Figure 1.

In order to build ITDB on top of an “off-the-
shelf” DBMS, we developed a transaction proxy
component, called the Mediator (MD). The MD not
only captures a lot of information (or trails) about
transactions’ behavior but also help enforce some
important intrusion tolerance policies such as isolation
and damage containment. Using the transaction logs, the
trails captured by the Mediator, and some other relevant
proofs, the Intrusion Detector (ID) detects malicious or
bad transactions . If a bad transaction is active when
being identified, the transaction will be aborted by the
Mediator. However, if a bad transaction is already
committed when being identified, the bad transaction’s
identifier will be sent to the Damage Assessor (DA).

Figure 1: ITDB system architecture

The DA and the Damage Repairer (DR) assess
the damage caused by the intrusion and performs on-
the-fly damage repair. The growing transaction logs
(and other trails) are scanned to locate the set of data
objects corrupted directly or indirectly by the intrusion.
Then, each damaged data object x will be repaired by a
specific cleaning transaction (composed by the DR),
which will restore x’s value to its latest undamaged
version. ITDB continues executing new transactions
during the repair process.

Since during the detection latency and
assessment latency a lot of damage could be spread
from a damaged data object to some other originally
undamaged objects through the read and write
operations of good transactions, ITDB integrates two
more components, namely the Damage Container (DC)
and the Isolation Manager (IM), to control the extent of
damage spreading. The DC takes a novel multi-phase
damage containment approach which first instantly
contains the damage the might have been caused by an
intrusion as soon as the intrusion is identified, then tries
to uncontain the objects that are previously contained by
mistake. Multi-phase damage containment can ensure
that no damage will spread during the assessment

latency, although with some availability lost. However,
the DC can do nothing to reduce the damage caused
during the detection latency. In contrast, the IM can
reduce the damage caused during the detection latency
(thus it indirectly reduces the damage caused during the
assessment latency) by redirecting the access of a
suspicious transaction (that is very likely to cause
damage later on) to a virtually separated database.
Isolation immunizes the database from the damage
caused by the set of suspicious transactions without
sacrificing substantial availability, since if an isolated
user turns out to be innocent, most - if not all – of his or
her updates can be merged back to the real database.

1.2 The need for adaptivity

ITDB components can behave in many
different ways. At one point of time, the resilience of an
ITDB system is primarily affected by (1) the current
attacks; (2) the current workload; (3) the current data
integrity level; (4) the current data availability level; and
(5) the current behavior of the system. We call the first
4 factors the environment of the ITDB system. It is clear
that given the same environment, two ITDB systems
with different behaviors can yield very different levels
of resilience. This suggest that one ITDB system
behavior is only good for a limited set of environments.
To achieve the maximum amount of resilience, an ITDB
system must adapt itself to its environment. Through
AITDB, (1) we can adapt ITDB to (different)
application semantics. (2) We can significantly improve
the cost-effectiveness of ITDB. (3) We can prevent
dramatic performance degradation due to system
environment changes.

2 Aitdb architecture

As mentioned earlier, AITDB is designed to have a
self-tuning capability, which can adaptively adjust its
behavior according to different adaptation criteria. For
this purpose, we introduce four additional components
to ITDB: the Self-Stabilization Manager (SSM), the
Reconfiguration Executor, the Emergency Analyzer, and
the Listener, as illustrated in Figure 2. The SSM is a
new component while the Listener, the Emergency
Analyzer, and the Reconfiguration Executor are
additional threads added to the original components of
ITDB.

In this section, we describe the function and
purpose of these additional components. AITDB
exploits two categories of system parameters to do
reconfiguration: control parameters, which control the
system behavior, and monitor parameters, which
specify the environment. When an AITDB system
starts, the SSM retrieves all the system parameters
(together with their values) from the Monitor_Parameter

Mediator

User

Network

Damage Assessor &
Repairer

Damage Container Isolation Manager

Intrusion
Detector

Application Data, Trails,
Containment Set,

Uncontainment Set,
Isolation Data Versions

C-2-3

table. The parameters are initialized and then
temporarily stored into the Parameters_Table. Using a
specific rule-based adaptation mechanism which we will
address shortly, the SSM analyzes the parameters and
makes a decision on how to adjust the control
parameters to improve the overall system cost-
resilience. Then reconfiguration messages containing
the suggested new values for these control parameters
are prepared and sent to the corresponding components.
Reconfiguration messages have the following format:

