
PWC: A Proactive Worm Containment Solution for
Enterprise Networks

Yoon-Chan Jhi∗, Peng Liu†, Lunquan Li‡, Qijun Gu§, Jiwu Jing¶ and George Kesidis‖

∗†‡‖The Pennsylvania State University, University Park, PA 16802
Email: {∗jhi,‖kesidis}@cse.psu.edu,{†pliu,‡lli }@ist.psu.edu

§Texas State University, San Marcos, TX 78666

¶Chinese Academy of Sciences

Abstract—We propose PWC, a proactive worm containment
solution for enterprises. PWC can stop - instead of slowing
down - an infected host from releasing worm scans as early
as after merely 4 scans. Motivated by the observation that a
worm uses a sustained outgoing packet rate, PWC gains infection
awareness seconds before a signature or filter can be generated.
To overcome denial-of-service possibly caused by such smoking
signs of infection, PWC develops two new white detection
(detecting who are uninfected) techniques: (a) thevulnerability
time window lemma, and (b) the relaxation analysis. PWC is
signature-free thus it is immunized from polymorphic worms
and timely in containing. PWC is also resilient to containment
evading. PWC is not sensitive to worm scan rate, and not protocol
specific. Due to white detection, PWC causes minimal denial-of-
service. Evaluation based on real traces and worm simulations
demonstrates that PWC significantly outperforms Virus Throttle
[1] in terms of number of released worm scans, number of hosts
infected by local scans, and availability.

I. I NTRODUCTION

Computer worms (i.e., malicious self-propagating code) are
a significant threat to Internet security. The severity of their
damage has been well demonstrated by a set of high-profile In-
ternet wide worm attacks: (a) Within merely 5 minutes, 75,000
SQL Servers were infected by the Slammer worm in 2003: the
peak global scan rate was above 55 million scan packets per
second; a lot of enterprise networks were deadly congested;
and many sites had to be down for recovery. (b) Within 16
hours, about 350,000 hosts were infected by the CodeRed-II
worm in 2001. (c) In 2004, the Witty worm infected about
12,000 systems where data stored in certain portions of the
disks were destroyed. These high-profile worm attacks have
clearly shown that the loss caused by a worm attack against an
enterprise (and her business) can be potentially huge (e.g., tens
of millions of dollars). Such a severe worm attack can occur at
literally anypoint of time under the discretion of the adversary
(e.g., hackers, criminals, and terrorists), therefore therisk of
worm attacks will not be significantly reduced until highly-
effective and highly-practical worm detection and containment
technologies are developed.

Since worm infection can spread more rapidly than human
response, automated worm detection and containment tech-
niques are essential. In addition, worm containment techniques

This work was supported by NSF and DHS under award number NRT-
335241. Jiwu Jing was supported in part by NSFC grant No.60573015.

should be able to handle zero-day (unknown) worms. Enter-
prise level worm containment has three basic goals: (1) prevent
internal hosts from being infected; (2) block outgoing worm
scans; (3) minimize the denial-of-service effects caused by
worm containment controls.

Many approaches have been proposed to perform the en-
terprise level worm containment. However, current defenses
do not complete four specific requirements which include
(R1) timelinessin policing worm scans, (R2)resiliency to
containment evading, (R3)minimal denial-of-service costs,
and (R4)being agnosticto worms’ scanning strategy to contain
a wide spectrum of worms from uniformly randomly scanning
worms to topologically awarescanning worms. [2], [3], [4],
[5], [6], [7] have limited application of R1, [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12] are short of R2, [1] lacksR3,
and [3], [4], [5], [7], [11], [12] have limitation in R4.

To overcome above limitations, we propose PWC, a novel
proactive worm containment solution for enterprises. The idea
of PWC is motivated by two important observations: (O1) If
everyinfectedhost can be immediately disabled from releasing
UDP packets or getting outgoing TCP connections connected,
the worm will be contained, even if incoming UDP and TCP
connections arestill allowed. (O2) In order for a worm to
be fast in propagating itself, any infected host must use a
sustained faster-than-normal outgoing packet rate.

O1 and O2 indicate that PWC may use a sustained faster-
than-normal outgoing connection rate tobe-awarethat a host is
infected and the awareness can be gained many seconds before
a signature or filter is generated; then the host’s outgoing UDP
packets and TCP connection attempts can be instantly blocked
– instead of being slowed down – to achieve quick,proactive
containment. By providing novel ways to handle false positives
transparently or with minimized impact, PWC allows worm
containment systems to react earlier without suffering from
high false-positive rates.

To overcome denial-of-service effect that could be caused
by false positives (in identifying infected hosts), PWC de-
velops the following two novelwhite detectiontechniques:
(a) PWC exploits a uniquevulnerability window lemmato
avoid false initial containment; (b) PWC uses arelaxation
analysisto uncontain (or unblock) those mistakenly contained
(or blocked) hosts within few seconds, if there are any. Note

that existing rate-limiting techniques are worm-slowing-down
techniques, while PWC is aworm-haltingtechnique. Finally,
PWC integrates itself seamlessly with existing signature-based
or filter-based worm scan filtering solutions. As soon as a
signature or filter is generated, PWC can stop enforcing any
new containment controls and unblock all still-being-contained
hosts. With a little extension, PWC can utilize the multi-
resolution worm detection technique [13] and react against
slower worms. In this paper, we will discuss single resolution
detection as our focus is oncontain-and-relaxframework.

We have evaluated the cost-effectiveness of PWC using
both real world traces and extensive simulation experiments.
Our empirical study shows that PWC is significantly out-
performing Virus Throttle scheme proposed by Williamson
et al. [1] in terms of all of the three evaluation metrics:
(M1) number of released worm scans, (M2) number of hosts
infected by local worm scans, (M3) total denial-of-service
time per host.Moreover, the experiments show that PWC is
significantly outperforming Hamsa [5] in terms of M1 and M2
with negligible denial-of-service costs. The merits of PWC
summarized below show that PWC has taken a major step
forward in meeting the requirements aforementioned.
⊙ PWC is signature free. Without the need to match a
message with a signature or a filter, PWC isimmunized from
polymorphic worms and all worm code obfuscation methods.
⊙ Exploiting an obvious property of scanning worms (i.e., any
infected host must use a sustained outgoing packet rate), PWC
is resilient to containment evading.
⊙ Timeliness.PWC may react to worm scans many seconds
before a signature or filter is generated.
⊙ PWC is agnosticto the scanning strategy of worms since
it does not rely on any symptoms caused by specific scanning
strategy (i.e., ICMP type 3 messages for failed scans).
⊙ Exploiting the vulnerability time window theorem and the
white detection idea, PWC causesminimal denial-of-service.
⊙ PWC is NOT protocol specific.
⊙ PWC performs containment consistently over a large range
of worm scan rates. PWC isnot sensitiveto worm scan rate.

II. RELATED WORK

Existing worm containment techniques can be roughly bro-
ken down into five classes as follows.

Class A: Rate limiting. The idea of Class A techniques
is to limit the sending rate of scan-like traffic at an infected
host. Virus Throttle proposed by Williamsonet al. [1] uses
a working set and a delay queueto limit the number of
new machines that a host can connect to within unit time.
In [14], connection failure rate is exploited, and, in [15],the
number of unique IP addresses that a host can scan during
eachcontainment cycleis leveraged. Class A techniques may
introduce longer delays for normal traffic.

