
ARECA: A Highly Attack Resilient Certification Authority
Jiwu Jing

The State Key Lab of Information
Security, Graduate School of CAS

19A Yuquan Road
Beijing 100039, China

Jing@ieee.org

Peng Liu
School of Information Science and

Technology, The Pennsylvania State
University

University Park, PA 16802

pliu@ist.psu.edu

Dengguo Feng
The State Key Lab of Information

Security, Institute Of Software, CAS
4 South Fourth Street, Zhongguancun

Beijing 100084, China

feng@is.iscas.ac.cn

Ji Xiang Neng Gao Jingqiang Lin
The State Key Lab of Information Security, Graduate School of the Chinese Academy of Sciences

19A Yuquan Road, Beijing 100039, China

ABSTRACT
Certification Authorities (CA) are a critical component of a PKI.
All the certificates issued by a CA will become invalid when the
(signing) private key of the CA is compromised. Hence it is a
very important issue to protect the private key of an online CA.
ARECA systems, built on top of threshold cryptography, ensure
the security of a CA through a series of defense-in-depth
protections. ARECA systems won’t be compromised when a few
system components are compromised or some system
administrators betray. The private key of a CA is protected by
distributing different shares of the key to different (signing)
components and by ensuring that any component of the CA is
unable to reconstruct the private key. In addition, the multi-layer
system architecture of ARECA makes it very difficult to attack
from outside. Several threshold-cryptography-based methods are
proposed in the literature to construct an intrusion tolerant CA,
and the uniqueness of ARECA is that it engineers a novel two
phase signature composition scheme and a multi-layer CA
protection architecture. As a result, ARECA is (a) practical, (b)
highly resilient to both insider and outsider attacks that
compromise one or more components, and (c) can prevent a
variety of outside attacks.

General Terms
Algorithms, Security.

Keywords
Attack Resilience, Intrusion tolerance, CA, Digital Signature,
RSA.

1. INTRODUCTION
A PKI (Public Key Infrastructure) is based on algorithms of
public key cryptography. In a PKI system, a CA is the center of
trust (within a domain), and most, if not all, of the security

properties of the communications among computers are
dependent on the digital certificates issued by a CA. A digital
certificate issued by a CA is the binding of an identity and a
specific public key which is signed by the CA’s private key.
Generally speaking, there are two steps for one party A to verify
another party B’s identity. First, verifying whether the signature
on B’s certificate is correct. The signature can only be produced
by a CA because only the CA knows the signing key. Second,
verifying whether party B knows the private key corresponding to
the public key listed in the certificate. If the two-step verification
succeeds, then the identity data contained in the certificate should
be viewed as the true identity of party B. Therefore, the private
key of a CA is the core of CA security, and protecting the private
key from being compromised is the foundation of the security of
the whole CA domain.

As a key piece of an infrastructure providing security services, the
security of CA has been paid substantial attention. If a CA itself is
not secure, the applications depending on the CA will not be
secure either. For example, for an application that builds its
security on top of the trustworthiness of certificates, if the CA that
issues the certificates is compromised, then the security of the
application is primarily lost since certificates can be faked by the
attacker easily and no certificate may be trusted any longer.
Hence, CA security is the key of PKI security and CA systems
should be well protected.

However, protecting a CA is not an easy job due to several
reasons. First, CA is a major target of hackers, since the
corresponding payoff can be very significant. Organized hackers
who attack the network for national and group interests can be
very well equipped. As PKI is more widely deployed, PKI
becomes more important a target to the hackers. Since the security
of PKI is dependent on the security of the CAs, the attacker
typically needs to attack and break into a CA first in order to
conquer the key part of an application.

Second, existing networks and computers are still very vulnerable
to attacks. No operating system or network protocol can guarantee
that they are 100% secure. New bugs are identified almost every
day which can allow the attacker to break into a computer system
before it is patched accordingly. Hence, the PKI has to secure
itself instead of relying on the security of the underneath network
protocols and operating systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SSRS ’03, Oct 31, 2003, Fairfax, VA, USA.
Copyright 2003 ACM X-XXXXX-XXX-X/XX/XXXX…$5.00.

Third, CA systems are designed to stay online and provide
continuous services even under sustained attacks. This makes
securing CA even more challenging. After an intrusion is detected
and part of a CA is infected, shutting down the whole CA for an
offline repair may not be affordable. For example, a certificate
may need to be revoked during the repair and it should
immediately be revoked. If the CA cannot revoke the certificate
right away, it is possible that some dangerous activities could be
performed using the damaged certificate, which can jeopardize
the security and trustworthiness of the whole PKI. Hence, when
an intrusion occurs, recovering the signing key may need to be
done as soon as possible in order to prohibit criminals from
performing illegal operations. If the key cannot be recovered in
time, big loss could be caused. Therefore, we must ensure not
only the confidentiality and integrity of the private key of a CA,
but also the availability of the CA service.

Fourth, existing CA systems are very vulnerable to malicious
insider threats. Experiences with insider crimes show that many
CAs can be attacked by malicious insiders, e.g., the administrators
and operators involved in a certificate issuing or revoking
process. Although many insider threats can be countered by a
strict PKI management policy/system, the insiders typically have
a better chance to break into a CA since they could exploit the
operational mistakes and management negligence within a CA
which outsiders usually are unable to take advantage of.
Moreover, because of the importance of a CA, the adversary may
want to invest a lot of money to bribe an insider who may not be
able to resist the corresponding temptation.

In summary, although no CA can prevent all the possible attacks,
a variety of important web/network applications, such as e-
commerce and e-government, are based on the assumption that
certificates are trustworthy and these applications require CA
systems be able to deliver correct services even under partially
successful attacks. In other words, attack resilient CA systems are
of urgent need. If a hacker can break into a CA and get its private
key, users must be seized with panic. If a large-scale CA is
conquered by the attacker, a big society can be frightened and
paralyzed. If a hacker can make a CA stop delivering services by
infecting part of the CA (without stealing its private key), the
digital society may still suffer a lot of security loss or denial-of-
service.

The goal of this paper is to develop a highly attack resilient CA,
called ARECA. ARECA assumes a centralized CA. ARECA is
designed to counter two types of attacks: (a) an outsider attack
may break into a CA; the hacker could obtain the server resources
and thus find the private key of CA or find the way to lead to or
make use of the private key; (b) An employee, who has control of
part of a CA, wants to figure out what is the private key of the
CA. Handling denial-of-service attacks caused by too many
legitimate or spoofed CA service requests is out of the scope of
this paper.

The basic idea of ARECA is to distribute the certificate signing
task from a single CA signing server to a set of share servers and
a set of combiners in such a way that (a) each share server knows
a share of the private key but not the whole key; (b) when no
combiner is hacked, (b1) compromising any/all share servers will
not disclose the private key (when a server is compromised, we
assume the attacker knows every thing the server knows); (b2) the
CA will not stop running when more than t out of k share servers

are running correctly; (d) even when some combiners and some
share servers are both compromised, the attacker in general still
has a small chance to get the private key.

