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Abstract—For decades buffer overflows have been one of the
most prevalent and dangerous software vulnerabilities. Although
many techniques have been proposed to address the problem,
they mostly introduce a very high overhead while others assume
the availability of a separate system to pinpoint attacks or provide
detailed traces for defense generation, which is very slow in
itself and requires considerable extra resources. We propose an
efficient solution against heap buffer overflows that integrates
exploit detection, defense generation, and overflow prevention in
a single system, named HeapTherapy. During program execution
it conducts on-the-fly lightweight trace collection and exploit
detection, and initiates automated diagnosis upon detection to
generate defenses in realtime. It can handle both over-write
and over-read attacks, such as the recent Heartbleed attack.
The system has no false positives, and keeps effective under
polymorphic exploits. It is compliant with mainstream hardware
and operating systems, and does not rely on specific allocation
algorithms. We evaluated HeapTherapy on a variety of services
(database, web, and ftp) and benchmarks (SPEC CPU2006); it
incurs a very low average overhead in terms of both speed (6.2%)
and memory (7.7%).

I. INTRODUCTION

Programs written in C and C++ contain a large number of
buffer overflow bugs, which involve write or read going beyond
buffer boundaries.1 In addition to erroneous execution, buffer
overflow bugs can lead to various security threats, including
data corruption, control-flow hijack, and information leakage.
The recently published Heartbleed vulnerability, which has
affected millions of servers, was due to a heap buffer over-
read bug that leads to information leakage [17], [28].

Although there are many tools dedicated to finding buffer
overflow bugs in testing stages [47], [25], [39], it is very
unlikely to eliminate all the bugs through testing. The reality
is that in 2014 one third of newly exposed software vulnerabil-
ities published by CERT were related to buffer overflows [45].
Therefore, measures that protect program execution against
overflow attacks are important. Such measures can be roughly
divided into three categories: (1) Full execution monitoring;
(2) Approaches that learn from history to improve themselves;
and (3) Measures that greatly increase the difficulty of exploit-
ing buffer overflows. Examples of the third category include
StackGuard [15], Data Execution Prevention [2], Address
Space Layout Randomization [49], [8], and concurrent heap
scanning [52], [44].

*These two authors have contributed equally.
1The term “overflow” in this paper refers to both over-write and over-read.

The first category contains a variety of approaches, which
range from bounds checking [21], [38], [6]; to shadow memory
based checking [25], [39], [5], [12]; to control/data flow
monitoring [23], [4], [11]; to N-version/N-variant systems [16],
[7], [30]. Even with many optimization methods they still
lead to a very high overhead, or require significant extra
computing resources. For instance, AddressSanitizer [39] uses
a much more efficient shadow mapping and a more compact
shadow encoding than Valgrind [25] and TaintTrace [12], but
still incurs 73% slowdown and over 3X memory overhead.
As another example, N-variant systems [16] requires doubling
hardware purchases and system maintenance, which is costly.

Instead of performing expensive full execution monitoring,
approaches in the second category generate tailored defenses
against learned vulnerabilities. Given a zero-day vulnerability,
they trade the prevention of the first buffer overflow(s) for
subsequent low-cost protection. An example of the second
category is patching. However, generating patches is a lengthy
procedure. According to Symantec the average time for gener-
ating a critical patch for enterprise applications is 28 days [43].
A few approaches that generate defenses quickly after exploit
detection have been proposed. One popular approach is to
generate input filters to filter out suspicious input [22], [27],
[50]. However, the false negative rate rises when dealing with
input obfuscation, and false positives are a common issue for
identifying innocuous requests as attacks. A type of meth-
ods, such as Vulnerability-Specific Execution-based Filtering
(VSEF) [26], are based on the observation that, given a sample
exploit, only a small portion of instructions are relevant to the
exploit. A defense that instruments and monitors the relevant
part of the program execution is generated to block further
exploits. It is more efficient than full execution monitoring
and performs better when handling input obfuscation.

However, VSEF relies on a separate system to provide
sample exploits for analysis and defense generation; how to
pinpoint malicious inputs efficiently is a challenging problem
in itself, and such a system might be unavailable due to
resource constraints. Second, a defense in VSEF takes effect
by instrumenting instructions accessing a specific overflow
target. While instructions that access a target near a vulnerable
buffer on the stack, such as a return address, can be easily
identified, it is very unlikely to determine the instructions that
access adjacent regions of a vulnerable heap buffer, for a heap
buffer can be allocated almost anywhere on the heap. A proper
solution to heap buffer overflows is missing in that work.
Finally, their more precise scheme incurs significant memory
overhead, while the less precise one have false positives.
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As stack-based buffer overflows are better addressed nowa-
days, heap buffer overflows gain growing attention of at-
tackers [35], [52]. By noticing that full program execution
monitoring usually incurs a high overhead, we target an
efficient heap buffer overflow countermeasure falling into the
second category, i.e., learning from history to protect against
attacks. It should meet the following goals simultaneously:
(G1) All-in-one solution: trace collection and defense gen-
eration should be built directly into the production system,
so that it does not need a separate system and can respond
to any detection of attacks instantly. (G2) High efficiency:
the overall overhead should be low. (G3) High accuracy: the
generated defense should have few to no false positives and
negatives even with polymorphic attacks. (G4) Compliant with
mainstream hardware and runtime environment: it should not
require special hardware and can work with existing runtime
environment; ideally, it does not depend on custom heap
allocation algorithms. To our knowledge there is no such
solution satisfying all the desirable requirements.

In this paper, we present HeapTherapy, a highly efficient
end-to-end solution against heap buffer overflows that meets
all the goals above. Unlike approaches applying costly bounds
checking or data/control flow tracking, HeapTherapy employs
inexpensive techniques to identify vulnerable heap buffers
swiftly and enhance them locally. HeapTherapy contains in-
memory trace collection, online exploit detection and realtime
defense generation as part of the defense system. HeapTherapy
identifies vulnerable heap buffers based on the intrinsic char-
acteristics of an exploit, as opposed to filtering out malicious
inputs based on signatures, so it is effective under polymorphic
attacks. Finally, it can be easily deployed and does not rely on
specific allocation algorithms.