Class B: Signature-based worm scan filtering.The idea
is to generate the worm signature which can then be used to
prevent scans from entering/leaving a LAN/host. Earlybird[2]
is an efficient inline solution that integrates flow classification,
signature generation and scan filtering. However, it can be

easily evaded by polymorphic worms. Polygraph [4] can
handle polymorphic worms, but it spends too much time in
generating the signature. In [16], [17], [18], signatures are
generated out of packets “captured” by a honeypot. However,
network-level flow classification techniques used invariably
suffer from false positives leading to noise in the worm traffic
pool [5]. Although Hamsa [5] is a fast, noise-tolerant solution
against network flows, the false negative and false positive
of a signature depend on the accuracy of the flow classifier
used. In addition, Hamsa and many other Class B solutions
are vulnerable to Polymorphic Blending attacks [19]. PWC is
signature free - containing worms without using signatures.
Accordingly, although PWC cannot prevent worm scans from
entering a host, PWC is in general much more resilient to
polymorphic worms and worm code obfuscation than Class B
techniques, and PWC has much better timeliness.

Class C: Filter-based worm containment.Class C tech-
niques shares the same spirit with Class B techniques except
that a filter is a piece of code which is to check a message
if it contains a worm. Shield [20] uses host-based filters to
block vulnerabilities but these filters are generated manually.
Vigilante [7] generates and distributes host-based filtersauto-
matically. But, its response time relies on the worm payload
size, and some filters can be evaded by code obfuscation
based on char shifting or insertion. To achieve high coverage,
they need a complicated detection technique such as dynamic
dataflow analysis [21], [22]. PWC is not using such filters.

Class D: Payload-classification based worm contain-
ment. The idea of Class D techniques is to determine if a
packet contains a worm. In [8], [9], [23], a set of anomaly
detection techniques are proposed to detect worms. But, they
suffer from false negatives or false positives, especiallyin the
presence of code obfuscation. In [10] control flow structures
are exploited to detect polymorphic worms, but, off-line anal-
ysis is required. In [24], [11], they detect if a data packet
contains code or not, but, not all worms propagate through
data packets. PWC doesnot do code analysis on payloads.

Class E: Threshold Random Walk (TRW) scan detec-
tion. In [25], TRW exploitsrandomnessin picking destinations
to connect to, to detect if a host is a scanner. In [12],
hardware implementation is investigated. TRW is suitable for
deployment in high-speed, low-cost network hardware, and
it is very effective in tackling the common way of worm
scanning (i.e., random scanning with high failing likelihood).
Attackers may evade TRW, using such attacks as two-sided
evasion [12] to which PWC is not vulnerable.

III. PWC OVERVIEW

A. Definition and Scope

Target Worm. We consider UDP/TCP-based scanning worms,
hit-list scanning worms, and topologically aware (or local
preferential scanning) worms.
Worm Scan.We classify worm scans in three types:L-L scans
from an internal(local) infectee to an internal address,L-R
scansfrom an internal infectee to an external(remote) address,
andR-L scansfrom an external infectee to an internal address.

������ �����	
���
��	
�	 ���� �	 ���� �	 ���� ��� ����� ��
����� ���� � ! �"#$��

(a) Deployment diagram (b) Conceptualized host

Fig. 1. The enterprise network protected by PWC.%&'()*+,&-.(/0(&* 1(*()*22)/&&+&0 /)*+3+*45 6 7,&*/+& *.(.,2*6 8/+2(9:;,:/0/*(< =>?@ABC =ACB6 D(0+& EFG<H<IA?B <B<GJ=A=8(K/L/*+,& '/+KM;(2 %2,K/*(NOPQRS IA>FTRQPOU TRQPOUTV
(a) Active containment

WXYZ[\[]^_`abcdef `dfeX^g^hi^_ j klm][l] i[nh_[]hYl Yo]p^ `abcdef `dfej ko i[nh_q gYl][hl]p^ pYm] [l_r^\hl stuvwvxdbe vevuy`d̀z^n[{[]hYl o[hn|X^m kmYn[]^ xdat}~���� }~����
(b) Passive containment

Fig. 2. Time-line at each host running the PWC agent. Alerts from the
conventional worm detectors are raised within the rangeralert.

Connection Attempts and Connections.An outbound con-
nection attemptis defined as either an outbound TCP SYN or
an outbound UDP packet. Asuccessful outbound connection
is defined as an observation of an inbound TCP SYN-ACK
packet. UDP packets are always considered as successful con-
nections. Inbound connections/connection attempts are defined
in similar ways. When we mean TCP connections, we use
‘TCP connections’ explicitly.
Signature Extractors. PWC can be a layer in a multi-layer
defense approach. As an example of another layers, we assume
an automatic signature generation system(s) is operational in
the same enterprise network.

B. Architecture

As shown in Figure 1(a), each host in the protected enter-
prise network runs a PWC agent which performs detection
and suppression of worm scans released from its host. We
conceptualize a host running the PWC agent as shown in
Figure 1(b). Discussions on implementation issues can be
found in Section VII-C. The PWC manager has two roles: first,
it distributes authenticated worm alerts reported by a PWC
agent to all PWC agents in the enterprise network; second,
it is a certificate authority in authentication between each
PWC agent and the PWC manager and vice versa. PWC can
handle multiple simultaneous smoking signs raised by different
worms in one contain/relax procedure.

Before getting into details, we briefly summarize operations
of PWC system, from A to G, in an event-driven manner
following the time line in Figure 2. We will discuss the details
on the following operations in section IV one by one.
(1) When a PWC agent detects a scan activity.The PWC
agent takes the following actions in order: (a) raises a smoking
sign; (b) initiates containment on its host, which is called
active containment; (c) reports the smoking sign to the PWC
manager; (d) startsrelaxation analysisoperations on its host.
c is to let other PWC agents be aware of the situation and
check their hosts if they are infected.d is required since the
agent needs to detect sustained rate of connection attemptsto
distinct destination addresses, to determine the host is infected.

(2) When PWC manager receives a smoking sign.The PWC
manager propagates the smoking sign to all other agents. The
frequency of smoking sign propagation is controlled by PWC.
Note that the focus of this paper is not on the underlying
mechanism of the smoking sign propagation.
(3) When a PWC agent receives a smoking sign.The PWC
agent (a) performsvulnerability window analysis(see Section
IV) to see whether its host is possibly infected or not; (b)
ignores the smoking sign if no evidence of possible infection
is found; (c) otherwise, initiates containment on its host,
which is called passive containment; (d) and immediately
startsrelaxation analysis. a and b minimize availability-loss
possibly cased by excessive passive containments.
(4) When a PWC agent is performing relaxation analysis.
During the relaxation analsysis, the PWC agent calculates the
rate of outbound connection attempts to distinct IP addresses,
and checks if the host shows sustained connection rate or not.
The relaxation analysis is limited totrelax seconds.
(5) When a PWC agent completes relaxation analysis.Based
on the result of(4), the agent relaxes or continues the contain-
ment. If the agent relaxes the containment, it will repeat above
operations from(1). If the agent continues the containment,
it will repeat (4) once more. AfterF relaxation failures, the
agent will isolate its host and report to the PWC manager
for further handling. We observed no isolated uninfected host
through number of experiments withF = 30 and trelax = 1.
(6) When signature extractors identify new signatures.The sig-
natures are reported to the PWC manager. The PWC manager
relays it to a security manager so that it may be installed into
firewalls to block inbound (or outbound) malicious messages.
At the same time, the signature is propagated to all PWC
agents and will be installed in the agents’ embedded packet
filters. The packet filters are to reduce smoking signs raised
by identified malicious messages.