Message_Type; Sender; Receiver; Parameter_Name;
Value; Measurement_Unit; Action

Each message contains seven fields. Each field is
separated by semicolon. The first field, Message type,
indicates the type of the message. Its value determines
the format of the remaining fields. The Sender field
indicates the name of the sending component. The
Receiver field indicates the name of the destination
component. The Parameter_Name field indicates the
parameter that need to be changed. The Value field is
the new value of the parameter suggested by the SSM.
The Measurement_Unit field indicates the unit of
measurement. Possible values are RANGE, PERCENT,
UNIT and LEVEL. The last field, Action, specifies how
the operation will be applied to the parameter.

For example, in order to inform the Mediator to
change the Suspicion Level Threshold control parameter
to the forth level, the SSM can send the following
reconfiguration message:

NORMAL; SSM; Mediator; Suspicion Level Threshold;
4; LEVEL; CHANGETO;

To retrieve a reconfiguration message, a Listener
will be added to each ITDB component. The Listener is
a thread that is responsible for checking if a new
reconfiguration message arrives for the component.
When a new message arrives, the Listener will notify
and pass the message to the Reconfiguration Executor.
The Reconfiguration Executor is another thread that will
be added to several components such as the Intrusion
Detector and the Mediator. The thread is responsible for
reconfiguring the component by changing the values of
its control parameters from the old values to the new
values.

The SSM periodically polls the parameters from the
ITDB components. The polling time interval is specified
in the Interval_Time table (i.e., every 30 seconds).
However, in some emergency cases, AITDB might need
to react instantly. For example, when a transaction is
identified malicious with the anomaly degree over the
maximum threshold. For such an event, the Intrusion
Detector should not wait until the time interval has
lapsed and it should immediately report this event to the
SSM. To support this feature, we add a new thread,
namely the Emergency Analyzer, to each component to
analyze, detect, and report emergency events. Similar to
the SSM, the Emergency Analyzer also uses a rule-
based mechanism to determine which events should be
treated as an emergency.

Figure 2: AITDB system architecture

C-2-4

3 THE Adaptation MODEL

3.1 Adaptation Criteria

AITDB does reconfiguration according to two
adaptation criteria: (1) the (resulted) levels of data
integrity and availability, and (2) the cost-effectiveness.
Since the goal of AITDB is to provide database
applications with a stabilized level of data integrity and
availability, it is reasonable to use the current levels of
data integrity and availability and the changes of these
levels over a period of time to measure the resilience of
an AITDB system. In particular, AITDB uses four
trustworthiness metrics to measure the effectiveness of
adaptation operations: (1) level of data integrity
(denoted LI), which is indicated by the percentage of the
damaged data objects (to all the data objects); (2) level
of data availability from the perspective of containment
(denoted LDA), which is indicated by the percentage of
the data objects contained by the Damage Container; (3)
level of data availability from the perspective of false
alarms (denoted LTA), which is indicated by the
percentage of the good transactions that are mistakenly
rejected due to false alarms to all the good transactions;
(4) level of data availability from the perspective of
isolation (denoted LIA), which is indicated by the
percentage of the innocent transactions that are backed-
out during merging processes. Note that containment,
false alarms, and isolation can all cause availability loss
since contained data items are temporarily not
accessible, false alarms can cause innocent transactions
to be denied, and the merge after an isolated user is
proven innocent could roll back transactions.

To measure the cost-effectiveness of an AITDB
system, we use three cost-effectiveness metrics: (1)
level of system workload (denoted LSW), which is

indicated by the degree of workload decreasing; (2)
level of the system effectiveness (denoted LSE), which
is indicated by a group of effectiveness to cost ratios;
(3) level of the system attacks (denoted LSA), which is
indicated by how intense the attacks are.

Both the trustworthiness and the cost-effectiveness
metrics embody themselves through the values of the set
of monitor parameters, which are listed in Table 1,
where the effects of every monitor parameter on these
metrics are specified. AITDB measures the adaptation
criteria metrics through these monitor parameters.