To detect over-read attacks HeapTherapy places inaccessi-
ble guard pages randomly throughout the heap space, so that,
when repetitive attacks such as Heartbleed are launched to
collect jigsaw pieces on the heap, it is highly probable that a
guard page is touched and hence the attack is detected before
significant information is leaked. The widely deployed Address
Space Layout Randomization (ASLR) is used to facilitate
detection of over-write attacks, as a control flow hijack attack
exploiting buffer over-writes causes the program to crash with
a high probability due to the difficulty of guessing randomized
addresses. This is used in many other defense techniques as
well [34], [50].

Instead of relying on a separate system to pinpoint and
replay offending requests, HeapTherapy collects lightweight
in-memory traces during program execution to assist defense
generation. Therefore, it avoids the cost and overhead due to
a separate system.

Given a heap buffer overflow vulnerability, the vulnerable
heap buffers must share some characteristics, and the charac-
teristic used in HeapTherapy is their common allocation-time
calling context. Thus, a defense generated by HeapTherapy
contains the calling context when a vulnerable heap buffer
was allocated. We employ a recent advance in calling context
representation and retrieval — the calling context encoding
technique [9], [42], [51], which continuously tracks the current
calling context with a very low overhead representing it
concisely as an integer, named a calling context ID. Whenever
a heap buffer is allocated, our malloc wrapper compares the

current calling context ID against the one contained in any
defense. If they match, the new buffer is regarded vulnerable
and a guard page is attached after it. Subsequently, without
tracking access instructions or the information flow, out-of-
bounds buffer access due to continuous read or writes are
prevented by system protection automatically. While the guard
page is an expensive enhancement [32], HeapTherapy applies
it only to vulnerable heap buffers with a low overall overhead.

We have implemented HeapTherapy, and evaluated it on a
variety of services (database, web, and ftp) and benchmarks
(SPEC CPU2006). The throughput overheads incurred by
HeapTherapy on service programs are all less than 8% with
zero false positives. A thorough evaluation on SPEC shows
that the speed overhead averages 6.2% and the memory over-
head 7.7% when dealing with 10 synthesized vulnerabilities
simultaneously.

We made the following contributions:

• We propose an end-to-end solution that integrates
defense generation and overflow prevention in a single
system. The defense is generated automatically on the
user side, so the user system can be enhanced instantly,
and the user does not need to maintain a separate
system for defense generation.

• Compared to existing work, HeapTherapy incurs a
very low speed and memory overhead.

• The defense generated by HeapTherapy does not have
false positives, and keeps effective under polymorphic
attacks.

• It is compliant with existing hardware, systems, and
libraries. It does not require a custom heap allocation
algorithm. Thus, its deployment is convenient.2

• While none of the techniques employed in HeapTher-
apy, such as canaries, guard pages, probabilistic detec-
tion, and calling context encoding, is new or complex,
we creatively combine them and deliver a practical
low-cost solution. To our knowledge it is the first one
that meets all the goals G1-G4 simultaneously.

The remainder of the paper is organized as follows. Sec-
tion II summarizes the related work. Section III gives an
overview of HeapTherapy’s design. Section IV describes the
design and implementation of HeapTherapy. In Section V, we
present the result of evaluation. Limitations of HeapTherapy
is discussed in Section VI and potential applications are de-
scribed in Section VII. We conclude this paper in Section VIII.

II. RELATED WORK

Due to extensive research in buffer overflows, we do not
intend to make an exhaustive list of work on the problem.
Instead, we examine how techniques applied in HeapTherapy
are used in other work.

Canaries: StackGuard [15] uses canaries to detect stack-
based buffer overflows. It has been widely deployed in modern

2While our current implementation uses recompilation, it is feasible to
implement through binary instrumentation; thus, recompilation is not an
intrinsic limitation of the solution.
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compilers, and greatly increased the difficulty of stack-based
buffer overflow attacks. Robertson et al. proposed to detect
heap buffer corruption by checking canaries placed between
heap buffers [37]; however, the checks are only performed
at buffer allocations or deallocations, which leaves a large
exploitable time window. Cruiser [52] and Kruiser [44] dra-
matically reduce the time window, but they do not prevent
data corruption itself. In our work, canaries are only used
to detect buffer over-writes. Once an over-write is detected,
HeapTherapy generates a defense preventing data corruption
from repetitive attacks.

Guard pages: Electric Fence puts one inaccessible page
immediately after or before a buffer [32]. DYnamic Buffer
Overflow Containment (DYBOC) surrounds every buffer with
two inaccessible pages [40]. The full enhancement for all heap
buffers incurs prohibitively high overhead, while HeapTherapy
applies guard pages only to probabilistic over-read detection
and vulnerable buffers, incurring a very low overhead.

Context sensitive defense: The value of calling context
beyond debugging was recognized early. For example, region-
based heap allocation tags heap objects with allocation calling
context information [53]. Calling context was recently used
to generating context sensitive defenses [50], [26], [31], [46],
[20]. However, they commonly use costly call stack walking.
HeapTherapy is the first work that employs the calling context
encoding technique to generate context sensitive defense. It
largely reduces the overhead compared to using other call-
ing context retrieval techniques such as stack walking [9],
[42], [51]. Through the calling context encoding technique
HeapTherapy is able to represent the characteristics of buffers
being exploited with one integer and to identify vulnerable
buffers through integer comparison.

Learning from attacks: The principle has been widely ap-
plied to defense generation systems [22], [27], [26], [50], [31],
[14]. They usually use or assume a separate system to pinpoint
the attacking request, but the separate system can introduce
significant costs or deployment difficulties. HeapTherapy col-
lect lightweight traces in memory to assist defense generation
without the need of finding out the malicious request. It is an
end-to-end solution built into the system being protected.

HeapTherapy combines a series of different techniques.
Canaries incur a low overhead but provides no overflow pre-
vention; it is used in data corruption detection. Guard pages are
expensive but can prevent overflows; it is applied to over-read
detection probabilistically and buffers identified as vulnerable
deterministically. The glue is the calling context encoding,
which characterizes and identifies vulnerable buffers. Those
techniques work together to deliver a new and efficient end-
to-end solution against heap buffer overflows.

III. HEAPTHERAPY OVERVIEW

Figure 1 shows the architecture of HeapTherapy, which
contains three main components: a compiler pass for adding
the calling context encoding functionality, a shared library for
interposing the memory allocator, and a diagnosis engine for
generating temporary patches upon detection. The memory
allocator interposition library enforces the installed patches by
enhancing the heap buffer being allocated.
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Fig. 1: The architecture of HeapTherapy.

