
Kruiser: Semi-synchronized Non-blocking Concurrent
Kernel Heap Buffer Overflow Monitoring

Donghai Tian†∗, Qiang Zeng†, Dinghao Wu†, Peng Liu†

†Penn State University
∗Beijing Institute of Technology
{donghai, quz105, dinghao, pliu}@psu.edu

ABSTRACT
Kernel heap buffer overflow vulnerabilities have been ex-
posed for decades, but there is still no practical countermea-
sure that can be applied to the OS kernel. Previous solutions
either suffer from high performance overhead or compati-
bility problems with the existing kernel and hardware. In
this paper, we present Kruiser, a concurrent kernel heap
buffer overflow monitor. Unlike conventional methods, the
security enforcement of which are usually inlined into the
kernel execution, we introduce a concurrent monitor pro-
cess, which decouples security mechanisms from the kernel’s
normal execution, leveraging the increasingly popular mul-
ticore architectures. To reduce the synchronization over-
head between the monitor process and the running kernel,
we design a novel semi-synchronized non-blocking monitor-
ing algorithm, which enables an efficient runtime detection
on live memory without incurring false positives. To pre-
vent the monitor process from being tampered and provide
guaranteed performance isolation, we utilize the virtualiza-
tion technology to run the monitor in a trusted environment
without affecting performance. We have implemented a pro-
totype of Kruiser based on Linux and the Xen hypervisor.
The evaluation shows that Kruiser can detect realistic kernel
heap buffer overflow attacks effectively with minimal over-
head. It imposes 2.7% throughput reduction on Apache and
negligible performance overhead on SPEC CPU2006.

1. INTRODUCTION
Buffer overflows have been comprehensively studied for

many years, but they remain as most severe vulnerabili-
ties. According to the National Vulnerability Database, 319
buffer overflow vulnerabilities were reported in 2010, and
239 of them were marked as high severity [37].

Buffer overflows can be roughly divided into two cate-
gories: stack-based buffer overflows and heap-based buffer
overflows. Both exist in not only user space but also kernel
space. Compared with user-space buffer overflows, kernel-
space buffer overflow vulnerabilities are more severe in that
once such a vulnerability is exploited, attackers can override
any protection mechanism. Recently, more and more real-
istic buffer overflow exploits have been released in modern
operating systems including Linux [50], OpenBSD [53] and
the latest Windows 7 system [33].

Many effective countermeasures against stack-based buffer
overflows have been proposed, some of which, such as Stack-
Guard [12] and ProPolice [24], have been widely deployed in
compilers and commodity OSes. On the other hand, practi-

cal countermeasures against heap-based buffer overflows are
few, especially in kernel space. To our knowledge, there are
no practical mechanisms that have been widely deployed de-
tecting kernel space heap buffer overflows. Previous meth-
ods suffer from two major limitations: (1) some of them
perform detection before each buffer write operation [4, 25,
36, 26, 44], which inevitably introduce considerable perfor-
mance overhead. This kind of inlined security enforcement
can heavily delay the monitored process when the moni-
tored operations become intense; (2) some approaches do not
check heap buffer overflows until a buffer is deallocated [42,
3], so that the detection occasions entirely depend on the
control flow, which may allows a long time for attackers to
compromise the system. Other approaches [45, 14] either
depend on special hardware or require the operating system
to be ported to a new architecture, which are not practical
for wide deployment.

In this paper, we present Kruiser, a concurrent kernel
heap overflow monitoring system. Unlike previous solutions,
Kruiser utilizes the commodity hardware to achieve highly
efficient monitoring with minimal changes to the existing
OS kernel. Our high-level idea is consistent with the ca-
nary checking methods, which first place canaries into heap
buffers and then check their integrity. Once a canary is
found to be tampered, an overflow is detected.

Different from conventional canary-based methods that
are enforced by the kernel inline code, we make use of a sep-
arate process, which runs concurrently with the OS kernel
to keep checking the canaries. To address the concurrency
issues between the monitor process and OS kernel, we de-
sign an efficient data structure that is used to collect canary
location information. Based on this data structure, we pro-
pose a novel semi-synchronized algorithm, by which the heap
allocator does not need to be fully synchronized while the
monitor process is able to check heap canaries continuously
without being blocked. The monitor process is constantly
checking kernel heap buffer overlows in an inifinite loop. We
call this technique kernel cruising, and hence the name of
our prototype, Kruiser. Our semi-synchronized cruising al-
gorithm is non-blocking. The kernel execution is not blocked
by monitoring, and monitoring is not blocked by the kernel
execution. Thus the performance and other impacts on ker-
nel execution characteristics are very small on a multicore
architecture.

To further reduce the memroy and performance overhead,
we have explored kernel heap management design properties
to collect heap buffer region information at page level instead
of individual buffers. This obervation enables us to design

1



a static fixed-size data structure. The normal approach is
to maintain the collection of canary addresses of live buffers
in a dynamic data structure, which requires hooking per
buffer allocation and deallocation. Instead of interposing
per heap buffer operation, we explore the characteristics of
kernel heap management and hook the much less frequent
operations that switch pages into and out of the heap page
pool, which enables us to use a fix-sized static data structure
to store the metadata describing all the canary locations.
Compared to collecting canary locations in a dynamic data
structure, we avoid the overhead of data structure growth
and shrink; more importantly, it reduces overhead and com-
plexity of the synchronization between the monitor process
and the canary collecting code. This novel use of static data
structures has low memory overhead, facilitates highly effi-
cient monitoring, and reduces the maintenance overhead.

To prevent the monitor process from being compromised
by attackers, we take advantage of virtualization to deploy
the monitor process in a trusted execution environment. To
achieve out-of-the-box monitoring,1 one can run the moni-
tor process in a trusted VM’s user space and perform virtual
machine introspection via VMM. However, frequent mem-
ory introspection introduces high performance overhead. To
address this problem, Kruiser employs the Direct Memory
Mapping technique, by which the monitor process can per-
form frequent memory introspection with only one-time in-
volvement of the VMM, and thus reduces the performance
overhead.

In summary, we make the following contributions:

• Semi-synchronized concurrent monitoring: We
propose a novel non-blocking concurrent monitoring
algorithm, in which neither the monotor process nor
the monitored process needs to be fully synchronized
to eliminate concurrency issues such as race conditions.
We call this semi-synchronized.

• Kernel cruising: The novel cruising idea has been
recently explored [59, 23]. It is nontrivial to apply this
to kernel heap cruising.

• Page-level buffer region vs. individual buffers:
We explore specific kernel heap management design
properties to keep meta data at page level instead of
at individual buffer level. This enables very efficient
heap buffer metadata bookkeeping via a static fixed-
size array instead of dynamic data structures and thus
reduces the performance overhead dramatically.

• Out-of-the-box monitoring via direct memory
mapping: To protect our monitor process, we ap-
ply direct memory mapping through virtualization to
achieve out-of-the-box monitoring.

We have implemented a prototype of Kruiser based on
Linux and the Xen hypervisor. To achieve the concurrent
monitoring, we leverage the multiprocessor architecture that
is very popular in recent commodity hardware. We evalu-
ated the effectiveness of Kruiser by exploiting the heap buffer
overflow vulnerabilities which are deliberately introduced by

1The other two options are to run the monitor process inside
the same VM and inside VMM. In-the-box monitoring is not
secure unless special treatment such as SIM [48] is enforced.
Inside-VMM monitoring involves many VM-Exits, thus the
overhead can be unacceptable.

us. The experiment results show that Kruiser can detect ker-
nel heap overflows effectively. In terms of performance and
scalability, our kernel cruising approach is practical—it im-
poses negligible performance overhead on SPEC CPU2006,
and the throughput slowdown on Apache is 2.7% in average.

2. CHALLENGES
In this section, we present the challenges we have encoun-

tered during the design and implementation of this work.
Their solutions are presented in the next section.