IV. T HE PWC APPROACH

PWC consists of three major phases:smoking sign detection
(section IV-A), initial containment(section IV-B, IV-C), and
relaxation (section IV-D) phases.

A. Raising Smoking Signs

1) Smoking Signs and Active Containment:Smoking signs
are require to be raised early, but not necessarily to have an
extremely low false-positive rate. This important character-
istic allows PWC agents to contain possibly infected hosts
swiftly without hesitation while requiring consequent relax-
ation phases to resolve the false positives. Since, to survive in
the wild, the worm must replicate itself to at least another
victim before being contained, the worm naturally sends
infectious messages to as many distinct destination addresses
as it can. Therefore, abnormal growth in the number of distinct
addresses at infected hosts has been in the literatures [2],[26],
[27]. We observed in a 24-hour Auckland-IV trace [28] that
majority of the hosts connected to less than 15 distinct IPs/sec,
and only few of them connected to 20-25 distinct IPs/sec.
In our lab traces, the rates of distinct destination addresses

were no more than 5 IPs/sec. In contrast, the CodeRed-I, for
example, probes more than a hundred unique IPs per second.

Algorithm 1 Smoking-sign detector

1 ⊲ inconhist, outconhist: lists of recent in/outbound
2 connection attempts
3 ⊲ dsthist: set of known destination IP addresses
4 ⊲ srchist: set of known source IP addresses
5 ⊲ pkt: a TCP SYN or UDP packet to be sent
6 procedure ON_OUT_CONNECTION(pkt)
7 begin
8 if (host is contained) then
9 ON_OUT_CONNECTION_CONTAIN(pkt) and return;

10 if (pkt.dst_ip ∈ dsthist ∪ srchist) then
11 Process pkt, and return;
12 Insert pkt.time to outconhist;
13 r := rate of the most recent ∆ elements in outconhist;
14 if (r > λ) then
15 begin
16 Start active containment;
17 Report a smoking-sign to PWC manager;
18 end;
19 end.

Algorithm 1 shows how PWC agents raise smok-
ing signs and initiate active containment (Figure 2a).
ON OUT CONNECTION CONTAIN() in line 9 follows the
description in Section IV-C and Section IV-D. On every con-
nection attempt to a new IP address, a PWC agent calculates
the rater based on the most recent∆ elements inoutconhist,
the outbound contact historywhich is a list of the time-
stamps of recent outbound connection attempts made to new
addresses. Ifr exceeds the thresholdλ, the PWC agent raises
a smoking sign, initiates active containment on its host, and
reports the smoking sign to the PWC manager.

2) Smoking Sign Propagation:The following message car-
ries the smoking sign reported to the PWC manager: [tsent +
td + the agent’s IP].td, the detection latency to be used in
Section IV-B1, is defined astsent − tin. tsent is the current
time andtin is the time-stamp of the latest successful inbound
connection made before the∆ time-stamps referenced in
calculatingr. To prevent possible bandwidth saturation caused
by worms from interfering with the smoking sign report, the
agent reports the smoking sign after containing its host.

Any smoking sign detected at a host imply the possibility of
hidden infectees in the network. To proactively block the hosts
that are infected but not detected, the PWC manager shares
reported smoking signs with all the agents in the network
through the smoking sign propagation. Information propa-
gation techniques for cooperative defenses against Internet
worms are in the literature [29], [30]. In this paper, we assume
a technique for the PWC manager to propagate smoking signs.

The receivers of either reported or propagated smoking signs
would discard the smoking signs iftsent is too old. To pre-
vent forged smoking sign injection, all the messages between
PWC agents and the manager should be authenticated using
RSA. Details are discussed in the Security Analysis Section
(Section VII-A). The behavior of a PWC agent after receiving
a propagated smoking sign is described in Section IV-B.

To avoid denial-of-service and overwhelming traffic, smok-
ing signs will not be reported to the PWC manager if the time
elapsed since the most recently received smoking sign is less

���� �������� �������� ����������� �� ������ ��������
�� �������� ������������� �����������

�� ������ �������� �������� �� ¡ �� ������ �� ¡ �� ����¢ �£ �¤ �¤¢¥� ¥�
Fig. 3. Vulnerability Window

than the relaxation analysis durationtrelax. In this case, we
consider all the suspicious hosts in the network are already
contained by the previously received smoking sign and are in
the relaxation analysis. The PWC manager also applies similar
restriction. Therefore, the smoking sign propagation rateis
limited to 1

trelax

times/sec.
3) Reducing False Smoking Signs:In our network, false

positive smoking signs were mainly caused by the applications
that send excessive small UDP packets to many distinct
destinations (e.g., P2P file sharing and mDNS protocols). To
reduce such false smoking signs, we ignore outbound UDP
packets that are shorter than 200 bytes. A scanning worm
inherently has a byte-sequence to exploit vulnerability, code
to select victims, code to send crafted infectious messages,
and at least one loop. Even if a worm uses smaller packets
to probe vulnerabilities, a worm must have a lower limit in
size. For example, among the 100 UDP-based worms obtained
from Symantec’s Viruses & Risks Search, the smallest payload
length was 376 bytes (SQL Slammer).

B. False-Containment Avoidance

A propagated smoking sign makes every agent in the
network start passive containment (Figure 2b). On receiving a
propagated smoking sign, the agent validates the smoking sign
first, which we namedfalse-containment avoidance. Note that
passive containment is aproactiveaction taken on a host that
is not suspicious to local PWC agent’s knowledge. Therefore,
any propagated smoking sign can be ignored if the receiving
agent ensures that its host is not infected. A way to do this is
thevulnerability window analysiswhich yields instant decision
at each PWC agent on receiving a propagated smoking sign.
The decision results in either ofSAFEand UNSAFE, where
SAFE means the PWC agent can safely ignore the smoking
sign, and UNSAFE means the agent should not.

1) The Vulnerability Window Analysis:Consider PWC is
fully deployed in an enterprise network. Let us assume all
the PWC agents configured with the same parameters since,
typically with many organizations, most hosts within the same
enterprise network would have similar ability to send packets.
Let us assume that infected hosth1 raises and propagates a
smoking sign through the PWC manager. Given thath2 is one
of recipients of the propagated smoking sign, let us depict the
timeline of the propagation in Figure 3 where,

i. t1 at h1 is the time of the last successful inbound
connection before releasing the first scan.

ii. t2 at h1 is the time when (potentially) the first scan is
released.

iii. t0 at h1 is the time when a smoking sign is raised.
iv. ∆t is equal to(t0 − t1)
v. t′0 at h2 is the time of receiving smoking sign fromh1

vi. t′1 at h2 is equal to(t′0 − ∆t)
vii. tin at h2 is the time of the last successful inbound

connection.
Let us assume (a)h2 is susceptible to the same worm as

h1 has; (b)h2 is not contained att′0; (c) ∆t < trelax; (d) h1

and h2 have similar CPU/NIC performance. (a) and (b) are
considered to be true, PWC should be configured to hold (c),
(d) is generally true in an enterprise network. We do Vulner-
ability Window Analysis by testing the following hypothesis:
(e) the connection attempt made attin was infectious. The
merit of this analysis is that if the hypothesis is proven False,
h2 can safely ignore the smoking sign and avoid containing
an innocent host. To see if the hypothesis is False, we assume
the hypothesis were True, then we prove by contradiction.