ARECA shows that a RSA-based CA can be made highly attack
resilient. Although ARECA can work off-line in a safe
environment to obtain more security, ARECA is designed to
deliver non-stop, online CA services. The whole ARECA system
is composed of several servers, but none of them can cause the
system to disclose its private key. The design goal of ARECA is:

Security. It is impossible for the attacker to get the private key
when no combiner is hacked no matter how many share servers
are hacked. It is very difficult for the attacker to get the private
key even when some combiners and some share servers are
issuing a conspiracy attack.

Resilience. Non-stop, correct certificate signing services can be
continuously delivered even when some share servers or
combiners are hacked.

Simplicity. (a) The certificate signing protocol is simple and
efficient. (b) All the share servers are doing the same kind of
computation, so do all the combiners. The computation
complexity of share servers and combiners are similar.

Flexibility. The CA can be flexibly configured in terms of who
hold which key shares, and who do which tasks.

Accountability. The audit system is able to trace attacks and/or
failures.

Ease of Management. The clients need to know nothing about
the key share distribution scheme. A share server needs to know
nothing about “I should collaborate with which share servers?”
Adding a new share server or a new combiner are both easy.

Low cost. The system can be built on top of COTS (commercial
off the shelf) components.

Several threshold-cryptography-based methods are proposed in
the literature to construct an intrusion tolerant CA, and the
uniqueness of ARECA is that it engineers a novel two phase
signature composition scheme and a multi-layer CA protection
architecture. As a result, ARECA is (a) practical, (b) highly
resilient to both insider and outsider attacks that compromise one
or more components, and (c) can prevent a variety of outside
attacks.

The rest of the paper is organized as follows. In Section 2, we
discuss a set of existing threshold cryptography methods. In
Section 3, we present the design principle of ARECA. In Section
4, we present the system architecture of ARECA. We present the
implementation of ARECA in Section 5. In Section 6, we address
the performance of ARECA. In Section 7, we discuss some
related work. We conclude the paper in Section 8.

2. EXISTING THRESHOLD METHODS
The key innovation of ARECA is motivated by the limitations of
existing threshold cryptography methods in engineering intrusion
tolerant CAs with respect to not only security, but also scalability,
efficiency, simplicity, flexibility and cost.

Existing private key protection, for the purpose of intrusion
tolerance, utilizes threshold cryptography techniques. (A more

comprehensive introduction of threshold cryptography has been
given in [4].) This paper focuses on the threshold cryptography
schemes based on RSA. The computation of RSA requires three
parameters, N, d, e, where N is the modulus; e is an open
exponent used to encrypt messages or verify signatures; and d is a
private exponent used to decrypt or sign messages. N and e can
be open to the public. d is the private key that needs to be
protected. The easiest way is to protect d in an intrusion tolerant
way is to split d into the sum of t random numbers. Wu et al. [2]
present a generic intrusion tolerance scheme based on this idea.
The scheme is simple and can be proved secure. It divides private
key d into the sum of several numbers d=d1+d2+…+dt. And then
it distributes di (called a share of d) to the ith signing server
(server for short). When a signature is needed, the client sends the
HASH (or digest) of the message that needs to be signed, denoted
M, to these t servers. Then each server sends the computation

result (Mod N) back to the client, where N is the
modulus part of the RSA public key (N,e). The client then
computes

id
i MM =

ddt

i

d MMMS
t

i
i

i ===
∑

=

=∏ 1

1

 (Mod N)

to get the desired result. Note that when one server betrays, it only
knows di, and it cannot compute other dj based on di. Meanwhile,

a betrayal could eavesdrop (Mod N) but the

complexity of computing d

jd
j MM =

j from Mj is similar to the complexity
to RSA (i.e., the complexity of the discrete logarithm problem).
Because d is not in any of the t signing servers, it is impossible to
directly obtain d. Therefore, it is impossible for a betrayal to
generate a faked signature.

In order to apply this scheme in the real world, [2] generates
duplicate configuration by dividing d in multiple independent
ways, that is, by randomly generating several key share groups of
numbers where the sum of each group is exactly d. For example,

The 1st group: d=d11+d12+…+d1t

The 2nd group: d=d21+d22+…+d2t

…

Then [2] distributes the shares of d to different servers, and each
server will get multiple shares, but any two shares on a server
never come from the same group. For example, in a situation
where there are 4 servers and t=3, the distribution plan can be as
follows:

Table 1. Redundant Key Share Distribution

Server
1

Server
2

Server
3

Server
4

d11 d12 d13 d13
d21 d21 d22 d23

When the client needs M to be signed, it designates t undamaged
servers. It then notifies these servers which group of shares should
be used. The servers then compute the partial signatures using the
corresponding shares. Moreover, [2] describes such techniques as
how to use a partial signature scheme to detect the servers that do

not work correctly, either due to attacks or failures. It is able to
verify the correctness of the server based on a specific crypto
scheme developed by Frankel et al. in [1].

The benefits of the above scheme are obvious. It has a simple
structure and provides exceptional security. The use of redundant
secret sharing makes the scheme easy to maintain and more
fault/intrusion tolerant. However, [2] has the following
limitations.

First, as the number of servers increase, the number of key shares
for a server to manage will increase in a non-linear speed. For
example, by a rough calculation, if the number of the servers is k,
then the number of the private keys stored in each server will be

increased to C in the worse case. The reason is as follows: 1
1

−
−

t
k

• We assume the following intrusion tolerance property is
required to hold all the time: an ARECA system will still
function correctly when no more than k-t servers stop to work
correctly due to attacks or failures. That is, any t server group
must be able to correctly sign a message.

• To not violate the above property, every t server group needs
to completely store at least one key share group, so in

total C key share groups are needed, although two t server
groups may have the same key share group.

t
k

• Since the resilience will decrease when two t server groups
have the same key share group, we consider the more resilient
case where (a) any two t server groups do not use the same
key share group; and (b) any two key share groups do not
share any key shares. As a result, on average

 key shares need be stored on each server. 1
1/ −
−= t

k
t
k CktC

In general, when the values of k and t are comparable, the number
of key shares stored in each server will increase in a nonlinear
fashion when a new server is added. When k=5, t= 3, using such
a calculation, the number of key shares stored in each server shall
be 6. When k=6, t= 3, using such a calculation, the number of key
shares stored in each server shall be 10. When k=7, t= 4, the
number of key shares stored in each server shall be 20. Note that
[2] does not provide the private key distribution algorithm when k
is much bigger.