C1. Synchronization. Since the monitor process checks
heap memory which is shared and modified by other pro-
cesses, synchronization is vital to ensure the monitor process
locate and check live buffers reliably without incurring false
positives.

Lock-based approach: A straightforward approach is to
walk along the existing kernel data structures used to man-
age heap memory, which is commonly accessed in a lock-
based manner. This requires the monitor process to follow
the locking discipline. When the lock is held by the moni-
tor process, other processes may be blocked. On the other
hand, the monitor process needs to acquire the lock to pro-
ceed. Both the kernel performance and monitoring effect
will be affected using the lock-based approach. Another ap-
proach is to collect canary addresses in a separate dynamic
data structure such as a hash table. By hooking per buffer
allocation and deallocation, the canary address is inserted
into and removed from the hash table, respectively. How-
ever, it still does not reduce but migrate the lock contention,
since the monitor process and other processes updating the
hash table are synchronized using locks.

Lock-free approach: Scanning volatile memory regions with-
out acquiring locks is hazardous [23], which usually needs to
suspend the system to double check when an anomaly is de-
tected. The whole system pause is not desirable and some-
times unacceptable. Another approach is to maintain the
collection of canary addresses in a lock-free data structure.
All processes update and access the data structure in a non-
blocking manner. However, the experiments in our previous
work [59], using the state-of-the-art extensible lock-free hash
table [47] showed that the slowdown for each pair of buffer
allocation and deallocation is more than 5X on average, al-
though the scalability is much better than the lock-based
counterpart. The reason is that the contention between ac-
cessing processes still leads to high overhead.

To achieve highly efficient concurrent monitoring, we de-
signed a semi-synchronized algorithm which introduces zero-
contention into kernel operations and performs non-blocking
heap monitoring without incurring false positives or sus-
pending the system.

C2. Self-protection. As a countermeasure against buffer
overflow attacks, our component can become an attack tar-
get itself. We rely on a monitor process that keeps checking—
that is, cruising—the kernel heap integrity. The busy pro-
cess can be an explicit attack target. By killing the monitor
process, attackers completely disable the detection. Attack-
ers can also tamper or manipulate the data structure needed
by our component to mislead or evade the detection. Thus
we need to protect the safety of the monitor process and
ensure the integrity of related data structures.

C3. Compatibility. Kernel heap management is among

2



Figure 1: Overview of Kruiser.

the most important components in OS kernels, whose data
structures and algorithms are generally well designed and
implemented for efficiency. Thus, the concurrent heap mon-
itoring should not introduce much modification for heap
management. Moreover, the solution should be compatible
with the existing systems including hardware.

3. OVERVIEW
Kruiser attaches one canary word at the end of each heap

buffer and runs a separate monitor process, which keeps
scanning, or cruising, the canaries to detect buffer overflows
and runs concurrently with the monitored system. In this
section we present an overview of the Kruiser architecture
and the design choices addressing the challenges presented
in the previous section. As shown in Figure 1, the moni-
tor process is run in a separate VM as the monitored OS
to strengthen self-protection. The heap buffer metadata is
kept in the monitored VM to achieve efficient updating. The
monitor cruises over the heap metadata via an efficient tech-
nique called direct memory mapping. Once a kernel heap
buffer canary is found corrupted, an overflow is reported.
In this architecture, the monitor process needs to retrieve
the canaries reliably, while the monitored system may be
deallocating the buffers and heap pages.

To address this synchronization challenge (C1),
without imposing high overhead, we explore the character-
istics of kernel heap management, and propose to interpose
heap page allocation and deallocation, through which we
maintain concise metadata describing canary locations in
a separate efficient data structure. Compared to interpose
per buffer allocation and deallocation, the interposition is
lightweight and the resultant overhead is much lower. The
per page metadata is concise, which enables us to use a fix-
sized static data structure to store it. Compared to using
a concurrent dynamic data structure to collect canary ad-
dresses, the contention due to synchronizing data structure
growth and shrink and the overhead due to data structure
maintenance (node allocation and deallocation) are com-
pletely eliminated. More importantly, as the monitor pro-
cess traverses our own data structure rather than relying on
existing kernel data structures, it is more flexible to design
the synchronization algorithm, i.e. the monitor process do
not need to follow the synchronization discipline imposed by
the kernel data structure. Therefore, we are able to design
a highly efficient semi-synchronized non-blocking algorithm,
which enables the monitor process to constantly check the
live memory of the monitored kernel without incurring false
positives.

To address the self-protection challenge (C2), we
apply the virtualization technology to deploy the monitor
process into a trusted environment (Figure 1). To ensure the
same efficiency as in-the-box monitoring, we introduce the

Direct Memory Mapping (DMM) technique, which allows
the monitor process to access the monitored OS memory
efficiently. To protect our data structure from being over-
flowed or underflowed, we apply two write-protected pages
surrounding our data structure. More comprehensive pro-
tection mechanisms are presented in Section 7.

To address the compatibility challenges (C3), we
make little change to the existing kernel heap management,
relying on the commodity hardware. Specifically, we hook
the allocation/deallocation that adds/removes pages into/from
the heap page pool to update the corresponding heap meta-
data in our data structure, for which we make use of the
existing page allocator to allocate kernel pages beforehand.
On the other hand, the monitor component is located in an-
other protection domain, which utilize the DMM technique
to cruise over the kernel heap by looking up the metadata.

4. KERNEL CRUISING
In this section, we present the semi-synchronized non-

blocking kernel cruising algorithm. We introduce the data
structure used in the algorithm in Section 4.1. We discuss
potential race conditions in Section 4.2 and describe our al-
gorithm in Section 4.3.

4.1 Page Identity Array
Kernels usually maintain heap metadata in dynamic data

structures. For example, Linux kernel uses a set of lock-
based lists to describe the heap page pool. It is tempting
to walk along the existing data structures to check heap
buffers. This way the concurrent monitor process has to
follow the locking discipline, which would introduce intense
lock contention. Another concurrent approach, as used in
kernel memory mapping and data analysis for kernel in-
tegrity checking [23], is to check without acquiring locks and
freeze the monitored VM for double-check to avoid false pos-
itives, which may require suspending the VM frequently.

Instead of relying on kernel-specific data structures, we
maintain a separate structure called Page Identity Array
(PIA). Its basic form is a static array data structure with
each entry recording the identity of a page frame. A vari-
ety of page identity information can be of interest, such as
per page signature, access control, accounting and auditing
data. With regard to concurrent heap monitoring, a PIA
entry records whether a page frame is used for heap mem-
ory, and if so, the metadata that is used to locate canaries
within the page. The first entry corresponds the first page
frame, and so forth. Since the kernel memory address space
is fixed, the size of PIA structure can be pre-determined.
This way we only need to hook functions that add pages
into the heap page pool and that remove pages from it, up-
dating metadata in the corresponding entries. The monitor
traverses the PIA structure and check canaries according to
the stored metadata. Compared to interposing per buffer
allocation and deallocation and collecting canary addresses
in a dynamic data structure, the overhead due to function
hooking and data structure maintenance is largely reduced.
We postpone details about metadata and memory overhead
analysis in Section 5.

The idea of using a fixed-size data structure is due to the
insight into kernel heap management. We assume that a
kernel page, if used for heap memory, is divided into buffer
objects of equal size and that all the buffers in this page
are arranged as an array, which is true in most commodity

3



systems, such as Linux, Solaris, and FreeBSD. Given a heap
page and its initial buffer object address and size, the mon-
itor process can locate all the buffers within this page, such
that the metadata stored in each PIA entry can be small.
Before a process (or a kernel thread)2 adds a page into the
heap page pool, the canaries within the page are initialized
and the corresponding PIA entry is updated. By scanning
the canaries within each page, the monitor process detects
buffer overflows. Although some buffer objects are not allo-
cated and some canary checking may be not necessary, the
simple read operations do not introduce much overhead. For
64-bit systems with large address space and physical mem-
ory, however, the flat PIA structure is not scalable enough
and sparse kernel heap pages lead to a concern of significant
ineffective scanning. In such as, a multi-level PIA similar to
page table can be used.

