
Defending against Packet Injection Attacks in
Unreliable Ad Hoc Networks

Qijun Gu∗, Peng Liu†, Sencun Zhu†, and Chao-Hsien Chu†
∗ Department of Computer Science, Texas State University, San Marcos, TX 78666

† School of Information Sciences and Technology, Pennsylvania State University, University Park, PA 16802

Abstract— Ad hoc networks are usually unreliable and have
limited bandwidth resources. In such networks, packet injection
attacks can cause serious denial-of-service via wireless channel
contention and network congestion. To defend against this type
of injection attacks, we propose SAF, an efficient and effective
Source Authentication Forwarding protocol. The protocol can
either immediately filter out injected junk packets with very high
probability or expose the true identity of an injector. Differing
from other forwarding defenses, this protocol is designed to
fit in the unreliable environment of ad hoc networks. Our
simulation shows that SAF incurs very lightweight overhead in
communication and computation.

I. INTRODUCTION

Ad hoc networks are usually unreliable and have limited
bandwidth resources. In such networks, attackers can bring
serious denial-of-service via congestion by injecting junk
packets. Compared with other types of DoS attacks in ad hoc
networks, packet injection attacks in general are easier for
an attacker to launch but are more difficult for us to defend
against, because an attacker may claim to be a forwarding
node instead of a source node. To prevent this type of attacks,
a forwarding node needs to filter out the injected junk packets
as early as possible, not leaving it for the destination to detect.
The longer time a junk packet stays in the network, the more
congestion it can cause.

Due to the lack of source authentication during data packet
forwarding, in many ad hoc network communication protocols,
an attacker can inject junk packets into a route, even if the
route is established by secure routing protocols [1], [2], [3].
Hence, source authentication is needed so that every node
is able to verify the authenticity of the data packets it is
forwarding. Since digital signing every packet is too expensive
for ad hoc networks, this paper presents SAF, a symmetric key-
based hop-by-hop source authentication forwarding protocol.
In SAF, a source node secretly sets up a pairwise key with
each en route node. When the source sends a data packet, it
computes an authentication token for each en route node using
the pairwise key. An en route node forwards a data packet
only if it is authenticated. Thus, only data packets from the
real source can go through the route and reach the destination.
This approach, although simple, can provide immediate source
authentication and thus inherently supports the on-demand
nature of ad hoc networks. For the successful deployment of
SAF, however, we must address several practical challenges
such as route change and packet disorder caused by the
unreliability nature of an ad hoc network.

Contributions First, the junk packet injection attack studied
in this paper differs from false data packet injection or packet
dropping attacks in the literature. In this attack, attackers
wants to inject junk packets to cause congestion instead of
providing false information. Hence, the main defense goal
is to ensure that a route only serves the legitimate packets
by preventing attackers from creating extra junk packets or
replaying legitimate packets in the route. Second, the proposed
protocol is specially designed to handle various problems in
the forwarding procedure in an unreliable ad hoc network. We
propose a new authentication scheme to let en route nodes take
the responsibility in authentication when a route is broken.
As we show later, SAF not only provides the defense against
packet injection attacks, but also ensures the normal delivery
of legitimate data packets. Third, we systematically analyze
and summarize various problems when applying source au-
thentication in forwarding data packets in ad hoc networks.
Misuse of the proposed protocol is against attack objectives,
and does not affect non-misused packets.

The rest of the paper is organized as follows. Section II
describes the related work. Section III presents the design of
SAF protocol in unreliable ad hoc networks. In Section IV,
we analyze its security against injection attacks and whether
misuse of this protocol will cause other problems. We evaluate
SAF in Section V. Finally, we conclude in Section VI.

II. RELATED WORKS

Many previous work on ad hoc network security focused on
secure routing[1], [3]. As a contrast, SAF focuses on filtering
junk packets injected into the routes established by these
secure routing protocols. Two most related approaches [4], [5]
are proposed for filtering false data packets in sensor networks.
Due to the difference between ad hoc and sensor networks
and the different defense objectives, these approaches cannot
be simply applied in our study. In [4], Ye et al. proposed a
statistic filtering scheme that allows en route nodes to filter
out false data packets with some probability. However, this
approach cannot prevent attackers from replaying packets. It
is also possible that junk packets can go through the network
(although they will be discarded at the destination) if they
do not carry keys that the en route nodes have. Zhu et al.
[5] proposed an interleaved hop-by-hop authentication scheme
that guarantees to detect and drop false data packets within
a certain number of hops. Nevertheless, due to unreliability
in mobile ad hoc networks, the interleave association cannot
sustain in routes that dynamically change. Hence, this scheme

cannot be applied in our study either. Due to space limit,
we cannot enumerate all other related defense approaches in
the literature. However, we notice that many solutions are
not suitable against such attacks, since routing nodes in ad
hoc networks are not trustable, or junk packets cannot be
immediately discarded, etc. We intend to prevent and limit
the attack impacts, instead of letting the junk packets travel
through multiple hops to affect other areas of an ad hoc
network.

