Damage Quarantine and Recovery in Data Processing
Systems

Peng Lid Sushil Jajodia Meng Yu?

!College of Information Sciences and Technology
Pennsylvania State University
University Park, PA 16802
pliu@ist.psu.edu
2Center for Secure Information Systems
George Mason University
Fairfax, VA 22030-4444
jajodia@gmu.edu
3Department of Computer Science
Monmouth University
West Long Branch, New Jersey 07764-1898
myu@monmouth.edu

Abstract

In this article, we address transparent Damage Quarantine and Recovery (DQR), a very
important problem faced today by a large number of mission/life/business-critical applica-
tions and information systems that must manage risk, business continuity, and assurance in
the presence of severe cyber attacks. Today, these critical applications still have a “good”
chance to suffer from a big “hit” from attacks. Due to data sharing, interdependencies,
and interoperability, the hit could greatly “amplify” its damage by causing catastrophic
cascading effects, which may “force” an application to halt for hours or even days before
the application is recovered. In this paper, we first do a thorough discussion on the lim-
itations of traditional fault tolerance and failure recovery techniques in solving the DQR
problem. Then we present a systematic review on how the DQR problem is being solved.
Finally, we point out some remaining research issues in fully solving the DQR problem.

Key words: Damage Quarantine and Recovery, Transaction Processing, Data In-
tegrity, Security

1 Introduction

In this article, we address transparent Damage Quarantine and Recovery (DQR), an important
problem faced today by a large number of mission/life/business-critical applications. These
applications are the cornerstones of a variety of crucial information systems that must manage
risk, business continuity, and data assurance in the presence of severe cyber attacks. Today,

many of the nation’s critical infrastructures (e.qg., financial services, telecommunication infras-
tructure, transportation control) rely on these information systems to function.

There are at least two main reasons on why mission/life/business-critical applications have
an urgent need for transparent damage quarantine and recovery. Firstly, despite that significant
progress has been made in protecting applications and systems, mission/life/business-critical
applications still have a “good” chance to suffer from a big “hit” from attacks. Due to data
sharing, interdependencies, and interoperability between business processes and applications,
the hit could greatly “amplify” itsdamageby causing catastrophic cascading effects, which
may “force” an application to shut down itself for hours or even days before the application is
recovered from the hit. (Note that high speed Internet, e-commerce, and global economy have
greatly increased the speed and scale of damage spreading.) The cascading damage and loss
of business continuity (i.e., DoS) may yield too much risk. Because not all intrusions can be
prevented, DQR is an indispensable part of the corresponding security solution, and a quality
DQR scheme may generate significant impact on risk management, business continuity, and
assurance.

Secondly, due to several fundamental differences between failure recovery and attack re-
covery, the DQR problem cannot be solved by failure recovery technologies which are very
mature in handling random failures. (a) Failure recovery in general assumes the semantics of
fail-stop, while attack recovery in general cannot assume the semantics of attack-stop, since to
achieve the adversary’s goal, most attacks (except for DoS) do not allow themselves to simply
crash the system; they prefer hidden damage and alive zombies, spyware, bots, etc. Assuming
fail-stop, quarantineis not really a problem for failure recovery; however, intrusion/damage
guarantine is a challenging research topic in attack recovery and it can make a big difference.
(b) Failure recovery assumes that all operations (e.g., transactions) have equal rights to be
recovered, while attack recovery can never assume “equal rights” because neither malicious
operations nor corrupted operations should be recovered.

Towards understanding and solving the DQR problem, the rest of the article is organized as
follows. In Section 2, we present a comprehensive yet tangible description of the DQR prob-
lem. In Section 3, we do in-depth discussions on the limitations of traditional fault tolerance
and failure recovery technigues in solving the DQR problem. In Section 4, we present a sys-
tematic review on how the DQR problem is being solved. In Section 5, we propose a set of
remaining research issues in fully solving the DQR problem and conclude the paper.

2 Overview of the DQR Problem

We are concerned with the DQR needs of mission/life/business-critical information systems.
Since those information systems have been designed, implemented, deployed, and upgraded
over several decades, they run botdmventionabpplications, which typically use proprietary

user interfaces and application-level client-server protocols [BirO5] naodiernapplications,

which are typically web-bounded running standard Web Services protocols.

Nevertheless, both conventional and modern mission/life/business-critical applications share
some common characteristics: they are typically part of a large-scale, semantically rich, net-
worked, interoperable information system; they are typically stateful and data-intensive; they
are typically 24*7 applications requiring superb business continuity (i.e., availability); and they
typically require guaranteed recoverability (and data integrity).

T Users; Physical World Actions & Effects Physical World

T ¢ Cyber Space
The TraAnsTg;?igfscope of <» Data Sources
PP (databases, files,
persistent object
Non-transactional Actions <—» stores, etc.)

Figure 1: Transaction Level Scope of Applications

Client
App

App Server

A
Transaction

Web Interface

Server

Data Stores

Figure 2: The Transaction Model in Concern

Although the DQR problem may be addressed at several abstraction levels (e.qg., disk level,
OS level, DBMS level, transaction level, application level), solving the DQR problem at the
transaction level is particularly appealing due to the following reasons.tréhsactionab-
straction has revolutionized the wasliability, includingrecoverability is engineered for ap-
plications. Through a simple API interface provided by an easy-to-use transaction (processing)
package which is today an integral part of mainstream application development environments
such as J2EE and .NET, programmers can make applicdtimmsactionalin a rather auto-
matic, effort-free fashion. And the benefits of making applications transactional are signifi-
cant: “failure atomicity simplifies the maintenance of invariants on data” [SDD85]; a guar-
anteed level of data consistency can be achieved without worrying about say race conditions;
durability makes it much easier for programmers to get the luxury of recoverability.

As a result, the transaction mechanism is embraced by not only database systems [BHG87],
but also a large variety of computer systems and applications [Gra93], including operating
systems (e.g., VINO provides kernel transaction support [SESS96]), file systems (e.g., Camelot
provides transactional access to user-developed data structures stored in files [SDD85]; and
[LRO4] argues that transactional file systems can be fast), distributed systems (e.g., QuickSilver
uses transactions as a unified failure recovery mechanism [HMSC88]), persistent object stores
(e.g., Augus supports transactions on abstract objects [LCJS87]), CORBA, and Web Services.

To leverage the strength, recovery facilities, and popularity of the transaction mechanism,
and more important to make the proposed DQR solutions transparent to existing applications,
it is a good idea to develop DQR theories and mechanisms at the transaction level. Since real
world mission/life/business-critical applications typically deploy the transaction mechanism,
transaction-level DQR solutions will have wide applicability.

2.1 Scope of Transaction Level DQR

In the rest of this paper, we will focus on transaction level DQR problems, models, and solu-
tions. In particular, the transaction-lexsglopeof an application and itsnvironmenare shown

in Figure 1. In an information system, the transaction processing components of an application
do not form an “isolated” system. Instead, these components will interact with their environ-
ment, which includes the Physical World, the various non-transactional actions, and the various
types of data sources. Through th@seractions inputs are taken, physical world effects can

be caused, and non-transactional attacking actions can “poison” the application’s transaction
scope. Although we are aware that the cyberspace damage and cascading effects can certainly
cause damage in the physical world, this paper will focus orcyferspacddQR solutions

which will help minimize the damage caused in the physical world.

Based on how the transaction abstraction is implemented, different real world applications
may deploy different transaction models. In this paper, we will focus on the transaction model
shown in Figure 2. This model is widely used by conventional client-server applications and
the well-known three-tier web applications. Applications running Transactional Web Services
[Bir05] and cross-site “business transactions” (a.k.a. workflows) require more advanced trans-
action models, which are out of the scope of this paper. As we will mention shortly in Section 5,
these advanced transaction models would introduce additional challenges in solving the DQR
problem.