To determine whetherh2 needs to be contained or not at
time t′0, we must consider the following cases (1) and (2).

(1) tin < t′1: If hypothesis (e) were True,h2 should have
been infected attin, and PWC agent ath2 must have raised
a smoking sign within the time window[t′1, t

′

0] and become
contained. From (b),h2 is not contained att′0, thus we can
concludeh2 was not infected attin. Becauseh2 has never
been connected sincetin, h2 is considered to be SAFE.

(2) tin > t′1: h2 should be considered to be UNSAFE, for
we cannot reject hypothesis (e).

Therefore, we have Lemma 1,vulnerability window lemma.
Lemma 1:At t′0, if h2 receives a propagated smoking sign

(t0, td, h1), h2 can ignore the smoking sign and skip passive
containment if the following assumptions hold:

i. tin < t′0 − td
ii. h2 is susceptible to the same worm ash1 has.
iii. h2 is not contained.
Lemma 1 can be extended to handle multiple kinds of

worms by taking the largertd when smoking signs report
differenttd’s. Although a worm can evade passive containment
by having a delay before starting scanning, the worm cannot
successfully spread out since local PWC agent will initiate
active containment after monitoring the first∆ scans.

A limitation of vulnerability window analysis is that any
inbound connection attempt within the vulnerability window
makes the vulnerability window analysis result inUNSAFE.
The result is affected by two factors: first, frequent legitimate
inbound connections; second, large vulnerability window∆t.
We will introduce two heuristics to address these limitations
and will see how often the vulnerability window analysis
would raise false positives with selected∆t. From the defini-
tion of td in Section IV-A2, the largest∆t can be approximated
as ∆

λ
seconds whenα is zero.(7, 4) and(7, 10), the two pairs

of (λ, ∆) that we configured based on real trace experiments,
yield ∆t = 0.57 and 1.43 seconds respectively.

2) Traffic Filter for Vulnerability Window Analysis:To
make the vulnerability window analysis resilient to noise (le-
gitimate traffic), we set up two heuristics to sift out meaningful
traffic within the vulnerability window. The heuristics are:

⊙ H1: Even a fast worm scanning 8,000 IPs/sec with 50%
local preference would take more than 16 seconds to scan
entire /16 local network. Thus, we regard redundant connec-
tion attempts from the same IP address incoming withinHt

seconds as noise, and reduce them leaving only the first one.
⊙ H2: Eliminate inbound UDP packets whose payloads are
shorter thanHl bytes. PWC usesHl = 200 as we discussed
in Section IV-A3

We could reduce 96% of the legitimate inbound connection
attempts appeared in our lab PC traces by H1 and H2 with
Ht = 10 and Hl = 200. In addition, on the same traces, we
calculated P[N=0], the probability that vulnerability window
at a certain time point may not include legitimate inbound
connection attempts. Although we do not show the result due
to the limited space, P[N=0] when∆t = 0.57 seconds was
above 95% and when∆t = 1.43 seconds was above 90%.

C. How We Contain a Host

During active or passive containment, the agent prohibits its
host from connecting to other hosts. Inbound connections and
already established sessions are allowed to proceed.

Containment should handle two types of packets which
indicate outbound connection attempts: outbound UDP and
outbound TCP SYN packets. During the containment, a PWC
agent first tries buffering the connection attempts, to forward
them when the containment is relaxed. The buffered con-
nection attempts will be dropped with appropriate handling
if the buffer becomes full or if the packets are delayed for
longer than predefined timeout (up to a couple of seconds).
Meanwhile, PWC needs a special handling to integrate itself
seamlessly with other network-based signature identification
and filtering techniques [2], [3], [4], [5]. When a PWC agent
buffers a connection request, it forwards a copy of the packet
if the destination address is not in the same enterprise network.
Since the copy of connection request should not reach the des-
tination host, the PWC agent replaces the TTL value with the
number of hops to the border of network. Given the address of
the border router, the agent can measure exact number of hops,
using the same method as TRACEROUTE does [31]. Thus,
the signature extractor can see worm scans as if the sources
were not contained, while the scan from the contained host
cannot reach the victims. To prevent congestions on internal
paths, the rate of the copy-forwarding must be controlled.

D. Containment Relaxation Analysis

During the containment, a PWC agent maintainsdst, the
number of distinct addresses to which its host has initiated
connection attempts, to see if the host shows sustained rate
exceedingλ. We call this analysisrelaxation analysissince
the goal is to relax mistakenly contained hosts. Relaxation
analysis for a containment initiated at timetcontain mon-
itors the host for at leasttrelax seconds. The connection
rate rrelax updated at the end of the relaxation analysis is
defined as dst

tlast conn−tcontain
, where tlast conn is the time-

stamp of the first outbound connection attempt initiated after
tcontain + trelax. If rrelax is lower thanλ, the containment

TABLE I
NOTATIONS USED IN EVALUATION.

Symbol Description
|x| The size ofx.
V The number of vulnerable hosts in the enterprise network.
λ Smoking sign threshold (unique destinations/sec)
∆ The sample size to calculater.

nMI The number of mistakenly isolated uninfected hosts.
rAC The rate of active containments at a host.
rPC The rate of passive containments at a host.

nI The number of infected hosts in the network.
fI nI

V

nI0 The number of initially infected hosts.
nES The number of escaped scans.

rS Worm scan rate.
L Worm’s local preference (0.0 for uniformly scanning worms).

rD Average delay per connection request at a host.
WIL-x-y Williamson’s Virus Throttle with|working set| = x and

|delay queue| = y.
PWC-x-y PWC with λ = x and∆ = y.

should be relaxed. Otherwise, relaxation analysis should be
performed again. By spanning the calculation ofrrelax over
consecutive relaxation analyses, we can avoid evasion attempts
by such worms that periodically scan at a burst rate [32].F

successive failures in relaxing containment will let the host
isolated from the network.

V. EXPERIMENT SETUP

Symbols and notations used in the following sections are de-
scribed in table I. Through extensive simulations on enterprise-
level real traces, we have evaluated (1) cost-effectiveness of
PWC; (2) effect of collaboration; and (3) impact of partial
deployment. We also implemented a prototype PWC agent1

to study the impact on local P2P traffic. We have used the
following three metrics through out the evaluation:

• (M1) number of hosts infected by local worm scans.
• (M2) number of released worm scan packets.
• (M3) total denial-of-service time per host.

