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Abstract

Wireless broadcast is an effective approach to dissemi-
nate data to a number of users. To provide secure access
to the broadcast data, key-based encryption is used to
ensure that only users who own the valid keys can de-
crypt the data. Regarding various subscriptions, an effi-
cient key management to distribute and change keys is
in great demand in the broadcast system. In this paper,
we propose an efficient key management scheme, eKTR,
to address this issue. eKTR lets multiple programs share
a single key tree so that the users subscribing these pro-
grams can hold less keys. In eKTR, we also propose an
approach to further reduce rekey cost by identifying the
minimum set of keys that must be changed to ensure
broadcast security. Our simulations show that eKTR can
save about 45% of communication overhead in the broad-
cast channel and about 50% of decryption cost for each
user, compared with the traditional logical key hierarchy
based approach.

1. Introduction

Subscribe-publish based wireless data broadcast ser-
vices have been available as commercial products for
many years. In particular, the recent announcement of
the MSN Direct Service has further highlighted the in-
dustrial interest in and feasibility of utilizing broadcast
for wireless data services. Previous studies on wireless
data broadcast services have mainly focused on perfor-
mance issues such as reducing data access latency and
conserving battery power of the mobile devices. Unfor-
tunately, the critical security requirements of this type
of broadcast services have not yet been addressed.

In the wireless broadcast environment, any user can
monitor the broadcast channel and log the broadcast
data. If the data is not encrypted, the content is open
to the public. Symmetric-key-based encryption is a nat-
ural choice for ensuring secure data dissemination. The
broadcast data items can be encrypted such that only
the users who own the valid keys can decrypt them.
Thus, the decryption keys can be used as an effective
means for access control in wireless data broadcast ser-
vices. Nevertheless, a critical issue remains, i.e. how can
we manage the keys when a user joins/leaves/changes

the service without compromising security and interrupt-
ing operations of other users?

There are a great number of existing studies on key
management in the literature. However, they are not
the most efficient solution for users regarding various
key management operations under complex subscription
options in our system. Hence, we propose a new key
management scheme, namely enhanced key tree reuse
(eKTR), based on the finding that users who subscribe
multiple programs can be captured by a shared key tree.
Moreover, we observe that when a user adds more pro-
grams, there is no need to change the data encryption
keys for the programs he currently subscribes. This ob-
servation results in an important contribution of eKTR
where we present an approach to reduce the rekey cost
to the minimum without compromising security. This re-
sult, adopted as part of our scheme, can also be employed
in traditional key management schemes (e.g. logical key
hierarchy (LKH) [1, 2]) to improve their performance.

Sun et al. [3] independently proposed a scheme which
has a key tree structure similar to ours. However, our re-
search differs from their work in many aspects. First, the
subject application and focus of the researches are dif-
ferent. To the best of our knowledge, this is the first pa-
per addressing the security issue in the subscribe-publish
based wireless data broadcast services. The distribution
(and associated cost) of keys via wireless broadcast to
users is unique. Second, [3] mainly focuses on reduc-
ing the redundancy of key trees; while eKTR minimizes
the rekey cost based on two ideas: the new key struc-
ture and the unique approach to decide whether a key
needs to be changed. Third, we use extensive simula-
tions to examine the impacts of these two ideas on the
performance of eKTR. The experimental results show
that these two ideas in eKTR have different dominant
impacts on the performance, while both of them can
achieve better performance than the representative key
management scheme (i.e. LKH).

The rest of the paper is structured as follows. In Sec-
tion 2, we describe the architecture of the broadcast sys-
tem, present related works on group key management,
and provide the rationale of designing a new key man-
agement scheme in our system. In Section 3, the detail of
the KTR scheme is presented. In Section 4, we present



Figure 1: A Wireless Data Subscribe-Publish System

eKTR as the enhancement to minimize the rekey cost
by identifying the condition whether a key needs to be
changed in order to ensure broadcast security. In Section
5, we present the results of simulations to illustrate the
performance improvements in KTR and eKTR. Finally,
we conclude in Section 6.

2. Background and Problem Statements

2.1. Architecture of Broadcast Services

A wireless subscribe-publish broadcast system con-
sists of three parts: (1) the broadcast server; (2) the mo-
bile devices; and (3) the communication mechanism. Fig-
ure 1 shows a high level view of the system. The server
is responsible for scheduling the broadcast of data items
and new keys. A mobile device continues monitoring the
broadcast data to receive the information of interest to
its user. The specialty of this broadcast system is that
the mobile device, instead of the server, needs to process
user’s queries and filter out unwanted data packets from
a lot of information being broadcast.

The communication mechanism includes wireless
broadcast channels and (optional) uplink channels.
Broadcast channel is the main mechanism for data and
key dissemination in our system. A broadcast data item
is not necessarily designated to one user only. This allows
an arbitrary number of users to receive the data packets
at the same time and addresses the scalability problem.
The uplink channels, which have limited bandwidth, are
reserved for occasional uses by the users to change sub-
scription dynamically or request lost or missed keys.

The subscribe-publish model of our broadcast system
connects data sources and users together. In this pa-
per, data items are grouped into programs and a user
specifies which programs he would like to access. The
set of programs the user subscribes is called the user’s
subscription. Users can subscribe via Internet (off-line)
or via uplink channels (on-line) to specify the programs
they are interested in receiving (monitoring). Each pro-
gram has one key to encrypt the data items. The key
is issued to the user who is authorized to decrypt and
receive the data items. If a user subscribes multiple pro-
grams, it needs keys for all of these programs.