2.2 The Threat Model and Intrusion Detection Assumption

Working at the transaction level doest mean that malicious transactions are the only threat

we can handle. Instead, as shown in Figure 1, we allow threats to come from either inside or
outside of the transaction-level scope of applications. Nevertheless, to exploit the application’s
transaction mechanism to achieve a malicious goal, both inside and outside threats need to
either directlycorrupt certain data objects or get certain malicious transactions launched. Out-
side non-transactional attack actions (e.g., Witty worm) may bypass the transaction interface
and corrupt some data objects via low-level (e.g., file or disk) operations. In addition, non-
transactional buffer overflow attacks may break in certain running program of the application;
then the attacker can manipulate the program to launch certain malicious transactions.

Inside the transaction scopmsider attack[Sch05] is probably the most serious threat.
Since insiders (i.e., disgruntled employees of a bank) are typically not savvy in hacking, is-
suing malicious transactions (using a different user account) is typically the way they attack.
Based on the study by [CK96], most (application level) attacks are from insiders. Besides in-
sider attack, (a)dentity theftmay literally “transform” an outsider into an insider. (8QL
injectionattacks, though currently most used to steal sensitive information, has full capability
to maliciously update data objects. (c) Five out of the top six web application vulnerabilities
identified by OWASP [OWAO04] may enable the attacker to launched a malicious transaction.
They areunvalidated inputbroken access contrdbroken authentication and session manage-
ment cross site scriptingwhich helps the attacker to steal user name and passwords), and
injection flaws (d) Finally,erroneoudransactions caused by user/operator mistakes instead of
attacks are yet another major threat to data integrity.

The intrusion detection assumption: We assume that a set ekternalintrusion detection
sensors will do their job and tell us which operations (or transactions) were malicious or which

4

data objects were originally corrupted by the attack. These sensors may be a network-level
(e.g., [Pax99]), host-level (e.g., [FHSL96]), database-level (e.g., [CGLOOQ]) or transaction-level
(e.g., [SFL97, BKTVO05]) intrusion detection sensor. These sensors may enforce misuse de-
tection (e.g., [llg93]), anomaly detection (e.g., [JV91, LXO01]), or specification-based (e.g.,
[KRL97, SGF"02]) detection mechanisms. We assume these sensors are usually associated
with false positives, false negatives, and detection latency. Finally, sensors that detect data
corruption (e.g., [MG96, BGJ00, MVSO00]) may also be used.

Remark Although some intrusion detection sensors could raise a good number of false
positives or false negatives, the alarms raised by many intrusion/error detection sensors can
actually beverifiedbefore any DQR operation is performed. (In this way, the negative impact
of false positives and false negatives on the correctness/quality of DQR may be avoided.) For
example, (a) most user/operator mistakes can be easily verified by the operation audit trails. (b)
Many data corruption detectors have 100% accuracy. (c) When a strong correlation is found
between one aletX and some other alerts, aleft may be verified as a true intrusion.

2.3 The DQR Problem/Solution Space
In our view, the DQR problem is a 6-dimensional problem:

¢ (1) Thedamage propagatiodimension explains why cascading effects can be caused

and why quarantine is needed. Although some specific types of damage (e.g., when an
individual credit card account is corrupted) could be self-contained, a variety types of
damage are actually very infectious due to data sharing, interdependencies, and interop-
erability between business processes and applications. For example, in a travel assistant
Web Service, if a set of air tickets are reserved due to malicious transactions, some other
travelers may have to change their travel plans in terms of which airlines to go, which
nights to stay in hotel, etc.. Furthermore, the changed travel plans can cause cascading
effects to yet another group of travelers; and the propagation may go on and on.

e (2) Therecoverydimension covers three semantics for recoveryctildstartsemantics
mean that the system is “halted” while damage is being assessed and repaired. (Damage
assessment is to identify the set of corrupted data objects. Damage repairing is to restore
the value of each corrupted data object to the latest before-infection version.) To address
the DoS threat, recovery mechanisms withrmstartor hotstartsemantics are needed.
Warmstart semantics allow continuous, but degraded, running of the application while
damage is being recovered. Hotstart semantics make recovery transparent to the users.

¢ (3) Thequarantinedimension covers a spectrum of quarantine strategies: (a) coldstart
recovery without quarantine, (b) warmstart recovery with conservative, reactive quaran-
tine, (c) warmstart recovery with proactive or predictive quarantine, (b) hotstart recovery
with optimistic quarantine, to name a few.

¢ (4) Theapplicationdimension covers the various transaction models deployed by con-
ventional and modern applications. The unigueness of each model may introduce new
challenges for solving the DQR problem.

e (5) Thecorrectnesslimension tells whether a DQR schemedsrectin terms of con-
sistency, recoverability, and quarantinability.

5

e (6) The quality dimension allows people to measure and compareqtradity levels
achieved by a set of correct yet different DQR schemes.

2.4 What Transaction Level DQR Solutions Cannot Do

First, although transaction-level DQR solutions will help minimize the damage caused by cy-
berspace attacks in the physical world, they cannot repair physical damage, which is a different
field of study. Second, transaction-level DQR solutions are not designed to patch software
which is another critical intrusion recovery problem. Nevertheless, transaction-level DQR so-
lutions and software patching are complementary to each other. Transaction-level DQR solu-
tions can help quarantine and repair the damage done by unpatched software broken-in by the
adversary.

3 Traditional Failure Recovery Techniques and
Their Limitations

DQR theories and mechanisms draw on work from several areas of systems research such as
survivable computing, fault-tolerant computing, and transaction processing. Among all the
relevant areas, the closest one should be Failure Recovery, which is part of Fault Tolerance
[LA9Q]. In the literature, failure recovery has not only been extensively studied in data pro-
cessing systems [BHG87, MH192, Gra93], but also been thoroughly studied in other types

of computing systems. In [BBG89] and [MBPR96], operating systems failure recovery is
investigated. In [HMSC88], recovery management in distributed system is investigated. In
[EAMWJO02], rollback recovery techniques for long-run applications are thoroughly discussed.
In [LD97, LDO1, Jef85, LL91], checkpoint-based rollback recovery is discussed. In [SS98],
reliability modeling and evaluation criteria are thoroughly discussed. More recently, (a) David
Patterson et al. have proposed the concept of ROC (Recovery -Oriented Computing BB

in which recovery is used as a general technique for dealing with failure in complex systems.
For example, in [CFO1] a model of “recursive recovery” is proposed in which a complex soft-
ware system is decomposed into a multi-layer modular self-recovering implementation. (b)
The Nooks approach [SBL03] makes device driver failures transparent to operating systems.

Unfortunately, due to the fundamental differences mentioned in Section 1 between failure
recovery and attack recovery, existing failure recovery techniques cannot effectively deal with
malicious attacks. For example, (a) rolling back the application’s state to a previous corruption-
freecheckpointvill lose all the good work done after the checkpoint. (b) Maintaining frequent
checkpoints [AJM95, MPL92, Pu86] may not work since no checkpoint taken between the
time of attack and the time of recovery can be used. (c) Standy replica systems will not only
replicate good work, but also replicate infection!

With DQR indata processing systeras the theme of this paper, this section will focus on
failure recovery technologies for data processing systems and their limitations in solving the
DQR problem. In the following, we classify failure recovery technologies for data processing
systems into three categories: transactional undo/redo, replication-based recovery, and storage
media backup-restore, and discuss them in three subsections, respectively.