Second, in [2], a client needs to ask exactly t servers in order to
sign a message. The server selection procedure is inefficient and
vulnerable to attacks and failures. To get a message signed, the
client needs to first select t servers before any partial signature is
computed. Then the client needs to find the key share groups that
match these t servers. For example, in the example shown in
Table 1, key share group (d11, d12, d13) matches (Server 1, Server
2, Server 3) but not (Server 2, Server 3, Server 4). For this
purpose, every client needs to know which share server has which
kind of key shares. When one of the servers fails to compute the
correct partial signature (due to attacks or failures), the whole
signature generation process has to re-start from the server
selection step. When a new server is added, the knowledge of
each client needs to be refreshed, since the clients need to know
the group membership of the new server as well.

It is not ideal in an intrusion/fault tolerant system to have the
client choose the signing servers. We want our scheme to have a

feature similar to Shamir’s secret sharing scheme [6] where the
private key can be generated by any t key shares. However, to
achieve this, the private key has to be first reconstructed in
Shamir’s secret sharing scheme, which is not what we want
because this can make the CA much less attack resilient. We do
not want the private key d to be reconstructed at any point of time
under any circumstances.

Several papers have discussed how to design an attack resilient
CA based on Shamir’s secret sharing scheme [6]. For example,
such a design is described in [1] and [3]. In particular, given a

polynomial , using the interpolation theorem

of LaGrange, we get:

∑
−

=

=
1

0
)(

t

i

i
i xaxf

))(()(
1 ,1
∑ ∏
=

≠

= −
−

=
t

i

ij

tj ji

j
i xx

xx
xfxf (1)

By randomly selecting t pairs of {xi , f(xi)}, we have:

))(()0(
1 ,1

0 ∑ ∏
=

≠

= −
−

==
t

i

ij

tj ji

j
i xx

x
xffa (2)

We can let a0 be the private key d. As a result, signing a message
(digest) M can be done as follows.

∏∏
=

∏
−

−

=

===

≠

=
t

i

bxx
x

xft

i

fd i

ij

tj ji

j
i

MMMM
1

)(

1

)0(,1

 (3)

Here, ∏
−
−

==
≠

=

ij

tj ji

j
iiii xx

x
xfcxf

,1
)(*)(b (4)

Thus, we can split and distribute d to k servers (k≥t). When M

needs to be signed, we let each server compute ibM and then let
a combiner multiply these results to get the value of Md without
reconstructing the private key d during any step of this process.

Because there are division operations when calculating bi, bi may
not an integer and may be a number in the form of p/q where p
and q are two integers. As a result, the process of computing Mbi

may include the extraction of a root. For example, M8/3 requires
extracting the cube root. However, we know it is extremely
difficult to compute the root extraction out of a large integer. In
order to solve this problem, such algebra structures as fields or
rings are usually needed to help us to find the conditions that can
ensure that xi-xj will always have a mathematical inverse with
respect to a specific ring. In particular, [1] identifies the following
condition:

• [The Inverse Condition]: M (bi mod v) will not need any root
extraction if (a) v is a prime number, or (b) the values of all the
xi are chosen in such a way that the value of the rank-t
Vandermonde matrix composed by all the xi is relatively prime
to v.

Even if the Inverse Condition is satisfied, since M (bi mod v) will be
computed by each share server instead of M bi, the production
calculated by the combiner is actually not Md but the following:

wvd
t

i

vb MM i +

=

=∏
1

)(mod

Here the value of w is unknown but w is typically not zero, hence,
removing the impact of v on the signature is fairly difficult.

As we know, MФ(N)=1 mod N, so many people may want to let
v=Ф(N) in order to solve the above problem. However, it is found
that letting v=Ф(N) will make the selection of xi greatly restricted
by the Inverse Condition. Moreover, if we let v=Ф(N), the share
servers must know how to compute the inverse of a number
modulo Ф(N). When an element o and the inverse of it modulo
Ф(N), i.e., o-1 , are known, the attacker can compute the value of
Ф(N). However, if Ф(N) is known, then the private key can be
computed. So letting v=Ф(N) is clearly not a secure scheme.

Frankel et al. [1] proposes to (a) let ai be a number within set
{0，L,…,2L3N2+et}, where L=k!, and (b) choose xi from [1, 2,…,
k-1]. Since when divided by L, every f(xi) can get an integer
result, the computation of bi does not need the inverse-operation
anymore, and the computation can be performed with integers
only. This scheme can work with the general RSA algorithm and
does not need strong-prime numbers. However, since the selection
of parameters is tightly restricted, it is complicated to prove its
security. The security of the above scheme is proved in [1]. In [1],
when bi is being computed by a share server, since the
computation of bi is dependent on the selection of xi, the share
server must know who his or her collaborators are. Hence, this
scheme has the similar share server selection problem as [2].

[3] uses the scheme of RSA strong-primes, where its secret primes
are: p=2p’+1，q=2q’+1. In [3], all the relevant interpolation
computations are processed within the ring of modulo m=p’q’.
Since M4m mod N = 1, when being computed in a distributed way,
one additional square operation is needed, then the combiner will
compute the square of the result from each share server, and the
result will be M4∆(gm+d), where △=(k!)2 and g is an integer. In [3],
ci (see equation (4)) is handled by the combiner. Hence, the share
server selection problem is avoided. However, the computation
complexity of the combiner is substantially increased. In [3], the
combiner must compute：

ti

t

ii c
i

c
i

c
i yyyW λλλ 222 ...2

2

1

1
=

Where yi is the result of each Share Server, and λ=k!

Finally, both [1] and [3] provide good partial signature
verification methods, which we will not discuss in detail here.

3. ARECA DESIGN PRINCIPLE
In this section, we propose an innovative two phase signature
composition approach to enhance the resilience of a CA and
overcome the three limitations of [2] which we identified in
Section 2. In particular, we first present the two phase signature
composition approach; then we analyze its security and discuss its
advantages.

3.1 Two Phase Signature Composition: An
Overview
ARECA implements the two phase signature composition scheme
as Figure 1 shows. The RA Agent is the interface between the
Registration Authority (RA) and the signature composition
subsystem. The RA talks to the applications (and customers)
directly and is responsible for collecting, preparing and verifying
the materials (or information) contained in each certificate. The
RA Agent has secure communications with the RA and it also
verifies the RA’s signatures (when receiving a certificate signing
request from the RA). In the mean time, the RA Agent is also an
interface to the outside network. Customers may directly apply
for a certificate through this interface as well.

RA Agent

Share
Server1

Key
Distributor

Combiner1

Share
Server2

Share
Server3

Share
Server4

Share
Server5

Share
Server6

Repository
Agent

Combiner2
Combiner3

B1

B2

Broadcast channel B3

Broadcast channel

Broadcast channel

Figure 1. Two phase signature composition

Share servers 1-n are used to compute partial signatures (on a
certificate). Each share server (server for short) holds some shares
of the CA’s private key. Each server has its own ID. The RA
Agent is connected to these servers through broadcast channel B1.
We assume B1 is of high bandwidth and reliable since it is
typically implemented via a high speed LAN.