4.2 Race conditions
Exploring the characteristics of kernel heap management,

we proposed the static PIA structure, which mitigates heap
monitoring from kernel-specific heap data structure accesses
and supports highly efficient random access. Nevertheless,
synchronization between the monitor process and processes
updating page identities is still an issue. For example, when
the monitor process reads an entry, another process may be
updating it. Without synchronization, the consistency of
PIA entries cannot be ensured, which implies the monitor
process cannot retrieve heap buffers reliably.

Before we present the kernel heapcruising algorithm, we
first discuss the potential race conditions for sharing the PIA
structure, which motivate our semi-synchronized design in
Section 4.3. Three categories of processes need to access
the PIA structure: the monitor process, processes updating
PIA entries when pages are added into and removed from
the pool, respectively. When multiple processes access the
PIA structure, a variety of race conditions can occur, some
of which are subtle.

Non-atomic entry write: As the update of a PIA entry
is not atomic, a race condition occurs if we allow multiple
processes to update the same entry simultaneously, which
would corrupt the entry. Lock-based synchronization is sim-
ple, but it incurs high performance overhead and blocks heap
operations.

Non-atomic entry read: When the monitor process
is reading a PIA entry, another process may be updating it.
However, as the read and update of an entry are not atomic,
the monitor process may read inconsistent entry value.

Time of check to time of use (TOCTTOU): For
each entry if the corresponding page is in the heap pool, the
monitor process checks canaries within that page, during
which, however, the page may be removed from the pool
and used for other purposes, such that false alarms may be
issued.

To avoid false alarms, it is tempting to double check whether
the page has been removed from the heap page pool when a
canary is detected tampered. Specifically, a flag field indi-
cating whether the page is in the pool is contained in each
entry. A process removing the page out of the heap page
pool resets the flag; when a heap buffer corruption is de-
tected, the monitor process double checks the flag to make
sure the page is still in the pool. A buffer overflow is re-
ported only when a canary is tampered and the flag in the

2In this paper we will use the two terms interchangeably.

PIA entry is not reset. However, it cannot avoid the ABA
hazard as discussed below.

ABA hazard: An ABA hazard occurs when one process
reads a value A from some position, and then needs to make
sure the position is not modified since last read by read-
ing it again and comparing the second read value with A.
However, between the two reads, other processes may have
updated the position from value A to B then back to A. In
our case, it may lead to an ABA hazard if the monitor pro-
cess intend to determine whether the entry has been updated
by reading the flag twice, considering that other processes
may remove the page from the heap page pool and then add
it back between the two reads, such that the idea of double-
checking the flag can still lead to false alarms due to ABA
hazards.

Compared to the idea of walking along existing kernel
data structures, we apparently have conquered nothing ex-
cept migrating the synchronization problems to the PIA
structure. However, as presented below, we propose a semi-
synchronized algorithm to resolve all the problems without
incurring false positives or high synchronization overhead.

4.3 Semi-synchronized Non-blocking Cruising
We propose an efficient semi-synchronized non-blocking

kernel cruising algorithm, as shown in Figure 2, that works
with the PIA structure. It resolves the concerns of race con-
ditions without introducing complex synchronization mecha-
nisms, such as fine-grained locks and intricate lock-free data
structures.

We add an unsigned integer field version in each entry,
which records the “version” of the corresponding page. It
is initialized to be an even number when the correspond-
ing page is not in the heap page pool. Whenever a page is
added into or removed from the pool, its corresponding ver-
sion number is incremented by one, so that an odd version
number indicates a heap page, and an even number indicates
a non-heap page. Because the size of the version field is one
word, the read and write of a version value is atomic, which
is critical for the correctness of our algorithm.

Avoid Concurrent Entry Updates: The kernel com-
monly has its own synchronization mechanisms to prevent
one page frame from being manipulated for inconsistent pur-
poses at the same time. For example, Linux function kmem -
getpages and kmem freepages, which add page frames into
and remove them from the heap page pool, respectively,
operate on page frame in a critical section with lock pro-
tection. These two functions correspond to AddPage and
RemovePage in Figure 2, respectively. The PIA entry up-
date operations can be put into the critical section of these
two functions; it is thus ensured that two processes cannot
update the same entry simultaneously. By leveraging the
existing synchronization mechanisms in kernel to maintain
the PIA entries, the additional overhead is minimal since
updateing metadata in a PIA entry is fast. As long as the
kernel prevents one page frame from being manipulated by
two processes simultaneously, there should be synchroniza-
tion mechanisms serving for this purpose, so the “free-ride”
is widely available.

Avoid Using Inconsistent Entry Value: Instead of
preventing the monitor process from reading inconsistent
entry value, we allow it to occur. However, we use a double-
check algorithm to detect potential inconsistency and avoid
using inconsistent values. We read the version field in an

4



1 //Add a page into the heap page pool
2 AddPage(page){
3 ...
4 /∗ Inside critical section ∗/
5 Initialize all the canaries within the page
6 Update the metadata in PIA[page];
7 smp wmb(); // This write memory barrier enforces a

store ordering
8 PIA[page].version++;
9 ...

10 }
11

12 //Remove a page out of the heap page pool
13 RemovePage(page){
14 ...
15 /∗ Inside critical section ∗/
16 for (each canary within the page)
17 if (the canary is tampered)
18 alarm(); // A Buffer overflow is detected
19 PIA[page].version++;
20 ...
21 }
22

23 Monitor(){
24 uint ver1, ver2;
25 for (int page = 0; page < ENTRY NUMBER; page++)

{
26 ver1 = PIA[page].version;
27 if (!(ver1 % 2))
28 continue; // Bypass non−heap page
29

30 smp rmb(); // This read memory barrier enforces a
load ordering

31 Read the metadata stored in PIA[page];
32 smp rmb();
33 ver2 = PIA[page].version;
34 if (ver1 != ver2)
35 continue; // Metadata was updated during the

read
36

37 for (each canary within the page){
38 if (the canary is tampered)
39 DoubleCheckOnTamper(page, ver1);
40 }
41 }
42 }
43

44 DoubleCheckOnTamper(page, ver){
45 uint ver recheck = PIA[page].version;
46 if (ver recheck != ver)
47 return; // The page was already removed/reused
48 alarm(); // A buffer overflow is detected
49 }

Figure 2: Kruiser monitoring algorithm.

entry first (Line 26), and then retrieve other entry fields
followed by another read of the version field (Line 33). The
page is to be scanned if and only if the two reads of the
version field retrieve identical odd version numbers. Here
we assume the wraparound of the version value does not
occur between the two reads. Considering that page frame
switch in and out of the kernel heap pool is infrequent, it
very unlikely that the version number wraps around a 32-bit
unsigned integer between the two reads.

Specifically, assume there is a non-heap page frame and
the AddPage function adds it into the heap page pool. In its
critical section it first updates the metadata and then the
version number (Line 8) in the corresponding page entry,
such that if the monitor process reads the version number of
the entry being updated and the read is before the version

number update (Line 8), it will retrieve an even number,
which indicate a non-heap page. The monitor process will
bypass this page (Line 27) according to our algorithm. A
write memory barrier (Line 7) is inserted before the version
number update, which preserves an observable update order.
It is a convention to assume a sequential consistency memory
model in the parallel computing literature when describing
a concurrent algorithm; however, the observable update se-
quence [35] is vital to the correctness of our algorithm, so
we point it out explicitly.