As an example, we show how HeapTherapy can be used
to harden the text-based browser Lynx against a heap buffer
over-write attack. When parsing an HTML link whose host-
name includes a % character in the last two bytes, the URL
decoding code of Lynx 2.8.8dev.1 will write attacker
controlled data after a heap buffer’s boundary, leading to a
crash or arbitrary code execution (CVE-2010-2810). In the
following steps, we use an exploit provided here [24].

A user applies HeapTherapy to hardening Lynx as follows:

Compilation: The user compiles Lynx with a LLVM com-
piler, to which we added a calling context encoding instrumen-
tation pass (PCC.so), and links it with the heaptherapy
shared library for memory allocator interposition by providing
the flags:

CFLAGS= -Xclang -load -Xclang PCC.so
LDFLAGS= -ldl -L. -lheaptherapy

Online detection and diagnosis: The user then starts
Lynx. Once the malformed link is visited, an over-write will
occur. HeapTherapy detects this over-write, terminates the
program and generates a core dump file. The core dump file
is then analyzed by the diagnosis engine to locate the over-
written buffer and to generate a temporary patch containing
the vulnerable buffer’s allocation calling context encoding.
Figure 2 shows the result of this step.

Fig. 2: A crash due to the malformed HTML link, and the
detection and diagnosis result of HeapTherapy.

Defense: The temporary patch is then stored in a config-
uration file, which will be loaded once the user starts Lynx
again. This time when Lynx parses a link exploiting the same
vulnerability, HeapTherapy prevents the over-write and allows
Lynx to display the page normally without a crash, as shown
in Figure 3. We mutated the exploit and found the patch still
effective.

Collaborative patch generation: In addition to locally
generated patches, the patches can also come from other ma-
chines. The shared and collaborative patch generation makes
an early response to large scale attacks exploiting zero-day
vulnerabilities possible.
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Fig. 3: Lynx displays the malformed links without crashes.

clone

start_thread

handle_one_connection

do_handle_one_connection

my_malloc

malloc

thd_prepare_connection do_command

MDL_key::mdl_key_init

stpcpy

The vulnerable calling context.

The over-write calling context.

Fig. 4: The calling context tree of MySQL5.5.19 related to
CVE-2012-561. Dashed lines indicate omitted functions.

IV. DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation
of HeapTherapy. We first introduce the idea of applying
calling context encoding to identifying vulnerable heap buffers
instantly, and then explain overflow detection, attack diagnosis,
and defense generation.

A. Calling-context Sensitive Defenses

HeapTherapy uses calling context as a characterization
of vulnerabilities and the guidance for applying defenses. A
calling context is a sequence of unreturned method invocations
that lead to a runtime operation. It is also loosely referred to
as call stack and back trace.

Given an attack that exploits a bug to overflow a buffer,
our observation is that the allocation calling context of the
buffer is the same when the attack recurs. Figure 4 illustrates
such an example. It contains part of the calling context tree
of MySQL 5.5.19 with a heap buffer overflow vulnerability
(CVE-2012-5612). The left branch shows the calling context
when a vulnerable buffer is allocated, while the right one the
over-write calling context,. We mutated the script exploiting
the vulnerability and the calling contexts were reproduced. The
observation is confirmed by our experiments on a wide variety
of programs (Section V-A), and it is consistent with existing
work that employs calling context for security purposes [50],
[26], [31]. We do encounter cases where a single vulnerability
corresponds to multiple vulnerable allocation calling contexts
(the Nginx example in Section V-A); however, the number

1 foo() {
2 int tmp = V; // Added: backup encoding
3 ...
4 V = 3 * tmp + cs_1; // Added: update it
5 cs_1: bar1();
6 V = 3 * tmp + cs_2; // Added: update it
7 cs_2: bar2();
8 ...
9 V = tmp; // Added: recover the encoding
10 }

Fig. 5: An example of PCC encoding. Four lines are added to
maintain the encoding.

is very small, and HeapTherapy handles such cases easily by
generating one defense for each vulnerable calling context.

HeapTherapy requires frequent retrieval and comparison of
calling contexts. It is notable that if these operations incur high
overhead, e.g., through stack walking, the overall performance
degradation will be significant. Therefore, we employ calling
context encoding techniques to speed up. A few encoding
techniques, which represent a calling context using one or
very few integers, have been proposed to track calling contexts
continuously with a very low overhead [9], [42], [51]. We
use the approach called probabilistic calling context (PCC)
encoding [9], for it does not need static analysis and encodes
each calling context into only one word. It uses a very simple
hash scheme to update the calling context encoding value right
before each call site: V ← 3×V +cs, where V is a thread-local
integer variable storing the current calling context encoding
value and cs is a hash value of the call site, which is calculated
at compilation time based on the file name and line number.

Figure 5 shows an example of PCC encoding. To imple-
ment this, we write a compiler pass in LLVM that instruments
the program code. The original work of PCC, which works
with Java programs, shows a high efficiency. It is confirmed
by our implementation for C and C++ programs, incurring only
1.9% average slowdown on SPEC CPU2006 benchmarks.

Due to the hash nature of PCC encoding, collisions may
occur such that the encoding values of two different calling
contexts are the same. Thus a patch might lead to unnecessary
protection applied to safe buffers, resulting in some overhead.
However, it has been shown in theory and practice that PCC
can encode millions of contexts in a program with very few
hash collisions [9].

In HeapTherapy, the encoding value of a calling context
is called a calling-context identifier, or CCID; and hence the
encoding value of a vulnerable calling context is called a
vulnerable CCID (VCCID). Since each calling context is en-
coded into a single integer, the comparison operation of a pair
of calling contexts is transformed to an integer comparison.
By storing all the VCCIDs into a hash table, a buffer being
allocated can be identified as vulnerable or not in O(1) time.

The calling-context sensitive defense has two major bene-
fits. First, the VCCID can be used to precisely guide security
enhancement to vulnerable objects during program execution.
This avoids a global enhancement and minimizes the perfor-
mance overhead. To further understand this benefit, we create
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Program Unique allocation CCIDs
vsftpd 176
Nginx 1361
MySQL 8180

TABLE I: Unique allocation calling contexts of three service
programs in one execution. The inputs used to obtain this result
are described in Section V-B. Note that the total number of
unique allocation calling contexts in these programs should be
much larger, and can be approximated using a test suite with
high code coverage.

