
In-broker access control: A new access control deployment strategy towards
optimal end-to-end performance of information brokerage systems

Fengjun Li Bo Luo Dongwon Lee Prasenjit Mitra
Wang-Chien Lee Chao-Hsien Chu Peng Liu

The Pennsylvania State University, University Park, PA 16802, USA

Abstract

An XML brokerage system is a distributed XML database
system that comprises of data sources and brokers which,
respectively, hold XML documents and document distrib-
ution information. Databases can be queried through bro-
kers with no schema-relevant or geographical difference be-
ing noticed. However, all existing information brokerage
systems view or handle query brokering and access control
as two orthogonal issues: query brokering is a system issue
that concerns costs and performance, while access control
is a security issue that concerns information confidential-
ity. As a result, access control deployment strategies (in
terms of where and when to do access control) and the im-
pact of such strategies on end-to-end system performance
are (in general) neglected by existing information broker-
age systems; and data source side access control deploy-
ment is taken-for-granted as the “right” thing to do. In
this paper, we challenge this traditional, taken-for-granted
access control deployment methodology, and we show that
query brokering and access control are not two orthogo-
nal issues because access control deployment strategies can
have significant impact on the “whole” system’s end-to-end
performance. We propose the first in-broker access con-
trol deployment strategy where access control is “pushed”
from the boundary of an information brokerage system into
the “heart” of the system. We design and evaluate the fist
in-broker access control scheme for information brokerage
systems. Our experimental results indicate that information
brokerage system builders should treat access control as a
system issue as well.

1 Introduction

Information sharing is becoming increasingly important
in recent years, not only among organizations with com-
mon or complementary interests, but also within large orga-
nizations and enterprises that are becoming ever more glob-
alized and distributed. Multiple divisions cooperate inside

large multinational enterprises as day’s routine. For exam-
ple in GM, to maintain a proper stock level of the parts,
people in the supply management division need to check the
sale information (of a set of car models) gathered and man-
aged by people in the world-wide sales divisions. In such
information sharing systems, the data gathered by a specific
division unit are typically stored and maintained in a data-
base local to the division, but the needs to access the data
may potentially come from any remote division in addition
to this division.

Although the Internet and various virtual private net-
works provide good data communication links, there are
major challenges (a) in achieving scalable, agile, precise
and secure remote access of locally managed data; (b) in
handling the heterogeneity among the local data manage-
ment systems and the data formats (used in these systems)
which are not always structured and may be incompati-
ble with each other; (c) in handling the dynamics of mod-
ern business applications (where new schema elements may
emerge everyday); and (d) in location discovery. For ex-
ample, classic distributed database systems cannot meet the
challenges, since they require a fairly static “global” data-
base schema and they require all data objects to be fully
structured.

To tackle these challenges, mediation and federation
based information brokering technologies have been ex-
tensively studied. Recently, eXtensible Markup Language
(XML) has been shown to be a promising solution [20], by
integrating data in incompatible formats using a semantic-
preserved form. An XML-based information brokerage sys-
tem is a distributed XML database system that comprises of
data sources and brokers which, respectively, hold (concep-
tually) XML documents and document distribution infor-
mation. In such systems, databases can be queried through
brokers with no schema-relevant or geographical difference
being noticed.

However, from the security and particularly the access
control point of view, existing information brokerage sys-
tems have a fundamental misconception. That is, they view
or handle query brokering and access control as two orthog-

Brokerage System

AC

Broker

DBMS

Access
Control Broker

BrokerBroker

Brokerage System

Broker
AC

Brokerage System

Access
Control AC AC

AC

ACAC

AC

Broker
Broker

BrokerBroker

DBMS
DBMS

Broker

Access
Control

Broker
AC

Broker
AC

AC

ACAC

AC

AC

Brokerage System

AC

Broker

DBMS

Access
Control Broker

BrokerBroker

Brokerage System

Broker
AC

Brokerage System

Access
Control AC AC

AC

ACAC

AC

Broker
Broker

BrokerBroker

DBMS
DBMS

Broker

Access
Control

Broker
AC

Broker
AC

AC

ACAC

AC

AC

Brokerage System

AC

Broker

DBMS

Access
Control Broker

BrokerBroker

Brokerage System

Broker
AC

Brokerage System

Access
Control AC AC

AC

ACAC

AC

Broker
Broker

BrokerBroker

DBMS
DBMS

Broker

Access
Control

Broker
AC

Broker
AC

AC

ACAC

AC

AC

(a) EAC (b) SAC (c) IAC

Figure 1. Three architectures of information
brokerage system.

onal issues: query brokering is a system issue that con-
cerns costs and performance, while access control is a se-
curity issue that concerns information confidentiality. As
a result, access control deployment strategies (in terms of
where and when to do access control) and the impact of
such strategies on end-to-end system performance are (in
general) neglected by existing information brokerage sys-
tems; and data source side access control deployment is
taken-for-granted as the “right” thing to do. In this pa-
per, we challege this traditional, taken-for-granted access
control deployment methodology, and we show that query
brokering and access control are not two orthogonal issues
because access control deployment strategies can have sig-
nificant impact on the “whole” system’s end-to-end perfor-
mance. In particular, we propose the first in-broker ac-
cess control deployment strategy where access control is
“pushed” from the boundary of an information brokerage
system into the “heart” of the system. We design and eval-
uate the fist in-broker access control scheme for informa-
tion brokerage systems, and the experimental results show
that in-broker access control may significantly improve the
performance of memory consumption, query response time
and network occupancy as well as system-wide security.
Our experimental results indicate that information broker-
age system builders should treat access control as a system
issue as well.