The version number is not incremented until RemovePage
removes the page from the pool. It does not need write mem-
ory barriers around the version update because the enter and
exit of a critical section imply a full memory barrier, respec-
tively. Therefore, as long as the two reads of the version
field retrieves identical odd values, the retrieved metadata
values are consistent. Two read memory barriers (Line 30
and 32) are inserted into the Monitor function, such that an
observable load ordering is enforced among the reads of the
version number and metadata. But note that the read and
write memory barriers are not needed on x86 and AMD64
platforms [34], as they already preserve the loads and stores
orders we need.

Identify TOCTTOU and ABA Hazards: Without
locks or other synchronization primitives, it is difficult to
avoid TOCTTOU and ABA hazards. Rather than avoid-
ing the hazards, the algorithm takes a different approach to
recognizing potential hazards to avoid false alarms. When
a canary is found changed, the monitor process does not
report an overflow immediately. Instead, it makes sure the
page being checked has not ever been removed out, which
is indicated by the version number again. As long as the
version number does not change compared to the last read
(Line 46), it can be determined that the page has persisted
as a heap page; in this situation, if a canary is found cor-
rupted, a buffer overflow is reported without concerns of
false positives.

The non-blocking algorithm is constructed using simple
reads, writes, and memory barriers without introducing com-
plicated and expensive synchronization mechanisms. The
monitoring is wait-free as it guarantees progress in a finite
steps of its own execution; i.e., it is non-blocking. The mon-
itor process reads version numbers to determine its control
flow, so it is lightly synchronized, while other processes ma-
nipulating heap pages make progress without being synchro-
nized or blocked by the monitor process. In other words, the
synchronization is one-way. That is why we call it a semi-

synchronized non-blocking cruising. It is semi-synchronized
in anther sense. On PIA entries, write-write is synchronized
with a free-ride from the existing kernel functions, while
read-write is not synchronized. It resolves the concern of a
variety of subtle race conditions without the need of freezing
the entire system for recheck. It does not have false positives
and enables efficient concurrent heap monitoring.

5. SYSTEM IMPLEMENTATION

5.1 Background
We first describe the slab allocator schema3 used in Linux

for kernel heap management. The slab allocator uses cache

3The similar schema is also widely used in other commodity
systems, such as Solaris and FreeBSD

5



Custom

Driver

User Page 

Table

Page Identity 

Array

driver1

driverN

driver2

App

2

AppApp

1

3 5 7 6

4

8
0

Figure 3: Kruiser Architecture. The numbers in the
small circle indicate Kruiser’s work flow.

to organize and manage heap buffer objects. Each cache is a
“store” of objects of the same type (specific caches), e.g. the
cache for task struct type, or the same size (generic caches,
where kmalloc allocates objects).

A cache is divided into slabs; each slab consists of one or
more contiguous page frames and arranges buffer objects of
the same size in an array. The metadata (slab and object
descriptors) of a slab, which is used to describe the object
arrangement and status (allocated or deallocated) within the
slab, can be stored in or out of the slab. Slabs are linked
into lists; a cache grows by allocating new slabs and adding
them into its slab lists.

5.2 Architecture
We developed a prototype of Kruiser based on 32-bit Linux

and the Xen hypervisor. As Figure 3 shows, the architec-
ture can be divided into three parts: VMM, Dom0 VM, and
DomU VM (the monitored VM). Dom0 VM contains the
monitor process and the custom driver, which reside in user
space and kernel space, respectively. The custom driver is
used to help the monitor process release memory with its
page tables retained. A tiny component, namely Memory
Mapper, inside the VMM is used to map the kernel mem-
ory of the monitored VM to the page table entries retained
above. The Page Identity Array and the interposition code
reside in the the kernel space of DomU VM.

5.3 Direct Memory Mapping
To achieve out-of-the-box monitoring, a common method

is to run a monitor process in a trusted VM’s user space
and perform virtual machine introspection (VMI) via the
underlying VMM. However, frequent memory introspection
would incur high performance overhead. Each such oper-
ation requires VMM to walk the target VM’s page table
and map the machine frame numbers (MFN) to the moni-
tor process. To address this problem, we introduce Direct
Memory Mapping (DMM), by which the monitor process
can perform frequent memory introspection with only one-
time involvement of the VMM. The basic idea is to let the
VMM manipulate the page table of the monitor process such
that the user-space monitor can access the kernel memory
of the target OS directly. Figure 4 illustrates the DMM ar-
chitecture. Basically, the working process of DMM can be
divided into three stages.

First, the Monitor Process allocates a chunk of memory
whose size is determined by the number of pages that are
supposed to be used by the kernel heap ( 0© in 3). For

Monitor Process Target OS Kernel

Machine Physical Memory

Page

directory

Page

directory

Page table Page table

Figure 4: The direct memory mapping mechanism.

Linux, the kernel heap only resides in the pages that are
directly mapped by the OS kernel. In a 32-bit operating
system, the maximum size is 896MB even if the machine
physical memory size is bigger than 896MB. The goal of this
stage is to create a contiguous range of virtual addresses. By
properly manipulating their corresponding page table entries
(PTEs), the VMM can allow the monitor process using its
private virtual addresses to access the memory of the target
OS kernel. However, due to the demand paging mechanism
adopted by Linux, the PTEs are not actually established
when the virtual addresses are created. Therefore, we need
to access all the created memory area before operating on
these PTEs.

Second, the Monitor Process notifies the Custom Driver
to recycle the newly allocated pages ( 1©), but keeping the
PTEs unchanged. This step is necessary because the Moni-
tor Process only need the new virtual addresses but does not
use the associated allocated pages; getting these pages back
to the trusted VM will save a lot of memory. For this pur-
pose, we take four steps: 1) The Custom Driver first walks
the page table of the Monitor Process to get the PTEs ac-
cording to the virtual addresses that belonge the Monitor
Process ( 2©). 2) Then, with these identified PTEs, the Cus-
tom Driver finds the associated page descriptors that are
used for the page frame management by the OS. 3) After
that, the Custom Driver clears the relevant flags of these
page descriptors (e.g., active flag), and resets their reference
counters, map counters as well as other related information.
4) Finally, the Custom Driver invokes the API of the buddy
system (i.e., free page()) to release the page frames.

Third, after the Custom Driver finishes recycling pages, it
informs the Memory Mapper to perform DMM for the Mon-
itor Process ( 3©). By looking up the DomU’s physical-to-
machine (P2M) table ( 4©), the Memory can get all the MFNs
of the DomU. With these mapping information needed, the
Memory Mapper updates the PTEs of the Monitor Process
accordingly. More specifically, given the newly created vir-
tual address, the Memory Mapper walks the User Page Table
to find the corresponding PTEs ( 5©). Then it changes their
page frame numbers to the associated MFNs that are found
in the P2M table. By doing so, the Monitor Process can
traverse the entire kernel of the target OS with its own page
table. In other words, when the Monitor Process uses its
new private virtual addresses, it can read/write the memory
of the target OS directly.

Once the Page Identity Array is allocated, it invokes a
hypercall to notify the underlying VMM ( 6©), which then
informs the monitor process to begin cruising over the kernel
heap ( 7©)( 8©), relying on the PIA.

Reducing TLB Miss. Considering the big range of mem-

6



is canary

Object Object Object Object

Object

Object
Padding for 

word alignment

Padding for cache 

line alignment

Specific

cache

General

cache

Color

Slab

descriptor

Object

descriptor

Padding for cache 

line alignment

The first object

The first object

(a) Attach one canary 

to each object

(b) Put one additional canary 

before the first object

Figure 5: Inserting canaries into kernel objects.

ory area that the Monitor Process may need to access, the
kernel cruising will incur great TLB miss when a large num-
ber of kernel slabs are produced. To address this problem,
we exploit the extended paging mechanism that is supported
by commodity microprocessors. Specifically, we set the Page
Size flag in the page directory entries, enabling the size of
page frames to be 2MB instead of 4KB (the page frame will
be 4MB in size if it is in None-PAE mode). It is worth men-
tioning that we also need the hypervisor to support the ex-
tended paging. Fortunately, Xen (with PAE enabled) mainly
uses 2MB super pages to allocate memory for guest VMs.
On the other hand, to ensure the extended paging working
properly, we require the starting virtual address allocated for
the monitor process should be 2MB-aligned. To meet this re-
quirement, the Monitor Process needs to allocate 2MB extra
memory during the first stage, and then adjust the starting
virtual address to be 2MB-aligned before performing DMM.