The combiners are responsible for the second phase of signature
composition. Multiple combiners are used to increase fault
tolerance and resilience. The output of a combiner is the real
signature if there are no mistakes.

To achieve more security, an administrator may be assigned to a
server or combiner. In this case, the RA needs not to be
completely trusted, since the administrator assigned to a server or
combiner may double-verity the certificate materials before
allowing the server or combiner to sign or compose the certificate.

The Key Distributor is responsible for distributing the key shares
to both the share servers and the combiners. It is normally off-
line. When the CA is initialized or when an old private key is
replaced by a new one, the Key Distributor may become on-line.
The connection between the Key Distributor and a server or
combiner can be the classical key-transport method.

The Repository Agent is the interface to the Certificate Database
(not shown in Figure 1 but shown in Figure 2) where the
customers can receive their certificates and query other parties’

certificates. The Repository Agent is also responsible for
failure/attack detection and response. A combiner will notify the
Repository Agent at once whenever its verification operations
fail. The Repository Agent will then check (the recent
computation results of) the servers and the other combiners to
locate the problem.

3.2 Two Phase Certificate Signing
We first present a basic certificate signing protocol for clarity.
Then we show how this basic signing protocol can be improved.

[The basic signing protocol]

Assumptions:

(a) We denote the private key of the CA as d; and the pubic key
as e and N. Share server i is denoted as Si. (b) We assume there
are k share servers. (c) We assume at least t share servers are
needed to generate a signature. (d) We assume there can be
multiple combiners.

Preparation:

(a) The Key Distributor randomly chooses k random numbers d1,
d2, …, dk, the value of each of them should be less than d/t. These
numbers can be far less than d but their length should not be less
than half of the length of N to protect combiners from knowing
more than half bits of d.

(b) The k random numbers are exactly the key shares. They are
distributed to the k share servers as follows: number dj is sent to
server Sj. As a result, each share server will hold only one key
share.

(c) A server group composed of t share servers is called a t-group.

Out of k servers, maximally C t- groups can be formed (note
that two t-groups can partially overlap). For each t-group j, the
Key Distributor computes a specific combiner key share, denoted
c

t
k

j, as follows:

)...(
321 tiiiij dddddc ++++−=

Here i1, i2 , i3, …, it indicate exactly the set of share servers
belonging to the t-group. In other words, the value of cj is
determined by the sum of the set of key shares held by t-group j.

We call (i1, i2 , i3, …, it) the index of cj. Since there are C t-

groups, the Key Distributor will generate C combiner key
shares. For example, when k=5, t=3, there are totally 10 t-groups,
and c

t
k

t
k

1, c2, …, c10 will be computed.

(d) The Key Distributor then distributes the set of combiner key
shares evenly over the set of combiners. For example, when k=5,
t=3, if there are 2 combiners, then each combiner will get 10/2=5
combiner key shares. When we distribute a combiner key share cj
to a combiner, we sent the index of cj to the combiner as well.

 The 1st step: When a certificate (denoted cert) needs to be
signed, a unique task number, denoted Task(cert), will be
assigned to this signing task. Every RA Agent has a unique
identifier. (Note that there can be multiple RA agents.) Every RA
Agent also maintains a task serial number. Whenever a RA agent
is assigned with a new signing task, the agent’s task-serial-

number will be increased by 1, and the signing task’s task number
is the combination of the agent’s identifier and the agent’s current
task-serial-number. This task number is unique in the whole CA.

 The 2nd step: Share server Si computes its busy factor
Fi(Task(cert)), which is the production of the number of tasks
within the task queue of Si and the calculate speed of Si . The
calculation speed of Si is determined by the time it takes Si to
calculate one standard module exponentiation.

 The 3rd step: Each share server broadcasts its busy factor (and
the associated task number) to the other servers. For each server,
if it is idle, it will jump to the 5th step. Otherwise, it will sort the
busy factors of the other servers.

 The 4th step: For each server Si, if there are at least m other
servers which are not as busy as Si , Si will discard the new task
from its task queue. Otherwise, Si will go to the next step when it
finishes all the tasks in its queue The value of m is determined
based on the security and performance requirements of the CA.
However, m should be no less than t.

 The 5th step: Si will compute yi= idM , which is

. Here HASH is a hash function. Then SidcertHASH))((i
will broadcast the following message to the set of combiners via
channel B2: {cert, Task(cert), i, yi}. Here i is the identifier of Si .

 The 6th step: When a set of broadcast messages are received,
each combiner will do the following: (6.1) it will prepare the set
of combiner-key-share indexes, where each index is composed of
t share server identifiers (e.g., {i1, i2 ,i3,…, it}). The set of indexes
are not difficult to prepare based on the server identifier
component of each broadcast message. (6.2) The combiner will
then use the set of indexes to match its combiner key shares. If no
match is found, it will wait for more results from the set of share
servers. (6.3) Otherwise, as soon as a (or another) combiner key
share cj is matched, it will compute

∏
=

∗=
t

j

i

ii
i

c ycertHASHR
1

))((

R is indeed the signature needed on the certificate. (6.4) The
combiner will use the CA’s public key to verify R, if the
verification succeeds, it will jump to the 7th step; otherwise, the
combiner will go back to step 6.3 to find another match until all
the matches are tried.

 The 7th step: Case the combiner computes a correct R, it will
send to Repository Agent (a) the certificate, (b) the set of partial
signatures involved, (c) the set of share servers involved, and (d)
R through channel B3.

Case any verification fails, the combiner will report the failure to
the Repository Agent. The report message includes (a) the
combiner’s identifier, (b) the set of partial signatures involved,
and (c) the set of share servers involved. Each failure report will
be analyzed by the Repository Agent as soon as possible to detect
the corresponding faults or attacks.

 The 8th step: When receiving a signature R, the Repository
Agent will verify R again before sending R and all the relevant
information to the customer and the Certificate Database for
future reference. As soon as R is verified, it will notify the other

combiners to stop processing this signing task. Whenever a “stop”
notice is received by a combiner, the combiner will discard the
data related to the task.

3.2.1 Security Analysis
In this section, we focus on the impact of combiners on attack
resilience. (The other advantages of the ARECA design will be
mentioned in Section 3.2.3.) We will show that the use of
combiners in general makes the CA more attack resilient. In
particular, we will analyze three cases: (A) some share servers are
broken, but no combiner is broken; (B) some combiners are
broken, but no share server is broken; (C) some share servers and
some combiners are broken at the same time. We assume the
attacker will know all the secret kept on a broken machine.