III. PROTOCOL DESIGN

In this section, we present the SAF protocol. First, we sum-
marize the assumptions. Then, we present the basic hop-by-
hop source authentication. We show that unreliability makes
source authentication hard in ad hoc networks. Finally, we
present the complete scheme of SAF.

A. Network Assumptions and Attack Models

This paper mainly studies unicast communication. SAF is
designed to work with the routing protocol DSR [6], since it
needs IDs (i.e. the node’s address) of en route nodes along
the forwarding path. Other protocols, such as AODV [7], can
be applied with our protocol with extensions to carry IDs
of en route nodes in the routing packets. In the paper, we
also consider a complex environment in ad hoc networks. For
example, a packet could be lost due to transmission error,
a route could be broken due to power down of a routing
node, etc. SAF is designed to fit in such an unpredictable and
unfriendly environment. In an injection attack, an attacker may
be a compromised node, or simply a malicious node. Because
it is risky for an attacker to misbehave its own ID, the attacker
will impersonate other nodes. An attacker may eavesdrop on
all traffic, replay older packets, or modify overheard packets
and re-inject them into the network. Furthermore, multiple
attackers may collude in attack.

B. Hop-by-Hop Source Authentication

As we discussed, to prevent packet injection attacks, hop-
by-hop source authentication is a good choice, in which three
steps are needed. First, the source node sets up pairwise keys
with its en route nodes. Second, the source node authenticates
its packets for each en route node with the pairwise keys.
Finally, each en route node verifies packets upon receiving
them. If packets are authentic, en route nodes forward them;
otherwise, discard.

1) Pairwise Keys Establishment: The source node sets up
a pairwise key with every en route node along the path,
based on IDs of routing nodes obtained from DSR route reply
packets. The simplest way is to pre-load pairwise keys into
nodes, although the memory requirement is not tolerable when
the network is large. The literature provides many novel key
management schemes with better performances. For example,
in random key schemes [8], [9], any two nodes can establish a
pairwise key with a sufficiently high probability. Hop-by-hop
source authentication can be based on any of these schemes as
long as they can ensure the secure pairwise key establishment
between nodes over multiple hops.

2) Authentication: For discussion, we denote that a source
node S sends data packets1 to a destination node D through
a route of n − 1 routing nodes, which are ordered as
R1, ..., Rj , ..., Rn−1, and Rn is D.

When S wants to send data packets to D, S attaches an
authentication header A(i) to each data packet PKT (i).

A(i) = SID(i)||PC(i)||δR1(i)||δR2(i)||...||δRn
(i)

Where SID(i) is the source ID, PC(i) is packet count, and
δRj

(i) is the authentication token for en route node Rj .
Each token δRj

(i)2 is computed based on a keyed-hash as
HkSID,Rj

(PC(i), L(i, j)). Here, kSID,Rj
is the pairwise key

shared only between SID and Rj . L(i, j) is the packet size
including the data and the remaining authentication header at
Rj . H(∗) is a secure hash function. The token design ensures
that each en route node Rj can only verify one token, and the
packet count PC(i) and the packet size L(i, j) are secured in
the tokens.

3) Forwarding: In a route, each node sets a forwarding
entry, which extends a routing entry to store information for
verifying received packets. The entry records the packet count
PClast in the last received packet and the initial packet count
obtained from the first received packet. The second count is
used to handle unreliability as discussed later.

Upon receiving PKT (i), Rj must verify A(i). First, Rj

checks whether the count PC(i) is greater than PClast.
If yes, then Rj recomputes its token δRj

(i) based on the
claimed packet source, packet count and packet size3. If the
computation result matches the token carried in the packet,
Rj removes tokens (if any) of current and previous hops from
A(i), records PC(i) as PClast, and forwards the data packet
to the next hop Rj+1. Otherwise, if either of the previous two
steps fails (i.e. the token is wrong or PC(i) ≤ PClast), Rj

discards the packet.
In brief, such a forwarding procedure can achieve the

following defense goals.