3.2 Adaptation model

In AITDB, the environment is monitored through
the set of monitor parameters. And the reconfiguration
is performed through several key reconfiguration
operators. These reconfiguration operators, when
triggered by the environment changes, will do the
reconfiguration by changing the values of the set of
control parameters in such a way that the adaptation
criteria could be maximized. These new control
parameters will determine the behaviors of the ITDB
components during the next AITDB adaptation interval.
And these adjusted behaviors will affect the values of
the monitor parameters during the next AITDB
adaptation interval (as a payback). The whole adaptation
process is shown in Figure 3.

Figure 3: Adaptation Model

Parameter Description Related
Component

Category Effect

Transaction Submission
Rate (TSR)

The average number of transactions submitted to
the database within a time period.

MD LSW TSR↑ à LSW↑

Malicious Users to
Trustworthy Users Ratio
(MTR)

The percentage of the malicious users to the
innocent users.

MD LI MTR↑à LI↓

Transaction Processing
Cost (TPC)

The average transaction processing time within a
particular period.

MD LSE TPC↑à LSE↓

Number of Aborted
Transactions (NAT)

The total number of transactions aborted by the
Mediator.

MD LSA NAT↑à LSA↑

Detection Latency (DL) The average delay time for detecting an
intrusion.

ID LSE DL↑à LSE↓

Intrusion Detection Cost
(IDC)

The average time spent for detecting an intruder
(starting from the beginning of the transaction
until the malicious behavior is detected).

ID LSE IDC↑à LSE↓

Control
Parameters

Monitor
Parameters

Reconfiguration
Operators

Affect

AITDB Parameters

Adjust

Collect
Feedback

C-2-5

Suspicious Transactions
to Malicious
Transactions Ratio
(SMR)

The ratio between the suspicious transactions and
the malicious transactions.

ID LSE SMR↑à LSE↓

Suspicion Rate (SPR) The average number of the suspicion transactions
detected by the Intrusion Detector within a
particular period.

ID LSA SPR↑à LSA↑

False Alarm Rate (FAR) The percentage of the number of suspicious
transactions that are found innocent later to the
number of all suspicious transactions.

ID LTA FAR↑à LTA↓

Affected Item Size
(AIS)

The total number of affected items at a particular
time.

DA & DR LI AIS↑à LI↓

Number of Affected
Transactions (NAF)

The average number of affected transactions in a
specific period.

DA & DR LSW NAF↑à LSW↑

Affected Items Rate
(AIR)

The percentage increase (or decrease) in the
number of affected items between two periods.
AIR can be used to determine the trend of the
damage spreading.

DA & DR LSA AIR↑à LSA↑

Repair Cost (RPC) The average time required for the repair
operation.

DA & DR LSE RPC↑à LSE↓

Average Number of
Isolated Users (ANI)

The average number of suspicious users who are
isolated by the Isolation Manager within a
particular period.

IM LSW ANI↑à LSW↑

Merging Size (MS) The number of objects kept in the merged back
history at a particular time.

IM LSW MS↑à LSW↑

Merging Back Ratio
(MBR)

The ratio between merged back objects and all
database objects

IM LSW MBR↑à LSW↑

Isolated to Normal
Transactions Ratio
(INR)

The ratio between the isolated transactions and
the normal transactions.

IM LIA INR↑à LIA↓

Back-out Ratio (BOR) The percentage of the back-out transactions to
the Merging Size.

IM LIA BOR↑à LIA↓

Merging Cost (MC) The average time required for the merging back
operation per transaction.

IM LSE MC↑à LSE↓

Isolation Cost (IC) The average processing time required for each
isolated user (from the beginning until merged
back or discarded) within a particular time
period.

IM LSE IC↑à LSE↓

Containment Set Size
(CSS)

The number of objects kept in the containment
set.

DC LSW CSS↑à LSW↑

Blocked Transaction
Ratio (BTR)

The percentage of transactions denied when
accessing contained objects due to the contained
operation.

DC LDA BTR↑à LDA↓

Containment Cost (CC) The average time spent for processing each
object in the containment operation (starting
from the time an object is contained until it is
uncontained).