CCID User buffer
Tail 

canary

Head 

canary

Buffer 

size

Fig. 6: Buffer structure I: a buffer structure for over-write
detection.

a profiler to collect unique allocation calling contexts of three
service programs during normal execution, and display the
result in Table I. Given a vulnerability, typically only one of
them is vulnerable, and the calling-context sensitive defense
will apply enhancements to buffers with that vulnerable calling
context only.

The second benefit is that the calling context information
captures certain semantic invariants of a vulnerability. Given
a vulnerability, no matter how a piece of attack code is
obfuscated, the corresponding calling context information can
be used to defend against polymorphic attacks.

Next, we explain how HeapTherapy detects and diagnoses
buffer over-write and over-read attacks.

B. Buffer Over-write Detection and Diagnosis

1) Buffer Structure .

To detect buffer over-write, HeapTherapy interposes the
allocation functions of the underlying memory allocator to
surround each buffer that has not been associated with an
overflow vulnerability with a head canary and a tail canary,
and fills the allocation CCID and buffer size after the head
canary. The buffer size indicates the number of bytes in a user
buffer. A buffer size is always a multiple of the word size, so
we borrow the last two bits of the buffer size field to indicate
the buffer type; other types of buffers are introduced later.
Figure 6 shows the layout of such a buffer.

2) Detection and Diagnosis .

Before a buffer is freed, HeapTherapy checks the tail
canary of the buffer and terminates the program if the canary is
corrupted. An attack may exploit an over-write vulnerability to
hijack the control flow, which upon success can evade the pre-
deallocation checking. However, due to ASLR such an attack
will trigger a segmentation fault signal highly probably, which
is also considered as a successful detection. In both cases,
a core dump file is generated at the time of detection. Then
our diagnosis engine scans the core dump for a buffer with
an intact head canary but a corrupted tail canary. This buffer
is the origin of this over-write attack, and its CCID value
will be identified as VCCID. In rare cases, multiple over-write

vulnerabilities exist and are exploited simultaneously. In such
cases, the same detection and diagnosis procedure is applied to
each of them. A patch is then generated based on the VCCID
to defeat attacks exploiting the same over-write vulnerability,
which is discussed later.

3) Discussion .

Although canaries have proven effective in practice, this
approach has several limitations. First, there have been attacks
revealing canaries, for example, the format string attack and
attacks based on repetitive probings that guess the canary value
byte by byte. The format string bugs have been largely reduced
recently. Plus, each canary in our system is an XOR of the
canary address and a value randomly assigned at the program
start; thus, given a revealed canary, it is still difficult to guess
the canary of another buffer. A single probing attack has a
very low probability to succeed, while HeapTherapy generates
a defense once a single probing is detected.

Second, HeapTherapy checks canaries only when a buffer
is deallocated. An advanced attack may have hijacked the con-
trol flow before the canary checking is conducted. However,
due to the wide deployment of ASLR, the attacker usually
needs a large number of tries before a successful control flow
hijack. Other attacks that increase the chance of bypassing
ASLR exist, for example, heap spraying attacks. With the
improvement of ASLR itself as well as other defenses, such as
Data Execution Prevention and Nozzle [35], it is increasingly
difficult to achieve control hijacking with a single over-write
attempt. Again, HeapTherapy reacts upon a single failed at-
tempt by generating a patch to defeat further attacks. In this
sense, HeapTherapy complements ASLR for enhancing heap
security.

C. Buffer Over-read Detection and Diagnosis

Since a buffer over-read does not corrupt canaries, checking
canaries cannot be used to detect it. Other techniques, such
bounds checking, incur a very high overhead. We propose to
place guard pages probabilistically between heap buffers to
detect heap over-read attacks.

1) Buffer Structure .

A guard page is a memory page set as inaccessible using,
for example, mprotect in Linux. A naive over-read detection
approach, as in Electric Fence [32], is to append a guard
page to every buffer, then any over-read will touch a guard
page and trigger a segmentation fault. However, this would
incur a prohibitively high performance overhead. HeapTherapy
attaches a guard after a buffer with a monitoring probability
Pm, which is a small value such as 0.01. A higher Pm offers
a higher chance to detect any single buffer over-reads, but
also incurs a higher overhead. The user can determine this
probability according to its own preference of the trade-off
between security and performance.

Figure 7 shows the structure of a monitored buffer. The user
buffer is placed with its end aligned with the page boundary
followed by a guard page, which contains a magic word and the
allocation CCID for diagnosis and patch generation purposes.
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Fig. 8: A buffer over-read that spans multiple buffers and
touches a guard page.

2) Detection and Diagnosis .

Once an over-read touches a guard page, a segmentation
fault is triggered and the signal handler installed by HeapTher-
apy is invoked. The magic word helps the handler determine
whether the signal was due to an access to a guard page or
not. The handler then terminates the program and produces
a core dump for diagnosis. In Linux, we can determine the
segmentation fault was due to a read or write based on
the information saved in the context variable passed to
the signal handler. Thus, this works as another approach to
detecting over-write attacks.

Given a single over-read attack, the actual detection prob-
ability Pd may be larger than Pm, because an over-read might
span several adjacent buffers. We evaluate the actual detection
probability Pd in Section V-A1. Large volumes of attacks is a
common exploitation of an over-read bug for information theft.
Due to the random distribution of guard pages, n repetitive
over-read attacks is detected at a probability 1−(1−Pd)

n; that
is, the detection probability increases quickly when n grows.

It is challenging to locate the vulnerable buffer directly
by scanning the core dump. As shown in Figure 8, the over-
read might span several buffers, so the buffer right before the
touched guard page is actually not vulnerable. HeapTherapy
uses a two-stage identification method to find the vulnerable
buffer. In the first stage, the diagnosis engine searches back
from the starting address of the guard page to the ending
address of a previous guard page or inaccessible area. Since an
overflow due to continuous read cannot pass a guard page or
inaccessible area, the vulnerable buffer must lie between these
two addresses, and all buffers between these two addresses are
suspect buffers.