2.2. Related Works on Key Management

Secure key management for wireless broadcast is
closely related to secure group key management in net-
working. Mittra [4] proposed to partition a group into
multiple subgroups and organize them in a hierarchy, in

which clients are the leaves and group security agents
are the non-leaf nodes. A more popular approach, i.e.
LKH, is proposed in [1, 2]. In LKH, a key tree is applied
for each group of users who subscribe the same program.
The root (top node) of the tree is the data encryption
key (DEK) of the program. Each leaf (bottom node)
in the tree represents an individual key of a user that
is only shared between the system and the user. Other
keys in the tree, namely key distribution keys (KDKs),
are used to encrypt new DEKs and KDKs. A user in the
tree only knows the keys along the path from the leaf of
the user to the root of the key tree. When a user adds
or quits a program, the system changes corresponding
DEKs and KDKs, and other users use their known keys
to decrypt new keys (see examples in [1]). The operation
to distribute new keys is called rekey. In our system, data
and rekey messages are broadcast in the same broadcast
channel to the users.

Many variations of LKH have been proposed to fur-
ther study and improve the LKH approach. [5] proposes
a combination of key tree and Diffie-Hellman key ex-
change to provide a simple and fault-tolerate key agree-
ment for collaborative groups. [6] reduces the number of
rekey messages, while [7] reduces message loss and thus
lost keys. Balanced and unbalanced key trees are dis-
cussed in [1] and [8]. Periodic group re-keying is studied
in [9, 10] to reduce the rekey cost for groups with fre-
quent joins and leaves. Issues on how to maintain a key
tree and how to efficiently place encrypted keys in mul-
ticast rekey packets are studied in [8, 10]. Moreover, the
performance of LKH is also thoroughly studied [10, 11].

LKH is an efficient and secure key management for
the broadcast service with one program, since each group
member only needs to hold O(log(n)) keys assigned
along the path from itself to the root, and the size of
a broadcast rekey message for each new DEK is also
O(log(n)). LKH and most of its variations can definitely
be applied in our broadcast system, however they are
not the best solution. In the broadcast system, there
are multiple programs and complex subscriptions. Typ-
ical LKH-based schemes do not exploit the overlap na-
ture of subscriptions in the broadcast system. If each
program has an individual key tree, it would be costly
for users who subscribe multiple programs. We propose
eKTR to let multiple programs share the same key tree.
The most similar idea is presented in [3]; however, eKTR
can uniquely identify the condition whether a key needs
to be changed so as to minimize the rekey cost.

There are some other candidate key management
schemes in the literature. In the area of broadcast
cryptograph, OR protocol [12] yields maximal resilience
against arbitrary coalitions of non-privileged users. How-
ever, the size (entropy) of its broadcast key message is
at least O(n) [13], where n is the number of privileged
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Figure 2: Key Tree Reuse

users. Zero-message scheme[14, 15] does not require the
broadcast server to disseminate any message in order
to generate a common key. But it only has resilience
against coalitions of k non-privileged users, and requires
every user to store O(klog(k)log(n)) keys. Hence, these
approaches are not suitable in our system. Naor et al.
[16] proposed a stateless scheme to facilitate group mem-
bers to obtain up-to-date session keys even if they miss
some previous key distribution messages. Although this
scheme is more efficient than LKH in rekey operations, it
does not support join, which is crucial in our system. In
self-healing schemes [7, 17, 18], group members can also
recover the session key by combining information from
any key distribution broadcast preceding and following
a lost packet. Since this paper is not focused on recovery
of lost keys, these schemes will be incorporated in our
system in future works.

2.3. Problem Statements

For security, data packets are encrypted before being
broadcast. In this paper, we present a scalable, efficient
and secure key management scheme to broadcast keys
to hundreds and thousands of users. To address the scal-
ability, LKH is mostly used in the literature. Hence, an
intuitive solution is to use a key tree for each program
as shown in Figure 2(a).

However, Figure 2(a) is not an efficient solution. As
depicted, if user u1 subscribes two programs g1 and g2

simultaneously, he needs to manage two sets of keys. As
a result, directly applying LKH may be costly. Hence,
by exploiting the overlap nature among subscription
groups, key tree reuse (KTR) scheme is proposed to
reduce such cost in key management as shown in Figure
2(b).

The idea of key tree reuse is to allow multiple pro-
grams to share a sub-key-tree (the gray triangle in Fig-
ure 2(b)). Its advantage is clear: with key tree reuse, each
user in g1 ∩ g2 only needs to manage one set of keys to
handle both programs. Moreover, when a user joins or
leaves a tree shared by multiple programs, the encryp-
tion and communication cost for rekey operations can
be significantly less than the traditional LKH approach.
Our approach is also very general in that it does not
require two programs that share a sub-key-tree to have
any semantic relation.