3.1 Transactional Undo/Redo

The crux of transactional undo/redo techniques is correcting the application states that are cor-
rupted due to failures. For data-processing systems or data-oriented applications in which
doing read and write operations on various data objects (managed by a set of databases) repre-
sents the main activities, failure recovery is rooted intthasaction concepiGR93] which

has been around for a long time. This concept encapsulaté<iie(Atomicity, Consistency,
Isolation, and Durability) properties [BHG87, GR93]. Data-oriented applications are not lim-
ited to the database area [DLA0O2, DBSW89, GS89, HMSC88, LS83, NKK86]. The basic
recovery procedure is almost the same for all applications: when a failure happens, a set of
undooperations will be performed to rollback the applicatiostateto the most recertheck-

point, which is maintained through logging, then a setexfo operations will be performed to
restore the state to exactly the failing point. Nevertheless, the concrete recovery algorithms de-
pend heavily upon how changes are logged. WAL (Write Ahead Logging) is today the standard
approach widely accepted by the database industry. Some of the commercial systems and pro-
totypes based on WAL are ARIES [MH192], IBM’s AS/400 [CC89], IBM’s DB2 [Cru84],
Microsoft's SQL Server [sql], and Oracle’s Oracle Database [ora].

Besides the basic idea of WAL, a set of important enhancements such as (a) using log
sequence number (LSN) to correlate the state of a page with respect to logged updates of that
page and (b) fuzzy checkpoints are proposed by ARIES [M8R], the de facto (industry)
standard for transaction recovery models.

Finally, in addition to such standard recovery techniques as WAL, the database industry
has developed various proprietary recovery tools. For example, DB2 Log Analysis Tool [db2a]
allows you to monitor data changes; DB2 Recovery Expert [db2b] analyzes and provides di-
agnostics of altered database assets, and can roll data changes backward or forward; Oracle
Recovery Manager [drd] manages the database backup and restore process; and Oracle Data
Guard creates, maintains, manages and monitors one or more standby databases.

Limitations in Solving the DQR Problem: Although existing transaction recovery
methods are matured in handling failures, they are not designed to deal with malicious attacks.
In particular, first, the durability property ensures that traditional recovery mechanisms never
undo committed transactions. However, the fact that a transaction commits does not guarantee
that its effects are desirable. Specifically, a committed transaction may reflect inappropriate
and/or malicious activity.

Second, although attack recovery is related to the notiooastading abor{BHG87],
cascading aborts only capture ttead-fromrelation between active transactions, and in stan-
dard recovery approaches cascading aborts are avoided by requiring transactions to read only
committed data [KLS90].

Third, there are two common approaches to handling the problem of undoing committed
transactions: rollback and compensation. (3a) The rollback approach is simply to roll back
all activity — desirable as well as undesirable — to a checkpoint believed to be free of damage.
The rollback approach is effective, but expensive, in that all of the desirable work between
the time of the checkpoint and the time of recovery is lost. Although there are algorithms
for efficiently establishing snapshots on-the-fly [AJM95, MPL92, Pu86], maintaining frequent
checkpoints may not work since no checkpoint taken between the time of attack and the time of
recovery can be used. (3b) The compensation approach [GM83, GMS87] seeks to undo either

committed transactions or committed steps in long-duration or nested transactions [KLS90]
without necessarily restoring the data state to appear as if the malicious transactions or steps
had never been executed. There are two kinds of compensation: action-oriented and effect-
oriented [KLS90, Lom92, WHBM90, WS92]. Action-ariented compensation for a transaction
or stepT; compensates only the actions’Bf Effect-oriented compensation for a transaction
or stepT; compensates not only the actionsIof but also the actions that are affectedfyy
Although various types of compensation are possible, all of them require semantic knowledge
of the application, and none of them is adopted by mainstream commercial systems.

Fourth, classicedooperations cannot repair damage because they do not reexecute affected
transactions.

3.2 Replication-based Recovery

The crux of the replication based recovery is using redundancy to mask/tolerate failures. Replication-
based recovery does not undo erroneous operations. In data-oriented applications, the repli-
cation idea is embodied through the widely adopted practice of data replication [GHOS96,
BHG87] andstandbydatabases [drd]. In such replicated systems, each request (or transac-

tion) will be processed by all theeplicasin which each data object is replicated. When a

failure happens to the primary database, the responses (or outputs) generated by a standby (or
replicated) database can be returned to the client as if the failure had never happened. (In
distributed computing, the replication idea is embodied through such techniques as RAPS (re-
liable array-structured partitioned service), the state-machine approach [Sch90], and virtual
synchrony [BC91].)

Limitations in Solving the DQR Problem: Both data replication and standy databases
will not only replicate good work, but also replicate infection!

3.3 Storage Media Backup-Restore

The idea of storage media backup-restore is proven very practical and valuable. It is fully

embraced by the IT industry: Computer Associates large enterprise backup solutions [ca],
Symantec LiveState recovery products [sym], the Sonasoft Solution [son], just to name a few.
This idea is complementary to the recovery idea and the replication idea, but in many cases it
cannot achieve fine-grained data consistency, while the two other ideas can.

Limitations in Solving the DQR Problem: Among the data objects included in a
backup storage media backup-restore techniques cannot distinguish clean data objects from
dirty, corrupted ones.

4 Solving the DQR Problem

In this section, we present a systematic review on how the DQR problem is being solved in
the literature. Although self repairable file systems are proposed [ZCO03} @PFmost DQR
mechanisms proposed in the literature are transaction-level solutions. So here we concentrate
on transaction-level DQR solutions.

4.1 The Model

In our model, a@ransactionis a set ofread andwrite operations that eitherommitsor aborts
For clarity, we assume there are blind writes, although the theory can certainly be extended
to handle blind writes. At the transaction level, an application (e.g., the application types shown
in Figure 2) is a transaction executiaistory. Since recovery of uncommitted transactions is
addressed by standard mechanisms [BHG87], we can safely ignore aborted transactions and
only consider the committegrojection C'(H) of every historyH. We define<y to be the
usual partial order o€'(H), namely,T; <p T} if <g orders operations df; before conflicting
operations ofl; (Note that inf the operations of different transactions are often interleaved).
Two operationsonflictif they are on the same data object and one is write.

In principle, thecorrectnessof a DQR scheme (or solution) can be “checked” either by
the operations performed by the scheme or by the resulted effects. Here, we use the resulted
history of a DQR scheme to study its correctness. In our model, the DQR histories resulted
from a DQR scheme may contain the following information:

¢ A DQR history may contain two types afalicioustransactions, four types tdgitimate
transactions, and one type dfaningtransactions: Type 1 malicious transactions are
issued by attackers or malicious code; more broadly, transactions executed by mistake
can be viewed as a Type 2 malicious transaction A legitimate transaction may be ei-
ther aregular transaction or aeexecutedransaction; and both regular and reexecuted
transactions may baffectedor damagedf they read any corrupted data object. Finally,
cleaning transactions only contain backward or forward overwrite operations, depending
upon how the recovery is performed.

e A classic history consists of only operations, while a DQR history is an interleaved
sequence of operations and data store statesddtaestorecontains all the data objects
that a transaction may access. Btateof the data store at timeis determined by the
latest committed values of every data object in the store.

¢ A data store state (e.g., a database state) contains three typ@sugteddata objects
and two types otleandata objects. Type 1 corrupted data objects are originally gener-
ated by the writes of malicious transactions. Type 2 are originally generated by affected
transactions. Type 3 are originally generated by non-transactional attacking actions out-
side of the application’s transaction scope. Note that a corrupted data object may be read
or updated several times before irépaired(a.k.a.cleaned. Type 1 clean data objects
are never corrupted. Type 2 clean data objects are once corrupted, but they are repaired.