5.4 Placing canaries
To detect underflows as well as overflows, it is straightfor-

ward to place two canaries surrounding each buffer. How-
ever, since kernel threads usually assume the allocated buffer
is cache line aligned, by reserving a word for the canary
at the beginning of each buffer, the assumption is broken,
which may stress the TLB and impose considerable perfor-
mance overhead as all dynamic kernel objects are not cache
line aligned. The scheme is adopted in Linux when the slab
debugging option is enabled, and We exploit the property of
buffer objects within each slab, which are arranged as one
array, such that even we put only one single canary at the
end of each buffer, we can still detect underflows: the un-
derflow of one object will corrupt the canary of its preceding
object. This way the cache line alignment is not changed.

As shown in Figure 5(a), the placement of canaries in
objects for specific caches and general caches are a little
different. For objects in specific caches, each of which is used
for a specific data type, the object size is fixed. We can place
the canary right after the (word-aligned) object. The cache
line alignment of the next object is not affected. For objects
in general caches, the real object may be smaller than the
buffer, so the canary is put at the end of each buffer. When
kmalloc is invoked, the requested buffer size is incremented
by one word to accommodate the canary.

Although the scheme above works well to detect under-
flows (and overflows), but can not deal with underflows oc-
curred in the first object, as there is no canary preceding
it. To tackle this issue, as shown in Figure 5(b), we exploit
the existing infrastructure to add a canary before the first
object. Specifically, if the slab descriptor is located rightly
before the first object, the canary placed at the end of the
slab descriptor buffer(, note that the slab descriptor itself is

1 struct PIA entry{
2 unsigned int version;
3 short mem; // the starting address of the first object
4 short slab size; // the size of the slab descriptor
5 int obj size; // the actual size used by each object
6 int buffer size; // the whole size for each object
7 int number; // the number of objects in this slab
8 };

Figure 6: PIA entry.

allocated from specific caches) suffices; or if there is a slab
color,4 we put a canary in the last word of this color.

The canary value is the XOR result of the buffer address
and a secret key, such that even a canary is leaked due over-
read bugs [52], it is difficult to guess other canaries without
the buffer addresses. It is intended to defend canary guessing
attackers before the system is compromised. We will present
a scheme in Section 7.1 which prevent attackers from guess-
ing a canary even the system is controlled by attackers.

5.5 Locating canaries
After inserting canaries around kernel buffers, the next

step is to locate and check these canaries for the Monitor
Process. For this purpose, we hook the slab allocations and
de-allocations to store the metadata into the PIA entries, by
which the monitor process can get all the canary locations
in the kernel heap.

The PIA entry consists of several fields, which is shown in
Figure 6. The mem field record the starting address of the
first object within the slab. As each PIA entry corresponds
to one physical page, we only need to remember the last
12 bit of the address, which equals the offset within one
page. For the obj size field, we store the actual object size,
including the size of padding for word alignment.

By adding the starting address of one object and its actual
object size, we can get the canary address. To acquire the
starting address of the next object, the PIA entry contains
the buffer size field, which refers to the whole object size af-
ter adding the canary as well as the padding for cache line
alignment. The num field indicates the number of objects
within a slab. To locate the canary that resides in the slab
descriptor, we record the slab descriptor size in the slab size
field, which additionally includes the size of the object de-
scriptor and the following padding. With the starting ad-
dress of the first object subtracting the slab descriptor size,
we get the starting address of the slab descriptor and then
locate the canary, whose offset within the slab descriptor is
pre-determined. On the other hand, if the slab descriptor is
kept off the slab, we set the value of the slab size to zero.
Accordingly, we employ a different method to locate the ca-
nary before the first object. In particular, we check whether
the starting address of the first object is page-aligned, if not,
it indicates there is a color placed in the front. Then, we
can check the canary safely.

As introduced previously, kernel heap are managed in dif-
ferent slabs, one of which consists of one or more physically
contiguous pages. Therefore, the slab that contains several
pages should correspond to several entries in the PIA. In or-
der to facilitate recording the slab canary information into
PIA entries, we just use the first associated entry to store the
whole information, and keep other associated entries empty.

4A slab color is a padding put in the beginning of each slab
to optimize the hardware cache performance.

7



It is worth mentioning that we utilize the page allocator
to dynamically allocate kernel memory for the PIA data
structure during the kernel’s initialization. Basically, the
total memory occupied by the PIA is determined by the
number of pages in the heap. However, the proportion is
unchanged even if all the physical memory are used by the
kernel heap. Since each PIA entry has only 20 bytes in our
implementation, the memory overhead is as low as 20/4096.

Since the PIA data structure and kernel heap reside in
the same memory area, the PIA may also become the over-
flow target. To address this problem, we allocate two guard
pages surrounding the PIA, and then leverage the shadow
page table (SPT) management subsystem in the Xen hy-
pervisor to set them write-protected. In this way, the hy-
pervisor can trap the event whenever attackers attempt to
overwrite through the guard page. However, this method
is still limited in defending against advanced attacks (e.g.,
manipulating the PIA data structure directly). For more
comprehensive solution, we discuss it further in Section 7.

6. EVALUATION
To evaluate Kruiser, we conducted effectiveness tests and

measured performance overhead. All the experiments were
ran on a Dell Precision Workstation with two 2.26GHz In-
tel Xeon quad-core processors and 6GB memory. The Xen
hypervisor (with PAE enabled) version is 3.4.2. We used
Ubuntu 8.04 (linux-2.6.24 with PAE enabled) as Dom0 sys-
tem and Ubuntu 8.04 (linux-2.6.24 with PAE disabled) as
DomU system (with HVM mode). Moreover, we allocated
1 GB memory and 4 VCPU for this DomU system.

6.1 Effectiveness
To test whether Kruiser can detect heap buffer overflows,

we deliberately introduced three explicit vulnerabilities [43,
50] in the Linux kernel, and then exploited these bugs. In our
first test, we modified the kernel function cmsghdr from user
compat to kern, making it process some user-land data with-
out sanitization. By doing so, malicious users could launch
heap-based buffer overflow attacks via the sendmsg system
call. For the second test, we loaded a vulnerable kernel mod-
ule that is developed by ourselves. The function of this mod-
ule is to use a dynamic general buffer to store certain data
transferred from the user-land. However, the module does
not perform boundary check when it stores the user data.
In the third test, we also employed a loadable kernel module
to export a bug in kernel space. Unlike the second test, we
constructed a specific slab in this module, and allocated the
last object in this slab to store certain user-land informa-
tion [50]. As a result, this vulnerability enables attackers to
overwrite a page next to the slab by transferring large size
data into the kernel object. We then launched three types
of heap-based buffer overflow attacks, respectively. Each at-
tack was executed 10 times and Kruiser detected all these
overflows successfully. The experiment results indicate that
Kruiser is effective in defending against kernel heap buffer
overflow attacks.

6.2 Performance Overhead
To evaluate the performance overhead, we carried out a set

of experiments. First, we executed the micro-benchmark to
measure the overhead at the kernel function call level. Then,
we ran the SPEC CPU2006 Integer benchmark to test the
application-level overhead. Each of these experiments was

Table 1: The average normalized execution time of
kernel APIs with Kruiser and Linux-debug when
compared with original Linux.