• A source must use its own ID to authenticate a packet in
order that the packet can be delivered in its route.

• An authenticated packet cannot be replayed in the same
route.

• An authenticated packet cannot be played in any other
route which is not set by the source.

• Attackers cannot insert junk bits into packets for conges-
tion purpose.

Note that the above design does not provide data integrity
because the computation is only over the packet count and the

1Data packets include all packets with IP headers, but exclude the routing
packets and the keying packets. The later two types of packets are for route
discovery and pairwise key setup, and secured by their own protocols.

2The length of a token is determined by the trade off between security and
performance. For discussion, a token has 8 bits in this paper, although the
hash output could be 256 bits or longer.

3Because each en route node knows how many tokens should be left when
it receives a packet, Rj calculates the packet size by adding the data size and
the size of the remaining authentication header that should be at its own hop,
in stead of directly obtaining the packet size from the received packet. This
approach is applied to address verification in unreliability.

packet size. However, this does not conflict with our design
goal, because the modification of packet content does not
cause congestion in the network. Moreover, this design is very
computationally efficient because the keyed-hash is always
computed over a very short piece of information. Nevertheless,
this scheme can be easily modified to provide data integrity
as well if desired.

C. Unreliability

In the following, we discuss how unreliability (route change
and packet disorder) may fail hop-by-hop source authentica-
tion.

1) Route Change: In an ad hoc network, a new route
segment may be set up due to various reasons. For example,
in Figure 1, the new route (dashed line) diverges from the
previous one (solid lines) at node 2 due to the link failure
between nodes 2 and 3. Because S may not know the new
route immediately when the old route is broken, nodes 6 and
7 will not have any pairwise key with S. In addition, some
data packets may be already buffered in nodes 1 and 2 to be
forwarded, and S cannot modify the authentication headers in
these packets. Hence, these buffered packets may be discarded
even after S sets a new route. Note that nodes 3, 4 and 5 can
still use the old segment to forward their buffered packets,
since the old segment is still valid at their positions and their
buffered packets have valid authentication headers.

2) Packet Disorder: Packet count PC in fact represents the
order of the packet delivery. If the order is mixed or reversed,
a packet with a smaller PC will be discarded. We notice that
the disorder can be caused by two reasons: either an attacker
intentionally changes the order of the packets, or a route is
changed. We will discuss the first reason in Section IV. The
second reason can also be illustrated in Figure 1, where the
new and the old routes overlap after node 4. Assume that
node 3 is congested for a long time after the new segment
is discovered. Hence, the packets going through node 7 will
reach node 4 before the old packets buffered in node 3 do.
Because the packets buffered in node 3 have smaller PCs,
they will be discarded by node 4 if node 4 only records the
PClast from the packets forwarded by node 7 as in the basic
hop-by-hop source authentication.

D. Source Authentication Forwarding

The idea to solve the problems caused by unreliability is
to let the first en route node in the new route segment take
the responsibility of the real source to start another forwarding
procedure. As shown in Figure 1, node 2 becomes the “source”
of the new route segment, and appends its own authentication
header A2 to packets, which is similarly computed as AS , and
SID in A2 is node 2’s ID. We name such an en route node as
a starter, and SID in the new authentication header is thus
the starter ID instead of the source ID.

In SAF, an en route node maintains a forwarding entry for
each new route segment, in which the node records the corre-
sponding initial packet count obtained from the first received
packet in the segment. Thus, the node has multiple packet

�
�

�
�

�
�

�
�

�
�

�
�

� � � � � � �

� 	
�

�
�

�
�

�
�

�

�
�
�

�

�
�
�
�

�

� �

�

Fig. 1. Starter in a new route

count intervals. The node compares the PC of a received
packet in the corresponding interval. For example, in Figure
1, node 4 obtains two initial PCs from AS and A2, denoted
as PCS and PC2. Obviously, PC(i′) in any packet buffered
in node 3 satisfies PCS ≤ PC(i′) < PC2; while PC(i) in
any packet going through node 6 satisfies PC2 ≤ PC(i).
Hence, node 4 actually knows two intervals: [PCS , PC2)
and [PC2,∞). Node 4 also knows the last packet count for
each interval, denoted as PCS