The security requirements considered in group key
management include group key secrecy, forward secrecy,
backward secrecy and key independence [5]. However,
the security requirement of backward secrecy considered
in this paper is different from that in the literature. In
our system, if a new user knows old keys but cannot de-
crypt previous broadcast data items, it is still secure. For
this difference, past confidentiality, instead of back-
ward secrecy, is used for security analysis in this paper,
i.e. a member added at time t does not have access to
any key that can be used to decrypt program data before
time t.

Of course, the security requirements can be easily
solved by using the rekey operations in any LKH-based
scheme. However, it is not the most efficient way. As-
sume u1 quits g1 in Figure 2(b) at t. u1 will move out
of the gray triangle to a leaf node in g2 at t. In LKH,
all keys that u1 will no longer use (to ensure forward
secrecy) and all keys that u1 will use (to ensure back-
ward secrecy) will be changed. However, notice that kg2

actually has no need to be changed, since u1 is already
allowed to receive data in g2 and past confidentiality is
ensured. As analyzed later, it is even possible that some
KDKs in g2’s tree do not need to be changed either.
Hence, eKTR is proposed to carefully inspect every key
in order to reduce the rekey cost to the minimum with-
out compromising broadcast security.

3. Key Tree Reuse

3.1. Key Forest

KTR can be modeled as a key forest (see Figure 3),
where all keys form a directed and acyclic graph. In the
graph, each tree, structured as the LKH, represents a set
of users with the same subscription. There are two types
of trees: traditional tree and reuse tree. A traditional tree
stands for a set of users who subscribe only one of the
programs, and its root is the program’s DEK. A reuse
tree stands for a set of users who subscribe the same
multiple programs, and its root is not a DEK, but a
KDK from which these programs share the same tree.

All roots form a root graph. If a tree is reused by sev-
eral programs, its root is connected to the roots of these
programs. Because a traditional tree is not reused by any
other program, its root does not have any outgoing link.
Obviously, the key forest has the following properties:
(a) any user only belongs to one tree in the key forest,
and his individual key is the leaf node of the tree; (b)
any leaf node in a tree has only one path to the root
following the upward links; (c) departing from any root
and following the directed links in the graph, one always
ends at the roots of traditional trees. These features en-
sure that a user will not subscribe and pay for the same
program multiple times.

An example of a key forest is given in Figure 3. The
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Figure 3: Key Forest

broadcast server provides three programs, g1, g2 and g3.
Some users subscribe only one of the programs, while
other users may subscribe both g1 and g2, or both g2

and g3, or all three programs. In this figure, no user
subscribes both g1 and g3. Hence, there are 6 trees,
tr1, . . . , tr6, each of which stands for a type of subscrip-
tion. The root graph in this figure depicts the reuse
structure. For example, since tree tr5 is reused by both
g2 and g3, its root r5 is connected to both r2 and r3.
Finally, the keys, kr1

, kr2
and kr3

are DEKs to encrypt
data items, while all other keys are KDKs.

3.2. Rekey Operations

In this paper, rekey consists of three major opera-
tions, join, leave and shift. When users subscribe pro-
grams, or stop or change current subscription, new keys
are distributed in the broadcast channel as the data
items. In the key forest, user activities consist of adding
the user to a tree (join), removing the user from a tree
(leave), or changing the user from one tree to another
tree (shift). Hence, these operations are tree oriented in-
stead of program oriented. Table 1 lists the operations
and their corresponding user events. Note that the dis-
cussion of rekey operations in this paper only considers
individual user events. The batch rekey operations for
simultaneous user events can be found in [9, 10], and be
incorporated in our scheme.

In the key forest, two types of paths are formed before
rekey operations. When a user leaves a tree, we form a
leave path, which consists of keys that the user will no
longer use. When a user joins a tree, we form an enroll

path, which consists of keys that the user will use in
the future. Similarly, when a user shifts from one tree to
another, a leave path and an enroll path are formed. In
LKH, a path always starts from a leaf node of the user
and ends at the DEK of his program. Differently, a path
in KTR may end at multiple DEKs, if the correspond-
ing tree is reused by multiple programs. For example, in
Figure 3, when a user shifts from tr4 to tr6, the leave
path consists of nL and r4, and the enroll path consists
of nJ , r6, r1, r2 and r3. Note that in this example, the
user subscribes one more program, but the rekey oper-
ation involves two trees. Of course, if LKH is adopted,

Table 1: Rekey Operations
Rekey User events
Join A user has not subscribed any program. Then,
a tree • He subscribes only one program.

• He subscribes multiple programs.
Leave A user has subscribed several programs. Then,
a tree • He quits all current programs.
Shift A user has subscribed several programs. Then,
among • He subscribes one more programs.
trees • He subscribes a few more programs.

• He quits one of the current programs.
• He quits a part of the current programs.
• He changes a part of the current programs
to another set of programs.

only one tree is involved. Hence, a shift event in KTR
may introduce extra rekey cost. However, our simulation
shows that this extra cost is minor regarding the overall
advantages of KTR.

3.3. Rekey Packets

In rekey operations, we identify all the keys that need
to be changed and distributed upon a user event. To
broadcast the new keys, the server should first compose
rekey packets. The rekey packets are scheduled before
the data items that are encrypted with the new keys.
The server also needs to provide key indices so that the
users can know which key needs to be received. With a
simple index approach, a rekey packet is composed as
a sequence of key items [..., (i, j){k′

i}kj
, ...]. Each under-

lined item in the packet is a pair of key indices and an
encrypted key, where k′

i is the new value of ki, and kj is
the KDK to encrypt k′

i. They are indexed as (i, j).

