
1

Enforcing Secure and Privacy-Preserving
Information Brokering in Distributed Information

Sharing
Fengjun Li, Bo Luo, Peng Liu Dongwon Lee and Chao-Hsien Chu

Abstract—Today’s organizations raise an increasing need for
information sharing via on-demand access. Information Broker-
ing Systems (IBSs) have been proposed to connect large-scale
loosely-federated data sources via a brokering overlay, in which
the brokers make routing decisions to direct client queries to the
requested data servers. Many existing IBSs assume that brokers
are trusted and thus only adopt server-side access control for
data confidentiality. However, privacy of data location and data
consumer can still be inferred from metadata (such as query and
access control rules) exchanged within the IBS, but little attention
has been put on its protection. In this article, we propose a novel
approach to preserve privacy of multiple stakeholders involved
in the information brokering process. We are among the first to
formally define two privacy attacks, namely attribute-correlation
attack and inference attack, and propose two countermeasure
schemes automaton segmentation and query segment encryption to
securely share the routing decision making responsibility among
a selected set brokering servers. With comprehensive security
analysis and experimental results, we show that our approach
seamlessly integrates security enforcement with query routing to
provide system-wide security with insignificant overhead.

Index Terms—Access control, information sharing, privacy

I. INTRODUCTION

Along with the explosion of information collected by orga-
nizations in many realms ranging from business to government
agencies, there is an increasing need for inter-organizational
information sharing to facilitate extensive collaboration. While
many efforts have been devoted to reconcile data heterogeneity
and provide interoperability, the problem of balancing peer
autonomy and system coalition is still challenging. Most of the
existing systems work on two extremes of the spectrum, adopt-
ing either the query-answering model to establish pairwise
client-server connections for on-demand information access,
where peers are fully autonomous but there lacks system-
wide coordination, or the distributed database model, where all
peers with little autonomy are managed by a unified DBMS.

Unfortunately, neither model is suitable for many newly
emerged applications, such as healthcare or law enforcement
information sharing, in which organizations share information
in a conservative and controlled manner due to business con-
siderations or legal reasons. Take healthcare information sys-
tems as example. Regional Health Information Organization
(RHIO) [1] aims to facilitate access to and retrieval of clinical

F. Li and B. Luo are with the Department of EECS, The University of
Kansas, Lawrence, KS, 66045 USA. E-mail: {fli,bluo}@ku.edu.

P. Liu, D. Lee and C. Chu are with the College of IST, The Pennsylvania
State University. Email: {pliu,dlee,chu}@ist.psu.edu.

data across collaborative healthcare providers that include a
number of regional hospitals, outpatient clinics, payers, etc.
As a data provider, a participating organization would not
assume free or complete sharing with others, since its data is
legally private or commercially proprietary, or both. Instead,
it requires to retain full control over the data and the access
to the data. Meanwhile, as a consumer, a healthcare provider
requesting data from other providers expects to preserve her
privacy (e.g., identity or interests) in the querying process.

In such a scenario, sharing a complete copy of the data
with others or “pouring” data into a centralized repository
becomes impractical. To address the need for autonomy,
federated database technology has been proposed [2], [3]
to manage locally stored data with a federated DBMS and
provide unified data access. However, the centralized DBMS
still introduces data heterogeneity, privacy, and trust issues.
While being considered a solution between “sharing nothing”
and “sharing everything”, peer-to-peer information sharing
framework essentially need to establish pairwise client-server
relationships between each pair of peers, which is not scalable
in large scale collaborative sharing.

In the context of sensitive data and autonomous data
providers, a more practical and adaptable solution is to con-
struct a data-centric overlay (e.g., [4], [5]) consisting of data
sources and a set of brokers that make routing decisions
based on the content of the queries [6], [7], [8], [9]. Such
infrastructure builds up semantic-aware index mechanisms to
route the queries based on their content, which allows users
to submit queries without knowing data or server location.
In our previous study [9], [10], such a distributed system
providing data access through a set of brokers is referred to as
Information Brokering System (IBS). As shown in Figure 1,
applications atop IBS always involve some sort of consortium
(e.g., RHIO) among a set of organizations. Databases of differ-
ent organizations are connected through a set of brokers, and
metadata (e.g. data summary, server locations) are “pushed”
to the local brokers, which further “advertise” (some of) the
metadata to other brokers. Queries are sent to the local broker
and routed according to the metadata until reaching the right
data server(s). In this way, a large number of information
sources in different organizations are loosely federated to
provide an unified, transparent, and on-demand data access.

While the IBS approach provides scalability and server
autonomy, privacy concerns arise, as brokers are no longer
assumed fully trustable – the broker functionality may be
outsourced to third-party providers and thus vulnerable to be

2

Fig. 1. An overview of the IBS infrastructure.

abused by insiders or compromised by outsiders.
In this article, we present a general solution to the privacy-

preserving information sharing problem. First, to address the
need for privacy protection, we propose a novel IBS, namely
Privacy Preserving Information Brokering (PPIB). It is an
overlay infrastructure consisting of two types of brokering
components, brokers and coordinators. The brokers, acting as
mix anonymizer [11], are mainly responsible for user authen-
tication and query forwarding. The coordinators, concatenated
in a tree structure, enforce access control and query routing
based on the embedded non-deterministic finite automata –
the query brokering automata. To prevent curious or corrupted
coordinators from inferring private information, we design two
novel schemes to segment the query brokering automata and
encrypt corresponding query segments so that routing decision
making is decoupled into multiple correlated tasks for a set
of collaborative coordinators. while providing integrated in-
network access control and content-based query routing, the
proposed IBS also ensures that a curious or corrupted coor-
dinator is not capable to collect enough information to infer
privacy, such as “which data is being queried”, “where certain
data is located”, or “what are the access control policies”, etc.
Experimental results show that PPIB provides comprehensive
privacy protection for on-demand information brokering, with
insignificant overhead and very good scalability.

The rest of the paper is organized as follows: we discuss
the privacy requirements and threats in the information bro-
kering scenario in Section II, and introduce the related work
and preliminaries in Section III. In Section IV, we present
two core schemes and the PPIB approach. We discuss the
construction and maintenance in Section V, analyze system
privacy and security in Section VI, evaluate the performance
in Section VII, and conclude our work in Section VIII.

II. THE PROBLEM

A. Vulnerabilities and the Threat model

In a typical information brokering scenario, there are three
types of stakeholders, namely data owners, data providers,
and data requestors. Each stakeholder has its own privacy:
(1) the privacy of a data owner (e.g., a patient in RHIO) is the
identifiable data and sensitive or personal information carried
by this data (e.g., medical records). Data owners usually
sign strict privacy agreements with data providers to prevent
unauthorized use or disclosure. (2) Data providers store the
collected data locally and create two types of metadata,

namely routing metadata and access control metadata, for data
brokering. Both types of metadata are considered privacy of
a data provider. (3) Data requestors may reveal identifiable or
private information (e.g., information specifying her interests)
in the querying content. For example, a query about AIDS
treatment reveals the (possible) disease of the requestor.

We adopt the semi-honest [12] assumption for the brokers,
and assume two types of adversaries, external attackers and
curious or corrupted brokering components. External attackers
passively eavesdrop communication channels. Curious or cor-
rupted brokering components, while following the protocols
properly to fulfill brokering functions, try their best to infer
sensitive or private information from the querying process.

Privacy concerns arise when identifiable information is
disseminated with no or poor disclosure control. For example,
when data provider pushes routing and access control metadata
to the local broker [6], [9], a curious or corrupted broker
learns query content and query location by intercepting a
local query, routing metadata and access control metadata of
local data servers and from other brokers, and data location
from routing metadata it holds. Existing security mechanisms
focusing on confidentiality and integrity cannot preserve pri-
vacy effectively. For instance, while data is protected over
encrypted communication, external attackers still learn query
location and data location from eavesdropping. Combining
types of unintentionally disclosed information, the attacker
could further infer the privacy of different stakeholders through
attribute-correlation attacks and inference attacks.