2 Architectures of Information Brokerage
Systems

Consider an information brokerage system where sensi-
tive information is being shared among geographically dis-
tributed participants (e.g., users, data sources and brokers).
To make the exposition simple, let us assume that each bro-
ker has a full knowledge of whereabouts of stored data.
Therefore, each broker may direct an inquiry to relevant
data sources without consulting other brokers (i.e., single-
hop brokering). Since the query brokering is not the focus
of this paper, we will limit our investigation to the case of
single-hop brokering. Nevertheless, supporting multi-hop
brokering is part of our future work.

In the traditional brokerage system, the job of security

enforcement is solely left upon the shoulder of DBMS. For
instance, administrators store access controls inside DBMS,
and any query first needs to pass access controls by DBMS
before it is processed by engines. In a sense, the enforce-
ment of access controls is “embedded” into DBMS. Fig-
ure 1(a) illustrates this architecture, named as Embedded
Access Controls (EAC). On the contrary, some of the re-
cent proposals attempt to pull the access controls out of
DBMS. For instance, in [15], we show that access con-
trols can be supported via query rewriting method outside of
DBMS, thereby de-coupling the tie between access controls
and DBMS. One of the many benefits of this architecture is
that access controls can be supported even if data are stored
in a DBMS without such a capability. For instance, none
of the commercially available XML databases are capable
of supporting access controls. However, using our proposed
QFilter, access controls can be supported outside of DBMS.
Figure 1(b) illustrates this architecture, named as Source-
side Access Controls (SAC). Intrigued by this pulling out
of DBMS procedure, we further push the access controls to
the brokers, from the boundary of brokerage systems into
the “heart” of the system. In this way, security check is
enforced when user accesses the brokerage network. Fig-
ure 1(c) illustrates this architecture, named as In-broker Ac-
cess Controls (IAC). We realized that both query brokering
and access controls are not two orthogonal issues. By inte-
grating the two issues properly, the whole system benefits
from this integrated design and improve the end-to-end per-
formance.

Early denial of the queries not only shortens the end-to-
end query response time of the initiating user in average, but
also save the network resources by not dispatching them to
the oriented data sources. If the rules allow the user to ac-
cess all the requested XML content, which means the orig-
inal query is accepted by the rules, it will be send to the
query indexer. If the rules allow the user to access a portion
of the requested content, the original query will be rewrit-
ten into a safe one, which yields accessible content only.
The rewritten query will be send to the query indexer. If
the rules does not allow the user to access any of the re-
quested content, which means the query is fully rejected, it
will be dropped at the broker and/or a error message is re-
turned to the user. Then users get denial response faster for
rejected queries as well as a deduction in overall response
time. At the same time, less network resources is consumed
by only directing the accepted and rewritten queries to the
data sources. The improvement in end-to-end performance
will be discussed in more detail in Section 5.

3 Background

XML Access Control Model. In this paper, we adopt
the fine-grained XML access control model similar to [10],

R2: (role, /people//address//*, read/update, +, RC)
R3: (role, /regions/namerica/item/name, read, +, LC)
Q1: /people/person/address/street
Q2:/people/person/creditcard
Q3:/regions//*

Then, Q1 is accepted by both R1 and R2, denied by R3. Similarly,
Q2 is accepted by R1, denied by both R2 and R3; and Q3 is accepted
by R1, denied by R2, and rewritten to /regions/namerica/item/name
by R3. In sections 4.2 and 4.3, we show how QFilter is constructed
and executed for the rules with “+” sign and “LC” types, and later
in sections 4.4, 4.5 and 4.6, we extend this basic QFilter to cover
more complex cases.

4.2 QFilter Construction
We consider XPath expressions of ACR as compositions of “four”
basic building blocks: /x, /*, //x, and //*. Complex XPath
expressions with predicates (e.g., /x[y=’c’]) can also be handled
and are further described in Section 4.4. The NFA fragment
construction for each building block is illustrated below:

Element State transition NFA construct

/x

/*

//x

//*

For a complete XPath expression, NFA fragments are constructed
upon path elements and then linked in sequence. For a set of rules
that form the ACR, NFA for each rule is constructed and all the
NFAs are combined in the way that identical states are merged.
The processing is similar to regular NFA construction. We now
give an example to illustrate the process. Consider the following
eight XPath expressions that are the object parts of access control
rules (now we ignore their type or action parts for simplicity):

R1: /site/categories//*
R2: /site/regions/*/item/location
R3: /site/regions/*/item/quantity
R4: /site/regions/*/item/name
R5: /site /regions/*/item/description
R6: /site /people/person/name
R7: /site /people/person/address//*
R8: /site /people/person/emailaddress

We construct the QFilter starting from R1. For element /site, we
create state 0 and a transition on token “site” to state 1. Then a
transition on token “categories” is created on element /categories.
For element //*, transition from state 2 to 3 and then 4 is created as
shown in Figure 2 (left). Transition from state 3 to 4 requires at
least 1 token after the ε transition. We use the “next-token-driven ε
transition” in the NFA execution, thus state 3 and 4 could be
merged in the NFA and set as acceptable state. The remaining
access control rules are processed accordingly. Finally, the state
transition map and the NFA corresponding to the above eight
access control rules are shown in Figure 2.