Kernel APIs Debug Kruiser
kmem cache create 1.13 1.08
kmem cache alloc(1st) 5.05 1.19
kmem cache alloc(2nd) 23.62 1.06
kmem cache free 5.25 1.06
kmem cache destroy 1.19 1.10

1 02

1.04
Debug Kruiser

1

1.02
g

0.96

0.98

io
n
 t

im
e

0.92

0.94

E
x

ec
u

ti

0.9

Figure 7: SPEC CPU2006 performance (normalized
to the execution time of original Linux).

conducted in three different environments, including original
Linux, Linux with slab debug enabled (referred as Linux-
debug subsequently), and Kruiser.

Micro-Benchmark. To evaluate the performance of the
APIs exported by the slab allocator, we implemented a ker-
nel module that invokes the APIs to allocate specific kernel
objects with varied bytes (from 20 to 400 bytes). Table 1
shows the average execution time of Kruiser and Linux-
debug, which are normalized by the execution time of origi-
nal Linux. For Kruiser, we can see that there are two kernel
APIs with 6% and the other three with less than 20% per-
formance overhead. However, the overhead introduced by
Linux-debug is very significant, especially for kmem cache alloc
and kmem cache free. This is reasonable because we only
add some small code to slab constructions and functions
kmem cache create and kmem cache destroy while Linux-debug
performs lots of extra work (e.g., checking the canaries) dur-
ing object allocations and deallocations.

Application Benchmark. For application-level measure-
ment, we used SPEC CPU2006. Figure 7 shows that the
average performance overhead for both Kruiser and Linux-
debug are negligible. However, we also notice that in some
test cases the performance of Kruiser is not as good as Linux-
debug. The main reason is that the performance of Linux-
debug depends on the number of kernel object allocations
while some applications like libquantum in SPEC only trig-
ger very few kernel buffer allocations. As a result, the en-
forcement code inlined in Linux-debug almost does not get
executed during the tests. On the other hand, Kruiser keeps
checking all the kernel objects including the ones allocated
before the test cases, which inevitably results in some per-
formance overhead even if there isn’t any kernel object allo-
cation.

6.3 Scalability
We tested the throughput of the Apache web server with

8



800

900

1000

n
d

Original
Debug

500

600

700

800
p
er

 s
ec

o
n

Debug
Kruiser

200

300

400

500

eq
u

es
ts

p

0

100

200R
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Concurrency

Figure 8: Throughput of the Apache web server for
varying numbers of concurrent requests.

concurrent requests. In this test, we ran Apache 2.2.8 to
serve a 3.7KB html web page. We used ApacheBench 2.3
on another machine—a Dell PowerEdge T300 Server with
a 1.86G Intel E6305 CPU, 4 GB memory and Ubuntu 8.04
(linux-2.6.24)—to measure the Apache throughput over a
GB LAN network. Each time we issued 10k http requests
with various numbers of concurrent clients. We observed
that the number of the kernel object allocations that are re-
lated to Apache increases along with the concurrency level.
As shown in Figure 8, the relative performance overhead im-
posed by Linux-debug is increased when we add more con-
current http clients. On the contrary, the relative perfor-
mance overhead introduced by Kruiser is almost unaffected
by the concurrency level. Moreover, Kruiser only incurs
about 2.7% performance degradation while Linux-debug im-
poses more than 22% performance slowdown on average.

6.4 Detection Latency
The kernel heap overflows happen when an attacker over-

writes a kernel buffer to alter the content of its adjacent
memory. However, the attacker cannot achieve the exploit
until content of the overwritten memory gets executed or
used in a malicious manner. Therefore, if the detection la-
tency (the average time consumed to scan the whole PIA
once) of Kruiser is short enough, Kruiser is able to detect
the heap overflow before the exploit is achieved.

To evaluate the detection latency, we recorded the average
cruising cycles (i.e., the average time for scanning all the PIA
entries) for different applications in SPEC CPU2006. As
shown in Table 2, 10 of 12 applications’ average cruising cy-
cles are shorter than 6.6 ms, and the other two applications’
are below 7.3 ms. We also recorded the number of scanned
kernel objects in each cruising cycle. The results indicate
that the average cruising cycle is mainly determined by the
average number of scanned kernel objects. Let N be the
number of scanned kernel objects and T the average time
for the monitor process to check a kernel object. We have
C = NT , where C is the cruising cycle. We can reduce the
cruising cycle by keeping N small. One approach is to divide
the PIA entries into different parts, and for each part, we
create a separate monitor process. Another approach is to
only monitor the general buffers in the kernel space, exclud-
ing other kernel objects. This is pratical because attackers
mainly exploit the kernel general buffers in the real world.

7. DISCUSSION

7.1 Guaranteed Detection
Kruiser races with attackers: as long as an exploit cannot

succeed within a cruise cycle after a canary is corrupted, it
is bound to be prevented. In addition, even an attacker has

Table 2: Different cruising cycle for different ap-
plications in the SPEC CPU2006 benchmark (The
cruising number refers to the number of kernel ob-
jects that are scanned in each cruising cycle).

Benchmark
Maximum MinimumAverage Average

cruising cruising cruising cruising
number number number cycle(µs)

perlbench 109,514 103,921 107,274 7,271
bzip2 79,542 75,279 75,754 6,327
gcc 77,992 76,581 77,334 6,372
mcf 81,024 77,623 77,812 6,456
gobmk 79,095 78,576 78,854 6,421
hmmer 79,140 78,730 78,816 6,374
sjeng 79,693 79,044 79,121 6,654
libquantum 80,358 79,387 79,605 6,396
h264ref 79,766 79,383 79,579 6,390
omnetpp 80,887 80,097 80,246 6,524
astar 98,427 81,785 87,550 6,589
xalancbmk 100,481 99,517 99,909 6,915

compromised the system by exploiting an kernel heap buffer
overflow vulnerability and enabled a remote shell with root
privileges, the canary corrupt should be detected before the
attacker keys in the first command, since a cruise cycle is
normally less than 10 milliseconds. In this sense, Kruiser
“raised a bar” for attackers.

However, automatic attack vectors such as worms can be
fast and advanced attacks may directly manipulate our data
structures or try to recover the corrupted canaries using the
keys. Moving the data structures and keys to a separate
VM gains security but can lead to high performance over-
head. Here we present a scheme that prevents attackers
from recovering the corrupted canary, even after the system
has been compromised and entirely controlled by attack-
ers. The scheme combines two techniques. One is adapted
from Secure-In-Vm (SIM) monitoring introduced by Sharif
et al. [48], and the other is Signed Canary.

SIM proposes to put the monitor back into the VM and
provide a one-way memory view to the monitor, such that
the monitor code can access the whole address space, while
the monitored kernel cannot access some memory regions
reserved by the monitor. The discriminative memory views
are enabled by the underlying VMM via page table manipu-
lation. As shown in Figure 9, we can put the data structure
and keys in the reserved memory regions, such that attack-
ers can not access them directly. SIM allows the monitor
to expose some interfaces. We can move the code from the
critical section of AddPage and RemovePage in Figure 2 to
the reserved memory regions and expose two interfaces to
invoke them, respectively. One more check is added in the
protected code to to prevent from duplicate page adding,
such that attackers cannot recover canaries by invoking du-
plicate AddPage. On the other hand, if attackers invokes
RemovePage, the final round of canary checking in the pro-
tected code can detect overflows. Different form SIM that
enforces inlined security enforcement, our monitor process
still runs out of the monitored VM.