Attribute-correlation attack. Predicates of an XML query de-
scribe conditions that often carry sensitive and private data
(e.g., name, SSN, creditcard number, etc.) If an attacker inter-
cepts a query with multiple predicates or composite predicate
expressions, the attacker can “correlate” the attributes in the
predicates to infer sensitive information about data owner. This
is known as the attribute correlation attack.

Example 1. A tourist Anne is sent to ER at California Hos-
pital. Doctor Bob queries for her medical records through
a medicare IBS. Since Anne has the symptom of leukemia,
the query contains two predicates: [pName="Anne"], and
[symptom="leukemia"]. Any malicious broker that has
helped routing the query could guess “Anne has a blood
cancer” by correlating the two predicates in the query. 2

Unfortunately, query content including sensitive predicates
cannot be simply encrypted since such information is neces-
sary for content-based query routing. Therefore, we are facing
a paradox of the requirement for content-based brokering and
the risk of attribute-correlation attacks.

Inference attack. More severe privacy leak occurs when an
attacker obtains more than one type of sensitive information
and learns explicit or implicit knowledge about the stakehold-
ers through association. By “implicit”, we mean the attacker
infers the fact by “guessing”. For example, an attacker can
guess the identity of a requestor from her query location (e.g.,
IP address). Meanwhile, the identity of the data owner could
be explicitly learned from query content (e.g., name or SSN).
Attackers can also obtain publicly-available information to

3

Fig. 2. The architecture of PPIB.

help his inference. For example, if an attacker identifies that
a data server is located at a cancer research center, he can tag
the queries as “cancer-related”.

In summary, we have three reasonable inferences from three
distinct combinations of private information: (1) from query
location & data location, the attacker infers about who (i.e., a
specific requestor) is interested in what (i.e., a specific type of
data). (2) From query location & query content, the attacker
infers about where who is, or who is interested in what (if
predicates describe symptom or medicine, etc), or something
about the data owner (if predicate identifies name or address of
a personnel), etc. (3) From query content & data location, the
attacker infers which data server has which data. Hence, the
attacker could continuously create artificial queries or monitor
user queries to learn the data distribution of the system, which
could be used to conduct further attacks.

B. Solution Overview

To address the privacy vulnerabilities in current information
brokering infrastructure, we propose a new model, namely
Privacy Preserving Information Brokering (PPIB). PPIB has
three types of brokering components: brokers, coordinators,
and a central authority (CA). The key to preserving privacy is
to divide and allocate the functionality to multiple brokering
components in a way that no single component can make a
meaningful inference from the information disclosed to it.

Figure 2 shows the architecture of PPIB. Data servers and
requestors from different organizations connect to the system
through local brokers (i.e., the green nodes in Fig. 2). Brokers
are interconnected through coordinators (i.e., the white nodes).
A local broker functions as the “entrance” to the system. It
authenticates the requestor and hides his identity from other
PPIB components. It would also permute query sequence to
defend against local traffic analysis.

Coordinators are responsible for content-based query rout-
ing and access control enforcement. With privacy-preserving
considerations, we cannot let a coordinator hold any rule in
the complete form. Instead, we propose a novel automaton
segmentation scheme to divide (metadata) rules into segments
and assign each segment to a coordinator. Coordinators oper-
ate collaboratively to enforce secure query routing. A query
segment encryption scheme is further proposed to prevent
coordinators from seeing sensitive predicates. The scheme
divides a query into segments, and encrypts each segment in a

way that to each coordinator enroute only the segments that are
needed for secure routing are revealed. Last but not least, we
assume a separate central authority handles key management
and metadata maintenance.

III. BACKGROUND

A. Related Work

Research areas such as information integration, peer-to-peer
file sharing systems and publish-subscribe systems provide
partial solutions to the problem of large-scale data sharing.
Information integration approaches focus on providing an inte-
grated view over a large number of heterogeneous data sources
by exploiting the semantic relationship between schemas of
different sources [13], [14], [15]. The PPIB study assumes
that a global schema exists within the consortium, therefore,
information integration is out of our scope.

Peer-to-peer systems are designed to share files and data
sets (e.g., in collaborative science applications). Distributed
hash table technology [16], [17] is adopted to locate replicas
based on keyword queries. However, although such technology
has recently been extended to support range queries [18], the
coarse granularity (e.g. files and documents) cannot meet the
expressiveness needs of applications focused in this work.
Furthermore, P2P systems often returns an incomplete set of
answers while we need to locate all relevant data in the IBS.

Addressing a conceptually dual problem, XML publish-
subscribe systems (e.g., [19], [20]) are probably the closely
related technology to the proposed research problem: while
PPIB aims to locate relevant data sources for a given query
and route the query to these data sources, the pub/sub systems
locate relevant consumers of a given document and route the
document to these consumers. However, due to this duality, we
have different concerns. The pub/sub systems focus more on
efficiently delivering the same piece of information to a large
number of consumers, while we are trying to route a large
volume but small-sized queries to fewer sites. Accordingly,
the multicast solution in pub/sub systems does not scale in
our environment and we need to develop new mechanisms.

One idea is to build an XML overlay architecture that
supports expressive query processing and security checking
atop normal IP network. In particular, specialized data struc-
tures are maintained on overlay nodes to route XML queries.
In [5], a robust mesh has been built to effectively route XML
packets by making use of self-describing XML tags and the
overlay networks. Kouds et al. also proposed a decentralized
architecture for ad hoc XPath query routing across a collection
of XML databases [6]. To share data among a large number
of autonomous nodes, [21] studied content-based routing for
path queries in peer-to-peer systems. Different from these
approaches, PPIB seamlessly integrates query routing with
security and privacy protection.

Privacy concerns arise in inter-organizational information
brokering since one can no longer assume brokers controlled
by other organizations are fully trustable. As the major source
that may cause privacy leak is the metadata (i.e., indexing
and access control), secure index based search schemes [22],
[23] may be adopted to outsource metadata in encrypted form

4

to untrusted brokers. Brokers are assumed to enforce security
check and make routing decision without knowing the content
of both query and metadata rules. Various protocols have been
proposed for searchable encryption [22], [24], [23], however,
to the best of our knowledge, all the schemes presented so far
only support keyword search based on exact matching. While
there are approaches proposed for multi-dimensional keyword
search [25] and range queries [26], supporting queries with
complex predicates (e.g., regular expressions) or structures
(e.g., XPath queries) is still a difficult open problem. In terms
of privacy-preserving brokering, another related technique is
secure computation [27] that allows one party to evaluate
various functions on encrypted data without being able to
decrypt. Originally designed for privacy information retrieval
(PIR) in database systems [28], such schemes have the same
limitation that only keyword-based search is supported.

Research on anonymous communication provides a way to
protect information from unauthorized parties. Many protocols
have been proposed to enable the sender node dynamically
select a set of nodes to relay its requests [29], [30]. These
approaches can be incorporated into PPIB to protect location
of data requestors and data servers from irrelevant or malicious
parties. However, aiming at enforcing access control during
query routing, PPIB addresses more privacy concerns other
than anonymity, and thus faces more challenges.

Finally, research on distributed access control is also related
to our work ([31] gives a good overview on access control in
collaborative systems). In summary, earlier approaches imple-
ment access control mechanisms at the nodes of XML trees
and filter out data nodes that users do not have authorization
to access [32], [33]. These approaches rely much on the
XML engines. View-based access control approaches create
and maintain a separate view (e.g., a specific portion of
XML documents) for each user [34], [35], which causes high
maintenance and storage costs. In this work, we adopt an NFA-
based query rewriting access control scheme proposed recently
in [36], [9], which has a better performance than previous
view-based approaches [33].