In case A, ARECA is more resilient than the scheme of Wu et al.
[2]. The only information on the network is Mdi. Although a
malicious share server can know many of Mdi, using Mdi to infer di
is as difficult as breaking RSA. When the set of broken servers
does not contain a key share group of size t, [2] is as resilient as
ARECA. However, when the set of broken servers contains a key
share group, [2] is broken because the attacker now knows the
private key d. In contrast, in ARECA, the attacker cannot get d
even if he or she compromises all the share servers. In particular,
since dix is randomly chosen, dix has no relationship with d.
Therefore dix won’t expose any information about secret key d,
that is, the conditional entropy H(d|dix)=H(d). In addition,
because dix and djx are independent random variables when i≠j, so
H(d|dix,djx)= H(d|dix)= H(d|djx)=H(d). In other words, disclosure
of multiple di won’t expose any information about d.

In case B, first of all, the combiners are more difficult to be
broken by an (outside) attacker than the share servers due to
several reasons. (a) Since the combiners only accept messages
from the share servers, the attacker has to first break into a share
server in order to break into a combiner. (b) Since the combiners
and the share servers run different services, and they are
suggested to be protected in very different ways (e.g., combiners
and share servers can use different operating systems), so the
attacker cannot use the same technique he or she used to break
into a share server to break into a combiner.

Second, since the output of any combiner is the signature which
will not disclose any information about the private key, even if a
malicious combiner can eardrop and know all the outputs of the
other combiners, the malicious combiner cannot gain any
additional information about d from these outputs.

Third, in the following, we show that when the attacker breaks
into a combiner, he or she cannot calculate the value of d. We
assume the worst case, that is, the broken combiner holds all the

combiner key shares. As a result, the attacker can get C linear
equations and each such equation looks like:

t
k

)...(
321 tiiiij dddddc ++++−= , where cj is known but

none of the other variables is known to the attacker. Here the

resilience is determined by whether the attacker can use the C
combiner key shares to compute (k+1) variables: the k share
server key shares and d. For example when k=5 and t=3, there are
10 linear equations and 6 variables. The coefficient matrix (of the
10 linear equations) is as follows:

t
k

−

−
−−

1...001
.........

0...011
0...111

The matrix has k+1 columns and C rows, where all the
elements in the first column (i.e., the column for variable d) are 1,
and every row has exactly t non-zero elements whose values are
all -1. It can be seen that the rank of this coefficient matrix is in
fact the matrix’s row-rank or column-rank. We can see that the
first column is the linear combination of the other k columns since
the first column is the sum of the other k columns divided by –t.
According to this observation, the rank of this matrix is less than
or equal to k. Since k+1 variables cannot be computed by a group
of linear equations whose rank is less than or equal to k, hence,
we reach the conclusion that the attacker will not be able to get d.

t
k

Fourth, based on the above discussion, it is clear that even if all
the combiners conspire to attack the system, they cannot get the
value of d.

In case C, we found that some malicious combiners and some
malicious share servers may be able to work together to get the
private key d due to the following observation:

Observation 1. Although a malicious combiner can know neither
di nor dj based on Mdi or Mdj, the malicious combiner may be able
to computer the value of di – dj . To illustrate, consider the
following two equations:

c1 = d – (d1+d2+d3)

c2 = d – (d2+d3+d4)

It is clear that d4 -d1 = c1 - c2. So if the attacker knows c1 - c2 , then
the attacker will know d4 -d1 .

Based on the above observation, a combiner who knows di – dj
and the share server who holds di can conspire to get the value of
dj. We call this attack the conspiracy attack.

It is clear that we cannot prevent all conspiracy attacks because
when all the combiners and all the share servers are controlled by
the attacker, the attacker knows d. However, we can make
ARECA very resilient to the conspiracy attack by properly
distributing the combiner key shares. In particular, we found that
a set of specific resilience conditions which can ensure a high
level of resilience can be identified and may be satisfied by some
combiner key share distribution schemes. For example, when
there is only one combiner broken, a resilience condition is as
follows.

1-Combiner Resilience Condition. When conspiring with up-to
t-1 share servers, a combiner cannot get the value of d if there are
variables from more than t share servers in any equation
generated by the linear combination of any group of linear
equations owned by the combiner.

Theoretically, this condition will be satisfied when each combiner
holds only one combiner key share, which is not difficult to
implement. However, the drawback is that too many combiners
may be needed to satisfy this condition. We have tried to find

better combiner-key-share distribution schemes that satisfy the
above condition, but the results are not encouraging. For example,
when k=5 and t=3, a simple computer aided distribution scheme

shows that 8 combiners are needed to hold all the key shares
and to satisfy the resilience condition. A careful manual
distribution may lower the number, but still 7 combiners will be
needed in this example. Fortunately, we found that the number of
combiners (that are needed to satisfy the resilience condition) can
be dramatically reduced when we store multiple key shares on
each share server. We will present the details of this idea in the
next section.

3
5C

Finally, it should be noticed that when multiple combiners
conspire with multiple share servers, the corresponding n-
combiner resilience conditions can be stricter. Although n-
combiner resilience conditions may be defined in a way similar to
the 1-combiner resilience condition, how to guarantee that these
conditions will be satisfied is beyond the scope of this paper and
it part of our future work.

In summary, whether a set of resilience conditions will be
satisfied in an ARECA system is highly dependent on how the
system distributes its share server key shares as well as combiner
key shares. As a result, one key share distribution scheme can be
much attack resilient than another.

3.2.2 Supporting Multiple Key Shares on Each
Server
In the basic certificate signing protocol, there are totally k share
server key shares, and each share server has only one key share.
In this section, we extend the basic protocol to store multiple key
shares on each share server. The advantage of this new protocol is
that the number of combiners needed to satisfy the resilience
conditions will be much smaller than that of the basic protocol
without losing any availability or security. In particular, the new
protocol is associated with three design requirements:

• Availability requirement. The basic protocol ensures that
every group of t share servers can find a combiner helping them
to generate the signature. We want the new protocol to have the
same property.

• Security requirement. We want the new protocol to be as
secure as the basic protocol, and we still want to ensure that at
least t share servers are needed to sign a certificate. Therefore,
no share server can store two or more key shares that will
appear in a single linear equation (held by a combiner) that
involves a single combiner key share cj.

• Resilience requirement. Every resilience condition that can be
satisfied by an implementation (i.e., a setting or a
configuration) of the basic signing protocol can be satisfied by
an implementation of the new protocol.

In the following, we first present a simple technique to build the
new protocol, and show that the simple protocol satisfies all the
three requirements. Then we present the protocol used in the
ARECA prototype. Finally, we discuss how the simple protocol
can be improved.