In this paper, we take the standard LKH approach to
encrypt the new key k′

i with kj . If k′

i is in an enroll path,
kj is ki, i.e. {k′

i}kj
≡ {k′

i}ki
. If k′

i is in a leave path, kj is
a child key of k′

i. The order of the key items is bottom up
in the key forest so that a receiver changes the keys from
leaves to roots following the paths. Readers can refer to
[1, 2] for examples of rekey packets.

4. Enhanced Key Tree Reuse

Although directly applying LKH’s rekey operations
in KTR can obviously ensure forward secrecy and back-
ward secrecy, it is not the most efficient way. As dis-
cussed in Section 2.3, in some situations, a key in the
enroll path can be sent to the user without any change so
that rekey cost can be reduced to the minimum without
compromising past confidentiality. Hence, we provide a
generalized analysis and propose eKTR to achieve the
minimum rekey cost as follows. Note that, in eKTR, we
keep the LKH’s rekey operation for keys in the leave path
to ensure forward secrecy, but propose another approach
to ensure past confidentiality in the enroll path.



Algorithm 1: Update of refresh and renew spots

1 If the key is in an enroll path and must be
changed, a renew spot is added to all its spot
series;

2 If the key is in a leave path, a renew spot must be
added to all its spot series;

3 If the key’s parent key is in a leave path, a refresh
spot must be added to its spot series associated
with the program;

4.1. Preliminary of eKTR

The critical problem of eKTR is to identify the mini-
mum set of keys in the enroll path that must be changed
to ensure past confidentiality. We name these keys as
critical key. In another word, eKTR only changes crit-
ical keys in the enroll path, while leaving other keys un-
changed, and thus the rekey cost can be reduced to the
minimum. To formally present the approach to identify
the critical keys, we first define the following terms.

Definition 1 Refreshment, δ(kj , tα; ki, tβ): a rekey
message broadcast in the form of {kj(tα)}ki(tβ) at time
tα, and tβ ≤ tα.

In the refreshment, kj is a key in the leave path, and
its value is changed to a new one at tα when a leave or
shift event happens. ki is the KDK to encrypt the new
kj . ki is also a child key of kj , and its value started at
tβ , which is prior to tα, i.e. tβ ≤ tα.

A refreshment may contain information threatening
past confidentiality. For example, assume a user joins
the tree of program gm whose DEK is km at tc, and k1

is in the enroll path. Assume the user finds the following
refreshments from all previous broadcast rekey messages
in the time order t1 ≤ t2 ≤ ... ≤ tm < tc:

δ(k2, t2; k1, t1), δ(k3, t3; k2, t2), ..., δ(km, tm; km−1, tm−1)

If the server sends k1 to the user without any change,
the user can first decrypt k2, and then iteratively de-
crypt km’s value prior to tc. Note that backward secrecy
is compromised at this stage, but past confidentiality is
not yet. We say, past confidentiality at tm is compro-
mised, if the user can use the old km to decrypt the data
items that are broadcast before tc and after tm but the
user is not supposed to get. On the contrary, past con-
fidentiality at tm is not compromised, if the user either
cannot find such a sequence of refreshments to obtain
the old km or has already legitimately obtained the old
km and the data items before tc and after tm.

Definition 2 Renew spot of a key: the time point when
the value of the key is changed.

Definition 3 Refresh spot of a key: the time point when
the key is used as the KDK to encrypt its parent key in
a refreshment.

Algorithm 2: Update of revive spots

Function UPDATEREVIVE(k, t, tc, gv);
1 let V be the set of all child keys of k0 ;
2 for ki ∈ V do

3 let ta be the latest renew spot of ki;
4 If ta ≤ t and δ(k, t; ki, ta) exists, add tc as a

revive spot to ki’s spot series associated with
gv and UPDATEREVIVE(ki, ta, tc, gv);

endfor

Definition 4 Revive spot of a key: the time point when
(1) the data encryption key of this key’s associated pro-
gram is changed to a new value, and (2) there is a se-
quence of previous broadcast refreshments that are po-
tentially harmful to past confidentiality.

The sequences of refresh, renew and refresh spots
form spot series in the time order. The main feature
is that if a key is reused by multiple programs, the key
have multiple spot series, each of which is associated
with one program (see examples in Section 4.2).

The server updates refresh and renew spots according
to Algorithm 1. Each update is triggered by the corre-
sponding user event. After the update of refresh and re-
new spots, the server updates revive spots according to
Algorithm 2. Starting from a renewed DEK, the server
iteratively updates revive spots of all keys in the forest.
Assume the algorithm is checking a key k, which is re-
newed at t. It first selects a ki from all k’s child keys.
Then, it checks if ki has such a refreshment δ(k, t; ki, ta).
Past confidentiality at tc will not be threatened, if ki is
renewed after t, i.e. ta > t, or no δ(k, t; ki, ta) exists.
Otherwise, i.e. ta ≤ t and δ(k, t; ki, ta) exists, the revive
spot of tc is added to ki. The algorithm then continues
to update ki’s child keys.