B. Preliminaries

1) XML Data Model and Access Control: The eXtensi-
ble Markup Language (XML) has emerged as the de facto
standard for information sharing due to its rich semantics
and extensive expressiveness. We assume that all the data
sources in PPIB exchange information in XML format, i.e.,
taking XPath [37] queries and returning XML data. Note that
the more powerful XML query language, XQuery, still uses
XPath to access XML nodes. In XPath, predicates are used to
eliminate unwanted nodes, where test conditions are contained
within square brackets “[]”. In our study, we mainly focus
on value-based predicates.

To specify the authorization at the node level, fine-grained
access control models are desired. We adopt the 5-tuple access
control policy that is widely used in the literature [38], [34],
[36]. The policy consists of a set of access control rules (ACR)
= {subject, object, action, sign, type}, where (1) subject is the
role to whom the authorization is granted; (2) object is a set

Fig. 3. Data structure of an NFA state.

of XML nodes specified by an XPath expression; (3) action is
operations as “read”, “write”, or “update”; (4) sign ∈ {+,−}
refers to access “granted” or “denied”, respectively; and (5)
type ∈ {LC,RC} denotes “local check” (i.e., applying autho-
rization only to the attributes or textual data of the context
nodes) or “recursive check” (i.e., applying authorization to all
the descendants of the context node). A set of example rules
are shown below:

Example 2. Example ACRs:
R1:{role1,/site//person/name, read,+,RC}
R2:{role1,/site/regions/asia/item,read,+,RC}
R3:{role2,/site/regions/asia/item,read,+,RC}
R4:{role2,/site/regions/*/item/name,read,+,RC}
R5:{role2,/site/regions/*/item[location="USA"]
/description,read,+,RC} 2

Existing access control enforcement approaches can be
classified as engine-based [39], [32], [35], [40], [41], view-
based [42], [43], [38], [44], [45], preprocessing [33], [34],
[46], [47], [48], and post-processing [49] approaches. In partic-
ular, we adopt the Non-deterministic Finite Automaton (NFA)
based approach as presented in [36], which allows access
control to be enforced outside data servers, and independent
from the data. The NFA-based approach constructs NFA
elements for four building blocks of common XPath axes (/x,
//x, /*, and //*) so that XPath expressions, as combinations
of these building blocks, can be converted to an NFA, which
is used to match and rewrite incoming XPath queries. Please
refer to [36] for more details on the QFilter approach.

2) Content-based Query Brokering: Indexing schemes have
been proposed for content-based XML retrieval [50], [51],
[52], [53]. The index describes the address of the data server
that stores a particular data item requested by an user query.
Therefore, a content-based index rule should contain the
content description and the address. In [9], we presented a
content-based indexing model with index rules in the form of
I = {object, location}, where (1) object is an XPath expression
that selects a set of nodes; and (2) location is a list of IP
addresses of data servers that hold the content.

Example 3. Example index rules:
I1:{/site/people/person/name, 130.203.189.2}
I2:{/site/regions//item[@id>"100"],
135.176.4.56}
I3:{/site/regions/samerica/item[@id>"200"],
195.228.155.9}

5

Fig. 4. The state transition graph of the QBroker that integrates index rules
with ACRs.

I4:{/site//namerica/item/name, 135.207.5.126}
I5:{/site/regions/namerica/item/location,
74.128.5.91} 2

When an user queries the system, the XPath query is
matched with the object field of the index rules, and the
matched query will be sent to the data server specified by
the location field of the rule(s). While other techniques (e.g.,
bloom filter [7], [6]) can be used to implement content-based
indexing, we adopt the model in [9] in our study since it
can be directly integrated with the NFA-based access control
enforcement scheme. We call the integrated NFA that captures
access control rules and index rules content-based query
broker (QBroker). QBroker is constructed in a similar way as
QFilter [36]. Fig. 3 shows the data structure of each NFA state
in QBroker, where the state transition table stores the child
nodes specified by the XPath expression as the child states
in eSymbol. The binary flag DSState indicates that the state
is a “double-slash” state. “double-slash” state, whose child
state is an ε-transition state that directly transits to the next
state without consuming any input symbol, will recursively
accept input symbols. Fig. 4 shows a QBroker constructed
from Example 2 and 3. Unlike QFilter that captures ACRs
for only one role, QBroker adds two binary arrays to each
state to capture rules for multiple roles: AccessList determines
the roles that are allowed to access this state and AcceptList
indicates for which role(s) the state is an accept state. For
instance, in Fig. 4, the accept list of state 5 is [1 0], indicating
the state is an accept state for role1 but not for role2,
and the access list of state 6 is [1 1], indicating this state is
accessible by both roles. A LocationList is attached to each
accept state. In the brokering process, QBroker first checks if
a query is allowed to access the requested nodes according to
the role type and then makes routing decision. If a query can
access only a subset of the requested data, it will be rewritten
into a “safe” query before forwarding.

IV. PRIVACY-PRESERVING QUERY BROKERING SCHEME

The QBroker [9] approach has severe privacy vulnerability
as we discussed in Section II. If the QBroker is compromised
or cannot be fully trusted (e.g., under the honest-but-curious
assumption as in our study), the privacy of both requestor and
data owner is under risk. To tackle the problem, we present the
PPIB infrastructure with two core schemes. In this section, we
first explain the details of automata segmentation and query

segment encryption schemes, and then describe the 4-phase
query brokering process in PPIB.

A. Automaton Segmentation

In the context of distributed information brokering, multiple
organizations join a consortium and agree to share the data
within the consortium. While different organizations may have
different schemas, we assume a global schema exists by
aligning and merging the local schemas. Thus, the access
control rules and index rules for all the organizations can be
crafted following the same shared schema and captured by
a global automaton. The key idea of automaton segmenta-
tion scheme is to logically divide the global automaton into
multiple independent yet connected segments, and physically
distribute the segments onto different brokering components,
known as coordinators.

1) Segmentation: The atomic unit in the segmentation is an
NFA state of the original automaton. Each segment is allowed
to hold one or several NFA states. We further define the
granularity level to denote the greatest distance between any
two NFA states contained in one segment. Given a granularity
level k, for each segmentation, the next i (∈ [1, k]) states
will be divided into one segment with a probability 1/k.
Obviously, with a larger granularity level, each segment will
contain more NFA states, resulting in less segments and
smaller end-to-end overhead in distributed query processing.
However, a coarse partition is more likely to increase the
privacy risk. The tradeoff between the processing complexity
and the degree of privacy should be considered in deciding
the granularity level. As privacy protection is of the primary
concern of this work, we suggest a granularity level ≤ 2.
To reserve the logical connection between the segments after
segmentation, we define the following heuristic segmentation
rules: (1) NFA states in the same segment should be connected
via parent-child links; (2) sibling NFA states should not be
put in the same segment without their parent state; and (3)
the “accept state” of the original global automaton should be
put in separate segments. To ensure the segments are logically
connected, we also make the last states of each segment as
“dummy” accept states, with links pointing to the segments
holding the child states of the original global automaton.