The CCID of each suspect buffer is used to generate a tem-
porary patch. These temporary patches will guide HeapTher-
apy to append a guard page to every buffer with a suspect
CCID in the next run, so that the same attack will touch the
guard page appended to a vulnerable buffer. In the second
stage, the diagnosis engine retrieves the CCID from the guard
page and removes temporary patches due to other suspect
CCIDs.

3) Discussion .

The detection and diagnosis has some disadvantages. First,
if the attacker finishes the exploitation with one or very few
attack without being detected, the approach fails. However, in
practice the attacker usually launches a large number of attacks
to get enough chunks until target information is obtained. For
example, in Heartbleed exploitation millions of attacks are
launched to steal critical information [13].

Second, extra performance overhead can be incurred due to
protection applied to suspect buffers. The period of the stage
can be very short, as long as repetitive attacks are launched in
a short time. Moreover, our evaluation in Section V-A shows
that when Pm = 0.01 the average number of suspect CCIDs
is 28.74, which is small compared with the total number of
allocation CCIDs (Table I), and this number reduces to 3.7
when Pm increases to 0.04.

4) Buffer Release .

When a free is invoked, HeapTherapy first turns the
appended guard page, if it exists, to be accessible and resets the
magic word and canaries, and then deallocates the buffer using
the underlying memory allocator’s original free function. To
locate the guard page, the buffer size field at the head of the
buffer is used.

It is worth mentioning that our implementation does not de-
pend on specific allocation algorithms. The memory allocator
of HeapTherapy is implemented as a wrapper of the underlying
allocator, which hooks the buffer allocation and deallocation
requests. The additional buffer size field in the buffer structure
is critical for our implementation to keep independent from the
underlying allocation algorithm.

D. Defenses

Given a VCCID, the diagnosis engine generates a tempo-
rary patch as defined below:

Definition 4.1: Temporary Patch. A temporary patch
is a tuple of integers 〈VCCID,T,L,G〉, where T ∈
{OV ERREAD,OV ERWRIT E} indicates the bug type, L ≥ 0
is the number of bytes used as padding, and G ∈ {Y ES,NO}
indicates whether a guard page is needed.

The use of padding and the case of avoiding guard pages
safely are explained later. Temporary patches for a program
are stored in a configuration file. When the program starts,
HeapTherapy loads each patch into a hash table with its VC-
CID used as the key. During program execution, HeapTherapy
interposes all memory allocation functions including malloc,
calloc, realloc, and memalign.

We use malloc as an example to demonstrate how
HeapTherapy handles an allocation request. As illustrated in
Figure 9, it searches the current CCID in the hash table. It it
does not match any installed patch, a structure I or II buffer is
allocated to detect over-write and over-read attacks. Otherwise,
a structure III buffer is allocated to shield vulnerable buffers
from attacks.

Figure 10 shows the structure of such a shielded
buffer, which is constructed according to some patch
〈VCCID,T,L,G〉. If G = Y ES and L = 0, a guard page is
appended to the user buffer directly, so that whenever an over-
read or over-write occurs, the guard page is touched, which
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1 void* malloc(size_t size) {
2 int t = V; // Read the current CCID
3 Patch *p = hashtable.search(t);
4 if(p == NULL) {
5 if(rand() > Pm) {
6 // For over-write detection
7 allocate a structure I buffer;
8 } else
9 // For over-read detection

10 allocate a structure II buffer;
11 }
12 } else {
13 // Shield the buffer according to p
14 allocate a structure III buffer;
15 }
16 return buffer address;
17 }

Fig. 9: The pseudo code of the malloc function.

                             padding                          
Buffer 

size
User buffer

Page 

boundary

GUARD
_MAGIC

CCID

Guard page

Fig. 10: Buffer structure III: a shielded buffer.

triggers a segmentation fault signal automatically to prevent
data corruption, control hijacking and information leak. This
protection is similar to that provided by those memory-safe
languages, such as Java and C#, which throw an exception
and terminate program execution whenever a buffer overflow
occurs. It is also the best protection that can be provided by
most countermeasures against buffer overflows.

We consider some other enhancement which potentially
provides better protection. A desirable protection is that,
under attacks, the program execution continues safely without
being exploited. While protecting the continuity of program
execution is not the focus of this work, as a preliminary step
towards this goal, we explore the application of padding to
buffer allocation in order to mitigate program termination.

Padding is a straightforward and commonly used idea,
but it will be very expensive if it is applied to every buffer
allocation. A unique advantage of HeapTherapy is that it
identifies vulnerable buffers, which are usually a small portion
of the whole set of buffers; therefore, expensive enhancement,
such as guard pages and padding, can be applied to vulnerable
buffers only without incurring a high overall overhead.

Currently HeapTherapy infers the size of padding based on
some simple heuristics. Given an over-write attack, it finds out
the length of overflow based on corrupted canaries. Given an
over-read attack, it combines the information collected in the
two stages to infer the length. In both cases, it is possible that
the padding is not large enough to contain the overflow, and
the guard page will still be touched. In that case, HeapTherapy
will increase the padding size based on predefined policies. In
our current implementation, HeapTherapy doubles the padding
size. The adaptive padding growth works well in cases when

the overflow length is limited due to the program interface
or logic. Web servers, for example, typically set the limit
on length for URLs up to 4096 characters [3]. For a DNS
serve, the full domain name may not exceed the length of 253
characters [1]. Due to the 16-bit size field in a Heartbleed
request, the maximum length of read in a Heartbleed response
is 64KB. If in a patch T = OV ERREAD, to avoid information
leakage the padding is zeroed when a buffer is allocated.
Finally, if a thorough analysis shows that some reasonable size
of padding is large enough to contain all overflows exploiting
a given vulnerability, the guard page is not needed in this case.

In the cases where the overflow length is unlimited or
very large, in order to avoid exhausting memory, HeapTherapy
enforces an upper bound for padding defined by the user.
Some more advanced protection can be applied conveniently
when the padding is not large enough and the guard page is
touched. For example, failure-oblivious computing omits the
overrun operations and continues [36]; the reactive immune
system returns an error code for the current function invocation
that leads to an overflow [41]. Both techniques incur a high
overhead mainly due to expensive methods identifying such
attack operations as overflows, while HeapTherapy provides an
efficient and automatic way to capture overflows. Therefore, it
will be an interesting research topic by combing these ideas
with HeapTherapy to support program execution continuity.