4.2. Examples of Spots

In this part, we demonstrate the spot series from
two different dimensions. First, a key has multiple spot
series associated with its programs. Figure 4(a) de-
picts the spot series of kr6

in the key forest of Fig-
ure 3. Because kr6

is shared by three programs (i.e.
g1, g2 and g3), it has three spot series, and each se-
ries is represented by a line in Figure 4(a). Assume, in
this example, at t1, a user leaves tr6. kr6

is first re-
newed, and all its spot series get a renew spot. Right
after it is renewed, kr6

is used in the refreshments
δ(kr1

, t1; kr6
, t1), δ(kr2

, t1; kr6
, t1), δ(kr3

, t1; kr6
, t1). Be-

cause these refreshments are related to all the pro-
grams, refresh spots are added to all kr6

’s spot se-
ries. At t2, a user leaves tr5. Because only kr2

and kr3

need to be changed, kr6
is used in the refreshments

δ(kr2
, t2; kr6

, t1), δ(kr3
, t2; kr6

, t1). Hence, only two re-
fresh spots are added to the series associated with g2

and g3. Readers can find that the other spots are for
the events where a user joins tr6 at t3, and another user
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Figure 4: Spot series

shifts from tr4 to tr3 at t4. In brief, renew spots of a
key are the same in all of its series, while refresh and
revive spots are different regarding their corresponding
programs.

The second dimension of spot series is illustrated in
Figure 4(b), where we draw spot series of knJ

, kr6
and

kr2
associated with only one program g2. At t1, a user

leaves tr6. Assume kr6
and kr2

are in the leave path, but
knJ

is not. Hence, the broadcast server composes the re-
freshments δ(kr6

, t1; knJ
, t0), δ(kr2

, t1; kr6
, t1) to change

kr6
and kr2

. At t2, a user leaves tr5. The refreshment
δ(kr2

, t2; kr6
, t2) is broadcast to change kr2

. At t3, a user
joins tr6. Assume knJ

, kr6
and kr2

are in the enroll path,
these keys are changed. At t4, a user shifts from tr4 to
tr3, and δ(kr2

, t4; kr6
, t4) is broadcast to change kr2

.
In Figure 4(c), we draw the revive spot series of the

three keys associated with g2 based on Figure 4(b). At
t2, kr2

is changed and δ(kr6
, t1; knJ

, t0), δ(kr2
, t2; kr6

, t1)
can be recorded by any user. Revive spots are added
to both kr6

and knJ
, since the refreshments can expose

kr2
at t2 to a new user if either kr6

or knJ
is given to

the user without any change. However, at t4, a revive
spot is only added to kr6

, because only δ(kr2
, t4; kr6

, t4)
is potentially insecure. No revive spot is added to knJ

at
t4, since it is not used in the rekey operation.

4.3. Solution of eKTR

Definition 5 Age of a key: (1) if the key is a DEK, its
age is the time interval between the current time to its
latest renew spot; (2) if the key is a KDK, its age is the
time interval between the current time to the revive spot
that is located between the current time and the latest
renew spot and is closest to the latest renew spot. Simi-
larly, a key have multiple ages if it is shared by multiple
programs, and each age is associated with one program.

According to the definition, the age of a KDK is 0, if
and only if there is no revive spot between the current
time and the latest renew spot. Otherwise, the age of
the key is greater than 0.

Definition 6 Age of a subscription: the time interval
between the current time to the latest beginning time the
user is in a program. Similarly, if a user subscribes mul-
tiple programs, he has one subscription age for each pro-
gram.

According to the definition, the subscription’s age is
0, if and only if the user is not in the program. Otherwise,
the user is in the program, and his subscription age is
greater than 0. If a user stops subscribing a program, the
subscription age associated with this program turns to 0.

If a user shifts from a tree to another tree while staying
in a program, his subscription age with this program
continues. Finally, a user can have different subscription
ages for different programs.

In the following, we give a generic method to identify
critical keys in the enroll path and reduce the rekey cost.
Assume key k is shared by m programs and will be dis-
tributed to user u, we can get all k’s ages and all u’s sub-
scription ages associated with these programs, denoted
as [ka1, ..., kam]k and [ua1, ..., uam]u. Program gi is thus
associated with a pair of ages, denoted as (kai, uai)k,u.

Theorem 1 Theorem of Critical Key (TCK): k in the
enroll path is a critical key, i.e. k must be changed be-
fore being distributed to u to ensure past confidentiality,
if and only if at least one pair of (kai, uai)k,u satisfies
kai > uai at current time t, i.e. the key is older than the
user’s subscription regarding program gi.

Proof of the sufficient condition: If k is the DEK of gi,
the proof is obvious. If k’s age is older than u’s sub-
scription age, there are some data items encrypted by
k before the user joins the program. Hence, k needs to
be changed so that the user cannot decrypt those data
items.

If k is not a DEK, let ki be the DEK of program
gi, and the latest renew spot of k is tk. Assume a pair
of (kai, uai)k,u that satisfies kai > uai at current time
t. According to Definition 5, k’s value has never been
changed since t − kai and was revived at t − kai. Ac-
cording to Definition 4, u can find such a sequence of
refreshments from all previous broadcast rekey messages
at t − kai: δ(kα, tα; k, tk), ..., δ(ki, t − kai; kβ , tβ), where
tk ≤ tα ≤ ... ≤ tβ ≤ t − kai. Hence, if k is sent to
u without any change, u can derive ki at t − kai from
these refreshments.