Algorithm 1 The automaton segmentation algorithm:
deploySegment()
Input: Automaton State S
Output: Segment Address: addr
1: for each symbol k in S.StateTransTable do
2: addr=deploySegment(S.StateTransTable(k).nextState)
3: DS=createDummyAcceptState()
4: DS.nextState← addr
5: S.StateTransTable(k).nextState← DS
6: end for
7: Seg = createSegment()
8: Seg.addSegment(S)
9: Coordinator = getCoordinator()

10: Coordinator.assignSegment(Seg)
11: return Coordinator.address

2) Deployment: We employ physical brokering servers,
called coordinators, to store the logical segments. To reduce

6

the number of needed coordinators, several segments can
be deployed on the same coordinator using different port
numbers. Therefore, the tuple < coordinator, port > uniquely
identifies a segment. For the ease of presentation, we assume
each coordinator only holds one segment in the rest of the
article. After the deployment, the coordinators can be linked
together according to the relative position of the segments
they store, and thus form a tree structure. The coordinator
holding the root state of the global automaton is the root of the
coordinator tree and the coordinators holding the accept states
are the leaf nodes. Queries are processed along the paths of the
coordinator tree in a similar way as they are processed by the
global automaton: starting from the root coordinator, the first
XPath step (token) of the query is compared with the tokens
in the root coordinator. If matched, the query will be sent to
the next coordinator, and so on so forth, until it is accepted
by a leaf coordinator and then forwarded to the data server
specified by the outpointing link of the leaf coordinator. At any
coordinator, if the input XPath step does not match the stored
tokens, the query will be denied and dropped immediately.

3) Replication: Since all the queries are supposed to be
processed first by the root coordinator, it becomes a single
point of failure and a performance bottleneck. For robustness,
we need to replicate the root coordinator as well as the coordi-
nators at higher levels of the coordinator tree. Replication has
been extensively studied in distributed systems. We adopt the
passive path replication strategy to create the replicas for the
coordinators along the paths in the coordinator tree, and let the
centralized authority to create or revoke the replicas (please
see more details in Section V). The CA maintains a set of
replicas for each coordinator, where the number of replicas
is either a preset value or dynamically adjusted based on the
average queries passing through that coordinator.

4) Handling the predicates: In the original construction of
NFA (similarly as described in QFilter [36] and QBroker [9]),
a predicate table is attached to every child state of an NFA
state as shown in Fig. 3. The predicate table stores predicate
symbols (i.e., pSymbol), if any, in the corresponding query
XPath step. An empty symbol φ means no predicate.

To handle the predicates, either from the query or from the
ACR, the original strategy is lookup-and-attach. That is, if
an XPath step in the query matches a child state in the state
transition table (i.e., an eSymbol), predicate carried in that
particular XPath step or predicate stored in the predicate table
will be attached to the corresponding XPath step in the safe
query. The real evaluation of the predicate is left to the data
servers, which inevitably causes unnecessary communication
and processing overhead if the predicate conditions conflict.
We illustrate this problem with the following example.

Example 4. Consider a query Q = /site/regions//item[@id =
”30”]/name and the QBroker in Fig. 4. This query will
be accepted at state 11, rewritten into a safe query, and
sent to three data servers. However, from the index rules in
Example 3, we know that data servers at 195.228.155.9 and
135.176.4.56 do not contain the requested data. Routing a
query to irrelevant data servers yields unnecessary overhead.2

To address this problem, we present a new scheme to handle

Fig. 5. An example to illustrate the automaton segmentation scheme: (a)
divide the global automaton with granularity level of 1; (b) the segments are
linked to form a tree structure.

value-based predicates in input XML queries. We first change
the data structure of the original NFA state by adding new
fields as condition, type, and location, to the predicate table:
(1) pSymbol still stores the predicate token; (2) condition
stores the test condition; (3) type ∈ {R, I} indicates if the
predicate is introduced from an ACR or an index rule, and (4)
location stores the addresses carried by the index rule.

In processing, if the XPath step of a query does not have
a predicate, the scheme works the same as before: it looks
up the predicate table for predicates introduced by ACRs
(i.e., with type = R) and attaches “pSymbol||condition” to the
safe query. If a predicate exists in a particular XPath step,
the scheme retrieves records of the same predicate from the
table, and sends them with the query predicate to a predicate
directory server, which further examines the test conditions.
In testing, the query predicate is first compared with the ACR
predicate to determine if the query passes the access control
testing. After that, the query predicate is further compared with
the predicate introduced by the index rules, to limit the scope
of potential destination data servers. If a predicate successfully
passes both testings, we attach the location of the index rule
to the safe query. Accordingly, in query processing, if an
accepted query carries multiple location lists, it will be sent
to the intersection of the destination data servers. We would
like to point out that this scheme does not support structural
predicates (that contain twig conditions in the predicates) due
to the excessive overhead caused by waiting for responses
from the twigs in a distributed setting. Last but not least, it
is possible to employ searchable encryption approaches at the
predicate directory servers, in the scenario where directory
servers are not completed trusted. However, as we have dis-
cussed in Section II, several issues (e.g. computation) need to

7

be addressed before searchable encryption could be employed;
and their use is restricted to exact (and substring) matching for
textual predicates.

B. Query Segment Encryption
Informative hints can be learned from query content, so it

is critical to hide the query from irrelevant brokering servers.
However, in traditional brokering approaches, it is difficult,
if not impossible, to do that, since brokering servers need to
view query content to fulfill access control and query routing.
Fortunately, the automaton segmentation scheme provides new
opportunities to encrypt the query in pieces and only allows
a coordinator to decrypt the pieces it is supposed to process.
The query segment encryption scheme proposed in this work
consists of the pre-encryption and post-encryption modules,
and a special commutative encryption module for processing
the double-slash (“//”) XPath step in the query.

1) Level-based pre-encryption: According to the automaton
segmentation scheme, query segments are processed by a
set of coordinators along a path in the coordinator tree. A
straightforward way is to encrypt each query segment with
the public key of the coordinator specified by the scheme.
Hence, each coordinator only sees a small portion of the query
that is not enough for inference, but collaborating together,
they can still fulfill the designed function. The key challenges
in this approach is that the segment-coordinator association
is unknown beforehand in the distributed setting, since no
party other than the CA knows how the global automaton is
segmented and distributed among the coordinators.

To tackle the problem, we propose to encapsulate query
pieces based on the publicly known information – the global
schema. XML schema also forms a tree structure, in which
the level of a node in the schema tree is defined as its
distance to the root node. Since both the ACR and index rules
are constructed following the global schema, an XPath step
(token) in the XPath expression of a rule is associated with
level i if the corresponding node in the schema tree is at level
i. We assume the nodes of the same level share a pair of public
and private level keys, {pk, sk}. After automaton segmenta-
tion, the segments (and the corresponding coordinators) are
assigned with the private key of level i, ski, if it contains a
node of level i. In pre-encryption, the XPath steps (between
two “/” or “//”) of a query are encrypted with the public level
keys {pk1, pk2, ...}, respectively. Intuitively, the ith XPath step
of a query should be processed by a segment with a node at
level i, and therefore, is able to be decrypted by the coordinator
holding that segment. Moreover, if a coordinator has a segment
that contains XML nodes of k different levels, it needs to
decrypt the first k unprocessed XPath steps of the query.

2) Post-encryption: The processed query segments should
also be protected from the remaining coordinators in later pro-
cessing, so post-encryption is necessary. In a simple scheme,
we assume all the data servers share a pair of public and
private keys, {pkDS , skDS}, where pkDS is known to all
the coordinators. Each coordinator first decrypts the query
segment(s) with its private level key, performs authorization
and indexing, and then encrypts the processed segment(s) with
pkDS so that only the data servers can view it.

Fig. 6. (a) An example of the mismatching problem; (b) An example of
commutative encryption.

3) Commutative encryption for “//” handling: When a
query has the descendant-or-self axis (i.e., “//” in XPath
expressions), a so-called mismatching problem occurs at the
coordinator who takes the “//” XPath step as input. This is be-
cause that the “//” XPath step may recursively accepts several
tokens until it finds a match. Consequently, the coordinator
with the private level key may not be the one that matches the
“//” token, and vice versa. This problem is further explained in
Example 5 and Fig. 6(a). To tackle the problem, we revise the
level-based encryption scheme by adopting the commutative
encryption. Commutative encryption algorithms [12], [54],
[55] have the property of being commutative, where an encryp-
tion algorithm is commutative if for any two commutative keys
e1 and e2 and a message m,<< m >e1>e2=<< m >e2>e1 .
Therefore, we assign a new commutative level key ei to nodes
at level i, and further assume nodes at level i share ei with
nodes at level i+ 2.