[The Naive Approach:] Consider the case when k=5 and t=3. In

order to satisfy the availability requirement, C =10 groups of 3
5

share servers need to be supported by the set of combiners. It is
not difficult to see that each share server is involved exactly in

= 6 groups. Since each t-group of share servers needs to be
supported by a combiner key share, and each combiner key share
is associated with a linear equation, so each share server is
involved in 6 linear equations. Based on Observation 1, we know
conspiracy attacks can succeed because one share server key
share may appear in two or more equations. It is clear that every
share-server key share appears in only one equation, conspiracy
attacks cannot succeed. Therefore, a naïve approach to make sure
that every share-server key share appears in only one equation is
to let each share server use 6 different key shares in the 6 linear
equations the share server is involved in. As a result, each share
server will hold 6 key shares.

2
4C

The naïve approach satisfies the security requirement because any
two key shares held by a share server are never involved in the
same equation. The naïve approach satisfies the 1-combiner
resilience condition since (1) each (original) linear equation has
t+1 variables and (2) the combination of any two equation will
result in an equation of 2t variables. The naïve approach satisfies
the resilience requirement since we no longer need 7 combiners to
satisfy the 1-combiner resilience condition. In contrast, even
having a single combiner holding all the combiner key shares will
not violate the resilience condition. (In this case, the combiner
will have 10 equations but 31 variables.) Of course, having two or
three combiners will also be secure. In summary, after each share
server holds more key shares, the total number of the equation
keeps the same while the number of variables for the attacker to
solve increases dramatically. Hence, although the number of
combiners is decreased, the resilience could still be enhanced. For
example, even if the single combiner and 2 share servers are
broken, the attacker still faces 10 equations and 19 variables.

The ARECA prototype uses 3 combiners and 5 share servers. The
3rd combiner is used for fault/attack tolerance. Each share server
stores two key shares. Share server i stores di1 and di2. The linear
equations stored in the three combiners are shown in the
following table, where (a) S1 represents share server 1; (b) in
each column, ‘1’ indicates the first key share of the corresponding
server and ‘2’ indicates the 2nd key share of the server; note that
two ‘1’s within two columns indicate two different key shares; (c)
every row includes the share server key shares involved in a
linear equation; for simplicity, the corresponding combiner key
share cj and d are not listed.

Table 2. The Key Share Distribution Scheme of the ARECA
Prototype

Combiner 1 Combiner 2 Combiner 3
S
1

S
2

S
3

S
4

S
5

S
1

S
2

S
3

S
4

S
5

S
1

S
2

S
3

S
4

S
5

1 2 1 1 1 2 1 2 1
 1 2 1 2 1 1 2 1 1
 1 2 1 1 1 2 1 2 1
1 1 2 1 2 1 1 1 2
2 1 1

2 1 1

 1 2 1
Because we want the length of key shares to be shorter than the
length of d, we let the length of all dix be half the length of N.
Therefore, adding a key share has very little complexity or
performance impact on a share server. In terms of the combiners,
the computation of ascending power needs be performed only

once. For mathematical problem, di can be set to 200 bits. That is
safe for crypto crack. But for RSA algorithm, as all knows e and
N, more bits are necessary. It is proved that more than half length
bits of N is not necessary for the security of a small public key
e[7]. In addition, since each combiner has only 5 equations,
storing two key shares in each share server has very little impact
on the match searching time. To achieve very efficient matching,
our prototype uses one 32bit integer to “index” the share servers
and the key shares involved in an equation. The integer has 4
bytes and each byte has 8 bits. The first byte indicates which
share servers contribute their first key shares to the equation; the
second byte indicates which share servers contribute their second
key shares to the equation, and so on. For example, an equation
indexed by integer 10100000, 01000000, 00000000, 00000000
means the following: (a) within the first byte, the first bit is ‘1’, so
the first key share of S1 is part of the equation; the second bit is
‘0’, so the first key share of S2 is not part of the equation; the
third is ‘1’, so the first key share of S3 is part of the equation; (b)
the second byte indicates that only the second key share of S2 is
involved in the equation. Accordingly, each combiner does the
matching as follows:

• For each signing task, a 32 bit coverage integer will be used by
the combiner and it is initialized by 32 bit ‘0’;

• When the combiner receives a message from a share server, the
combiner will refresh the coverage integer by setting the
corresponding bits as ‘1’. For example, if the share server is S3,
and S3 computes the partial signature (included in the message)
using the 2nd key share of S3, then the 11th bit of the coverage
integer will be set as ‘1’;

• Periodically, the combiner will compute the logical AND of the
coverage integer and each index integer kept on the combiner.
Whenever the result is the same as an index integer, a match is
found and the combiner key share associated with the matched
index should be used to compose the signature.

3.2.3 The Advantages of Two Phase Signature
Composition
Besides achieving more resilience, the two phase signature
composition scheme has the following advantages:

• In [1] and [2], a client needs to know exactly which t servers
can help the client to sign a message. The server selection
procedure is complicated and vulnerable to attacks and failures.
By contrast, in ARECA, the client is stateless; the set of share
servers can determine who should help the client by themselves
in a self-organizing fashion; and each combiner can easily
figure out which t partial signatures should be used to compose
a signature correctly. As a result, when a new share server
joins, the clients’ knowledge need not be refreshed.

• In [2], for high resilience, when the number of server increases,
the number of key shares for a server to manage will typically
increase in a non-linear speed. In ARECA, to achieve the same
amount of resilience, much less key shares need be managed by
a server since (a) even if two key share groups A and B
overlap, the attacker still cannot be benefited if the two specific
combiner key shares for the two groups are stored on two
combiners. When one of the two combiners is broken, breaking
group A and breaking both A and B make no different to the

attacker. (b) Much less key shares need be managed by a server
when we allow key share groups to overlap.

The multi-level security control requirements of ARECA are as
follows:

 (a) the connections among zones should be strictly controlled in
such a way that the whole CA system can only be compromised
zone by zone. That is, a compromised level L component can
only be used to compromise a level L+1 component, and it is
impossible for the level L component to directly break into any
component on a level higher than L+1. For example, a blue zone
attacker has to occupy and control at least a component in the
green zone in order to break into a component in the yellow zone.
(b) Each security level should carry out an independent security
strategy. Different zones should be protected in different ways. In
this way, the vulnerabilities of one zone are of minimum utility
for the attacker to attack another zone.

• In [2], clients are responsible for composing signatures. By
contrast, in ARECA, the combiners will take care of signature
composition.

Hence, because of the two-layer key-share-holder structure of
ARECA, key management in ARECA is in general much simpler
than [2].

4. ARECA SYSTEM ORGANIZATION
The major components of ARECA are shown in Figure 2. Besides
the components involved in the two-phase signature composition
protocol, we add (a) several audit systems, (b) a Query System for
the applications (or customers) to query the Certificate Database
for certificates and CRLs (Certificate Revoke List), and (c) a set
of security controls.