According to Definition 6, u joined gi at t−uai, which
means u is only allowed to decrypt data items of gi

broadcast after t − uai. Because kai > uai, t − kai <

t− uai. If k is not changed, u can decrypt data items of
gi broadcast between t− kai and t− uai, and thus past
confidentiality at t − kai is compromised.

Therefore, if at least one pair of (kai, uai)k,u satisfies
kai > uai at current time t, k in an enroll path needs to
be changed before being distributed to user u to ensure
past confidentiality.

Proof of the necessary condition: The necessary condi-
tion is equivalent to that if all pairs of (kai, uai)u,k sat-
isfy kai ≤ uai, k does not need to be changed. If k is
the DEK of gi, the proof is obvious. If k’s age is younger



Algorithm 3: Process of eKTR in the server

1 If a join or shift event happens, find the enroll
path, which has the minimum number of critical
keys according to TCK, and change all the
critical keys in the enroll path;

2 If a leave or shift event happens, find the leave
path, and change all keys in the leave path;

3 Compose and broadcast corresponding rekey
messages;

4 Update renew and refresh spots according to
Algorithm 1;

5 Update revive spots and ages according to
Algorithm 2 and Definition 5;

than user’s subscription age, the user has already known
all data items encrypted by k. Hence, k does not needs
to be changed.

If k is not a DEK, select any program gi that shares k.
Let ki be the DEK of gi, and the latest renew spot of k is
tk. We use reduction to absurdity to prove. The opposite
of the necessary condition is that past confidentiality
for program gi will be broken if all pairs of (kai, uai)k,u

satisfy kai ≤ uai at current time t, and k is sent to u

without any changed.
According to Definition 6, u joined gi at t − uai and

is allowed to decrypt data items of gi broadcast after
t − uai. If past confidentiality for program gi is com-
promised, u must have derived ki’s value before t− uai.
Because kai ≤ uai, t − kai ≥ t − uai. u must have
derived ki’s value at a time point t′ before t − kai,
i.e. t′ < t − kai. Hence, u must have found the re-
freshments from all previous broadcast rekey messages:
δ(kα, tα; k, tk), ..., δ(ki, t

′; kβ , tβ).
According to Definition 4, t′ is a revive spot of k. If

kai = 0, no revive spot exists after tk, and thus t′ can-
not exists. If kai > 0, t′ is a revive spot after k’s latest
renew spot tk, and thus tk < t′ < t − kai. However, ac-
cording to Definition 5, there cannot be any revive spot
of k between tk and t − kai. Hence, t′ cannot exist, and
the opposite of the necessary condition is false. Conse-
quently, past confidentiality for any program gi will not
be broken if the pair of (kai, uai)k,u satisfies kai ≤ uai

at current time t, and k is sent to u without any changed.
Therefore, to ensure past confidentiality, k in an enroll

path needs to be changed, if and only if at least one
pair of (kai, uai)k,u satisfies kai > uai at current time
t. Based on the theorem of critical key (TCK), eKTR
works as in Algorithm 3 upon a user event.

4.4. Examples of critical keys

Corollary 1 When a user joins a tree, a key in the en-
roll path is a critical key if and only if one of the key’s
ages is greater than 0.

Before the user joins the tree, his subscription ages for
all the programs sharing this tree are 0. Hence, if the age

Table 2: Key management schemes
Schemes key tree reuse critical key
eKTR Y Y
KTR Y N
eLKH N Y
LKH N N

of a key in the enroll for this program is greater than 0,
the key is older than the user’s subscription. According
to Theorem 1, the key needs to be changed before being
distributed to the user.

For example, consider a user event that a user u2 joins
tree tr4 at time t2 in Figure 3. Assume that before t2,
another user u1 shifts from tree tr4 to tr6 at t1, and no
other event happens between t1 and t2. At t1, assume
knL

and kr4
are in the leave path. At t2, assume knL

and kr4
are in the enroll path. Now, we decide which

key is a critical key at t2 according to Corollary 1.

At t1, because u1 is still in g1 and g2, the
broadcast server does not need to change kr1

and kr2
, and only needs to send the refreshments

δ(knL
, t1; kc, tkc

), δ(kr4
, t1; knL

, t1), where kc is a child
key of knL

and not known by u1. According to Defi-
nition 4, no revive spot is added to knL

and kr4
, and

these two keys are renewed after t1. Consequently, ac-
cording to Definition 5, at t2, the ages of both knL

and
kr4

are 0. The server can give knL
and kr4

to u2 without
any change according to TCK, since u2 cannot derive
kr1

and kr2
before t2 from the previous refreshments.

In this example, knL
and kr4

are not critical keys,
although they are in the enroll path at t2. However, kr1

and kr2
are critical keys at t2, since their ages are greater

than 0. The server needs to change kr1
and kr2

before
distributing them to u2. This example also indicates that
even the traditional LKH approach is used in our system,
it is not necessary to change all keys in the enroll path
when a user subscribes the broadcast data services.