Example 5. Assume the global automaton is segmented as
shown in Fig. 5. Coordinators C1, C2, C5, and C8 hold the
segments Seg1, Seg2, Seg5, and Seg8, respectively. Accord-
ing to the level-based pre-encryption, a query “//item/name”
will be encrypted as < //item >pk1< /name >pk2 . When C1

gets “//item”, it finds the token does not match the NFA state
“site” but it still accepts the token due to the property of “//”.
Similarly, C2, while still not be able to process “//item”, will
further decrypt irrelevant query segment “/name” with pk2.2

The commutative encryption is invoked by the first coordi-
nator encountering the “//” XPath step in a query and ended by
the first coordinator whose NFA state matches the “//” token.
The entire process experiences four stages. A flag ∈ [0, 3] is
attached to a query to indicate which the stage the query is
currently at. Detailed algorithm is explained as follows:

1) When a coordinator Cm first encounters the “//” XPath
step, it sets a pointer to the first unprocessed query
segment, encrypts all the unprocessed query segments
(except the “//” XPath step) with its commutative level
key em, and sets the flag to 1.

2) With flag = 1, the next coordinator Cm+1 first adds the

8

second encapsulation to the unprocessed query segments
with its commutative level key em+1; then it decrypts the
pointed query segment with its private level key skm+1,
and moves the pointer to the next segment. After that,
it sets the flag to 2.

3) For a following coordinator Cj , if none of its NFA
states matches the “//” token, it first removes one
wrapping (by decrypting with dj−2) and adds one
wrapping (by encrypting with ej) to the unprocessed
query segments. Due to the commutative encryp-
tion property, the unprocessed query segments are
changed from << unprocessed >ej−2

>ej−1
to <<

unprocessed >ej−1>ej . Then it decrypts the pointed
segment with its private level key skj and moves the
pointer to the next.

4) When a coordinator Cn accepts the “//” token, it applies
the commutative decryption to all the unprocessed seg-
ments with key dn−2, and encrypts each of them with
the public level keys {pkn+1, pkn+2, ...}, respectively.
After that, it sets the flag to 3.

5) Coordinator Cn+1 decrypts all the unprocessed segments
with dn−1 and resets the flag to 0.

The core idea of commutative encryption is to wrap the
unprocessed query segments after the “//” XPath step with two
consecutive commutative layer keys, which are not possessed
by a same coordinator. The additional wrapping is kept until
the commutative encryption process is stopped by a matching
of the “//” token. In practical, we adopt Pohlig-Hellman
exponentiation cipher with modulus p as our commutative
encryption algorithm to generate the commutative keys.

Example 6. Let us revisit the previous example with commuta-
tive encryption. As shown in Fig. 6(b), once C1 accepts the “//”
XPath step “//item”, it starts to add the commutative wrap-
ping to the second query segment “/name” by encrypting with
e1. C2 removes the wrapping of original level-based encryp-
tion and continues to add one more wrapping by encrypting wit
e2. C5 still does not match the “//” token, so it only changes
commutative wrapping to the ones related to e2 and e3. When
C8 matches ‘//item”, it unwraps one layer of commutative
encryption with d2 and adds a level-based encryption with
pk5 to yield an output of << /name >e3>pk5

, which can be
decrypted by C9. 2

C. The Overall PPIB Architecture

The architecture of PPIB is shown in Fig. 7, where users
and data servers of multiple organizations are connected via a
broker-coordinator overlay. In particular, the brokering process
consists of four phases:
• Phase 1: To join the system, a user needs to authenticate

himself to the local broker. After that, the user submits
an XML query with each segment encrypted by the
corresponding public level keys, and a unique session
key KQ. KQ is encrypted with the public key of the
data servers to encrypt the reply data.

• Phase 2: Besides authentication, the major task of the
broker is metadata preparation: (1) it retrieves the role of
the authenticated user to attach to the encrypted query;

Fig. 7. We explain the query brokering process in four phases.

(2) it creates a unique QID for each query, and attaches
QID, < KQ >pkDS

and its own address to the query for
data servers to return data.

• Phase 3: Upon receiving the encrypted query, the coor-
dinators follow automata segmentation scheme and query
segment encryption scheme to perform access control and
query routing along the coordinator tree as described in
Section IV-A and IV-B. At the leaf coordinator, all query
segments should be processed and re-encrypted by the
public key of the data server. If a query is denied access,
a failure message with QID will be returned to the broker.

• Phase 4: In the final phase, the data server receives a safe
query in an encrypted form. After decryption, the data
server evaluates the query and returns the data, encrypted
by KQ, to the broker that originates the query.

V. MAINTENANCE

A. Key management

The CA is assumed for off-line initiation and maintenance.
With the highest level of trust, the CA holds all the rules
and plays a critical role in key management. There are four
types of keys used in the brokering process: query session
key KQ, public/private level keys {pk, sk}, commutative level
keys {e, d}, and public/private data server keys {pkDS , skDS}.
The query session keys created by the user, and the others are
all generated and maintained by the CA. The data servers are
treated as unique parties and share a pair of public and private
keys, while each coordinator has its own pairs of level keys
and commutative level keys. Along with the deployment of
automaton segment, the CA creates key pairs for coordinators
and assigns the private keys with the segments. The level keys
need to be revoked in a batch once a certificate expires or when
a coordinator at the same level quits the system.

B. Brokering Servers Join/Leave

Brokers and coordinators, contributed by different organi-
zations, are allowed to dynamically join or leave the PPIB
system. Besides authentication, a local broker only works as
an entrance to the the coordinator overly. It stores the address
of the root coordinator (and its replica) for forwarding the
queries. When a new broker joins the system, it registers
to the CA to receive the current address list from the CA
and broadcasts its own address to the local users. When
leaving the system, a broker only needs to broadcast a leave

9

message to the local users. Thing are more complicate for
the coordinators. Once joining the system, a new coordinator
sends a join request to the CA. The CA authenticates its
identity, and assigns automaton segments to it considering
both the load balance requirement and its trust level. After
that, the CA issues the corresponding private level keys
and sends a broadcast ServerJoin(addr) message to update
the location list attached to the parent coordinator with the
address of the newly joined coordinator. When a coordinator
leaves the system, the CA decides whether to employ an
existing or a new coordinator as a replacement, based on
the heuristic rules for automaton deployment and the current
load at each coordinator. After that, the CA broadcasts a
ServerLeave(addr1, addr2) message to replace the address
of the old coordinator with the address of the new one in
the location list at the dummy accept state of the parent
coordinator. Finally, the CA revokes the corresponding level
keys. If a failure is detected from a periodical status check by
the CA or reported by a neighboring coordinator, the CA will
treat the failed coordinator as a leaving server.

C. Metadata Update

ACR and index rules are updated to reflect the changes in
the access control policy or the data distributions.

1) Index rules: To add or remove a (set of) data ob-
ject, a local server sends an update message, in the form
of DataUpdate(object, address, action), to the CA, where
object is an XPath expression, address is the location of the
data object, and action is either “add” or “remove”. To add
a data object, the CA sends the update message to the root
coordinator, from which the message traverses the coordinator
network until reaching a leaf coordinator, where the address
will be added to its location list. A similar process is taken
for data object removal to retrieve the corresponding leaf
coordinators and remove the address from the location list.