The benefits of multi-level security control are as follows. (a) Red
zone components have the highest security level. These
components ensure we will still have the capability to trace
(attacks) and search the history activities and results even when
all the other lower level components are compromised. (b)
Components in the yellow zone must be controlled first in order
to attack red zone components (by any means). If no yellow zone
components can be controlled by the attacker, the red zone
components will be securely “isolated”. The yellow zone is the
“core” of the CA. As long as majority of the yellow zone
components are working correctly, we can guarantee that the
whole CA will work correctly and won’t disclose any secret.
Therefore, we pay most of our attentions to protecting the yellow
zone. (c) Even if the attacker compromises some RA components,
the attacker cannot compromise a share server without first
compromising a RA agent. (d) To control a combiner, a malicious
application needs to compromise not only some RA and RA
agents, but also some share servers.

The ARECA architecture has two unique security features:

Multi-Level Security Control. We divide the set of ARECA
components into four levels or zones based on the procedure of
signature composition and the relation among these components.
The red zone, or the top level, includes the Certificate Database,
the Mandatory Information Flow Controller, and the Kernel Audit
System. The yellow zone (i.e., the second level) includes the
combiners, the share servers, (part of) the Repository Agent, the
monitors, and the Internal Audit System. The green zone (i.e., the
third level) includes the set of RA agents, and the LDAP/WWW
interface to the Certificate Database. The purple zone (i.e., the
fourth level) includes the set of RAs, the Query System, and the
External Audit system. We also call the application zone the blue
zone, where all the applications built on top of PKI should stay.
Putting the applications into the blue zone doesn’t necessarily
mean that the applications are not secure; it just indicates that the
security of applications is the last thing we consider when
developing ARECA.

ARECA satisfies the multi-level security control requirements by
a set of specifically configured firewalls attached directly to each
component.

Unidirectional Information Flows: Many information flows
among components are unidirectional in ARECA. This is
different from many other CA systems. The unidirectional design
makes ARECA more difficult to break into through a variety of
attacks such as worms. When the information flow from
component A to B is unidirectional, even if the attacker controls
A and can use A to attack B, the attacker cannot know whether
his or her attacks are successful. When the attacker does not know
the attack result, the attacker in general won’t be able to continue
his or her attacks. Moreover, when the information flows from
one zone to another zone are unidirectional, the attacker even
does not know whether the server he or she wants to break into
exists. Although unidirectional information flows will cause
similar problems to good servers, in ARECA a sender usually
needs not to know “who are the receivers?” For example, when a
share server sends out a partial signature, no specific receiver
needs to be specified, and the set of combiners can figure out who
should be the receivers by themselves. Finally, ARECA enforces
unidirectional information flows through certain number of
specific firewalls attached to some specific components.

RAA RAA

Share
Server

Share
Server

Share
Server

Combiner Combiner Combiner

RAA

RA RA RA

LDAP/WWW

Certificate
Database

Repository
Agent

Kernel
Audit System

Mandatory
Info Flow
Control

MonitoringRead only
Access

External
Audit System

Application Application Application Application

Query System

Monitoring

Internal
Audit Sys

Figure 2. ARCA Components

5. PROTOTYPE IMPLEMENTATION
The ARECA prototype system is composed of 15 PCs. All CPUs
are Intel PPIII 800MHz. The memory of each PC is common. The
network interface is 100M 100Base T. Some PCs have two
network interface cards (NIC). For simplicity, every PC uses
Windows NT Version V4.0, SP6 as the OS. We let k=5 and t=3.
We let each share server store two key shares. The key shares are
distributed according Table 2.

The prototype is shown in Figure 3. To reduce the cost, we
physically divide the whole system into only two networks.
However, we logically enforce zone isolation and multi-level
security. (To enable independent auditing, we use an Ethernet to
connect the set of signing components.) The lines in the figure
represent physical links; the computers connected with two links
have two independent NIC cards and two IP addresses. The Web
RA directly connects to the Internet, through which the ARECA
prototype CA has actually been providing free Internet email
certificate services for several months to the users in China. Any
user can send a certificate signing request to the prototype CA
through web site http://pki.is.ac.cn. After a certificate is signed by
ARECA, the certificate will be directly sent to the mailbox of the
user.

Web RA

RAA DB Agent

Oracle Server

Share Server 4

Combiner 3

Audit System

100Base T Hub

Combiner 2
Combiner 1

Share Server 2 Share Server 3

Share Server 5Share Server 1

100M Cisco Switch RA

Internet

Key Distributor

Figure 3. ARECA Installation

In the prototype, we use the UDP protocol for all broadcast
communications, and TCP for all point to point communications.
All the communications are implemented with WinSock. All the
code is written in Visual Studio 6.0. Multi-thread programming is
used in all the places where multi-tasks are needed. The whole
prototype (including the RAs) consists of about 57,400 lines of
source codes contained in 296 separated files of C++.

6. PERFORMANCE
We want to see if the performance of ARECA is comparable to a
traditional CA who does not split the private key. ARECA and a
traditional CA are different in several ways. (1) As Table 3
indicates, a traditional CA can exploit the Chinese Remainder
Theorem (CRT) to make its signing operations two to three times
quicker than not exploiting the CRT. However, ARECA cannot
exploit the CRT since ARECA does not hold the private key at

any time on any place. (2) ARECA needs to compose partial
signatures, while a traditional CA does not.

We have done a large number of tests on top of the prototype to
evaluate the performance of ARECA. In these tests, the length of
the private key d is 2048 bits, and the length of a key share is
1024 bits, which is half the length of d. We evaluated four
ARECA configurations: (a) 1+3, that is, one combiner plus three
share servers; (b) 1+5; (c) 3+3; and (d) 3+5. Moreover, for
simplicity, we use a random task scheduler instead of busy factors
to determine which share servers should generate which partial
signatures. In particular, we applied a random 3/4 scheduling on
share servers, where each new task arriving at a share server has a
probability of 0.75 to be processed by the server and a probability
of 0.25 to be discarded by the server, and no task scheduling on
combiners. (Note that random task scheduling is more attack
resilient than busy-factor-based scheduling since malicious share
servers can on longer cheat and ‘starve’ legitimate servers.)