5. Performance Evaluation

Key tree reuse and critical key are the two important
ideas we developed to improve the performance of key
management in wireless broadcast systems. In this sec-
tion, we conduct a simulation-based performance evalua-
tion to examine their impacts. Table 2 lists four schemes
representing different solutions which may or may not
adopt these two ideas. The names of the schemes are
self-explained. If key tree reuse is adopted, key manage-
ment is based on the key forest as illustrated in Figure
3; otherwise, a key tree is created for each program and
a user is assigned to all trees corresponding to the pro-
grams he subscribes. If critical key is used, a key in an
enroll path is changed if and only if it is a critical key;
otherwise, all keys in the enroll path need to be changed
(as in the other old schemes). Note that the well-known
LKH is used as a base line (i.e. neither key tree reuse
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Figure 5: Average rekey message size per event

Table 3: Cases in key management
Case Major subscriptions Major events

Case I Multiple Join and leave
Case II Single Join and leave
Case III Multiple Shift
Case IV Single Shift

nor critical key is adopted). We expect eKTR to be the
best scheme, since it adopts both ideas.

5.1. Simulation settings

We assume that the server provides 5 programs. In
our experiments, The key forest consists of 31 trees
when key tree reuse is adopted. Among them, 26 trees
are reused by multiple programs. Each tree represents
a unique option of subscriptions. We also assume that
there are 10000 users (on average) subscribing the ser-
vices. All three user events (i.e. join, shift and leave)
are modeled as independent Poisson processes. The rates
(frequencies) of join and leave are the same in order to
control the total number of users remaining at a con-
stant level (i.e. around 10000). We vary the shift rate
and the join/leave rate separately in order to observe
their impacts on the rekey performance. The result of
our performance comparison is obtained by averaging
the rekey cost over 3000 random user events. Here, a
user event is referred to an event in schemes that adopt
key tree reuse. Such an event is mapped into several user
events in schemes that do not adopt key tree reuse. For
example, a user joins a tree of multiple programs in KTR
is mapped as a sequence of events in LKH (each is cor-
responding to the user joining a tree of these programs).

Two important performance metrics, average rekey
message size per event and average number of decryp-
tion per event per user are employed in this evaluation.
The former, measured as the number of encryptions {∗}k

in the rekey message, is used to represent the commu-
nication cost. The latter measures the computation cost
and power consumption on a mobile device, since the
device needs to decrypt new keys from rekey messages.

Four test cases are generated for the evaluation based
on major subscriptions and major events (summarized
in Table 3). In Case I and Case III, 80% of the users
subscribe multiple programs and the other 20% users
only subscribe one of the programs; while in Case II and

Case IV, 20% of the users subscribe multiple programs
and the other 80% subscribe only one program. Further-
more, in Case I and Case II, the major events are joins
and leaves; while in Case III and Case IV, the major
events are shifts. In the simulations, we vary the rates
for the major events while keeping the other rate at 1.

5.2. Average Rekey Message Size Per Event

We first evaluate performance of the key management
schemes in terms of average rekey message size, by fixing
the shift rate to 1 and varying the join/leave rate (x-
axis) from 1 to 9 as shown in Figure 5(a) and (b). The
schemes adopting key tree reuse and/or critical keys sig-
nificantly outperform the LKH. eKTR is obviously the
best solution, while eLKH performs better than KTR.
This can be explained as follows. For the schemes that
do not adopt key tree reuse, a user needs to join or leave
multiple trees when he subscribes or unsubscribes these
programs. However, for the schemes that do adopt key
tree reuse, the user only needs to join or leave one tree
for multiple programs. Thus, the reuse schemes signifi-
cantly reduce the rekey message size when join/leave is
the primary event. Nevertheless, while key tree reuse re-
duces the cost of rekey messages, the major improvement
comes from the adoption of critical keys. Based on our
experimental results, by adopting only key tree reuse,
KTR reduces the rekey message size to around 60% to
67% of LKH. By adopting critical keys alone, neverthe-
less, eLKH reduces the rekey message size to around 55%
of LKH. This result also validates our claim that many
keys in the enroll path do not need to be changed1.

Next, we evaluate performance of the key manage-
ment schemes by fixing the join/leave rate to 1 and vary-
ing the shift rate (x-axis) from 1 to 9 as shown in Figure
5(c) and (d). In this set of experiments, eLKH turns to
be the best solution, although eKTR is trailing closely2.
As discussed in Section 3.2, this is because extra over-
head of shift is introduced in the reuse scheme when a
user quits or adds some but not all of his subscribed
programs. Hence, eLKH is the scheme of choice when
shift is the major event. Similarly, by comparing CASE

1 As a matter of fact, over all the experiments, only around 22%
keys in the enroll path need to be changed.

2 eKTR actually performs better when the shift rate is small.
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Figure 6: Average number of decryption per event per user

III and CASE IV (corresponding to the subscriptions of
multiple programs and single program, respectively), we
found that the extra overhead of shift is higher in CASE
III.

Figure 5 also shows that eKTR and KTR are more
sensitive to the type of major user events than eLKH
and LKH. The average rekey message size in eKTR and
KTR grows as the shift rate increases and drops as the
join/leave rate increases. On the contrary, the average
rekey message size in eLKH and LKH remains almost
flat.