Current canary generation algorithm is simple (using XOR).
Capable attackers may infer the value of a canary by, for
example, reading its neighboring canaries, thus recover the
corrupted one. Based on approaches such as SIM to pro-

9



Network

drivers

File

systems

Monitor

Guest VM1

RemovePage

Heap

metadata

Guest VM2

AddPage

VMM

Entry Gate

Entry Gate

Address space2Address space1

Figure 9: Strengthened Kruiser.

tecting the keys, we propose Signed Canary, which prevents
attackers from inferring canaries by enhancing the canary
generation algorithm using applied cryptography. Cryptog-
raphy algorithms for MAC or symmetric encryption can be
used for this purpose. The unique memory address of each
canary is cryptographically hashed or encrypted using se-
cret keys to generate the canary value, such that it is diffi-
cult for attackers to infer a canary without the key. Instead
of using a single key, a group of keys can be used to en-
hance the algorithm: the nth canary in a page frame can
be generated using the mth key in the group, and all the
keys and the mapping of key usage are initialized when the
guest OS is booted. To accelerate the hash calculation, a
64K-entry lookup table for 16-bit values substitution (hash)
can be used, so that a canary can be generated with two
lookups. Our canary generation requires only milliseconds
of resistance, as all buffer overflows can be detected within
one cruising cycle, which implies that the cryptography for
our purpose can be potentially simple and efficient.

With the guaranteed detection, attackers can not hide
their attacks and are bound to be detected within millisec-
onds after compromising the system, unless they know the
exact canary to be corrupted beforehand. Combined with
the checkpoints technique, this enables a system to recover
the nearest clean state.

7.2 Viable Deployment
Large data centers using shipping-containers packed with

thousands of servers each are not uncommon nowadays. There-
fore, scalable deployment is a critical requirement for intru-
sion detection measures in data centers.

Unlike traditional interposition-based monitors, which may
intervene normal functionalities frequently, Kruiser imposes
minimal interference and performs monitoring in parallel
with the monitored VM. In addition, the performance iso-
lation provided by the underlying VMM ensures the two
entities do not abuse computing resources to interfere with
each other, which is a desirable property for both data center
administrators and consumers.

According to our evaluation, Kruiser can normally per-
form a cruising cycle in milliseconds. Assume the acceptable
intrusion detection latency is one second, a single Kruiser
instance is then eligible for monitoring dozens of VMs on a
physical machine. It can alternatively perform a discrimina-
tive scanning based on the importance of services running
on different VMs.

With the popularity of multicore architectures, servers
built with many cores are more and more common. The
hardware evolution trend embraces the concurrent moni-
toring fashion, as the unit cost for a monitor instance de-
creases sharply. The cost will be very low if not negligible

for running additional Kruiser instances on separate cores.
Therefore, the scalability and low cost properties imply that
Kruiser can be practically applied to large data centers and
server farms.

8. RELATED WORK
Countermeasures against buffer overflow attacks:

Over the past few decades, there has been extensive research
in this area. In our previous work Cruiser [59], we divided
existing countermeasures against buffer overflow attacks into
seven categories: (1) buffer bounds checking [57, 18, 4, 25,
36, 44, 2, 15, 55, 5], (2) canary checking [12, 24, 42], (3)
return address shadow stack or stack split [51, 10, 40, 20,
58], (4) non-executable memory [54, 49], (5) non-accessible
memory [22, 56, 19], (6) randomization and obfuscation [7,
54, 11, 6], and (7) execution monitoring [29, 1, 9, 13, 45]. We
refer the readers to Cruiser [59] for more details. Few coun-
termeasures are suitable for high performance kernel heap
buffer overflow monitoring and no one has been deployed in
production systems.

Our work falls under the category of canary checking. Ca-
nary was firstly proposed in StackGuard [12], which tackles
stack-smashing attacks by putting a canary word before the
return address on stack. A buffer overflow that overwrites
the return address would corrupt the canary value first. The
approach has been integrated into GCC and Visual Stu-
dio. Robertson et al. [42] applied canary to protecting heap
buffers. A canary is placed in the beginning of each heap
chunk. When a heap buffer is overrun, the canary of the ad-
jacent chunk is corrupted, which, however, is not detected
until the adjacent chunk is coalesced, allocated, or deallo-
cated; i.e., the detection relies on the control flow. Linux
kernel provides a similar debugging option [3] and has the
limitation likewise. Our approach enforces a constant con-
current canary checking and thus does not have the limita-
tion. In addition, combining the stealth technique protect-
ing the canary generation keys, the Signed Canary proposed
in this paper can resist the attacks inferring canaries based
on leaked ones.

Our previous work Cruiser [59], among the existing coun-
termeasures, first proposed concurrent buffer overflow cruis-
ing in user space using custom lock-free data structures and
non-blocking algorithms; the average performance overhead
on SPEC CPU2006 is 5%. Two variants of Cruiser were
implemented, namely Eager Cruiser and Lazy Cruiser. The
former may incur false positives; although the probability
(1/264 for 64-bit OSes) is extremely low it may be inappro-
priate in kernel space. The latter delays the deallocation of
heap buffers, which is not desirable considering the narrow
kernel memory address space. Unlike Cruiser that hooks
per heap buffer allocation and deallocation, Kruiser inter-
poses the much less frequent operations that switch pages
into and out of the heap page pool and thus further reduces
overhead. The settings and monitoring algorithms are also
very different.

Virtual-machine introspection: Garfinkel and Rosen-
blum [21] first proposed the idea of performing intrusion
detection from outside the monitored system. Since then,
out-of-VM introspection has been applied to control-flow in-
tegrity checking [39, 46], malware prevention, detection, and
analysis [30, 27, 16, 38, 31, 8, 41, 32, 23, 17], and attack re-
playing [28]. They monitor static memory areas (e.g. kernel
code, Interrupt Description Table), interpose specific events

10



such as page faults, trace system behaviors, or detect vio-
lations of invariants between data structures. Considering
the volatile properties of heap buffers, these approaches are
infeasible or impractical for heap buffer overflow detection;
for example, it is not practical to interpose every memory
write on heap. Some approaches detected buffer overflow at-
tacks as a side effect by detecting corrupted pointers or con-
trol flows, but cannot deal with non-pointer and non-control
data manipulation on heap buffer objects. Approaches, such
as kernel memory mapping and analysis, can be misled by
buffer overflow attacks or perform better without heap cor-
ruption. Our approach can be complementary to them pro-
viding lightweight heap buffer overflow detection.

In contrast to out-of-VM monitoring, SIM [48] puts the
monitor back into the VM and enables secure in-VM mon-
itoring by providing discriminative memory views for the
monitored system and the monitor. The stealth technique
proposed in this work can be adapted to protect the keys,
data structures and interposition code.

The most relevant work to our approaches is OSck [23].
OSck conducts partially out-of-VM concurrent monitoring
to verify type-safety of data structures. It accesses exist-
ing heap metadata without acquiring locks and handles race
conditions by suspending the monitored VM for double-
check to avoid false positives. Our monitor runs concur-
rently with the monitored VM without incurring false pos-
itives and thus does not need to suspend the system for
recheck.

9. CONCLUSION
We have presented Kruiser, a semi-synchronized concur-

rent kernel heap monitor that cruises over heap buffers to
detect overflows in a non-blocking and out-of-VM manner.
Unlike traditional techniques that monitor volatile mem-
ory regions with security enforcement inlined into normal
functionalities (interposition) or by analyzing memory snap-
shots, we perform constant monitoring in parallel with the
monitored VM on its live memory without incurring false
positives. Our evaluation has shown that Kruiser is practi-
cal: it imposes negligible performance overhead on the sys-
tem running SPEC CPU2006 and 2.7% throughput reduc-
tion on Apache. The concurrent kernel cruising approach
leverages increasingly popular multicore architectures; its ef-
ficiency and scalability show that it can be applied to data
centers and server farms in practice.

10. REFERENCES
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity. In CCS ’05, pages 340–353.

[2] P. Akritidis, M. Costa, M. Castro, and S. Hand.
Baggy bounds checking: an efficient and
backwards-compatible defense against out-of-bounds
errors. In Usenix Security ’09, pages 51–66.

[3] P. Argyroudis and D. Glynos. Protecting the core:
Kernel exploitation mitigations. In Black Hat Europe

’11.

[4] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient
detection of all pointer and array access errors. In
PLDI ’04, pages 290–301.