The performance measurements are summarized in Figure 4,
where the Y axle indicates the average time to sign one
certificate, and the X axle indicates “how many certificates are
being simultaneously signed during that test?” In general, Figure
4 shows that although ARECA is substantially slower than a
traditional CA that exploits CRT, when the traditional CA does
not exploit CRT, the performance of ARECA is similar to that of
the traditional CA; and when there are many share servers,
ARECA can even be quicker than the traditional CA. A more
detailed comparison between ARECA and a traditional CA is
shown in Table 3, where we also address the case when the length
of d is 4096 bits. When only one certificate is being signed,
ARECA is one time slower than a traditional CA without CRT.
However, when 20 certificates are being simultaneously signed by
a 3+5 ARECA system, ARECA is as quick as the traditional CA.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

times

Se
co

nd

CRT
No CRT
1+3
1+5
3+3
3+5

Figure 4. ARECA Performance

We believe after (a) the code of ARECA is tuned and optimized
and (b) the task scheduler of ARECA is optimized, ARECA could
be significantly quicker than a traditional CA without CRT. The
reasons are as follows: (1) ARECA does parallel certificate
signing, that is, when multiple certificates are being signed, two
certificates can be signed by two sets of share servers and two sets
of combiners in parallel. Note that this is naturally achieved by (a)
the task scheduling algorithm of ARECA and (b) the matching
algorithm of combiners. (2) The performance of ARECA may be
significantly improved via optimizations of the prototype.

http://pki.is.ac.cn/

Table 3. Average Signing Time Comparison (in Seconds)

Length of d 2048 bits 4096 bits

Single cert 0.280 1.652 Single Machine
with CRT 20 certs 0.2761 1.6519

Single cert 0.821 5.888 Single Machine
without CRT 20 certs 0.8227 5.8840

Single cert 1.6420 11.867 ARECA with 5
share servers and
3 combiners 20 certs 0.73805 5.95155

Single cert 1.64300 11.8670 ARECA with 3
share servers and
1 combiner 20 certs 1.22575 8.28995

Finally, the test results also show that the number of combiners
does not have a big impact on the performance of ARECA. For
example, Figure 4 shows that 1+3 and 3+3 have no big difference.
Two reasons lie under this observation. (1) The combiners do not
have a task scheduler, so it is of higher probability that several
combiners are signing the same certificate when multiple
certificates are being signed. (2) Every signature needs at least 3
share servers, so when there are not many share servers the
concurrency degree among combiners is low. Hence, when the
number of share servers is significantly larger than that of
combiner, the number of combiners should have a bigger impact.

7. RELATED WORK
Besides the threshold cryptography schemes we discussed in
Section 2, ARECA is related to COCA [5] since both ARECA
and COCA are intrusion tolerant CA solutions. However,
although threshold cryptography is used by both ARECA and
COCA, they are very different. (a) COCA is a distributed CA
where key shares can be located across the Internet, while
ARECA is a centralized CA. (b) COCA assumes asynchrony,
while ARECA assumes reliable broadcasting on LANs. (c) COCA
replicates certificates and focuses on integrating threshold
cryptography and Byzantine quorum systems, while ARECA uses
a centralized certificate database and focuses on two phase
signature composition. (d) COCA is designed to directly integrate
any existing threshold cryptography scheme, while ARECA
presents a novel approach to engineer existing threshold
cryptography schemes in a more resilient and efficient way. (e)
Multi-level security control is enforced in ARECA but not in
COCA where servers are peers to each other. (f) COCA presents a
novel protocol for proactive secret sharing, while ARECA does
key share refreshing in an ad hoc way. (g) COCA considers both
certificate “query” and “update”, while ARECA focuses on
certificate “update” only. (h) DDoS defense is an important part
of COCA, but is not investigated in ARECA.

In [8], an eight page abstract, we introduced the idea of two-phase
signature composition and proposed the basic certificate signing
protocol, however, (a) the scheme of storing and using multiple
key shares at each share server is not addressed in [8]; (b) the
security analysis in [8] is ad hoc and very preliminary; (c) the
ARECA system organization and its security features are not
mentioned in [8]; (d) the implementation details, the testing
results, and the performance analysis we presented in this paper
are not covered by [8]. This paper includes substantial extensions
to [8].

8. CONCLUSION
This paper presents ARECA, a highly attack resilient CA.
Compared with existing threshold-cryptography-based intrusion
tolerant CA system, the uniqueness of ARECA is that it engineers
a novel two phase signature composition scheme and a multi-
layer CA protection architecture. As a result, ARECA is (a)
practical, (b) highly resilient to both insider and outsider attacks
that comprise one or more components, and (c) can prevent a
variety of outside attacks. We have implemented the ARECA
prototype. And the performance evaluation results are very
encouraging.

Besides analyzing the resilience of ARECA when multiple
combiners are compromised, there are several issues which we
want to investigate in the near future. For example, how to update
key shares on both share servers and combiners, how to detect
compromised share servers, how to detect compromised
combiners, how to reconfigure ARECA when there is a
compromised component, and how to add a new share server or
combiner.

ACKNOWLEDGMENTS
We thank the members of the work group in China, which include
Dr. Liwu Zhang, Jing Yu, Zheng Cao, and several other
researchers for developing and testing the prototype. We thank
Qing Liu for editing the paper. The work is supported by the
National 863 program of China under award 2002AA141060 and
award 2003AA144050. Peng Liu is supported in part by DARPA
and AFRL, AFMC, USAF, under award F20602-02-1-0216 and
by NSF CCR-TC-0233324.

9. REFERENCES
[1] Yair Frankel, Peter Gemmell, Philip D. MacKenzie, Moti

Yung, “Optimal-Resilience Proactive Public-Key
Cryptosystems”, Proc IEEE Symposium on Foundations of
Computer Science, Miami Beach, Florida , 1997:384-393

[2] T. Wu, M. Malkin, D. Boneh, “Building Intrusion Tolerant
Applications”, In Proc USENIX Security Symposium, Aug
1999, pages 79-91.

[3] V. Shoup, “Practical Threshold Signatures”, in Proc
Enrocrypt 2000, Belgium, pages 207-220

[4] P. S. Gemmell, “An Introduction to Threshold
Cryptography”, in CryptoBytes, a technical newsletter of
RSA, 1977, Vol. 2, No 7:7-12

[5] L. Zhou, F. B. Schneider, R. V. Renesse, “COCA: A Secure
On-line Certification Authority”, ACM Transactions on
Computer Systems, 20(4): 329-368, 2000

[6] A. Shamir, “How to share a secret”, Communications of the
ACM, 22: 612-613, 1979

[7] D. Boneh, G. Durfee, and Y. Frankel, “Exposing an RSA
Private Key Given a Small Fraction of its Bits”, In K. Ohta
and D. Pei, editors, Advances in Cryptology- Asiacrypt 1998,
number 1514 in Lecture Notes in Computer Science, pages
233-260. Springer Verlag, 1998

[8] Jiwu Jing, Dengguo Feng, “An Intrusion tolerant CA
scheme”, Chinese Journal of Software, 13(8), 1417-1422,
2002

	INTRODUCTION
	EXISTING THRESHOLD METHODS
	ARECA DESIGN PRINCIPLE
	Two Phase Signature Composition: An Overview
	Two Phase Certificate Signing
	Security Analysis
	Supporting Multiple Key Shares on Each Server
	The Advantages of Two Phase Signature Composition

	ARECA SYSTEM ORGANIZATION
	PROTOTYPE IMPLEMENTATION
	PERFORMANCE
	RELATED WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