E. Additional Features

1) Instant patch generation .

Conventional patch generation is a long process. The user
needs to provide the input that reproduces the problem to the
software company, and then waits until the software gets back
with the patch, which usually takes more than one month [43].
HeapTherapy can be used as an offline tool to quickly generate
temporary patches once an input reproducing the overflow
attack is available. The user can simply set Pm to be 1 and then
run the program with the input. In this situation, HeapTherapy
accurately locates the vulnerable buffer, which is right before
the touched guard page, and generates the temporary patch.

2) Collaborative patching .

A temporary patch generated at one site can be shared
with other machines running the same vulnerable program.
Therefore, the effort of detection and patch generation can
be aggregated across machines to handle large scale zero-day
attacks. Once a machine detects and generates a patch, the
patch can be distributed to protect other machines. So that a
large scale attack can be defeated before it plagues the Internet.

3) Patching without restart .

In our current implementation the program is restarted after
a patch is generated. For complicated programs, the time to
restart may be long. To speed up the service recovery upon
patching, the checkpointing and recovery technique can be
used to resume the service from a clean state [33]. This is
particularly useful for request-handling services, where most
heap buffers allocations and deallocations are associated with
per request. Once the patch is installed, when the attacker sends
a new malicious request, shielded buffers will be allocated to
prevent attacks.
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Program Vulnerability Reference
Heartbleed over-read CVE-2014-0160
MySQL 5.5.19 over-write CVE-2012-5612
Lynx 2.8.8dev.1 over-write CVE-2010-2810
libtiff 4.02 over-write CVE-2013-4243

SAMATE Dataset 12 heap buffer
overflow cases N/A

TABLE II: Vulnerabilities for effectiveness evaluation.

V. EVALUATION

We first evaluate the effectiveness of HeapTherapy against
buffer overflow attacks, and then measure the efficiency of
HeapTherapy on service programs and the SPEC CPU2006
Integer benchmark suite.

A. Effectiveness

We evaluate the effectiveness of HeapTherapy using 4
real-world vulnerabilities and 12 test cases provided by NIST
listed in Table II. The Lynx case was covered in Section III.

1) Heartbleed .

Heartbleed attack. The recently exposed Heartbleed
vulnerability in OpenSSL threatens millions of Internet
services [17]. By sending an ill-formed heartbeat request, the
attacker can over-read a buffer on the heap and steals up
to 64KB data from the memory. While a Heartbleed attack
is widely classified as an over-read attack, our investigation
shows that the attack can actually exploit two heap-based
vulnerabilities: an uninitialized read bug and an over-read
bug. Specifically, the victim buffer has 34KB, while the
attacker can manipulate the length l of the read over this
buffer. If l ≤ 34KB, it is just an uninitialized read attack that
leaks old data inside the buffer. Otherwise, the attack is a
mix of uninitialized read and over-read. In this case study, we
focus on over-read, and avoid the uninitialized read simply by
zero-filling the buffer. A more systematic study of this issue
can be found in [48].

Experiment setting. Nginx is the third most widely
used web server. We use Nginx 1.3.9 and OpenSSL
1.0.1f to create a vulnerable HTTPS service. The program
is compiled through our PCC encoding pass and linked with
HeapTherapy’s shared library. OpenSSL optionally uses a
freelist to manage heap buffers, so that when a buffer of certain
lengths is freed, it will be stored in the freelist. In order that
HeapTheray interposes heap memory management, we use the
flag OPENSSL_NO_BUF_FREELIST provided by OpenSSL
to disable the use of the freelist. We obtain a Heartbleed
attack script from [19] and set the l as 64KB, which enables
maximum amount of data leakage.

Offline patch generation. We first evaluate how
HeapTherapy can be used to generate a patch offline instantly,
when the attack input is available. In this case Pm is set
as 1 and the patch generation is run on an experimental
system rather than a production system. The malicious request
immediately crashes the worker process of Nginx, and a

main 

ngx_master_process_cycle  

ngx_start_worker_processes ngx_reap_children  

ngx_spawn_process  

malloc 

default_malloc_ex 

Fig. 11: Two vulnerable calling contexts identified by the
diagnosis engine. Dashed lines indicate omitted functions.

core dump is generated. Then the diagnosis engine produces
a temporary patch containing the VCCID based on the core
dump. Next we set the initial padding size as 4KB, and double
the size whenever it is not large enough to contain the overflow
attack, that is, the guard page is touched and the process
crashes. It takes 1 round to obtain the VCCID and another
4 rounds to determine that the 32KB padding is large enough
to prevent crashes due to the Heartbleed request. We repeat
the experiment 100 times and reproduce the same result every
time. Once the patch generated, it can be installed to protect
the production system from Heartbleed attacks efficiently. The
system is then immune from information leakage when waiting
for the official patch that fixes the bug to be generated and
installed.

The result contains the following two temporary patches:

< 0xE2FF92B2,OV ERREAD,32KB,Y ES >
< 0x6E3D3954,OV ERREAD,32KB,Y ES >

These two temporary patches indicate that there are two
vulnerable calling contexts in the service. The first VC-
CID (0xE2FF92B2) was found in the core dump due to
the first attack; while the following attacks are all related
to the second VCCID (0x6E3D3954). Figure 11 shows the
details of the two calling contexts. Our further investiga-
tions shows that a Nginx service, when it is started, has
a master process and a worker process. The initial worker
process is forked by the master process using the func-
tion ngx_start_worker_processes. Once the mas-
ter process detects that a worker process has crashed, it
will reap the worker process and fork a new one using
ngx_reap_children. That is why all the vulnerable
buffers, except for in the first attack, is related to the second
VCCID. HeapTherapy handles the case of multiple VCCIDs
smoothly by generating a patch for each unique VCCID.

Online protection. We next evaluate how HeapTherapy
detects and defeats zero-day attacks. We set the Pm to be a
small value ranging from 0.01 to 0.15. For each value of Pm,
we record the following measurements: (1) the detection delay
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Fig. 12: Heartbleed detection and diagnosis result.

Nd , which is the number of successful over-reads before the
first guard page is touched, and (2) the average number of
temporary patches, FP, generated in the first stage due to the
suspect buffers, as discussed in Section IV-C.