4.1.1 Damage Propagation

Based on the threat model, we know where malicious transactions come from. To see how
affected transactions are generated and how the damage spreads, we should do dependency (or
causality) analysis.
Definition 4.1 (dependency graph) As stated in [AJLOZ2], transactiofi; is dependent
uponT; in a history if there exists a data objecsuch thatl’; readso afterT; has updated;
T; does not abort befor€; readso; and every transaction (if any) that updatelsetween the
time 7; updates) and7; readso is aborted befor@’; readse. In a history,T; affectsTs if the
ordered pai73, T5) is in the transitive closure of th@ependent uporelation. Finally, we
define thedependency graptor a (any) set of transactiorfsin a history asDG(S) = (V, E)

9

B

B 5 Gl
\ / \ .
G, 2
Figure 3: Dependency Graph for HistoHy

in which V' is the union ofS and the set of transactions that are affected by¥here is an edge,
T, = T;,inEif T, e V,T; € (V- 5), andTj is dependent upof;. O
Example Consider the following history ovelH;, By, G1, Go2, G3, G4):

Hy : By [$]w31 [$]CB1 e [:E}wG1 [x]rGg [Z]wGs [Z]CGSTGl [y]wG1 [y]CG1
e [y]wGQ [y]rBQ [Z]wBQ [Z]CBQ e [v]sz [U]CGZ Len [z]wG4 [Z]TGAL [y}szx [y]cGzl

In H1, By and B are malicious transactions while the other three are legitimate transac-
tions; rr[z] (wr[z]) is a read (write) operation by transacti@hon data object; cr is the
commit operation of . LetB = {B;, B2}, DG(B) is shown in Figure 3.

Lemma 4.1 In a DQR history, a legitimate transaction is affected if and only if it is in
dependency grapPG (all malicious transactions plus all the legitimate transactions that read
the original version of any Type 3 corrupted data obje&eing conservative, we assume all
updates done by affected transactions sRrgadthe damage. |

4.1.2 Do We Have to Sacrifice Durability?

A main concern people may have on DQR solutions is whether they will compr@uisdil-

ity, a fundamental property of transaction processing and transactional failure recovery mech-
anisms. In other words, do we have to sacrifice Durability in doing DQR? Fortunately, the
answer is NO. To keep durability, DQR schemes never really need to undo a malicious or af-
fected transaction; instead, they can execute cleaning transactisamtmticallyrevoke the

effect of a committed transaction. By semantically revoking the effect of a committed trans-
action, we can achieve the following: (a) The effect of a committed transaction will always
be kept durable; we never revoke or reverse any physical effect of a committed transaction on
the persistent storage. (b) A cleaning transaction will change the data store state in exactly
thesameway as a regular transaction performing a set of updates. Because executing regular
transactions will never compromise Durability, executing cleaning transactions (to do damage
recovery) will never compromise Durability.

4.1.3 The Spectrum of DQR Schemes

The concept of DOQR histories allows us to see the differences between the ones on the “spec-
trum” of DQR schemes. (a) On one end of the spectrustaic DQR scheme will stop pro-
cessing new transactions until every corrupted data objeeparedor cleaned. (A corrupted

data object isepairedif its value is restored to the latest clean version before corruption.) So

10

since thetime of detectionwhich is also the time when the recovery starts, the corresponding
DQR history will proceed with only cleaning transactions until the repair is completed. In ad-
dition, affected transactions should be reexecuted; otherwise, DoS is caused. (b) On the other
end, an optimisticdynamicDQR scheme may do dependency analysis (a.k.a. damage assess-
ment), execute cleaning transactions, execute to-be-reexecuted transactions, and execute new
transactiongoncurrently (c) Semi-dynamic DQR schemes may certainly stay on the spec-
trum between the two ends. For example, in [YLZ04, LVBO06], there is a dedisatatphase

during which dependency analysis is performed,rfmew transactions can be executed.

Section organization In the rest of this section, without losing generality, we will focus on
the two “ends” of the spectrum of DQR schemes, that is, we will review static DQR solutions
and dynamic DQR solutions in Section 4.2 and Section 4.3, respectively.

4.2 Static DQR Solutions

Static DQR solutions “halt” the database (service) before the repair is completed. Since no
new transactions can be executed during static DQR, the damage will not spread unless there
are incorrect repair operations. Hence, damage quarantine is not an issue in static DQR. As
a result, static DQR has two aspecttamage assessmenthich identifies every corrupted
data object, andamage repairwhich restores the value of each corrupted data object to its
pre-corruption version.

In terms of how damage assessment and repair can be done, existing static DQR methods
are eitherdata-orientedPG98] ortransaction-orientedAJL02]. Transaction-oriented meth-
ods assess and repair the damage by identifying and backing out affected transactions. In
particular, they work as follows.

e Damage AssessmenBuild the dependency graph defined in Definition 4.1 for the set
of malicious transactions detected. Based on Lemma 4.1, the dependency graph consists
of all and only the affected transactions that have “contributed” to damage propagation.
Assuming that read operations are logged together with write operations, it is not difficult
to build the dependency graph. It is shown in [AJLO2] that the log can be scanned
forward only once (i.e., one-pass) from the entry where the first malicious transaction
starts to locate every affected transaction.

e Repair When the damage assessment part is done, scan backward from the end of the
log to semantically revoke (or undo) the effects of all the malicious transactions and
the transactions included in the dependency graph. Note that here the undoes should be
performed in the reverse commit order.

In contrast, data-oriented methods use the read and write operations of transactions to trace
the damage spreading from one data object to another, and compose a specific piece of code to
repair each damaged data object. In particular, data-oriented methods work as follows.

e Damage Assessmeronstruct a specific damage propagation graph in which each node
is a (corrupted) data object while each directed edge from mddey is a transactiofl”
such thafl’ readsr and writesy. The damage propagation graph can be built by one-pass
scanning of the log.

11

e Repair Once the damage propagation graph is constructed, for each dataobett
tained in the graph, search through the log to find the latest pre-corruption version of
Then repait: by overwriting the value of with the searched version.

Comparison Data-oriented methods are more flexible and better at handling blind writes,
however, composing cleaning code for each data object can be time consuming and prone to er-
rors. Transaction-oriented methods use a cleaning transaction, which can be easily composed,
to repair multiple data objects at the same time, thus they are more robust and efficient.

4.2.1 Maintaining Read Information

Both data-oriented methods and transaction-oriented methods rely on the read-from relation-
ships between transactions. (Transacfipreads fronil; if there is a data objeat such thafl;

readse after7y updatese, and no other transaction updatebetween these two operations.)
However, the read-from information is not maintained by commercial DBMSes, since such
information is not necessary for failure recovery. As a result, the transaction log maintained by
a commercial DBMS actually does not contain sufficient information for the aforementioned
DQR mechanisms to succeed. Therefore, maintaining the read-from information is an impor-
tant task in engineering practical DQR systems.

In the literature, several representative techniques are proposed to maintain the read-from
information. In [LJL"04], read operations are extracted from SQL statement texts. In par-
ticular, [LILT04] assumes that each transaction belongs to a transagtigrand theprofile
(or source code) for each transaction type is known. For each transactiotytyfie]L*04]
extracts aead set templatérom ty;'s profile. The template specifies the kind of objects that
transactions of typey; could read. Later on when a transactibnis executed, the template
for type(T;) will be materializedto produce the read set @f using the input arguments of
T; (Note that these input arguments are embeddefi’'mSQL statements). This method is
transparent to the DBMS kernel, however, in some scenarios it can only obtain approximate
read sets.

In [PcCO05], the DBMS is extended to provide support for read triggers. In contrast, com-
mercial DBMSes only support insert/update triggers. This method can obtain the exact read
sets and it has reasonable run-time overhead, but it requires a major extension to the kernel.