2) Access control rules: For any change in the access con-
trol policy, we construct an ACRUpdate(role, object, type)
message to reflect the change for a particular role and send
it to the CA. The CA forwards the message to the root
coordinator, from which the XPath expression in object is
processed by each coordinator according to its state transition
table, in the same way as constructing an automaton with a
new ACR: if the message stops at a particular NFA state, the
state will be changed to an accept state for that role. Then, all
the child and descendent leaf coordinators will be retrieved
and the location lists will be attached to the accept state.
If the message is accepted by an existing leaf coordinator,
new automaton segments will be created and assigned to new
coordinators. The location list at the original leaf coordinator
will be copied to the new leaf coordinator.

VI. PRIVACY AND SECURITY ANALYSIS

There are various types of attackers in the information bro-
kering process. From their roles, we have abused insiders and
malicious outsiders; from their capabilities, we have passive
eavesdroppers and active attackers that can compromise any
brokering server; from their cooperation mode, we have single

and collusive attackers. In this section, we consider three most
common types of attackers, local and global eavesdroppers,
malicious brokers and malicious coordinators. We first analyze
possible privacy breakages caused by each of them, and then
summarize possible privacy exposures in Figure I.

3) Eavesdroppers: A local eavesdropper is an attacker who
can observe all communication to and from the user side. Once
an end user initiates an inquire or receives requested data,
the local eavesdropper can seize the outgoing and incoming
packets. However, it can only learn the location of local broker
from the captured packets since the content is encrypted. Al-
though local brokers are exposed to this kind of eavesdroppers,
as a gateway of DIBS system, it prevents further probing
of the entire DIBS. Although the disclosed broker location
information can be used to launch DoS attack against local
brokers, a backup broker and some recovery mechanisms can
easily defend this type of attacks. As a conclusion, an external
attacker who is not powerful enough to compromise brokering
components is less harmful to system security and privacy.

A global eavesdropper is an attacker who observes the traffic
in the entire network. It watches brokers and coordinators
gossip, so it is capable to infer the locations of local brokers
and root-coordinators. This is because the assurance of the
connections between user and broker, and between broker
and root-coordinator. However, from the later-on communi-
cation, the eavesdropper cannot distinguish the coordinators
and the data servers. Therefore, the major threat from a global
eavesdropper is the disclosure of broker and root-coordinator
location, which makes them targets of further DoS attack.

4) Single malicious broker: A malicious broker deviates
from the prescribed protocol and discloses sensitive infor-
mation. It is obvious that a corrupted broker endangers user
location privacy but not the privacy of query content. More-
over, since the broker knows the root-coordinator locations,
the threat is the disclosure of root-coordinator location and
potential DoS attacks.

5) Collusive coordinators: Collusive coordinators deviate
from the prescribed protocol and disclose sensitive informa-
tion. Consider a set of collusive (corrupted) coordinators in
the coordinator tree framework. Even though each coordinator
can observe traffic on a path routed through it, nothing will
be exposed to a single coordinator because (1) the sender
viewable to it is always a brokering component; (2) the
content of the query is incomplete due to query segment
encryption; (3) the ACR and indexing information are also
incomplete due to automaton segmentation; (4) the receiver
viewable to it is likely to be another coordinator. However,
privacy vulnerability exists if a coordinator makes reasonable
inference from additional knowledge. For instance, if a leaf-
coordinator knows how PPIB mechanism works, it can assure
its identity (by checking the automaton it holds) and find out
the destinations attached to this automaton are of some data
servers. Another example is that one coordinator can compare
the segment of ACR it holds with the open schemas and make
reasonable inference about its position in the coordinator tree.
However, inference made by one coordinator may be vague
and even misleading.

10

Privacy
type

local eaves-
dropper

global
eavesdropper

malicious
broker

collusive coordinators

User Lo-
cation

Exposed Exposed Exposed Protected

Query
Content

Protected Exposed Exposed Exposed only with
compromised root
coordinator

AC Policy Protected Protected Protected Exposed if path coordi-
nators collude

Index
Rules

Protected Protected Protected Exposed if path coordi-
nators collude

Data Dis-
tribution

Protected Protected Protected Exposed if path coordi-
nators collude

Data Lo-
cation

Protected Beyond suspi-
cion

Protected Exposed with malicious
leaf coordinators

TABLE I
THE POSSIBLE PRIVACY EXPOSURE CAUSED BY FOUR TYPES OF

ATTACKERS: LOCAL EAVESDROPPER (LE), GLOBAL EAVESDROPPER (GE),
MALICIOUS BROKER (MB), AND COLLUSIVE COORDINATORS (CC).

VII. PERFORMANCE ANALYSIS

In this section, we analyze the performance of proposed
PPIB system using end-to-end query processing time and
system scalability. In our experiments, coordinators are coded
in Java (JDK 5.0) and results are collected from coordinators
running on a Windows desktop (3.4G CPU). We use the
XMark [56] XML document and DTD, which is wildly used
in the research community. As a good imitation of real world
applications, the XMark simulates an online auction scenario.

A. End-to-End Query Processing Time

End-to-end query processing time is defined as the time
elapsed from the point when query arrives at the broker until
to the point when safe answers are returned to the user. We
consider the following four components: (1) average query
brokering time at each broker/coordinator (TC); (2) aver-
age network transmission latency between broker/coordinators
(TN); (3) average query evaluation time at data server(s)
(TE); and (4) average backward data transmission latency
(Tbackward). Query evaluation time highly depends on XML
databases system, size of XML documents, and types of XML
queries. Once these parameters are set in the experiments, TE
will remain the same (at seconds level [57]). Similarly, the
same query set and ACR set will create the same safe query
set, and the same data result will be generated by data servers.
As a result, TE and Tbackward are not affected by the broker-
coordinator overlay network. We only need to calculate and
compare the total forward query processing time (Tforward) as
Tforward = TC ×NHOP + TN × (NHOP + 1). It is obvious
that Tforward is only affected by TC , TN , and the average
number of hops in query brokering, NHOP .

1) Average query processing time at the coordinator.:
Query processing time at each broker/coordinator (TC) con-
sists of: (1) access control enforcement and locating next coor-
dinator (Query brokering); (2) generating a key and encrypting
the processed query segment (Symmetric encryption); and (3)
encrypting the symmetric key with the public key created by
super node (Asymmetric encryption).

To examine TC , we manually generate 5 sets of access
control rules, and partition the rules of each set into segments

(a) Average query brokering
time at a coordinator. X: Num-
ber of keywords at a query bro-
ker; Y: Time (s)

(b) Average symmetric and asym-
metric encryption time. X: Number
of keywords at a query broker; Y:
Time (ms)

Fig. 8. Estimate the overall processing time at each coordinator.

(keywords), which are assumed to be assigned to different co-
ordinators in the following evaluation. From set 1 to set 5, the
number of keywords held by one coordinator increases from
1 to 5. We also generate 1000 synthetic XPath queries and
similarly divide the query into segments. In the experiment,
we adopt the off-the-shelf cryptographic algorithms, 3DES for
symmetric encryption and 1024-bit key length RSA (in prac-
tice, RSA-OAEP: RSA with optimal asymmetric encryption
padding is recommended to defend against adaptive chosen-
ciphertext attacks) for asymmetric encryption. Figure 8(a)
shows that query brokering time is at milliseconds level, and
increases linearly with the number of keywords at a site.
As shown in Figure 8(b), since the data size is very small
(the XPath token on average is 128 bits), encryption time
for both symmetric and asymmetric encryption schemes is
at milliseconds level, while the asymmetric encryption time
dominates the total query processing time at each coordinator.
As a result, average (TC) is about 1.9 ms. Query processing
time at brokers and leaf-coordinators are shorter but still in
the same level. For simplicity, we adopt the same value (i.e.,
1.9 ms) for the average query processing time at brokers and
coordinators.