We evaluate PWC against two existing techniques,
Williamson’s Virus Throttle [1] and Hamsa [5] in terms of each
metric. Virus Throttle generates false positives on seven hosts
in the background traffic, thus we set up another configuration
WIL-5-1500 besides the default WIL-5-100. WIL-5-1500 is
the most conservative configuration that does not raise false
positives with the tested normal traffic. We deployed Hamsa at
the border of the enterprise network in the simulator. Hamsa
starts generating signatures when the suspicious pool size
reaches 500 and the signature extraction takes 6 seconds [5].
⊙ Hypothetical Enterprise Network: The enterprise network
simulations assume /16 local address space and 13,000 hosts
with V = 6, 500. We assume no inbound scans from external
infectee, for PWC is an unidirectional worm containment
approach. Also, Round-Trip-Time (which is typically less than
1 ms) within the same enterprise network is ignored.
⊙ Background Traffic : To configure parameters and to render
normal traffic, we have used a 24-hour trace of the Auckland-
IV traces [28] collected in 2001. The traces collected at
the border of the University of Auckland do not contain
local-to-local traffic. The omitted traffic would not affectthe

1Current prototype does not implement collaboration.

0
1
2
3
4
5
6
7

2 3 4 5 6 7 8 9 10¦rA
C

 (
ti

m
es

/m
in

)

1st
2nd
3rd

(a) rAC at each host. The chart
shows values at top three ranked
hosts for each∆.

0
2
4
6
8

10
12
14

2 3 4 5 6 7 8 9 10§rP
C

 (
ti

m
es

/m
in

)

1st 11th
21st 31st
41st

(b) rPC at five hosts among
the top ranked hosts. The 41st

host is the baseline of top 2%.

Fig. 4. The active/passive containment rate (rAC, rPC) for different ∆.

experiment results since the observation on our own local
network running PWC agent prototype showed that (1) the
local-to-local inbound and outbound connections implied high
locality which could be filtered byinconhist andoutconhist;
and (2) the burst rate of normal outbound connection attempts
did not sustain. In addition, the omitted traffic will also affect
existing techniques being compared with our system.
⊙ Test Worms: Three types of test worms include (T1)
randomly uniformly scanning worms, (T2) 0.3 local preferen-
tial scanning worms, and (T3) 0.5 local preferential scanning
worms. T2 and T3 worms give idea of PWC’s effect on the
local preferential scanning worms in real world. For example,
the CodeRed-II worm scans the same /8 network with 50%
probability and scans the same /16 network with 37.5%
probability. The Blaster worm picks the target within local
/16 network at a probability of 40% and a random IP at 60%.

VI. EVALUATION

A. Tuning Parameters

λ and∆ need to be tuned based on normal traffic, and both
parameters are critical to the effectiveness of PWC. We used
an Auckland-IV trace to render the normal traffic.

1) The Smoking Sign Threshold:The criterion that we used
for a goodλ was the number of mistakenly isolated hostsnMI

which was, in other words, the false positives that relaxation
analysis could not handle. We calculatednMI varyingλ and
∆, on a 24-hour long normal traffic. Given that∆ = 5 to
reduce the effect of false alarms caused by∆, we observed
nMI > 3 when λ < 7. Whenλ ≥ 7, nMI was zero even
with ∆ = 2 for the most aggressive configuration.

2) The Size of the Outbound Contact History:Small ∆
enables rapid containment while sacrificing accuracy. Conse-
quent inessential containment would reduce availability.

We ran PWC over the normal traffic for 24 hours. For
each host, we calculatedrAC and rPC, per-minute rates
of active and passive containments caused by false smoking
signs, varying∆. Since the vulnerability window analysis
would discard some propagated false smoking signs,rPC at
each host would be the rate at which the vulnerability window
analysis could not reject propagated false smoking signs.

In the result shown in Figure 4,rAC andrPC were stable
in the range where4 ≤ ∆ ≤ 9. rPC was less than once in ten
minutes at more than 98% of entire hosts when∆ = 4, and
more than 99% when∆ = 10. Based on the results, we could
set ∆ to 4 for conservative and 10 for the less conservative
yet more accurate configurations.

0.1

1

10

100

7 13 25 50 100

Worm's Scan Rate (scans/sec)

N
um

be
r

of
 In

fe
ct

ed
 H

os
ts

 (
%

)
Hamsa

WIL-5-1500
WIL-5-100

PWC-7-10
PWC-7-4

Blaster like
worms

CodeRed II
like worms

(a) T1 worms (L = 0.0)

0.1

1

10

100

7 13 25 50 100

Worm's Scan Rate (scans/sec)

N
um

be
r

of
 In

fe
ct

ed
 H

os
ts

 (
%

)

(b) T3 worm (L = 0.5)

Fig. 5. The number of infected hosts for local-preferentialscanning worms
with various scan rates.V = 6, 500, nI0 = 10

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

7 13 25 50 100

Worm's Scan Rate (scans/sec)

N
um

be
r

of
 E

sc
ap

ed
 S

ca
ns Hamsa WIL-5-1500 WIL-5-100

PWC-7-10 PWC-7-4

(a) T1 worms (L = 0.0)

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

7 13 25 50 100

Worm's Scan Rate (scans/sec)

N
um

be
r

of
 E

sc
ap

ed
 S

ca
ns

(b) T3 worms (L = 0.5)

Fig. 6. The number of escaped scans for different worm’s scanrate.V =
6, 500, nI0 = 10

3) The Relaxation Analysis Duration:The relaxation anal-
ysis durationtrelax affects the overall time in which each
host would be contained. We configuredtrelax to minimize
contained duration, based on simulations (PWC-7-4 with no
worm) through the busiest four hours of the normal traffic.

Let us denote byφi the sum of φi,j at host i, where
φi,j represents the length of thejth containment at hosti.
We calculated the distribution ofφi for various trelax. The
result suggested smallertrelax reducedφi. False negatives in
relaxation analysis (or false UNSAFE) will be resolved in the
next relaxation analysis, thereforetrelax should be a small
value that minimizes containment-relaxation false positives.
We settrelax to be 1 second, whereφi at 99.9% of hosts were
below 32 seconds which was 0.2% of the simulated time.

B. Performance Evaluation

We evaluated worm containment performance of PWC
assuming worm outbreak in the enterprise network with fully
deployed PWC. We deliberately set up 10 initially compro-
mised hosts to stimulate local infection.

1) M1 (Local-to-Local Infection Rate):The most signifi-
cant contribution of PWC is the suppression of local-to-local
worm infection. As in Figure 5, PWC successfully suppressed
local-to-local infection by local-preferential scanningworms,
even under an extreme condition wherenI0 = 10, V = 50%.

2) M2 (Escaped Worm Scans):A successful worm con-
tainment strategy must minimize the number of scans that
escapes the perimeter of defense during the delay when the
containment system detects the enemy and prepares its weapon
(i.e., signatures). We measured the number of escaped scans
for each of PWC, Virus Throttle, and Hamsa, until the worm
propagation was completely stopped. Figure 6 shows PWC
outperformed Virus Throttle and Hamsa in terms of M2, the
number of escaped scans. While Virus Throttle and Hamsa
performed better for the faster worms and the slower worms
respectively, PWC showed consistent performance for all the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 201 401 601 801 1001 1201 1401

Rank (from the most delayed
to the least delayed host)

D
el

ay
 p

er
 r

eq
u

es
t

(s
ec

)

PWC-7-4

PWC-7-10

WIL-5-100

WIL-5-1500

Fig. 7. Sortedaverage delay per connection requestobserved at each host.

tested scan rates. As the worm scanned local address space
more aggressively, the performance gap between PWC and
other techniques became more significant. Although WIL-5-
100 performed better than PWC-7-10 for the worms faster
than 25 to 50 scans/sec, WIL-5-100 isolated 7 hosts due to the
false positives. We observed no naive host had been isolated
by PWC during the simulations on M2.