In [LVBO06], a more aggressive approach is taken to maintain the read-from information. In
this approach, Recovery Manager, the “core” of commercial transaction management systems,
is modified to log reads. In particular, when the system commits a transaction, all the read
information about the transaction will be consolidated into a single log record; then this special
reads-keeping log record will be forced onto the disk together with other writes-keeping log
records. This approach has minimal run-time overhead, but it requires the largest amount of
changes to the DBMS kernel.

4.2.2 Static Repair via History Rewriting

From the correctness point of view, both data-oriented methods and transaction-oriented meth-
ods would result in a history that nflict equivalento theserial history composed of only

the legitimate, unaffected transaction§'({,) is conflict equivalent t@'(H») if they contain

the same set of operations and they order every pair of conflicting operations in the same way.)

12

Nevertheless, the history rewriting framework proposed in [LAJOO] shows that if we relax the
correctness requirement from conflict equivalencei¢ov equivalenceve may even save the
work of affected transactions.

In particular, by exploiting two new semantic relationships between transactions, denoted
can-followand can-precedgrespectively, the history rewriting framework can rewrite every
“infected” history, which always starts with a malicious transaction, to a ready-to-repair history
in which every legitimate, unaffected transaction precedes all the malicious transactions. Such
a rewritten history typically looks like the following. Herég;; is a legitimate, unaffected
transaction anddG; is an affected transaction. In additiofi; is called afix. A fix for a
transaction likeB; is a set of variables read by the transaction given values as in the original
position of the transaction before the history is rewritten.

Frp

Gi1.. AGj1...Gin... AGjm B{" AG}'..B['...AG,}

The study in [LAJOO] shows that (a) each rewritten history and the original history will re-
sultin the same final database state, and (b) the work of all the legitimate transactions preceding
Bf ! in the rewritten history can be saved by executing a specific compensating transaction for
each of the transactions in tseffixof the rewritten history. The suffix starts wifB". Note
that the last transaction in the rewritten history should be the first one to compensa&fland
should be the last one. Since every legitimate, unaffected transaction will pchIFédme
work of all unaffected transactions will be kept. Moreover, since affected transactions may
preceder !, the work of many affected transactions may be saved as well.

4.3 Dynamic DQR Solutions

In static DQR, new transactions are blocked during the repair process. This prevents static
DQR mechanisms from being deployed by 24*7 database applications. As 24*7 database
applications are becoming more and more common, dynamic DQR solutions that can do non-
stop, zero down-time attack recovery are in demand.

4.3.1 Dynamic DQR Solutions with Reactive Quarantine

To have zero down-time, neither damage assessment nor repair can block the execution of new
transactions. This means that dependency analysis, execution of new transactions, execution of
cleaning transactions, and reexecution of affected transactions need to be done in parallel. To
meet this challenge, people may wonder if the traditional transaction management architecture
needs to be rebuilt. Fortunately, Figure 4 shows that the traditional transaction management
architecture [BHG87] is adequate to accommodate on-the-fly repairR€pair Manageiis

applied to the growing logs of on-the-fly histories to mark any bad as well as affected transac-
tions. For every bad or affected transaction, the Repair Manager builds a cleaning transaction
and submits it to th&cheduler The cleaning transaction is only composed of write operations.
The Schedulerschedules the operations submitted either by user transactions or by cleaning
transactions to generate a correct on-the-fly history. Affected transactions that are semantically
revoked (or undone) can be resubmitted to the Scheduler either by users or by the Repair Man-
ager. Finally, theRecovery Manageexecutes the operations submitted by the Scheduler and
logs them.

13

user transactions

]

. undo transactions
Repair >
Manager Scheduler
[} 4
\
Log | | Recovery o!| Cache
- ~ | Manager o

Figure 4: Architecture of an On-the-fly Repair System

On-the-fly attack recovery faces several unique challenges. First, since new transactions
may first read corrupted data objects then update clean data objects, the damage may continu-
ously spread, and the attack recovery process may mewainate Accordingly, we face two
critical questions. (a) Will the attack recovery process terminate? (b) If the attack recovery
process terminates, can we detect the termination? Second, we need to ddoreyzaitly
since the assessment process may never stop. The assessment process may never stop since
the damage may continuously spread. Third, cleaned data objects could be re-damaged during
attack recovery.

To tackle challenge 2, we must ensure that a later on cleaning transaction will not acci-
dentally damage an object cleaned by a previous cleaning transaction. For this purpose, the
system should “remember” the data objects that are already repaired and not yet re-damaged.
To tackle challenge 3, we must not mistake a cleaned object as damaged, and we must not
mistake a re-damaged object as already cleaned. To tackle challenge 1, the study in [AJLO2]
shows that when the damage spreading speed is quicker than the repair speed, the repair may
never terminate. Otherwise, the repair process will terminate, and under the following three
conditions we can ensure that the repair terminates: (1) every malicious transaction is cleaned;
(2) every identified damaged object is cleaned; (3) further damage assessment scans will not
identify any new damage (if no new attack comes).

From a state-transition angle, the job of attack recovery is to gttaof the database,
which is determined by the values of the data objects, where (a) no effects of the malicious
transactions are there and (b) the work of good transactions should be retained as much as
possible. In particular, transactions transform the database from one state to another. Good
transactions transform a good database state to another good state, but malicious transactions
can transform a good state to a damaged one. Moreover, both malicious and affected (good)
transactions can make an already damaged state even worse. We say a datab8gedsstate
betterthan another oné, if S; has fewer corrupted objects. The goal of on-the-fly attack
recovery is to get the state better and better, although during the repair process new attacks and
damage spreading could (temporarily) make the state even worse. (A state-oriented object-by-
object attack recovery scheme is proposed in [PG98].)

Finally, it should be noticed that from the transaction scheduling viewpoint, on-the-fly
repair introduces new scheduling constraints. For example, (a) when a read operatids
scheduledx must be clean. (b) Conflicting cleaning transactions should be scheduled in the
same order in which they are submitted by the Repair Manager. The order is critical to the

14

Malicious and Legitimate Transactions

'

Mediator

+ transaction
Containment type & inputs
Executor

w Uncontainer
DBMS |\
istory @ i
[233/5/ database /=| Repar
Manager
Damage | alarms
Container Intrusion Detector

Figure 5: Proactive Damage Quarantine

correctness of repair. (c) When a cleaning operaiigfic] is scheduledy must be dirty.

4.3.2 Dynamic DQR Solutions with Proactive Quarantine

From the viewpoint of on-the-fly non-stop recovery, fault/damage quarantine can be viewed as
part of recovery. The goal of damage quarantine is to prevent the damage from spreading out
during recovery. One problem of the solution shown in Figure 4 is that its damage quarantine
may not be effective, sincedbntainsthe damage by disallowing transactions to read the set of
data objects that are identified (by the Damage Assessor) as corrupted. This @aetplease
damage containment approach has a serious drawback, that is, it cannot prevent the damage
caused on the objects that are corrupted but not yet located from spreading. Assessing the
damage caused by a malicious transacfiboan take a substantial amount of time, especially
when there are a lot of transactions executed during the detection laterity Bfiring the
assessment latencthe damage caused during the detection latency can spread to many other
objects before being contained.

The approach shown in Figure 5 integrates a novel multi-phase damage containment tech-
nique to tackle this problem. In particular, the damage containment process has one containing
phase, which instantly contains the damage thaght have been caused (or spread) by the
intrusion as soon as the intrusion is detected, and one or more later on uncontaining phases
to uncontain the objects that are mistakenly contained during the containing phase, and the
objects that are cleaned. In this approach,Dlaenage Containewill enforce the containing
phase (as soon as a malicious transaction is reported) by sending some containing instructions
to theContainment ExecutoiTheUncontainer with the help from the Damage Assessor, will
enforce the uncontaining phases by sending some uncontaining instructions to the Contain-
ment Executor. The Containment Executor controls the access of the user transactions to the
database according to these instructions.