We conduct 100 experiments for each value of Pm and
obtain the average values of Nd and FP, as shown in Figure 12.
In all experiments, HeapTherapy successfully detects the at-
tack. When Pm = 0.01, Nd averages 28.74. As Pm increases to
0.04, Nd quickly drops to 3.7, and it does not change much
when Pm further increases. This shows that for this particular
scenario by randomly monitoring a small set (4%) of buffers,
HeapTherapy can quickly detect a zero-day Heartbleed attack.
Since attackers usually need to send many Heartbleed requests
before achieving their goals, e.g. 100k ∼ 2.5M attacks for
obtaining the SSL private key [13], the short detection delay
allows HeapTherapy to detect and respond to the attacks before
important information is leaked. In addition, Nd in all cases
is much smaller than the expected value 1/Pm, because an
Heartbleed attack may access multiple buffers.

We next analyze the number of temporary patches gen-
erated at the first stage of detection and diagnosis. When
Pm = 0.01, FP is 39; and it decreases to around 5 when Pm
increases to 0.12. Compared with the total number of unique
allocation calling contexts shown in Table I and Table III
below, FP is very small. In addition, all of these temporary
patches except one will be removed after the second stage of
detection and diagnosis. We will further evaluate the overhead
due to temporary patches in Section V-B and Section V-C.

Defense. After installing the two patches, the Heartbleed
attack can only read zeros in the padding space, which is 32KB
long and large enough to contain the over-read. We sends
10,000 Heartbleed requests to the patched Nginx service, the
result shows that HeapTherapy successfully prevented infor-
mation leakage in all attempts without crashing the service.

We then tried another three different Heartbleed attack
scripts collected from the Internet, and launched all the attacks
against proftpd and MySQL in addition to Nginx. In all
the cases HeapTherapy detects the attack and prevents further
attacks after generating and installing the patches.

2) MySQL .

MySQL 5.5.19 contains a heap buffer over-write vulner-
ability that allows a remote attacker to launch denial of service
attacks using crafted database commands to over-write a heap
buffer and corrupt the heap meta data. The heap corruption
leads to a segmentation fault and crashes the MySQL service
when the connection is closed. We applied HeapTherapy to
the service and ran the attack script [18] 20 times against
it. In the first run, HeapTherapy detects the attack when the
segmentation fault is triggered. The diagnosis engine retrieves
the VCCID of the vulnerable buffer from the core dump file,
and generates a temporary patch, which is then installed to the
service. In all the following runs, HeapTherapy successfully
prevents data corruption from occurring.

3) Libtiff .

Libtiff is a popular library for processing TIFF im-
ages. A heap buffer overflow vulnerability was found in the
gif2tiff tool in libtiff 3.4-4.03. By manipulating
height and width of a GIF image, a remote attacker can exploit
this vulnerability to overwrite a heap buffer. We first reproduce
the exploitation using an attacking GIF image input [10]. Upon
detection, the diagnosis engine automatically finds the VCCID
in the core dump. When we use gif2tiff to open the
crafted image again, the tool is able to avoid crash and reports
“illegal GIF block type”.

4) NIST SAMATE reference dataset .

The SAMATE dataset [29] maintained by NIST contains
12 programs with heap buffer overflow vulnerabilities caused
by contiguous writes through, for example, assignments,
memcpy, strcpy, and snprintf.

In all these cases, HeapTherapy retrieves the vulnerable
calling contexts accurately and uses padding to prevent both
data corruption and program crashes.

B. Efficiency on service programs

We evaluate the overhead due to HeapTherapy using three
real world service programs, Nginx, proftpd and MySQL.
We simulate 10 VCCIDs using the method described in
Section V-C, and set Pm as 0.05. To measure the service
throughput, we use ApacheBench to send web requests
to Nginx, and use the official test script for MySQL; For
proftpd, we write a script that generates concurrent clients
to upload files, and measures the throughput.

The result shows that HeapTherapy has a low overhead for
these service programs. The overhead on Nginx, proftpd
and MySQL is 7.6%, 4.7%, and 6.0%, respectively.

C. Efficiency on SPEC CPU2006

1) Methodology .

Benchmarks and platform. We then measure the effi-
ciency of HeapTherapy on SPEC CPU2006 Integer benchmark
suite with respect to speed and memory. All results presented
are normalized by the execution time of the original benchmark
programs without HeapTherapy. We also measure the memory
overhead in terms of the average Resident Set Size (RSS) for
all benchmark programs. We write a script to read the VmRSS
value of /proc/[pid]/status 50 times per second and
then calculate the average.
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Benchmark
Buffer

allocation
count

Unique
allocation-time

CCID count
400.perlbench 360,728,131 13,909
401.bzip2 168 10
403.gcc 28,458,470 913,747
429.mcf 5 5
445.gobmk 658,034 5,404
456.hmmer 2,474,268 191
458.sjeng 5 5
462.libquantum 179 10
464.h264ref 177,779 258
471.omnetpp 267,064,936 162,332,040
473.astar 4,799,955 184
483.xalancbmk 135,155,557 131,848,405

TABLE III: Buffer allocation and CCID profiling. Benchmark
programs in bold text are allocation intensive.

The experiments are performed on a Dell Precision
Workstation T5500 with 2.26GHz Intel Xeon E5507
processor and 16GB RAM. The operating system is Ubuntu
12.04 with Linux kernel 3.2.0.

Vulnerability simulation. To simulate the performance
of HeapTherapy when handling multiple vulnerabilities, we
create several sets of simulated VCCIDs for each benchmark
program. Specifically, we first develop a profiler to count the
number of buffer allocations, the number of unique allocation-
time CCID values and obtain the number of buffer allocations
associated with each unique CCID. Table III lists our profiling
result. From the table we can see that these benchmark
programs have a diverse profile of buffer allocation. Programs,
such as perlbench, gcc, omnetpp and xalancbmk, have
intensive memory allocations.

We then generate several sets of simulated VCCIDs for
later experiments. To pick the VCCIDs fairly, for each bench-
mark program we sort the CCIDs according to their allocation
counts in descending order. Next, for each benchmark pro-
gram we generate 3 sets of VCCIDs containing 1, 5 and 10
elements, respectively. For the 1-VCCID set, the median CCID
is selected. For the 5-VCCID set, CCIDs at 0.01%, 20%, 40%,
60% and 80% points are chosen. The 10-VCCID set is created
in a similar fashion with an interval of 10%. Since benchmark
programs mcf and sjeng have less than 10 unique CCIDs,
we use all of their CCIDs for their 10-VCCID sets.