DC LSE CC↑à LSE↓

Data Integrity level
(DIL)

Data Integrity Level = 1 – the percentage of the
known damaged objects.

Database LI DIL↑ à LI↑

Transaction Size (TSS) The average number of read and write operations
in a transaction.

Database LSW TSS↑à LSW↑

Transaction Execution
Time (TET)

The average time spent for executing each
transaction within a particular time period.

Database LSE TET↑à LSE↓

Table 1: List of AITDB monitor parameters

C-2-6

4 Reconfiguration Rules

Rules are used by the SSM (i.e., the set of
reconfiguration operators) to specify and program
AITDB reconfiguration policies. In our rule-based
tuning processes, we start by examining the events as
well as the relevant system parameters that might affect
the system’s behavior and cost-effectiveness. When an
interesting event arrives, we first check if the
reconfiguration firing conditions (associated with the
event) are satisfied or not. These conditions indicate the
amount of resilience or cost-effectiveness degradation
that could lead to system crash (in terms of security). If
these conditions are satisfied, we then instantly respond
to the event with a set of changed control parameters
(i.e., a new defense behavior). Currently, AITDB rules
are provided by the system-security-officer based on his
or her experiences. Each AITDB rules, after being
generated, are transformed into a decision chart that is
reviewed by experts to examine the logic and feasibility
of its implementation. Figure 4 illustrates a sample rule
used in AITDB

When: Get the Average Response Time report from the
Mediator
If: The Average Response Time from the Mediator > 20 Second
(High) and
The Number of Malicious Users < 2 (Low) and
The Percentage of Affected Transactions < 5% (Low) or
The Percentage of Isolated Transactions < 5% (Low)
Then: 1. Switch Multiphase Damage Containment to One
Phase; 2. Adjust the Suspicious Anomaly Threshold to Lower
Level

Figure 4: A sample reconfiguration rule

Figure 5: Class Diagram of Rules

AITDB rules use an Event-Condition-Action
model. They have the following form:

When <event> if <conditions> then <actions>

Actions are executed when a rule containing them
is fired. A rule fires whenever all of its conditions are
satisfied. The class diagram shown in Figure 5 presents
the relationships, methods, and attributes of the classes
used in our rule-based reconfiguration mechanism.

5 reconfiguration operators

In this section, we present three key reconfiguration
operators of AITDB. Each operator is associated with
an adaptive intrusion tolerance facility (or component)
that is controlled by a specific set of control parameters.
Each operator reconfigures the corresponding facility by
changing the values of the control parameters of the
facility. In particular, the Anomaly Level Threshold
Selector is associated with the adaptive intrusion
detector of AITDB. The TP-Speed Controller is
associated with the adaptive Transaction Proxy (a part
of the Mediator). And the Containment Tuner is
associated with the adaptive Damage Container.

5.1 Anomaly Level Threshold Selector

In AITDB, the Intrusion Detector uses synthesized
anomaly level of transactions (or sessions) to raise
alarms, and there are two kinds of anomaly level
thresholds: (1) suspicious anomaly level threshold (ST),
and (2) malicious anomaly level threshold (MT). The
suspicious anomaly level threshold is used by the
Isolation Manager to determine whether or not a
transaction is suspicious and should be isolated. The
malicious anomaly level threshold is used by the
Intrusion Detector to confidently report intrusions
(although the detector can make mistakes). Both
thresholds are control parameters that directly affect
several AITDB monitor parameters such as suspicion
rate, false alarm rate, the number of malicious
transactions, and the intrusion detection cost. When
both ST and MT are high, fewer intrusions are detected
with fewer false alarms, fewer transactions are isolated,
the intrusion tolerance cost is reduced, more data
availability is there, but the data integrity level could be
seriously decreased. When both are low, the data
integrity level is increased, but (a) the intrusion
tolerance cost is increased; (b) more false alarms are
raised; and (c) the data availability is jeopardized. The
job of the anomaly level threshold selector is to
adaptively pick the right values for ST and MT in such a
way that the tuned Intrusion Detector is more effective
within the current environment. An example
reconfiguration policy involving the anomaly level
threshold selector is shown in Figure 4.