When a malicious transactioB is detected, the containing phase must ensure that the
damage caused directly or indirectly Bywill be contained. In addition, the containing phase

15

must be quick enough because otherwise either a lot of damage can leak out during the phase,
or substantial availability can be lost. Time stamps can be exploited to achieve this goal. The
containing phase can be done by just adding an access control rule to the Containment Executor,
which denies access to the set of objects updated during the period of time from thg time
commits to the time the containing phase starts. This period of time is callathaining-
time-window When the containing phase starts, every active transaction should be aborted
because they could spread damage. New transactions can be executed only after the containing
phase ends.

It is clear that the containing phasgercontainghe damage in most cases. Many objects
updated within the containing time window can be undamaged. And we must uncontain them
as soon as possible to reduce the corresponding availability loss. Accurate uncontainment can
be done based on the reports from the Damage Assessor, which could be too slow due to the
assessment latency. [LJO1] shows that transadyipascan be exploited to do mudjuicker
uncontainment. In particular, assuming that (a) each transa¢titbelongs to a transaction
type type(T;) and (b) theprofile for type(7;) is known, theread set templatand write set
templatecan be extracted fronype(T;)’s profile. The templates specify the kind of objects
that transactions afype(7;) can read or write. As a result, tieg@proximateread-from depen-
dency among a history of transactions can be quickly captured by identifying the read-from
dependency among the types of these transactions. Moreover, the type-based approach can be
made more accurate byaterializingthe templates of transactions using their inputs before
analyzing the read-from dependency among the types.

Other damage quarantine methods (a) In [AJMB97], a color scheme for marking and
containing damage is used to develop a mechanism by which databases under attack could still
be safely used. This scheme assumes that each data record has an (accurate) initial damage
mark or color (note that such marks may be generated by the damage assessment process),
then specific color-based access controls are enforced to make sure that the damage will not
spread from corrupted data objects to clean ones.

(b) Attack Isolation The idea is to isolate likely suspicious transactions before a definite
determination of intrusion is reported. In particular, when a suspicious se8sgdiscovered,
isolating B and the associated transactions transparently into a separate environment that still
appears t@ to be the actual system allowss activities to be kept under surveillance without
risking further harm to the system. An isolation strategy that has been used in such instances is
known asfishbowling Fishbowling involves setting up a separate lookalike host or file system
and transparently redirecting the suspicious entity’s requests to it. This approach allows the
incident to be further studied to determine the real source, nature, and goal of the activity, but it
has some limitations, particularly when considered at the application level. First, the substitute
host or file system is essentially sacrificed during the suspected attack to nignitmmsuming
significant resources that may be scarce. Second, #nisecut off from the real system, if
B proves innocent, denial of service could still be a problem. While some types of service
B receives from the substitute, fishbowl system may be adequate, in other cases the lack of
interaction with the real system’s resources may preygiftom continuing to produce valid
results. On the other hand, if the semantics of the application are such tban continue
producing valid work, this work will be lost when the incident concludes evéhig deemed
innocent and reconnected to the real system. The fishbowling mechanism makes no provision
for re-merging updates from the substitute, fishbowl system back into the real system.

16

In [LIMOO, LWLO06], these limitations are overcome by taking advantage of action seman-
tics and the dependency relationships between transactions. In this method, as in the case of
fishbowling, whenB comes under suspicios is allowed to continue working while the secu-
rity officer attempts to determine whether there is anything to worry about. At the same time,
the system is isolated from any further damadgyenight have in mind. However, this method
provides the isolation without consuming duplicate resources to construct an entirely separate
environment, allows options for partial interaction across the boundary, and provides data-
consistency-preserving algorithms for smoothly mergitig work back into the real system
should B prove innocent. Among the partial interaction options, dhe-way isolatiorcon-
ceptis particularly interesting. One-way isolation allows being-isolated transactions to read the
newest updates done by (trusted) transactions running on the main database, but forbids trusted
transactions from reading any updates done by being-isolated transactions.

4.4 Quality Evaluation

Correctness does not always imply high quality. Two correct DQR schemes may yield very
different quality levels in the DQR services they provide. In failure recoveryMine--MTTR
model (Mean Time To Failure - Mean Time To Recovery model) provides a neat yet precise
way to gain concrete understanding of the quality of a recovery service which is measured by
MTTF/(MTTF+MTTR), and this quality model has played a crucial role in advancing the theories
and technologies of failure recovery. Unfortunately, due to the reasons mentioned in Section 1,
theMTTF-MTTR model is no longer sufficient for defining the quality of DQR services.

In principle, thequality of DQR services can be evaluated by a vector composed of three
criteria regardinglata integrityand two criteria regardingvailability:

e C1: Dirtinessdepends on the percentage of corrupted data objects in each data store
state.

e C2: Data Freshness When a clean yet older version of a corrupted data ohjest
made accessible during recovery, freshness depends on whether a fresher versson of
used by new transactions. Note that one clean version can be much fresher than another
clean version of the same data object.

e C3: Data Consistency Violation of serializability can compromise data consistency no
matter the history is multi-versioned or not.

e C4: Rewarding Availability The more clean or cleaned data objects are made accessible
to new transactions, the momwvardingavailability (or business continuity) is achieved.
The more rewarding availability, the less denial-of-service will be caused.

e C5: Hurting Availability The more corrupted data objects are made accessible to new
transactions, the moteurting availability is yielded. Because hurting availability will
hurt data integrity and spread the damage, hurting availability is worse than letting the
corrupted objects be quarantined.

An important finding gained in reliability evaluation research (e.g., [SS98, Tri02]) is that
state transition models may play a big role in quality evaluation. A state transition model spe-
cific for DQR systems can be the model shown in Figure 6, where in terms of any portion of the
application (e.g., a set of data objects), the system has 6 basic states: they are self explanatory
except that the ‘M’ state means that the portion is Marked as damaged. Ignoring the ‘Q’ state,

17

Detected

Figure 6: DQR System State Transition

we could measure Dirtiness EMTTC+MTTM+MTTR)/(MTTC+MTTD+MTTM+MTTR) ; and
Rewarding Availability by(MTTC+MTTR)/(MTTC+MTTD+MTTM+MTTR). In [WLO06], this

idea is well justified in the context of intrusion tolerant database systems through Continu-
ous Time Markov Chain based state transition model analysis and prototype experiments based
validation.

5 Remaining Research Issues and Concluding Remarks

Although DQR is not a new concept, existing attack (or intrusion) recovery research activities
(see Section 4) are still quite limited in satisfying the DQR needs of real world applications,
for the following reasons: (1) A theoretic understanding of the correctness and quality of DQR
schemes is still missing in the literature. Since classic failure recovery theories cannot handle
guarantine or on-the-fly recovery, new DQR theories are necessary to understand the strength
and weakness of existing DQR schemes, inspire the development of novel DQR schemes, and
make DQR a rigor field of study, for example. (2) There is still a big gap in engineering prac-
tical DQR capabilities for real world applications. For one example, Web Services (WS) and
service-oriented architectures have significantly changed the way applications are developed,
but no WS aware techniques have yet been developed to do transparent DQR for WS-based
applications. For another example, existing transaction-level DQR mechanisms either require
major changes in system design or suffer from significant DoS or performance overhead.

Therefore, to fully solve the DQR problem, a holistic approach should be taken to make
an integrated set of innovative contributions on four fundamental aspects of DQR: theories,
mechanisms, applications, and systems.

e New DQR theories should be developed to (a) address quarantirieaasgarency(b)
definequality of DQR services, and (c) integratecoverabilityandquarantinability.