2) Average network transmission latency.: We adopt aver-
age Internet traffic latency 100 ms as a reasonable estimation of
TN (from Internet traffic report) instead of using data collected
from our gigabyte Ethernet.

3) Average number of hops.: We consider the case in which
a query Q is accepted or rewritten by n ACRs {R1, ..., Rn}
into the union of n safe sub-queries {Q′1, ..., Q′n}. When an
accepted/rewritten sub-query Q′i is processed by the rule Ri,
the number of hops is determined by the number of segments
of Ri. In the experiment, we generate a set of 200 synthetic
access control rules and 1000 synthetic XPath queries.

It is obvious to see that the more segments the global
automaton is divided into, the more coordinators are needed
and the less scalable the system is, due to the increased
query processing cost. However, higher granularity leads to
better privacy preserving performance. We choose the finest-
granularity automaton segmentation (each XPath step of an
ACR is partitioned as one segment and kept at one coordinator)
for maximum privacy preserving. Our experiment result shows
that NHOP is 5.7, and the maximum number of hops of all
queries is 8.

4) End-to-end query processing time.: From above experi-
ment results, the total forward query processing time is calcu-
lated as Tforward ' 1.9×5.7+100× (5.7+1) ' 681(ms). It

11

X: number of access control rules; Y: number of coordinators.

(a) Using simple path rules. (b) Using XPath rules with wildcards.

Fig. 9. System scalability: number of coordinators.

is obvious that network latency TN ∗ (NHOP + 1) dominates
total forward end-to-end query processing time, because the
value of TC is negligible compared with TN . Moreover, since
TN remains the same (as an estimation from Internet traffic),
NHOP becomes the deterministic factor that affects end-to-
end query processing time. Note that for other information
brokering systems, although they use different query routing
scheme, network latency is not avoidable. As a conclusion, the
proposed PPIB approach achieves privacy-preserving query
brokering and access control with limited computation.

B. System Scalability

We evaluate the scalability of the PPIB system against
complicity of ACR, the number of user queries, and data size
(number of data objects and data servers).

1) Complicity of XML schema and ACR.: When the seg-
mentation scheme is determined, the demand of coordinators
is determined by the number of ACR segments, which is
linear with the number of access control rules. Assume finest
granularity automaton segmentation is adopted, we can see that
the increase of demanded number of coordinators is linear or
even better, as shown in Figure 9(a) and (b). This is because
similar access control rules with same prefix may share XPath
steps, and save the number of coordinators. Moreover, different
ACR segments (or, logical coordinators) may reside at the
same physical site, thus reduce the actual demand of physical
sites. In this framework, the number of coordinators, m, and
the height of the coordinator tree, h, are highly dependent on
how access control policies are segmented.

2) Number of queries: Considering n queries submitted
into the system in a unit time, we use the total number of
query segments being processed in the system to measure the
system load. When a query is accepted as multiple sub-queries,
all sub-queries are counted towards system load. For a query
rejected after i steps, the first i segments are counted.

We generate 5 sets of synthetic ACRs and 10 sets of
synthetic XML queries with different wildcard (i.e. “/*”
and “//”) probabilities at each XPath step. Figure 10 shows
system load vs. number of XPath queries in a unit time. In
particular, Figure 10(a) only has simple path rules (no wildcard
or predicate), and Figure 10(b) has rules with wildcards.
In both cases, system load increases linearly and average
segments per query is less than 10. Figure 10(c) and (d) use the
same set of ACRs as in Figure 10(b), but add wildcards into
queries with probability 5% and 10% at each step, respectively.

X: number of queries in a unit time; Y: number of total segments in the system.

(a) Using simple XPath rules
and simple XPath queries.

(b) Using simple XPath
queries and rules with
wildcards.

(c) Using queries and rules
with 5% wildcards probability
at each XPath step.

(d) Using query and ACR with
10% wildcards probability at
each XPath step.

Fig. 10. System scalability: number of query segments.

In the worst case, a query is processed no more than 50
segments. Moreover, we can see that larger ACR leads to
higher system load, but the increase appears to be linear in
all cases.

3) Data size: When data volume increases (e.g. adding
more data items into the online auction database), the number
of indexing rules also increases. This results in increasing of
the number of leaf-coordinators. However, in PPIB, query in-
dexing is implemented through hash tables, which is scalable.
Thus, the system is scalable when data size increases.

VIII. CONCLUSION

With little attention drawn on privacy of user, data, and
metadata during the design stage, existing information bro-
kering systems suffer from a spectrum of vulnerabilities as-
sociated with user privacy, data privacy, and metadata pri-
vacy. In this paper, we propose PPIB, a new approach to
preserve privacy in XML information brokering. Through
an innovative automaton segmentation scheme, in-network
access control, and query segment encryption, PPIB integrates
security enforcement and query forwarding while providing
comprehensive privacy protection. Our analysis shows that it is
very resistant to privacy attacks. End-to-end query processing
performance and system scalability are also evaluated and the
results show that PPIB is efficient and scalable.

Many directions are ahead for future research. First, at
present, site distribution and load balancing in PPIB are
conducted in an ad-hoc manner. Our next step of research
is to design an automatic scheme that does dynamic site
distribution. Several factors can be considered in the scheme
such as the workload at each peer, trust level of each peer,
and privacy conflicts between automaton segments. Designing
a scheme that can strike a balance among these factors is
a challenge. Second, we would like to quantify the level of
privacy protection achieved by PPIB. Finally, we plan to min-
imize (or even eliminate) the participation of the administrator
node, who decides such issues as automaton segmentation
granularity. A main goal is to make PPIB self-reconfigurable.

12

ACKNOWLEDGEMENTS

This work was partially supported by University of Kansas
General Research Fund (GRF), NRGRF 2302283, NSF
OIA-1028098, AFOSR FA9550-07-1-0527 (MURI), ARO
W911NF-09-1-0525 (MURI), NSF CNS-0905131, NSF CNS-
0916469, ARO W911NF1210055, and U.S. ARL and U. K.
MoD W911NF-06-3-0001.

REFERENCES

[1] W. Bartschat, J. Burrington-Brown, S. Carey, J. Chen, S. Deming, and
S. Durkin, “Surveying the RHIO landscape: A description of current
RHIO models, with a focus on patient identification,” Journal of AHIMA
77, pp. 64A–D, January 2006.

[2] A. P. Sheth and J. A. Larson, “Federated database systems for managing
distributed, heterogeneous, and autonomous databases,” ACM Comput-
ing Surveys (CSUR), vol. 22, no. 3, pp. 183–236, 1990.

[3] L. M. Haas, E. T. Lin, and M. A. Roth, “Data integration through
database federation,” IBM Syst. J., vol. 41, no. 4, pp. 578–596, 2002.

[4] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet:
A data-driven overlay network for efficient live media streaming,” in
Proceedings of IEEE INFOCOM, 2005.

[5] A. C. Snoeren, K. Conley, and D. K. Gifford, “Mesh-based content
routing using XML,” in SOSP, pp. 160–173, 2001.

[6] N. Koudas, M. Rabinovich, D. Srivastava, and T. Yu, “Routing XML
queries,” in ICDE ’04, p. 844, 2004.

[7] G. Koloniari and E. Pitoura, “Peer-to-peer management of XML data:
issues and research challenges,” SIGMOD Rec., vol. 34, no. 2, 2005.

[8] M. Franklin, A. Halevy, and D. Maier, “From databases to dataspaces: a
new abstraction for information management,” SIGMOD Rec., vol. 34,
no. 4, pp. 27–33, 2005.

[9] F. Li, B. Luo, P. Liu, D. Lee, P. Mitra, W. Lee, and C. Chu, “In-broker
access control: Towards efficient end-to-end performance of information
brokerage systems,” in Proc. IEEE SUTC, 2006.