last for [PCS , PC2) and PC2
last

for [PC2,∞). When node 4 receives a packet PKT (i), it
compares PC(i) in the packet with either PCS

last (if PC(i)
falls in [PCS , PC2)) or PC2

last (if PC(i) falls in [PC2,∞)).
The node verifies the tokens (if any) for corresponding route

segments as discussed before. However, the packet size used in
authentication is changed to the sum of the data size, the size
of the remaining authentication header of the segment, and the
number of previous authentication headers. The last parameter
in the packet size shows how many headers already exist when
the current header was computed by its starter, and it is used
to ensure that no extra junk header can be easily inserted into
packets. For example, in Figure 1, if node 4 receives a packet
from node 7, it can verify both A2 and AS in the packet. A2

must be the last authentication header, and no other header
should appear after A2. Also, when A2 was computed by node
2, AS already exists. If AS is removed or a junk header is
inserted, the verification of A2 in node 4 will fail. Finally,
because the packet going through node 7 is not verified by
node 3, the token for node 3 in A2 is not removed by node 3.
Since node 4 can verify A2, it will remove all previous tokens
from A2 before it forwards the packet as discussed before.

Note that node 1 may not have any information about either
the new segment or the forwarding procedure in the new
segment. Node 1 may work as if nothing happened in the
route. This new forwarding procedure works until S knows
the new route and resets forwarding4.

IV. SECURITY ANALYSIS

For congestion, an attacker may inject junk packets into
routes or insert junk bits into legitimate packets. To inject
an extra junk packet, the attacker needs to provide a valid
token for a larger packet count. As we notice that, a token is
only a few bits of the hash output. Nevertheless, the attacker
does not know the pairwise key that is only shared between
the starter and the corresponding en route node. To break
the token without knowing the pairwise key is as difficult
as to break the hash function. Hence, if the attacker wants
to inject a junk packet, the only way is to guess the token.

4For example, in DSR, node 2 sends a “gratuitous” Route Reply to S that
contains the IDs of the routing nodes in the new route. Hence, S can start a
new forwarding procedure in the new route.

Since the successful probability is very small (depending on
the length of the token), SAF effectively filter out junk packets.
Furthermore, if an attacker frequently sends guessed tokens in
a route, he easily exposes himself, since other en route nodes
can easily detect frequent verification failures.

Since the data size, the authentication header size and the
number of previous authentication headers are protected in
tokens, an attacker, if being an en route node, cannot insert
junk bits into packets. However, an attacker, if claiming to
be a starter, can put junk bits in packets by forging some
authentication headers for non-existing route segments. Such
an injection is in fact “legal” in the route, since the attacker
does use its own identity to authenticate the packets. This
situation also exists in legitimate traffic. However, at least
the destination node can detect such an injection, because the
destination node knows all valid routes. Hence, the attacker
exposes himself as well.

In the following, we present the major properties of SAF
that show how SAF prevents injection and the consequences
of misuse of SAF. In summary, it is not easy for an attacker
to inject junk packets, unless the attacker uses its own ID in
attack. Also, misuse of SAF by dropping, replaying, disor-
dering or modifying authentication headers in general results
in the drop of misused data packet, but does not affect other
legitimate data packets. Hence, misuse is against the objective
of packet injection attacks in terms of congestion. The detailed
analysis on the properties are not presented due to the limit
of space.

Property 1: If an attacker claims to be a starter (or a
source), it must use its own ID to authenticate injected junk
packets.

Property 2: If an attacker is an en route node, the probabil-
ity that a forged packet can survive is negligible. Specifically,
the probability that a forged packet can go through m hops is
only (1

256)m, if a token has 8 bits.
Property 3: If an attacker intentionally modify the authen-

tication header, the result is the same as that the attacker drops
the packet.

Property 4: If an attacker replays authentication headers in
any junk packet, the packet will be discarded.

Property 5: If an attacker disorders the packets to be for-
warded, the result is the same as that the attacker simply
discards these disordered packets.

V. PERFORMANCE EVALUATION

In this section, we use simulations in NS2 [10] to evaluate
the performance of SAF. We examine how much overhead this
protocol brings to each routing node in an ad hoc network.
In the following, we first present the detail settings for the
simulations, and then illustrate and discuss the impact of this
protocol on data forwarding.