5.3. Average Number of Decryption Per

Event Per User

Power consumption and computation cost are two pri-
mary concerns of mobile users. We use the average num-
ber of decryption to measure these costs. Similar to the
experiments in the previous section, we vary the rates
of major events to observe their impacts on decryption
overhead. Figure 6 shows that the reuse schemes (i.e.
eKTR and KTR) is better than eLKH and LKH. In all
cases, eKTR is always the best solution! The number
of decryption in eKTR is around 48% of that in LKH,
while the number of decryption in eLKH is only around
81% of that in LKH. The number of decryption in KTR
is between the curves of eKTR and eLKH, and drops as
the join/leave rate increases and increases as the shift
rate increases. This result clearly validates our intuition
that the idea of key tree reuse can effectively reduce the
number of keys a user needs to hold for his subscriptions.

Obviously, the adoption of critical keys also has a ma-
jor impact on reducing user’s decryption cost (although
not as significant as the key tree reuse). As shown, eKTR
results in less decryption than KTR does, and so does
eLKH in comparison with LKH. When critical keys is
adopted, not only less keys in the enroll path need to be
changed, but also less users are affected by the activi-
ties of other users in the same tree. This is particularly
evident when we compare KTR and eKTR in Case III
and Case IV (see Figure 6 (c)-(d)). If critical key is not
adopted (i.e. KTR), all users in a tree need to perform
some extra decryption when a user shifts to the tree.
However, when critical key is adopted (i.e. eKTR), it is
possible that no key in a tree needs to be changed when
a user shifts to the tree (in order to unsubscribe some

of his programs). In this situation, no user in the tree
needs to decrypt any key.

Figure 6 also shows that the user subscription pat-
tern has a great impact on the average number of de-
cryption. The average number of decryption in Case II
and Case IV (where only 20% of users subscribe multiple
programs) is around 55% of that in Case III and Case IV
(where 80% of users subscribe multiple programs). Ob-
viously, if a user subscribes more programs, it is more
likely that he will be affected by other user activities.

5.4. Summary

Note that KTR only adopts the key tree reuse, while
eLHK only adopts the critical keys. Thus, the compar-
ison of KTR and eLKH brings some very good insights
regarding to the impacts of our two proposed ideas on
the performance metrics. Our experiments in Section 5.2
shows that critical key is a more important factor in re-
ducing the rekey message size than the key tree reuse
(see Figure 5). On the other side, key tree reuse is a
dominant factor in reducing the number of decryption
(see Figure 6).

In summary, eKTR combines the advantages of both
ideas of key tree reuse and critical key, and thus is the
most efficient scheme for key management in secure wire-
less broadcast systems. It has a light communication
overhead (i.e. its average rekey message size per event
is the least or close to the least among all schemes).
Meanwhile, it incurs less computation and power con-
sumption on mobile devices than the other schemes (i.e.
its average number of decryption per event per user is
the smallest among all solutions).

5.5. Other Concerns

Wireless communication is inherently unreliable.
Moreover, users may move out of service areas or inten-
tionally shut down their mobile devices to save power. To
simplify our discussion and analysis, we make assump-
tions that the broadcast channel is reliable and users will
not miss keys. Nevertheless, many researches on helping
users to recover their keys [10, 17, 16, 19] have been done,
which can also be added into our schemes. Furthermore,
in our broadcast model, a user can occasionally use the
uplink channel (or via wirelines) to request the lost keys.
To recover lost keys, overhead may be introduced into



the system. However, this overhead is more relevant to
the frequency a user loses keys rather than the security
of eKTR, and hence is out of scope of our research.

We also notice that the definition of refreshment is se-
mantically related to the form of rekey message when a
user leaves a tree. In the situation where a rekey method
[9, 10, 17] other than the LKH is used, the definition of
refreshment needs to be changed. Note that a refresh-
ment should always help a user to figure out keys in his
upper levels. Hence, the refreshments in different rekey
methods are equivalent regarding to whether they con-
tain information that potentially compromises past con-
fidentiality.

Finally, if the broadcast server uses critical key to
improve the performance of rekey operations, it will in-
cur computation cost on the server side. The worst case
is that the server needs to check all keys in order to
find the best enroll path with the minimum number of
critical keys. The computation complexity in the worst
case is thus O(n), where n is the number of users. In
our simulations where the broadcast system has 10000
users, the server (a computer with 2.6GHz CPU and
760MB RAM) takes less than 14ms for each event with
the eKTR scheme.

6. Conclusion
In this paper, we investigate the issues of key man-

agement in support of secure wireless data broadcast
services. To the best knowledge of the authors, this is
the first research conducted in the field of subscribe-
publish based wireless data broadcast services. We pro-
pose eKTR as a scalable, efficient and secure key man-
agement approach in the broadcast system. We use the
key forest model to formalize and analyze the key struc-
ture in our broadcast system. eKTR let multiple pro-
grams share a single tree so that the users subscribing
these programs can hold less keys. In addition, we pro-
pose an approach to further reduce rekey cost by iden-
tifying the minimum set of keys that must be changed
to ensure broadcast security. This approach is also ap-
plicable to other LKH-based approaches to reduce the
rekey cost as in eKTR. Our simulation shows that eKTR
can save about 45% of communication overhead in the
broadcast channel and about 50% of decryption cost for
each user, compared with the traditional LKH approach.
Built upon the important result obtained thus far, we
plan to extend our work to combine the self-healing
schemes to help users recover lost keys and adopt the
batch schemes to allow simultaneous user events.
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