[5] K. Avijit and P. Gupta. Tied, libsafeplus, tools for
runtime buffer overflow protection. In Usenix Security

’04, pages 4–4.

[6] E. G. Barrantes, D. H. Ackley, T. S. Palmer,
D. Stefanovic, and D. D. Zovi. Randomized
instruction set emulation to disrupt binary code
injection attacks. In CCS ’03, pages 281–289.

[7] E. Bhatkar, D. C. Duvarney, and R. Sekar. Address
obfuscation: an efficient approach to combat a broad
range of memory error exploits. In Usenix Security

’03, pages 105–120.

[8] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and
X. Jiang. Mapping kernel objects to enable systematic
integrity checking. CCS ’09, pages 555–565.

[9] M. Castro, M. Costa, and T. Harris. Securing software
by enforcing data-flow integrity. In OSDI ’06, pages
147–160.

[10] T. Chiueh and F. Hsu. RAD: A compile-time solution
to buffer overflow attacks. In ICDCS ’01, pages
409–417.

[11] C. Cowan and S. Beattie. PointGuard: protecting
pointers from buffer overflow vulnerabilities. In Usenix

Security ’03, pages 91–104.

[12] C. Cowan and C. Pu. StackGuard: automatic adaptive
detection and prevention of buffer-overflow attacks. In
Usenix Security ’98, pages 63–78, January 1998.

[13] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu,
J. Davidson, J. Knight, A. Nguyen-Tuong, and
J. Hiser. N-variant systems: a secretless framework for
security through diversity. In Usenix Security ’06,
pages 105–120.

[14] M. Dalton, H. Kannan, and C. Kozyrakis. Real-world
buffer overflow protection for userspace & kernelspace.
In Usenix Security ’08, pages 395–410.

[15] E. D.Berger. HeapShield: Library-based heap overflow
protection for free. Tech. report, Univ. of Mass.
Amherst, 2006.

[16] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
malware analysis via hardware virtualization
extensions. CCS ’08, pages 51–62.

[17] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and
W. Lee. Virtuoso: Narrowing the semantic gap in
virtual machine introspection. Oakland ’11.

[18] N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a
realistic tool for statically detecting all buffer overflows
in C. In PLDI ’03, pages 155–167, June 2003.

[19] E. Fence. Malloc debugger.
http://directory.fsf.org/project/ElectricFence/.

[20] M. Frantzen and M. Shuey. StackGhost: Hardware
facilitated stack protection. In Usenix Security ’01,
pages 55–66.

[21] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion
detection. In NDSS ’03, pages 191–206.

[22] R. Hastings and B. Joyce. Purify: Fast detection of
memory leaks and access errors. In the Winter 1992

Usenix Conference, pages 125–136.

[23] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and
E. Witchel. Ensuring operating system kernel integrity
with OSck. ASPLOS ’11, pages 279–290.

[24] IBM. ProPolice detector.
http://www.trl.ibm.com/projects/security/ssp/.

[25] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks,
J. Cheney, and Y. Wang. Cyclone: A safe dialect of C.
In Usenix ATC ’02, pages 275–288, June 2002.

11



[26] R. W. M. Jones and P. H. J. Kelly.
Backwards-compatible bounds checking for arrays and
pointers in C programs. In the International Workshop

on Automatic Debugging, 1997.

[27] S. T. Jones, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Antfarm: tracking processes in a
virtual machine environment. Usenix ATC ’06.

[28] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen.
Detecting past and present intrusions through
vulnerability-specific predicates. SOSP ’05, pages
91–104.

[29] V. Kiriansky, D. Bruening, and S. P. Amarasinghe.
Secure execution via program shepherding. In Usenix

Security ’02, pages 191–206.

[30] K. Kourai and S. Chiba. HyperSpector: virtual
distributed monitoring environments for secure
intrusion detection. VEE ’05, pages 197–207.

[31] A. Lanzi, M. I. Sharif, and W. Lee. K-Tracer: A
system for extracting kernel malware behavior. In
NDSS ’09.

[32] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang.
SigGraph: Brute force scanning of kernel data
structure instances using graph-based signatures.
NDSS ’11.

[33] T. Mandt. Kernel pool exploitation on Windows 7,
2011. https://media.blackhat.com/bh-dc-
11/Mandt/BlackHat DC 2011 Mandt kernelpool-
wp.pdf.

[34] P. E. Mckenney. Memory barriers: a hardware view
for software hackers, 2009.

[35] D. Mosberger. Memory consistency models. Operating

Systems Review, 17(1):18–26, January 1993.

[36] G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: type-safe retrofitting of legacy
software. ACM Trans. Program. Lang. Syst.,
27(3):477–526, 2005.

[37] NIST. National Vulnerability Database.
http://nvd.nist.gov/.

[38] B. D. Payne, M. Carbone, M. Sharif, and W. Lee.
Lares: An architecture for secure active monitoring
using virtualization. Oakland ’08, pages 233–247.

[39] N. L. Petroni, Jr. and M. Hicks. Automated detection
of persistent kernel control-flow attacks. CCS ’07,
pages 103–115.

[40] M. Prasad and T. Chiueh. A binary rewriting defense
against stack based buffer overflow attacks. In Usenix

ATC ’03, pages 211–224.

[41] J. Rhee, R. Riley, D. Xu, and X. Jiang. Kernel
malware analysis with un-tampered and temporal
views of dynamic kernel memory. RAID’10, pages

178–197.

[42] W. Robertson, C. Kruegel, D. Mutz, and F. Valeur.
Run-time detection of heap-based overflows. In LISA

’03, pages 51–60.

[43] D. Roethlisberge. Om-
nikey Cardman 4040 Linux driver buffer overflow, 2007.
http://www.securiteam.com/unixfocus/5CP0D0AKUA.html.

[44] O. Ruwase and M. S. Lam. A practical dynamic buffer
overflow detector. In NDSS ’04, pages 159–169.

[45] B. Salamat, T. Jackson, A. Gal, and M. Franz.
Orchestra: intrusion detection using parallel execution
and monitoring of program variants in user-space. In
EuroSys ’09, pages 33–46.

[46] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor:
a tiny hypervisor to provide lifetime kernel code
integrity for commodity OSes. SOSP ’07, pages
335–350.

[47] O. Shalev and N. Shavit. Split-ordered lists: Lock-free
extensible hash tables. J. ACM, 53(3):379–405, 2006.

[48] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure
in-VM monitoring using hardware virtualization. CCS
’09, pages 477–487.

[49] Solar Designer. Non-executable user stack, 1997.
http://www.open wall.com/linux/.

[50] sqrkkyu and twzi. Attacking the core: Kernel
exploiting notes, 2007. http://phrack.org/issues.html.

[51] StackShield, 2000.
http://www.angelfire.com/sk/stackshield/.

[52] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens,
S. Lachmund, and T. Walter. Breaking the memory
secrecy assumption. In EUROSEC ’09, pages 1–8.

[53] C. S. Technologies. OpenBSD IPv6 mbuf remote
kernel buffer overflow, 2007.
http://www.securityfocus.com/archive/1/462728/30/0/threaded.

[54] The PaX project. http://pax.grsecurity.net/.

[55] T. K. Tsai and N. Singh. Libsafe: Transparent
system-wide protection against buffer overflow attacks.
In DSN ’02, pages 541–541.

[56] Valgrind. http://valgrind.org/.

[57] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken.
A first step towards automated detection of buffer
overrun vulnerabilities. In NDSS’00, pages 3–17.

[58] J. Xu, Z. Kalbarczyk, S. Patel, and R. Iyer.
Architecture support for defending against buffer
overflow attacks. In Workshop Evaluating &

Architecting Sys. Depend., 2002.

[59] Q. Zeng, D. Wu, and P. Liu. Cruiser: Concurrent heap
buffer overflow monitoring using lock-free data
structures. In PLDI ’11. To appear.

12