A. Simulation settings

1) Network and traffic: The widely deployed IEEE 802.11
is used as the MAC and PHY protocols. By default in NS2, the
channel capacity is 1Mbps, and each node has a transmission

��

��

��

��

��

��

��

��

� � � � �� �� �� ��

�

��

��

��

��

��

��

��

��

��

��

� � � � �� �� �� ��

�

��

��

��
�������
��
�����������������
��
�������
��
�����������������

�
��
��
�

��
��
��
��
�

�
��
��
�

��
��
��
��
�

�
�������� ��!"� ���������� ��#!"�

������������	�
���
� ������������	�
���
�

Fig. 2. Communication overhead per hop

range of 250 meters. For communications over multiple hops,
DSR is used as the routing protocol. We use the scenario
generation tool in NS2 to generate various network topologies
in a 1500m× 1500m area. In each simulation, 100 nodes and
10 connections are randomly put in the network. Nodes move
randomly at the maximum speed of 2m/s or 10m/s. Each
connection picks a random time during the first 5 seconds to
start its traffic, and all traffic lasts 60 seconds. The load of each
connection is 5Kbps, 10Kbps, 20Kbps, 30Kbps or 40Kbps,
and the payload of a data packet is 512 bytes. In each scenario,
the loads of all connections and the maximum speeds of all
nodes are the same. In each scenario, we randomly generate
10 cases to get average measurement.

2) Performance Metrics: We measure four performance
metrics of SAF in all scenarios. (1) Communication overhead
per hop is measured as the number of bytes that are carried to
each data packet. (2) Authentication per starter is measured as
the number of authentication tokens that a starter computes to
authenticate a data packet. (3) Verification per hop is measured
as the number of authentication tokens that an en route needs
to verify a data packet. (4) Data throughput per flow is
measured as the data rate (Kbps) of the data forwarding with
SAF.

B. Impacts of SAF on Regular Traffic

As discussed in Section II, existing approaches cannot be
applied in the situation we are considering, because they do not
provide desired security or robustness. Hence, SAF is mainly
evaluated in terms of its overheads in packet forwarding. Its
effectiveness in terms of defense is illustrated by its properties.
We present major observations from the simulations in the
following.

1) Overhead of SAF: SAF appends an authentication
header of several bytes to every data packet, which include
SID (4 bytes), PC (4 bytes), and authentication tokens (1
byte/token). The size of an authentication header changes
along the path5, as en route nodes remove corresponding
tokens from a packet when they forward a packet, or starters
add new authentication headers to a packet for a new route
segment. As shown in Figure 2, more unreliable the network
is, more segments a packet goes through and thus more headers
are appended. When the load is light (5Kbps) and the speed

5A path means all hops a data packet goes through until reaching the
destination. Hence, a path may contain several segments, each of which is
set up when a new route is used to replace the broken one.

�

�

�

�

�

�

�

� � � � �� �� �� ��

�

��

��

�

�

�

�

�

�

�

� � � � �� �� �� ��

�

��

��

��
�������
��
�����������������
��
�������
��
�����������������

$
��
��
%�
&�

�
&�
%�
��
��
��

�
��
�

�
�������� ��!"� ���������� ��#!"�

$
��
��
%�
&�

�
&�
%�
��
��
��

�
��
�������������	�
���
� ������������	�
���
�

Fig. 3. Number of authentication tokens a starter needs to compute

is low (2m/s), a path with one more hop only adds 0.5 bytes
to the average overhead. On the other hand, when the load
and the speed are high (40Kbps and 10m/s), a path with
one more hop could add more than 1 byte to the average
overhead. Especially, when speed is high, unreliability is less
affected by load, because route change is more frequently.
Nevertheless, compared with the sizes of payload, IP header
and MAC header, the overall overhead of SAF is lightweight
around 10 (in 2-hop paths) to 24 bytes (in 16-hop paths) in
our simulation.

2) Computation of SAF: The starter needs to compute
authentication headers for data packets and each en route node
needs to verify sources. As depicted in Figure 3, unreliability
(higher load and speed) also increases the computation for
starters (although slightly). In the worst case (40Kbps and
10m/s), a starter needs to compute around 0.3 authentication
token in average for each hop in the path. The computation
cost for each en route node is depicted in Figure 4(a), where
load shows to be a more important factor than speed. When
the load is light (5Kbps to 10Kbps), a little more than 1
verification is needed in each hop for each data packet. When
the load is between 10Kbps and 20Kbps, the verification
quickly increases from 1.05 to 1.3. Then the increase is slowed
down as the load is more than 20Kbps. Note that the maxi-
mum verification is less than 1.5 even in the very unreliable
situation. This result, combined with the overhead, indicates
that even if a data packet may carry a big authentication header
with many authentication tokens, each en route node may only
find one or two tokens that are designated to it in an unreliable
environment.