3) M3 (Total Denial-of-Service Time Per Host):We com-
pared PWC in terms of availability-loss that the containments
caused by false smoking signs introduced. Please note Hamsa
does not introduce the availability-loss, thus, we compared
PWC with Virus Throttle only.

To compare availability-loss, we calculatedrD, the average
delay per request at each naive host, running on the same 24-
hour-long background traffic. As shown in Figure 7, PWC sig-
nificantly outperformed WIL-5-100 and WIL-5-1500 in terms
of M3. Due to the long delay queue, WIL-5-100 and WIL-
5-1500 delayed outbound connection requests for couples or
even tens of secondsin averageat several hosts while the
maximumrD was 0.95 sec/request for PWC-7-4 and 0.5 for
PWC-7-10. Variations were 0.0016 and 0.0002 for PWC-7-4
and PWC-7-10 respectively. Per-request delays for 99.80% of
the hosts in the PWC-7-4 experiment were below 0.37 sec, and
for 99.99% in the PWC-7-10 experiment were below 0.29 sec.

C. Impact of Smoking Sign Propagation Delay

To see the impact of smoking sign propagation delay, we
studied the worst case. In particular, for each of PWC-7-4
and PWC-7-10, we set up two different PWC systems: one
propagated smoking signs in LAN speed, while the other
propagatedno smoking signs. In each system, we infected 10
hosts with each of worms T1, T2, and T3. We performed 100
simulations in each experiment and compared the performance
in terms of M1 (Figure 8) and M2 (Figure 9).

For T1, we observed no significant impact of smoking sign
propagation delay because all the infected hosts were con-
tained before infecting any local victims. Similar phenomena
were observed in the cases of PWC-7-4 with T2 and T3.
However, in the cases of PWC-7-10 with T2 and T3, smoking
sign propagation improved performance by 4.6-19.8% and
4.3-10.6% in terms of M1 and M2 respectively. The results
suggested the performance improved as worms’ preference to
the local addresses increased.

D. Impact of Partial Deployment of PWC

We performed experiments on different deployment scenar-
ios where 40%, 60%, 80% and 100% of hosts in the enterprise
network were running PWC agents. Compared with fully-
deployed PWC, the performance of partially-deployed PWC

0

5

10

15

20

25

30

7 13 25 50 100

Worm's Scan Rate (scans/sec)

N
um

be
r

of
 In

fe
ct

ed
 H

os
ts PWC-7-4

PWC-7-4, no sign propagation
PWC-7-10
PWC-7-10, no sign propagation

(a) T2 worms (L = 0.3)

0

5

10

15

20

25

30

7 13 25 50 100

Worm's Scan Rate (scans/sec)

N
um

be
r

of
 In

fe
ct

ed
 H

os
ts

(b) T3 worms (L = 0.5)

Fig. 8. Smoking sign propagation effect in terms of the number of infected
hosts.V = 6,500,nI0 = 10

0
20
40
60
80

100
120
140
160
180

7 13 25 50 100

Worm's Scan Rate (scans/sec)

N
um

be
r

of
 E

sc
ap

ed
 S

ca
ns

(a) T2 worms (L = 0.3)

0
20
40
60
80

100
120
140
160
180

7 13 25 50 100

Worm's Scan Rate (scans/sec)

N
um

be
r

of
 E

sc
ap

ed
 S

ca
ns

(b) T3 worms (L = 0.5)

Fig. 9. Smoking sign propagation effect in terms of the number of escaped
scans.V = 6,500,nI0 = 10

would degrade in linear speed with respect to the deployment
percentage. We also compared partially-deployed PWC with
fully-deployed Hamsa and partially-deployed Virus Throttle.
Our comparison focused on the time windowΠ which starts
when the worm attack is mounted and ends when Hamsa
generates the signature, for PWC will (typically) terminate
itself as soon as the signature for the worm is generated. We
first infected 10 unprotected hosts with a worm sending 25
scans/sec. Then we definedΠ by running Hamsa. Finally,
we measured M1(Figure 10) and M2(Figure 11) of Virus
Throttle and PWC duringΠ. Overall, partially-deployed PWC-
7-4 performed substantially better than fully-deployed Hamsa;
and PWC-7-4 performed better than or equal to Virus Throttle
in all the partial deployment scenarios. Virus Throttle’s perfor-
mance could be worse since it would delay Hamsa’s suspicious
traffic collection phase while PWC would not.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

40% 60% 80% 100%

Deployment Ratio (%)

N
um

be
r

of
 In

fe
ct

ed
 H

os
ts Hamsa WIL-5-1500

WIL-5-100 PWC-7-4

(a) T1 worms (L = 0.0)

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

40% 60% 80% 100%

Deployment Ratio (%)

N
um

be
r

of
 In

fe
ct

ed
 H

os
ts

(b) T3 worms (L = 0.5)

Fig. 10. The number of infected hosts for different deployment ratio (in
log-scale).rS = 25 scans/sec,V = 6,500,nI0 = 10

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

40% 60% 80% 100%

Deployment Ratio (%)

N
um

be
r

of
 E

sc
ap

ed
 S

ca
ns Hamsa WIL-5-1500

WIL-5-100 PWC-7-4

(a) T1 worms (L = 0.0)

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

40% 60% 80% 100%

Deployment Ratio (%)

N
um

be
r

of
 E

sc
ap

ed
 S

ca
ns

(b) T3 worms (L = 0.5)

Fig. 11. The number of escaped scans for different deployment ratio (in
log-scale).rS = 25 scans/sec,V = 6,500,nI0 = 10

E. Impact on P2P Traffic

We tested a prototype PWC agent with eMule 0.47c, a P2P
application sharing files over the ed2k and Kad (server-less)
networks. The prototype was installed in a Winsock LSP layer
of a PC running Windows XP Professional SP2 connected
to Internet through a cable modem. During 9.35 hours of
experiment, eMule shared 494 files (130.31MB in average),
with unlimited uploading and downloading speed (effectively
60-70 KBytes/sec and 120-130 Kbytes/sec respectively). We
observed logarithmic increase of 3,806 distinct peers were
monitored in 10,990 connection attempts. eMule released
excessive UDP packets shorter than 150 bytes in the Kad
network mainly to search sources and peers.

To eliminate eMule traffic in raising smoking signs, our
prototype leveraged the following observations on eMule
traffic: (a) short UDP packet size and (b) large but limited
number of distinct destinations. As the result, eMule had been
contained 11 times during the first 1.08 hours and never been
contained afterwards. Only 0.28% of the outbound connection
attempts were delayed (but not discarded) 1.35 seconds in
average (maximum 2.09 seconds).

VII. SECURITY ANALYSIS

A. Smoking Sign Injection Attacks

There are two types of smoking sign injection attacks: a
spoofed smoking sign injected from an external host; a forged
smoking sign from a internal host compromised by an attacker.