Conditions

ConditionID: Integer
Seq: Integer
LogicalOperator: Char
Valid: Boolean

Evaluate () : Boolean

ParameterTable

ID: Integer
Name: String
Value: String
Type: String
ValChanged: Boolean

SetParamsValue ()
GetParamsValue ()

Actions

ActionID: Integer
Type: String
Statement: String

ChangeRelParams ()
Execute ()

Events

EventID: Integer
Type: String
Name: String

RuleProcessing ()

Rules

RuleID: Integer
RuleName: String
AllCondsSatisfied () : Boolean

RulesExamine ()
ExecuteActions ()
FireRule ()

1..*

1 1

1..*

1..*

1..*

1

1

C-2-7

5.2 TP-Speed Controller

The detection latency and assessment latency can
be longer when the attacks are intense or when the
DBMS workload is too heavy. As a result, serious
damage spreading can be caused during the two
latencies. To avoid the problem, we may want to reduce
the value of a control parameter, namely the transaction
submission rate, by using the speed control mechanism
that can be enforced by the Mediator. By adding an
appropriate extra delay to each transaction submitted to
the database server, the overall workload can be
reduced. As a result, the detection latency and
assessment latency can be shortened and the amount of
damage spreading can be controlled. However, it should
be noticed that the extra delays for transaction
processing (TP) jeopardize the data availability and
increases the amount of database performance penalty
of AITDB. Figure 6 shows an example reconfiguration
policy involving the TP-Speed Controller.

When: Get the Suspicion Rate from the Intrusion Detector
If: The Suspicion Rate > 10% (High) and
The Integrity Level < 80% (Low) and
The Transaction Submission Rate > 20 Transactions/Second
(High)
Then: Ask the Mediator to increase the Transaction Delay Time
by 5%

Figure 6: A sample rule using the speed
controller

5.3 Containment Switcher

Traditional database damage containment is one-
phase, that is, a damaged data object is contained only
after the Damage Assessor finds that it is damaged.
One-phase damage containment approach has a serious
drawback, that is, it cannot prevent the damage caused
on the objects that are corrupted but not yet located
from spreading. ITDB uses a multi-phase damage
containment approach to solve this problem. Multi-
phase damage containment can guarantee that after the
containing phase no damage will spread. However,
since multi-phase damage containment could
mistakenly contain a lot of undamaged data objects
during the containing phase, substantial data availability
loss could be temporarily caused. This motivates
AITDB to do adaptive damage containment.

The simplest adaptive damage containment can be
done by switching the system from multi-phase to one-
phase or in the reverse way. In particular, when damage
spreading is too serious, we should switch the system to
multi-phase containment to increase the data integrity
level. On the other hand, when damage spreading is not
serious at all, we should switch the system back to one-
phase containment to increase the data availability level.
An example reconfiguration policy involving the

Containment Switcher is shown in Figure 4. Better
adaptive damage containment could be done if we
support approximate damage containment where some
damage is allowed to leak out to trade in more data
availability. However, this is out of the scope of this
paper.

6 System Design

This section provides the detailed overview of our
AITDB design. Our design is object-oriented. The
design is presented and organized into four major
components: the Listener, the Reconfiguration
Executor, the SSM, and the Emergency Analyzer. To
describe the relationships and dependencies among
these components, we use the diagram illustrated in
Figure 7.

Figure 7: AITDB Component Design

The Listener is responsible for handling
communications between components through a
message queue. The Listener is an instance that is
implemented by objects of class Message and class
Queue. The Message class provides methods for
checking and receiving incoming messages, and posting
an outgoing message to any other component. An
instance of the Queue class is a template, which turns to
be instantiated as objects that will be used to store
messages. The Queue class provides methods for
placing messages into the queue and getting a message
from the queue.

The Reconfiguration Executor thread is added
into every component that needs to reconfigure itself.
The control parameters, as well as their suggested new
values, are passed from the Listener as an argument.
This thread is implemented by objects of class
Reconfiguration Executor and class ParameterList. The
Reconfiguration Executor class uses an object created
from a template class, the ParameterList. The
Reconfiguration Executor class provides a method for
changing the parameters to the optimized values. The
ParameterList class is a template class that defines a
generic container for storing collections of parameters.
Each parameter associates a name with a value. Each
parameter belongs to one specific ITDB component.
The ParameterList class also provides useful methods
for maintenance the data in the list.