3) Throughput of SAF: Finally, we use Figure 4(b) to
address the major concern on whether SAF will affect the
throughput. For comparison purpose, we also conduct sim-
ulations, where only regular DSR is used. In the figure,
throughput of SAF is represented by solid lines, and DSR
by dashed lines. SAF does not interfere with DSR when the
network is reliable, i.e. light loads and low speeds. When the
load is more than 20Kbps, the network becomes unreliable.
The overhead of SAF only slightly reduce the throughput,
although some overheads are added in the network. Figure
4(b) also shows that SAF is practical in an unreliable ad hoc
network. The solid lines demonstrate that SAF can work even
when more than 62% of packets are dropped. Hence, SAF
not only protects the network, but also does not interfere with
normal network traffic.

�

���

���

���

���

���

� �� �� �� ��

�

��

�	

��
����

�

�
��
��
��
��
��
	

��
��
	

�����	
�������
� 	��

(a) Number of authentication tokens
an en route node needs to verify

�

�

!

��

�"

� �� �� �� ��

�

��

�

��

�	

��
����

#
��
�$
%�
	$
��	

�
��
��
�
�

�
 	

��

���

���

�����	
�������
� 	��

(b) Throughput comparison

Fig. 4. Verification Cost and Throughput

VI. CONCLUSION

To defend against packet injection DoS attacks in ad hoc
networks, we present SAF, a hop-by-hop source authentication
protocol in forwarding data packets. The protocol can either
immediately filter out injected junk packets with very high
probability or expose the true identity of the injector. This pro-
tocol is designed to fit in the unreliable environment of ad hoc
networks. For each data packet, the protocol adds a header of a
few bytes for source authentication. Every en route node needs
to verify less than 1.5 authentication tokens for each packet
even when the network is very unreliable. Hence, the protocol
is lightweight and almost does not interfere with regular packet
forwarding. As future works, the communication overhead of
SAF can be further reduced by applying techniques such as
bloom filter.

ACKNOWLEDGEMENT

This work was supported in part by the ARO grant
W911NF-05-1-0270.

REFERENCES

[1] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: a secure on-demand
routing protocol for ad hoc networks,” in ACM MobiCom, 2002, pp.
12–23.

[2] M. G. Zapata and N. Asokan, “Securing ad hoc routing protocols,” in
ACM workshop on Wireless Security. Atlanta, GA, USA: ACM Press
New York, NY, USA, 2002, pp. 1–10.

[3] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Sead: secure efficient distance
vector routing for mobile wireless ad hoc networks,” Ad Hoc Networks,
vol. 1, no. 1, pp. 175–192, 2003.

[4] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical en-route detection and
filtering of injected false data in sensor networks,” in IEEE Infocom,
2004.

[5] S. Zhu, S. Setia, S. Jajodia, and P. Ning, “An interleaved hop-by-hop
authentication scheme for filtering false data in sensor networks,” in
IEEE Symposium on Security and Privacy, Oakland, California, 2004.

[6] D. Johnson, D. Maltz, Y. C. Hu, and J. Jetcheva, “The dynamic source
routing protocol for mobile ad hoc networks (dsr), ietf internet draft,
draft-ietf-manet-dsr-09.txt,” Feb. 2002.

[7] C. Perkins, E. Royer, and S. R. Das, “Ad hoc on-demand distance
vector (aodv) routing, ietf internet draft, draft-ietf-manet-aodv-11.txt,”
June 2002.

[8] W. Du, J. Deng, Y. S. Han, and P. K. Varshney, “A pairwise key pre-
distribution scheme for wireless sensor networks,” in ACM CCS, 2003,
pp. 42–51.

[9] S. Zhu, S. Xu, S. Setia, and S. Jajodia, “Establishing pairwise keys for
secure communication in ad hoc networks: a probabilistic approach,” in
IEEE ICNP, 2003, pp. 326–335.

[10] NS2, “The network simulator, http://www.isi.edu/nsnam/ns/,” 2004.