[10] F. Li, B. Luo, P. Liu, D. Lee, and C.-H. Chu, “Automaton segmentation:
A new approach to preserve privacy in XML information brokering,” in
ACM CCS ’07, pp. 508–518, 2007.

[11] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Communications of the ACM, vol. 24, no. 2, 1981.

[12] R. Agrawal, A. Evfimivski, and R. Srikant, “Information sharing across
private databases,” in Proceedings of the 2003 ACM SIGMOD, 2003.

[13] M. Genesereth, A. Keller, and O. Duschka, “Informaster: An information
integration system,” in SIGMOD, (Tucson), 1997.

[14] I. Manolescu, D. Florescu, and D. Kossmann, “Answering XML queries
on heterogeneous data sources,” in VLDB, pp. 241–250, 2001.

[15] J. Kang and J. F. Naughton, “On schema matching with opaque column
names and data values,” in SIGMOD, pp. 205–216, 2003.

[16] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
protocol for Internet applications,” in IEEE/ACM Transactions on Net-
working, vol. 11 of 1, 2003.

[17] R. Huebsch, B. Chun, J. Hellerstein, B. Loo, P. Maniatis, T. Roscoe,
S. Shenker, I. Stoica, and A. Yumerefendi, “The architecture of PIER:
an Internet-scale query processor,” in CIDR, pp. 28–43, 2005.

[18] O. Sahin, A. Gupta, D. Agrawal, and A. E. Abbadi, “A peer-to-peer
framework for caching range queries,” in ICDE, 2004.

[19] A. Carzaniga, M. J. Rutherford, and A. L. Wolf, “A routing scheme for
content-based networking,” in Proc. of INFOCOM, 2004.

[20] Y. Diao, S. Rizvi, and M. J. Franklin, “Towards an Internet-scale XML
dissemination service,” in VLDB Conference, (Toronto), August 2004.

[21] G. Koloniari and E. Pitoura, “Content-based routing of path queries in
peer-to-peer systems.,” in EDBT, pp. 29–47, 2004.

[22] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in IEEE Symposium on Security and Privacy, pp. 44
–55, 2000.

[23] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword
search over encrypted cloud data,” in ICDCS’10.

[24] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and efficiently
searchable encryption,” in CRYPTO’07.

[25] M. Li, S. Yu, N. Cao, and W. Lou, “Authorized private keyword search
over encrypted data in cloud computing,” in ICDCS’11, pp. 383 –392,
june 2011.

[26] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in TCC’07.

[27] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
STOC’09.

[28] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword search
and oblivious pseudorandom functions,” in TCC’05.

[29] M. K. Reiter and A. D. Rubin, “Crowds: anonymity for Web transac-
tions,” ACM TISS, vol. 1, no. 1, pp. 66–92, 1998.

[30] P. F. Syverson, D. M. Goldschlag, and M. G. Reed, “Anonymous
connections and onion routing,” in IEEE Symposium on Security and
Privacy, (Oakland, California), pp. 44–54, 4–7 1997.

[31] W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong, “Access control in
collaborative systems,” ACM Comput. Surv., vol. 37, no. 1, 2005.

[32] S. Cho, S. Amer-Yahia, L. V. S. Lakshmanan, and D. Srivastava,
“Optimizing the secure evaluation of twig queries.,” in VLDB, 2002.

[33] M. Murata, A. Tozawa, and M. Kudo, “XML access control using static
analysis,” in ACM CCS, 2003.

[34] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, “Extending query
rewriting techniques for fine-grained access control,” in SIGMOD’04,
(Paris, France), pp. 551–562, 2004.

[35] T. Yu, D. Srivastava, L. V. S. Lakshmanan, and H. V. Jagadish,
“Compressed accessibility map: Efficient access control for XML,” in
VLDB, (China), pp. 478–489, 2002.

[36] B. Luo, D. Lee, W. C. Lee, and P. Liu, “Qfilter: Fine-grained run-
time XML access control via nfa-based query rewriting enforcement
mechanisms,” in CIKM, 2004.

[37] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernndez, M. Kay,
J. Robie, and J. Simon, “XML path language (XPath) version 2.0.”
http://www.w3.org/TR/xpath20/, 2003.

[38] E. Damiani, S. Vimercati, S. Paraboschi, and P. Samarati, “A fine-grained
access control system for XML documents,” ACM TISSEC, vol. 5, no. 2,
pp. 169–202, 2002.

[39] E. Damiani, S. di Vimercati, S. Paraboschi, and P. Samarati, “Securing
XML documents,” EDBT 2000, pp. 121–135, 2000.

[40] H. Zhang, N. Zhang, K. Salem, and D. Zhuo, “Compact access control
labeling for efficient secure XML query evaluation,” Data & Knowledge
Engineering, vol. 60, no. 2, pp. 326–344, 2007.

[41] Y. Xiao, B. Luo, and D. Lee, “Security-conscious XML indexing,”
Advances in Databases: Concepts, Systems and Applications, 2007.

[42] E. Bertino, S. Castano, and E. Ferrari, “Securing XML Documents with
AuthorX,” IEEE Internet Computing, vol. 5, no. 3, pp. 21–31, 2001.

[43] E. Damiani, S. Vimercati, S. Paraboschi, and P. Samarati, “Design and
implementation of an access control processor for XML documents.,”
Computer Networks, vol. 33, no. 1-6, pp. 59–75, 2000.

[44] A. Gabillon and E. Bruno, “Regulating access to xml documents,” in
Proc. DAS, pp. 299–314, 2002.

[45] W. Fan, C.-Y. Chan, and M. Garofalakis, “Secure xml querying with
security views,” in ACM SIGMOD, pp. 587–598, 2004.

[46] M. Kudo, “Access-condition-table-driven access control for XML
databases,” ESORICS 2004, pp. 17–32, 2004.

[47] S. Mohan, A. Sengupta, and Y. Wu, “Access control for XML: a dynamic
query rewriting approach,” in Proc. IKM, pp. 251–252, 2005.

[48] N. Qi and M. Kudo, “XML access control with policy matching tree,”
ESORICS 2005, pp. 3–23, 2005.

[49] L. Bouganim, F. D. Ngoc, and P. Pucheral, “Client-based access control
management for XML documents.,” in VLDB, pp. 84–95, 2004.

[50] S. Abiteboul, A. Bonifati, G. Cobéna, I. Manolescu, and T. Milo,
“Dynamic xml documents with distribution and replication,” in ACM
SIGMOD, pp. 527–538, ACM, 2003.

[51] P. Skyvalidas, E. Pitoura, and V. Dimakopoulos, “Replication routing
indexes for xml documents,” in DBISP2P Workshop, 2007.

[52] G. Skobeltsyn, Query-driven indexing in large-scale distributed systems.
PhD thesis, EPFL, 2009.

[53] P. Rao and B. Moon, “Locating xml documents in a peer-to-peer network
using distributed hash tables,” TKDE, vol. 21, no. 12, 2009.

[54] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Zhu, “Tools
for privacy preserving distributed data mining,” ACM SIGKDD Explo-
rations, vol. 4, no. 2, 2003.

[55] H. Y. S. Lu, “Commutative cipher based en-route filtering in wireless
sensor networks,” in VTC, vol. 2, pp. 1223– 1227, Sept. 2004.

[56] A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and
R. Busse, “XMark: a benchmark for XML data management,” in VLDB,
pp. 974–985, 2002.

[57] H. Lu, J. X. Yu, G. Wang, S. Zheng, H. Jiang, G. Yu, and A. Zhou, “What
makes the differences: benchmarking xml database implementations,”
ACM Trans. Inter. Tech., vol. 5, no. 1, pp. 154–194, 2005.