¢ New DQR schemes should be developed to advance the state-of-the-art DQR techniques
from the paradigm of read-write-dependency analysis to the new paradigm of mark-
based causality tracing, which will significantly improve transparency and efficiency.

e Non-blocking repair schemes should be developed to advance the state-of-the-art DQR
techniques, from the paradigm of “clean-then-reexecute” recovery to the new paradigm
of “cleaning-free” recovery, which avoids the overhead introduced by cleaning transac-
tions.

18

¢ New DQR schemes should be developed to advance the state-of-the-art from the paradigm
of “lock-competing reexecution” to the new paradigm of “non-blocking repair”.

¢ New DQR schemes should be developed to advance the state-of-the-art from the paradigm
of “pre-programmed DQR” to "adaptive or self-reconfigurable DQR”.

¢ DQR theories and mechanisms should handle both conventional applications (which
require ACID properties) and modern applications which adopt a weaker consistency
model to make distributed “business transaction” processing (on top of Web Services)
practical, scalable, and efficient.

e From the perspective of system building, complete open-source DQR tools and systems
should be prototyped and evaluated using the appropriate benchmarks.

Acknowledgement Peng Liu was supported in part by NSF CCR-TC-0233324 and NSF/DHS

0335241.

References

[AJLO2] P. Ammann, S. Jajodia, and P. Liu. Recovery from malicious trdB&EE Trans. on
Knowledge and Data Engineerin5(5):1167-1185, 2002.

[AJM95] P. Ammann, S. Jajodia, and P. Mavuluri. On the fly reading of entire databHSEE
Trans. on Knowledge and Data Engineer;if@5):834—838, October 1995.

[AJMB97] P. Ammann, S. Jajodia, C.D. McCollum, and B.T. Blaustein. Surviving information war-
fare attacks on databases. the IEEE Symposium on Security and Privgogges 164—
174, Oakland, CA, May 1997.

[BBGT89] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle. Fault Tolerance Under
UNIX. ACM Transactions on Computer Systeif(d):1-24, 1989.

[BC91] K. Berman and R. Cooper. The ISIS Project: Real Experience with a Fault Tolerant
Programming SystenDperating Systems Revigpages 103-107, 1991.

[BGJOO] D. Barbara, R. Goel, and S. Jajodia. “Using Checksums to Detect Data Corruption”. In
Int’l Conf. on Extending Data Base Technolodfar 2000.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodm&uancurrency Control and Recovery in
Database System#éddison-Wesley, Reading, MA, 1987.

[Bir05] K. P. Birman. Reliable Distributed Systems: Technologies, Web Services, and Applica-
tions. Springer, 2005.

[BKTVO5] E.Bertino, A. Kamra, E. Terzi, and A. Vakali. Intrusion Detection in RBAC-administered
Databases. IiProceedings of the 21st Annual Computer Security Applications Confer-
ence 2005.

[ca] Ca data availability solutions. http://www3.ca.com/solutions/SubSolution.aspx?1D=312.

[CC89] B. E. Clark and M. J. Corrtgan. Application System/400 performance charactetBNts.
Syst. J.28(3), 1989.

[CFO1] G. Candea and A. Fox. Recursive restartability: Turning the reboot sledgehammer into a

scalpel. InProceedings of the Eighth IEEE HOTOZEDO01.

19

[CGLOQ] C. Y. Chung, M. Gertz, and K. Levitt. Demids: A misuse detection system for database
systems. Irl4th IFIP WG11.3 Working Conference on Database and Application Secu-
rity, 2000.

[CK96] Carter and Katz. Computer Crime: An Emerging Challenge for Law Enforcenfdit.
Law Enforcement Bulletirl(8), December 1996.

[Cru84] R. Crus. Data recovery in IBM DatabaseBM Syst. J.23(2), 1984.

[db2a] Db2 log analysis tool for z/os. http://www-
306.ibm.com/software/data/db2imstools/db2tools/db2lat.html.
[db2b] Db2 recovery expert for multiplatforms. http://mww-

306.ibm.com/software/data/db2imstools/db2tools/db2re/.

[DBSW89] G. N. Dixon, G. D. BARRINGTON, S. SHRIVASTAVA, and S. M. Wheater. The treat-
ment of persistent objects in Arjun€omput. J.32(4), 1989.

[DLAOZ2] P. Dasgupta, R. Leblanc, and W. Appelbe. The Clouds distributed operating system. In
Proceedings 8th International Conference on Distributed Computing SysBanslose,
Calif., 2002.

[drd] Oracle data protection and disaster recovery solutions.
http://www.oracle.com/technology/deploy/availability/htdocs/OracleDRSolutions.html.

[EAMWJO02] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi min Wang, and David B. Johnson. A survey
of rollback-recovery protocols in message-passing systefd@®M Computing Surveys
34(3):375-408, September 2002.

[FHSL96] S. Forrest, S. A. Hofmeyr, A. Somayaiji, and T. A. Longstaff. A Sense of Self for Unix
Processes. IRroceedings of 1996 IEEE Symposium on Computer Security and Privacy
1996.

[GHOS96] J. Gray, P. Helland, P. O'Neil, and S. Shasha. The dangers of replication and a solution.
In ACM SIGMOD 1996.

[GM83] H. Garcia-Molina. Using semantic knowledge for transaction processing in a distributed
databaseACM Trans. on Database Syster8§2):186—213, June 1983.

[GMS87] H. Garcia-Molina and K. Salem. Sagas.A@M-SIGMOD International Conference on
Management of Datgpages 249-259, San Francisco, CA, 1987.

[GPFT05] A. Goel, K. Po, K. Farhadi, Z. Li, and E. D. Lara. The Taser Intrusion Recovery System.
In ACM SOSP2005.

[GR93] J. Gray and A. Reutefransaction Processing: Concepts and Techniqisrgan Kauf-
mann Publishers, Inc., 1993.

[Gra93] J. Gray, editor. The Benchmark Handbook for Database and Transaction Processing
SystemsMorgan Kaufmann Publishers, Inc., 2 edition, 1993.

[GS89] A. Gheith and K. Schwan. CHAOS: Support for real-time atomic transactior3ron
19th International Symposium on Fault-Tolerant Computidgicago, 1989.

[HMSC88] R. Haskin, Y. Malachi, W. Sawdon, and G. Chan. Recovery management in Quick-Silver.
ACM Transactions on Computer Syste(d), 1988.

[11g93] K. llgun. Ustat: A real-time intrusion detection system for unix.the IEEE Symposium
on Security and PrivagyOakland, CA, May 1993.
[Jef85] David R. Jefferson. Virtual timeACM Transaction on Programming Languages and

Systems/7(3):404-425, July 1985.

20

[JV91] H. S. Javitz and A. Valdes. The sri ides statistical anomaly detectBroeedings IEEE
Computer Society Symposium on Security and Priv@ekland, CA, May 1991.

[KLS90] H.F. Korth, E. Levy, and A. Silberschatz. A formal approach to recovery by compensating
trans. Inthe International Conference on Very Large Databapeges 95-106, Brisbane,
Australia, 1990.

[KRL97] C. Ko, M. Ruschitzka, and K. Levitt. Execution monitoring of security-critical programs
in distributed systems: a Specification-based approacRrdoeedings of the 1997 IEEE
Symposium on Security and Privadp97.

[LA90] P.A. Lee and T. AndersonFault Tolerance: Principles and PracticeSpringer-Verlag,
2nd edition, 1990.

[LAJOO] P. Liu, P. Ammann, and S. Jajodia. Rewriting histories: Recovery from malicious trans.
Distributed and Parallel Database8(1):7—40, 2000.