Listener
Reconfiguration Executor

SSM

ParameterList

Queue

Message
Controller

EmergencyAnalyzer

C-2-8

The SSM retrieves parameters from all the
components of ITDB. These parameters are then
analyzed to determine the optimized values before being
sent back to the corresponding components through a
message queue. The SSM is an instance of class
Controller. The Controller class provides methods for
collecting parameters from ITDB components and the
database as well.

The Emergency Analyzer handles emergency
situations. It uses some relevant rules to decide if the
situation is an emergency and should be reacted
instantly. The Emergency Analyzer is an object of class
EmergencyAnalyzer. The EmergencyAnalyzer class
provides methods for collecting parameters from a
component. It also provides a method to notify the SSM
whenever an emergency has been identified.

7 Conclusion

This paper presents the design of an adaptive
intrusion tolerant database system. AITDB is developed
in the context of ITDB -- a transaction-level intrusion
tolerant database system. The goal of AITDB is not only
to enhance the cost-effectiveness of ITDB but also to
provide applications with a stabilized level of data
integrity and availability. AITDB is designed to have a
self-tuning capability, which adaptively tunes itself to
the dynamic changes of environment.

There are some future works for AITDB. First, we
want to implement the prototype of AITDB to
investigate our design goal. Second, we want to test and
evaluate the effectiveness and performance of AITDB
using real world data such as credit card transaction data
and inventory management data. Finally, we want to
apply such intelligent techniques as fuzzy logic or
neural network to enhance the cost-effectiveness of
AITDB.

Acknowledgement

Luenam and Liu were supported by the Defense
Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Material
Command, USAF, under agreement number F30602-
00-2-0575.

References

[1] M. R. Adam. Security-Control Methods for Statistical
Database: A Comparative Study. ACM Computing
Surveys, 21(4), 1989.

[2] V. Atluri, S. Jajodia, and B. George. Multilevel Secure
Transaction Processing. Kluwer Academic Publishers,
1999.

[3] Carter and Katz. Computer Crime: An Emerging
Challenge for Law Enforcement. FBI Law Enforcement
Bulletin, 1(8), December 1996.

[4] P. P. Griffiths and B. W. Wade. An Authorization
Mechanism for a Relational Database System. ACM
Transactions on Database Systems, 1(3):242–255,
September 1976.

[5] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E.
Bertino. A unified framework for enforcing multiple access
control policies. In Proceedings of ACM SIGMOD
International Conference on Management of Data, pages
474–485, May 1997.

[6] P. Liu and S. Jajodia. Multi-phase damage confinement in
database systems for intrusion tolerance. Proceeding of
14th IEEE Computer Security Foundations Workshop,
2001. To appear.

[7] P. Liu, J. Jiwu, P. Luenam and S. Ingsriswang. Intrusion
Tolerant Database Systems. Intrusion Tolerant Database
Systems. Submitted for Conference Publication.

[8] P. Luenam and P. Liu. ODAR: An On-the-fly Damage
Assessment and Repair System for Commercial Database
Applications. Proc. 15th IFIP WG 11.3 Working
Conference on Database and Application Security, July 15-
18, Ontario, Canada. To appear.

[9] U. Maheshwari, R. Vingralek, and W. Shapiro. How to
build a trusted database system on untrusted storage. In
Proceedings of 4th Symposium on Operating System
Design and Implementation, San Diego, CA, October
2000.

[10] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of
authorization for next-generation database systems. ACM
Transactions on Database Systems, 16(1):88–131, 1994.

[11] R. Sandhu and F. Chen. The multilevel relational (mlr)
data model. ACM Transactions on Information and
Systems Security, 1(1), 1998.

[12] M. Winslett, K. Smith, and X. Qian. Formal query
languages for secure relational databases. ACM
Transactions on Database Systems, 19(4):626–662, 1994.

[13] D. Barbara, R. Goel, and S. Jajodia. Using checksums to
detect data corruption. In Proc. 2000 International
Conference on Extending Data Base Technology, Mar
2000.