2) Overhead due to PCC Encoding .

Our first evaluation was focused on the speed and memory
overhead due to PCC encoding alone. All benchmark pro-
grams are instrumented with PCC encoding but not linked
with HeapTherapy, so no detection overhead is incurred. The
average speed and memory overhead is 1.9% and 0.2%,
respectively. The low overhead is consistent with the result
of the original PCC encoding on Java programs [9].

3) HeapTherapy Efficiency .

Next, we evaluate the speed and memory overhead due
to HeapTherapy using the 3 sets of VCCIDs. For each VC-
CID, a patch is created manually. Over-read detection is not
turned on because these benchmark programs are not service

programs and the concern of information leakage is rare. With
regard to speed overhead, the result in Figure 13 shows that
HeapTherapy caused 4.3% average overhead in the case of
0 patch. This shows the overhead when HeapTherapy works
in the detection status with no patch installed. The average
overhead increases slightly to 6.2% when the 10-VCCID set
and 5-page padding are used, which demonstrates the high
efficiency of HeapTherapy even when multiple vulnerabilities
are handled simultaneously.

When no patch is applied, the average memory overhead
incurred by HeapTherapy is 5.9%. The overhead in the case of
10 patches and 5 padding pages increases to 7.7%. For majority
of the benchmark programs, the memory overhead changes
little when the size of padding increases, mainly because a
physical page is not mapped until the corresponding virtual
memory region is accessed.

We also compare HeapTherapy with DieHarder, a memory
allocator against heap-based attacks [30]. Figure 13 shows
that DieHarder incurs a much higher speed overhead for
allocation-intensive benchmark programs. The average speed
performance penalty due to DieHarder is 20.3%, which is
also much higher than HeapTherapy. For allocation-intensive
programs, the average overhead due to DieHarder is 86.1%
while HeapTherapy only incurs 15.8% overhead on average.
In addition, DieHarder only provides probabilistic defense
against known vulnerabilities, while HeapTherapy provides
deterministic protection in such cases. Other comprehensive
defense methods, such as AddressSanitizer [39], provides a
wider range of protection than HeapTherapy. However, their
high overheads (e.g., 73% speed overhead and 337% memory
overhead on SPEC 2006 for AddressSanitizer) making them
more suitable for offline testing.

In summary, we conclude that HeapTherapy incurs a low
overhead in terms of both speed and physical memory.

VI. LIMITATIONS

First, it is possible that an overflow vulnerability can be
exploited in different VCCIDs, and the attacker may invest
to develop different attack input to overflow buffers in new
allocation calling contexts. However, as we have shown in the
Nginx case, whenever the attack overflows a buffer allocated
in a new calling context, HeapTherapy simply treats it as a
new vulnerability and starts another defense and diagnosis
cycle. Moreover, based on our evaluation and observations in
previous research [50], [26], [31] on the high reproducibility
of calling contexts, this is not common.

The second limitation is that HeapTherapy can only deal
with buffer overflow due to continual write or read operations,
which are the main form of buffer overflows. It cannot handle
overflows due to discrete read or write. Also, if an overflow
occurs inside a data structure, HeapTherapy cannot detect it.
This limitation is common in many existing countermeasures
against buffer overflows.

Third, although, with the current recompilation based
implementation, users of open-source software or software
companies can recompile their programs with HeapTherapy
to protect heap memory security, binary programs cannot
be protected conveniently. However, recompilation is not an
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Fig. 13: Speed overhead due to HeapTherapy. Each bar represents one experimental setting. For example, “5 patches, 5-page
padding” represents the setting where 5 simulated patches are applied based on the 5-VCCID set and each vulnerable buffer is
padded with 5 pages. The guard page is enabled for all vulnerable buffers. The last bar of each group is based on the related
work DieHarder [30].

inherent limitation of the technique covered in the paper.
A binary-instrumentation based implementation is possible.
We are building tools to build PCC encoding into programs
through binary instrumentation, while the shared library of
HeapTherapy can be loaded through LD PRELOAD.

VII. OTHER POTENTIAL APPLICATIONS

While the focus of this paper is the heap buffer overflow
problem, HeapTherapy can generate patches to deal with
many other memory errors, such as double frees, dangling
pointers and uninitialized heap buffer read. We can extend
the specification of the temporary patch to support more bug
types, and add bug-specific predefined handling to the memory
allocation wrapper. We discuss some examples in the section.

One type of dangling pointer bugs is due to a premature
deallocation of some buffers. Assume the temporary patch that
fixes a dangling pointer bug is generated. We can code a simple
handling, which is invoked when a free call is hooked: the
handling identifies whether the buffer’s CCID matches the
VCCID in the patch; if so, the buffer’s deallocation is delayed.
Such that the pointer variable previously containing a dangling
pointer can be dereferenced safely.

To address an uninitialized heap buffer read bug, we write
a simple handling that zero-fills the newly allocated buffer.
malloc calls the handling only when the buffer’s CCID
matches the VCCID of a patch that treats an uninitialized read
bug. So that the effort of zero-filling is tailed to buffers where
an uninitialized read may occur.

The memory management wrappers search in the hash table
assembled with patches to determines what actions are needed,
and then enforce them on the buffers. Therefore, HeapTherapy
is extensible and new handling functions and patches can be
defined to deal with new types of heap bugs.

VIII. CONCLUSIONS

We propose HeapTherapy, an end-to-end solution that per-
forms diagnosis and generates defenses against zero-day heap
buffer overflow attacks in realtime. HeapTherapy creatively
employs the calling context encoding to describe and identify
vulnerable buffers precisely and efficiently.

It does not have false positives, and remains effective under
polymorphic attacks. Our evaluation shows that it incurs a low
speed and memory overhead even when dealing with multiple
vulnerabilities simultaneously. It does not need infrastructure
for request recording and replaying, so HeapTherapy can be
used to protect personal applications as well as enterprise
services conveniently. The technique can be extended to deal
with other heap bugs, such as immature deallocation and
uninitialized read.
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