1) Smoking Sign Injection from an External Host:In this
attack mode, we assume the attacker has no knowledge about
the authentication keys used in smoking sign propagation. A
proper firewall configuration that ensures no incoming packet
has any internal source address can filter simple injection
of bogus smoking signs spoofing internal source address.
However, a sophisticated external attacker may use IP tunnel.
Thereby, PWC uses a public-key authentication scheme to
authenticate each PWC agent to the PWC manager and vice
versa. The scheme is scalable in that (1) PWC agents only need
to verify the validity of the PWC manager’s certificate and (2)
the PWC manager knows whether or not an agents certificate
has been revoked as the PWC manager issues certificates to
PWC agents. Although public-key authentication operations
may consume CPU cycles, fast RSA [33] in current hardware
can authenticate within 100µsec and enterprise hosts typically
have enough CPU power. As shown in Figure 9 and Figure
10, the impact of small delay on PWC is negligible. (Note
that symmetric-key authentication is not as much manageable
regarding the number of PWC agents.)

2) Smoking Sign Injection from an Internal Host:In this
attack mode, we not only upgrade the attacker’s capability so
that he may “steal” the key from a compromised host, but
also assumeinsider threat. Under a public-key authentication
scheme, the attacker can forge a smoking sign either by
invoking the signing subroutine of the (local) PWC agent, or
by “‘stealing” the private key used by the compromised host.

The First Attempt As we will review shortly in Sec-
tion VII-C, how a PWC agent is implemented determines

Winsock API

Application Application

Application

Winsock LSP

TDI Filter TDI Filter

TCP/IP Other Protocols

NDIS Driver

NICs

Kernel Mode

User Mode

Firmware

Layer 1

Layer 2

Layer 3

Layer 4

Fig. 12. Windows Network Architecture Diagram

the ability of an internal attacker to “fool” the PWC agent.
Because a PWC agent accepts and processes only restricted
part of packet headers, the agent program itself is less likely
to have buffer related vulnerabilities. When implemented in
software, modern computer architecture and operating systems
practices also provide a variety of memory protection measures
that should be applied to protect PWC agents. By taking
these protective measures, the first attempt would have a high
probability in crashing the system instead of “fooling” the
system. More conservatively, we could implement a PWC
agent as a piece of firmware inside a NIC card.

The Second Attemptrequires a lot of knowledge on where
and how the private key is stored. This threat leads us to the
fundamental problem of runtime key protection which is well
studied in the literature. If the private key has to be storedin
the memory, we have two defenses: use of key obfuscation
techniques to store keys encoded, or use of key partitioning
to break the key into several parts and store them in different
memory locations. Another way is to use hardware modules
(such as Trusted Platform Module) that store the private key
and never disclose it to outside [34]. The key will be safe if
the attackers do not know how to use the module.

B. False Positive Smoking Signs

Three possible reasons may cause a PWC agent to raise
false positive smoking signs: a compromised agent/host which
is already addressed in the previous section; a burst rate in
connection attempts which isalready handled by smoking
sign detector and relaxation analysis; special applications such
as proxy servers – note that P2P/VoIP/Audio/Video streaming
clients and Instant Messengers raise few or no false smoking
signs by Algorithm 1.

Proxy servers that connect external clients with internal
servers scarcely raise false smoking signs once internal servers
start occupyingdsthist. However, proxy servers serving inter-
nal clients often connect to various external servers and may
cause false smoking signs. In this case, instead of disabling
PWC agents at the proxy servers, we can apply a proper
firewall configuration to deny any requests from external
clients, thus preventing external worms. As shown in Figure5,
internal worms hardly reach internal hosts including proxy
servers before being contained.

Finally, for applications/services that seldom generate bursts
in connection requests, thoseseldomexperienced extra delay
will be minimal as in Figure 7.

C. Worms May Bypass/Disable the Agent after Compromising
the Host

Let us assume that we implement a PWC agent in one of the
Layers in Figure 12. Sophisticate worms may try the following

attempts to neutralize local PWC agent after they successfully
break into a host: attempts tobypass; or disable.

Bypass Attempts Security measures implemented in
Layers 1 and 2 are vulnerable to the bypass attempts of a
worm that can directly access Layer 3 or Layer 4 interfaces.
However, it is not feasible for a worm to bypass Layer 3
since, in order to spread among asymmetric systems, the worm
must be able to access variety of NICs directly without using
drivers. Bypassing Layer 4 is also impossible since the worm
must use NIC. Thus, if the PWC agent is implemented in
either one of Layers 3 and 4, it should be very difficult or
even impossible for the worms to bypass the agent.

Disable Attempts When a worm exploits one of kernel-
mode vulnerabilities, it could have power to (a) unload any
programs including drivers; and (b) access full address space.
Power (a) allows the attackers to write a worm that propagates
freely after unloading PWC agents. However, if the drivers
that are necessary for propagation are unloaded, the worm will
be contained. Thus, PWC agents can be embedded in those
necessary driverssuch as Layer 3. Note that there are as many
NIC drivers as the number of NIC products. Assuming that
the vendors embed PWC agents in their drivers, it could be
almost impossible for a worm to try power (b) to disable the
agent without crashing the driver: although the worm might
disable a few drivers, it becomes a partial deployment scenario
at most.

D. Other Counterattacks

1) Poisoning Attacks:Attackers may tryUDP-flooding
attackin which an internal or external attacker sends excessive
UDP packets to a protected host to keep the recipient’s
vulnerability window analysis yielding UNSAFE. Then, any
propagated smoking sign received at the host will lead to
passive containment. However, this attack cannot be successful
since PWC controls the frequency of propagated smoking
signs. Moreover, attackers cannot mimic propagated smoking
signs as in Smoking Sign Injection Attacks.

2) Replacement Attacks:Replacement attacks are to over-
write (or erase) PWC agents stored in file systems. Worms
must use system-calls or BIOS service routines to access file
systems. So, we may have the system-calls deny attempts to
overwrite PWC agents. BIOS also can help by storing the
PWC agent in a restricted area on a disk and denying any
unauthorized write-access to the area. In addition,Microsoft
Windows VistaandLinux support Trusted Platform Module to
protect file systems from unauthorized changes.

3) Wait-before-Scan Attack:A worm may try waiting a
prolonged period before starting scanning to evade passive
containment. This attempt cannot let the worm successfully
spread out because the PWC agent at the host will initiate
active containment after the worm releases the first∆ scans.

VIII. D ISCUSSIONS

A. Applicability

Besides uniformly scanning worms, PWC can successfully
suppress topologically aware worms, hit-list worms, flash

worms, polymorphic worms, metamorphic worms, etc. that
scan more thanλ new addresses per second. PWC agents
are light-weight so that they can be implemented in either
way of hardware or software component. Other worm defense
measures can be run in parallel with PWC since PWC agents
can still forward large part of malicious messages during
containment. PWC guarantees those forwarded malicious mes-
sages will not infect any host. Finally, PWC allows P2P traffic.