[LCJIS8T7] B. Liskov, D. Curtis, P. Johnson, and R. Scheifler. Implementation of ArgusACM
SOSPpages 111-122, 1987.

[LD97] Jun-Lin Lin and Margaret H. Dunham. A survey of distributed database checkpointing.
Distributed and Parallel Database5(3):289-319, 1997.

[LDO1] Jun-Lin Lin and Margaret H. Dunham. A low-cost checkpointing technique for distributed
databasedDistributed and Parallel Database40(3):241-268, 2001.

[LJO1] P. Liu and S. Jajodia. Multi-phase damage confinement in database systems for intrusion
tolerance. In4th IEEE Computer Security Foundations Workshdpva Scotia, Canada,
June 2001.

[LJLF04] P. Liu, J. Jing, P. Luenam, Y. Wang, L. Li, and S. Ingsriswang. “The Design and Im-
plementation of a Self-Healing Database Systeth’of Intelligent Information Systems
(JNIS), 23(3):247-269, 2004.

[LIMOOQ] P. Liu, S. Jajodia, and C.D. McCollum. Intrusion confinement by isolation in information
systems.J. of Computer Securifyg(4):243-279, 2000.

[LL91] Yi-bing Lin and Edward D. Lazowska. A study of time warp rollback machanish@&M
Transactions on Modeling and Computer Simulatjdi(4):51-72, January 1991.

[Lom92] D.B. Lomet. MLR: A recovery method for multi-level systems. A&GM-SIGMOD In-
ternational Conference on Management of Dgtages 185-194, San Diego, CA, June

1992.

[LRO4] Barbara Liskov and Rodrigo Rodrigues. Transactional File Systems Can Be FasthIn
ACM SIGOPS European Worksh@04.

[LS83] B. Liskov and R. SCHEIFLER. Guardians and actions: Linguistic support for robust,

distributed programsACM Transactions on Program. Lang. Sy&{(3), 1983.

[LVBO06] D. Lomet, Z. Vagena, and R. Barga. Recovery from Bad User Transaction&CM
SIGMOD 2006.

[LWLO6] Peng Liu, Hai Wang, and Lunquan Li. Real-time Data Attack Isolation for Commer-
cial Database ApplicationsElsevier Journal of Network and Computer Applications
29(4):294-320, 2006.

[LX01] W. Lee and D. Xiang. Information-theoretic measures for anomaly detectio200d
IEEE Symposium on Security and Priva©akland, CA, May 2001.

21

[MBPR96]

IMG96]

[MHL +92]

[MPLO2]

[MVS00]

[NKKS6]

[ora]

[OWAO4]

[Pax99]

[PBB02]

[PcCO5]

[PGO8]
[Puge]
[SBLO3]
[Schoo]

[Scho5]
[SDD85]

[SESS96]

G. Muller, M. Banatre, N. Peyrouze, and R. Rochat. Lessons from FTM: An Experiment
in the Design & Implementation of a Low-Cost Fault-Tolerant Syst&tRE Transactions
on Reliability, 45(2):332—-340, 1996.

J. McDermott and D. Goldschlag. Towards a model of storage jamminghelhEEE
Computer Security Foundations Workshppges 176-185, Kenmare, Ireland, June 1996.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. Aries: A transaction
recovery method supporting fine-granularity lockidgCM Trans. on Database Systems
17(1):94-162, 1992.

C. Mohan, H. Pirahesh, and R. Lorie. Efficient and flexible methods for transient ver-
sioning of records to avoid locking by read-only trans.A@M SIGMOD International
Conference on Management of Dapmges 124-133, San Diego, CA, June 1992,

U. Maheshwari, R. Vingralek, and W. Shapiro. How to build a trusted database system on
untrusted storage. lAth Symposium on Operating System Design and Implementation
San Diego, CA, October 2000.

E. Nett, J. Kaiser, and R. Kroger. Providing recoverability in a transaction oriented dis-
tributed operating system. Proc. 6th International Symposium on Fault-Tolerant Com-
puting Cambridge, May 1986.

Oracle database. http://www.oracle.com/database/index.html.

OWASP. Owasp top ten most critical web application security vulnerabilities.
http://www.owasp.org/documentation/topten.html, January, 27 2004.

V. Paxson. Bro: a system for detecting network intruders in real-tl@mmputer Net-
works pages 2435-2463, 1999.

D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez, A. Fox,
E. Kycyman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, and
N. Treuhaft. Recovery-oriented computing (roc): Motivation, definition, techniques, and
case studies. Technical report, UC Berkeley Computer Science, 2002. CSD-02-1175.

Dhruv Pilania and Tzi cker Chiueh. Design, Implementation, and Evaluation of an Intru-
sion Resilient Database System.RAroc. International Conference on Data Engineering
2005.

B. Panda and J. Giordano. Reconstructing the database after electronic attaties. In
12th IFIP 11.3 Working Conference on Database Secu@tgece, Italy, July 1998.

C. Pu. On-the-fly, incremental, consistent reading of entire databadgerithmica
1(3):271-287, October 1986.

Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the Reliability of
Commodity Operating Systems. ACM SOSP2003.

Fred B. Schneider. Implementing fault-tolerant services using the state machine approach:
a tutorial. ACM Computing Survey22(4):299-319, December 1990.

Bruce Schneier. Attack trends 2004 and 2005M Queue3(5), June 2005.

A. Z. Spector, D. Daniels, and D. Duchamp. Distributed Transactions for Reliable Sys-
tems. INACM SOSP1985.

M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing With Disaster: Surviving
Misbehaved Kernel Extensions. @SDI, 1996.

22

[SFLO7]

[SGF+02]

[son]

[sal]
[SS98]

[sym]
[Tri02]

[WHBMO0]

[WLO6]

[WS92]

[YLZ04]

[2C03]

S. Stolfo, D. Fan, and W. Lee. Credit card fraud detection using meta-learning: Issues
and initial results. InPAAAI Workshop on Al Approaches to Fraud Detection and Risk
Management1997.

R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou. Imple-
mentation of Argus Specification-based anomaly detection: a new approach for detecting
network intrusions. IACM CC$ 2002.

Sonasoft disaster recovery solutions. http://www.sonasoft.com/solutions/disaster.asp.
Sql server. http://www.microsoft.com/sql/default.mspx.

D. P. Siewiorek and R. S. SwaReliable Computer Systems: Design and Evaluation
K Peters, 3rd edition, 1998.

Symantec livestate recovery products provide fast, reliable and cost-effective system and
data recovery. http://www.symantec.com/press/2004/n041005.html.

K. S. Trivedi. “Probability and statistics with reliability, queuing and computer science
applications”. John Wiley and Sons, 2002.

G. Weikum, C. Hasse, P. Broessler, and P. Muth. Multi-level recoverythénNinth
ACM SIGACT-SIGMOD-SIGART Symposium of Principles of Database Sygages
109-123, Nashville, Tenn, April 1990.

H. Wang and P. Liu. Modeling and Evaluating the Survivability of an Intrusion Tolerant
Database System. IAroc. ESORICS (European Symposium on Research in Computer
Security) 2006.

G. Weikum and H.-J. Schek. Concepts and applications of multilevel trans. and open
nested trans. In Ahmed K. Elmagarmid, editbatabase Transaction Models for Ad-
vanced Applicationschapter 13. Morgan Kaufmann Publishers, Inc., 1992.

M. Yu, P. Liu, and W. Zang. “Self Healing Workflow Systems under Attacks”.2#th
IEEE Int’'l Conf. on Distributed Computing Systerd®04.

Ningning Zhu and Tzi-Cker Chiueh. Design, implementation, and evaluation of repairable
file service. InProceedings of the IEEE Dependable Systems and Nety2)&8.

23