B. Limitations

PWC also has several limitations. First, as a host-based
approach, PWC requires majority of internal hosts to run
PWC agents. However, the performance degradation in var-
ious partial deployment scenarios is not worse than existing
techniques. Second, proxy servers of specific type need to be
protected in an alternative way as mentioned in Section VII-B.
Third, as a certificate authority, the PWC manager must be
running in a highly secured host. However, without the PWC
manager, the performance of PWC is still acceptible as we
discussed in Section VI-C. Finally, during the containment,
a PWC agent may experience stalled-scan problem in which
a worm’s scanning rate is slowed down. This could let the
PWC agent relax an infected host after performing a couple of
rounds of relaxation analysis. However, this is a problem lim-
ited only to the TCP-based worms scanning in asynchronous
manner, and PWC can still slow down those worms.

IX. CONCLUSION

In this paper, we proposed PWC, a proactive worm con-
tainment solution for enterprises. With aggressive containment
and subsequent relaxation analysis based on two novel white
detection techniques, PWC couldstopan infected host as early
as after merely 4 to 10 scans were released while minimizing
denial-of-service effects. Evaluation based on real traces and
extensive worm simulations demonstrated that PWC signifi-
cantly outperformed Virus Throttle [1] in terms of all of three
metrics and Hamsa [5] in terms of local-to-local infectionsand
local-to-remote infections. In partial deployment experiments,
PWC outperformed Virus Throttle.

REFERENCES

[1] J. Twycross and M. M. Williamson, “Implementing and testing a virus
throttle,” in USENIX Security, August 2003.

[2] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated worm
fingerprinting.” in OSDI, 2004, pp. 45–60.

[3] H.-A. Kim and B. Karp, “Autograph: Toward automated, distributed
worm signature detection,” inProceedings of the 13th Usenix Security
Symposium, August 2004.

[4] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatic signature
generation for polymorphic worms,” inIEEE Security and Privacy
Symposium, May 2005.

[5] Z. Li, M. Sanghi, Y. Chen, M. Y. Kao, and B. Chavez, “Hamsa:Fast
signature generation for zero-day polymorphic worms with provable
attack resilience,” inProceedings of IEEE Symposium on Security and
Privacy, 2006.

[6] Z. Liang and R. Sekar, “Fast and automated generation of attack
signatures: A basis for building self-protecting servers,” in Proc. 12th
ACM Conference on Computer and Communications Security, 2005.

[7] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang,
and P. Barham, “Vigilante: End-to-end containment of internet worms,”
in SOSP, 2005.

[8] K. Wang, G. Cretu, and S. J. Stolfo, “Anomalous payload-based worm
detection and signature generation,” inProc. of Recent Advances in
Intrusion Detection, 2005.

[9] K. Wang and S. J. Stolfo, “Anomalous payload-based network intrusion
detection,” inProc. of Recent Advances in Intrusion Detection, 2004.

[10] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Poly-
morphic worm detection using structural information of executables,” in
RAID, 2005.

[11] X. Wang, C. Pan, P. Liu, and S. Zhu, “Sigfree: A signature-free buffer
overflow attack blocker,” inProc. of 15th USENIX Security Symposium,
2006.

[12] N. Weaver, S. Staniford, and V. Paxson, “very fast containment of scan-
ning worms,” inProceedings of the 13th USENIX Security Symposium,
2004, pp. 29 – 44.

[13] V. Sekar, Y. Xie, M. K. Reiter, and H. Zhang, “A multi-resolution
approach forworm detection and containment,” inDSN ’06: Proceedings
of the International Conference on Dependable Systems and Networks
(DSN’06). Washington, DC, USA: IEEE Computer Society, 2006, pp.
189–198.

[14] S. Chen and Y. Tang, “Slowing down Internet worms,” inICDCS
’04: Proceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS’04). IEEE Computer Society, 2004, pp.
312–319.

[15] S. Sellke, N. B. Shroff, and S. Bagchi, “Modeling and automated
containment of worms,” inIEEE DSN, 2005.

[16] C. Kreibich and J. Crowcroft, “Honeycomb - creating intrusion detection
signatures using honeypots,” inProc. of the Workshop on Hot Topics in
Networks (HotNets), 2003.

[17] Y. Tang and S. Chen, “Defending against internet worms:A signature-
based approach,” inINFOCOM, 2005.

[18] V. Yegneswaran, J. Giffin, P. Barford, and S. Jha, “An architecture for
generating semantic-aware signatures,” inProc. 14th USENIX Security
Symposium, 2005.

[19] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee, “Poly-
morphic blending attacks,” inProc. 15th USENIX Security Symposium,
2006.

[20] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier, “Shield:
Vulnerability-driven network filters for preventing knownvulnerability
exploits,” in Proceedings of the ACM SIGCOMM Conference, August
2004.

[21] J. Newsome and D. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploitson commodity
software,” inNDSS, 2005.

[22] G. E. Suh, J. Lee, and S. Devadas, “Secure program execution via
dynamic information flow tracking,” inASPLOS XI, 2004.

[23] M. E. Locasto, K. Wang, A. keromytis, and S. J. Stolfo, “Flips: Hybrid
adaptive intrusion prevention,” inProc. of Recent Advances in Intrusion
Detection, 2005.

[24] R. Chinchani and E. V. D. Berg, “A fast static analysis approach to
detect exploit code inside network flows,” inRAID, 2005.

[25] J. Jung, V. Paxson, A. Berger, and H. Balakrishnan, “Fast portscan
detection using sequential hypothesis testing,” inProc. IEEE Symposium
on Security and Privacy, 2004.

[26] G. N. P. R. D. D. Uday Savagaonkar, Ravi Sahita, “An os independent
heuristics-based worm-containment system,” White paper,2005.

[27] S. Sellke, “Modeling and automated containment of worms,” in DSN
’05: Proceedings of the 2005 International Conference on Dependable
Systems and Networks (DSN’05). Washington, DC, USA: IEEE
Computer Society, 2005, pp. 528–537.

[28] W. R. Group, “Auckland-iv trace archive,” 2002. [Online]. Available:
http://pma.nlanr.net/Traces/long/auck4.html

[29] K. G. Anagnostakis, M. B. Greenwald, S. Ioannidis, A. D.Keromytis,
and D. Li, “A cooperative immunization system for an untrusting
internet,” in Proceedings of the 11th IEEE International Conference on
Networks (ICON’03), October 2003.

[30] P. Porras, L. Briesemeister, K. Skinner, K. Levitt, J. Rowe, and Y.-C. A.
Ting, “A hybrid quarantine defense,” inWORM ’04: Proceedings of the
2004 ACM workshop on Rapid malcode. New York, NY, USA: ACM
Press, 2004, pp. 73–82.

[31] G. S. Malkin, “Traceroute using an IP option,” RFC1393,January 1993.
[32] S. Institute, “Malware faq: What is W32/Blaster worm?”2003.

[Online]. Available: http://www.sans.org/resources/malwarefaq/w32\
blasterworm.php

[33] D. Boneh and H. Shacham, “Fast variants of rsa,”CryptoBytes, vol. 5,
no. 1, pp. 1–9, 2002.

[34] A.-R. Sadeghi, M. Selhorst, C. Stüble, C. Wachsmann, M. Winandy,
and H. Görtz, “Tcg inside?: a note on tpm specification compliance,” in
STC ’06: Proceedings of the first ACM workshop on Scalable trusted
computing. New York, NY, USA: ACM Press, 2006, pp. 47–56.