BuildNFA, the algorithm to construct an NFA from ACR, as
illustrated above, is straightforward and omitted. It is not difficult
to see that the time complexity of this algorithm is O(n), where n is
the size of ACR (i.e., the number of rules). Both of Q and R consist
of the four basic elements as described above. Next we provide
detailed discussion of the NFA execution in those four cases: (1)
only /x in both Q and NFA; (2) only /x in Q while /*, //x, and //*
exist in NFA; (3) /* exists in Q; and (4) //x and //* exist in Q.
4.3 QFilter Execution
Given a query Q as input to the QFilter constructed as above, the
output is a filtered query Q’. The filtering principle consists of: (1)
if ACR allows all data that Q requests, keep Q as it is; (2) if what
Q asks for is entirely prohibited by ACR, then reject Q; and (3)
otherwise, modify Q such that Q’ returns a precise “intersection”
of Q and ACR (or precise “difference” for − sign). The filtering
process becomes complicated when either Q or ACR has non-
deterministic operators such as “//” and “*”, which can match
multiple branches in the NFA.
1. Deterministic transitions: There is only one deterministic
transition, “/x”, among four basic elements. In this case, the
QFilter works exactly like regular NFA; an incoming query is
either accepted or denied by the automaton, and the output of
filtering is either the incoming query itself (if accepted) or empty
string (if denied). For instance, when a query
/site/people/person/name is executed, it passes through state 0→1
→12→13 of the state transition diagram in Figure 2 and is finally
accepted at state 14. Similarly, a query
/site/people/person/creditcard passes through state 0→1→12 and
rejected.
2. Non-deterministic transitions: This occurs when there is only
direct child expressions (/x) in Q but more than one possible
outgoing transitions (i.e., * and ε transitions) exist besides
deterministic ones. We follow all possible transition paths through
the NFA. Particularly, the //x and //* states are recursively
processed (e.g., the underlined states 3/4 and 17/18 shown in
Figure 2, right). If any of the paths ends at an accept state (i.e., the
query is acceptable by at least one of ACR), the original query is
passed through the NFA. For example, a query
/site/regions/namerica/item/name passes through state 1→5 to state
6 since wildcard “*” accepts token “namerica”.
3. Query rewriting at wildcard *: A query with wildcard “*”
normally matches more than one state transitions. Taking Q:/site/*
as an example, it moves from state 1 (/site) to state 2
(/site/categories), state 5 (/site/regions), and state 12 (/site/people).
Here wildcard “*” means it can transit from the current state to any
of its directly subsequent states. At any state, if the next input
token in the query is “/*”, we break the query into several branches
in accordance with all the direct children of the current state. In
each branch, we rewrite the “*” operator in Q with the
corresponding path transition token, e.g., the /site/* is broken into
three branches at state 1, and for instance, the branch transiting to
state 2 is rewritten into /site/categories. “*” operator is kept only if
a corresponding “*” transition exists, thus we mark this branch as
the original query. We go on executing each branch of the query. If
a branch of the original query exists and ends at an accepted state,
the output of QFilter is the Q itself. Otherwise, the output is the
union of all the accepted branches of the Q.
4. Query rewriting at “//” state: Both “//x” and “//*” in Q mean
the state transition from the current state to all its subsequent states.
In this case, the query is broken into branches that continue at each

ε *
1 2

*
*

ε 1 2 3

x
*

ε 1 2 3

1 2*

ε x
1 2

*

x1 2x
R1: /site/categories//*

R2: /site/regions/*/item/location

R3: /site/regions/*/item/quantity

R4: /site/regions/*/item/name

R5: /site /regions/*/item/description

2

categories

3ε *

*

4

item

*

1site0

5

regions

6

7

8

9

10

11

location
quantity

name
description

“site”
“categories”

“regions”

ε

*

ε

“item”

“location”

“quantity”

“name”

“description”

ε

ε

ε

ε

0
1

2 3/4

5 6

7 8

9

10

11

site people person name
0 1 2 3 4

site people person
0 1 2 3

site people person name
0 1 2 3 4

1
1

0
0

1
1

0
0

1
1

0
0

0
1

0
1

Access
ListAccept ListRole 1:

Role 2:

Merged:

Rule 1: {role1, ``/site/people/person'', read, +, RC}

Rule 2: {role2, ``/site/people/person/name'', read, +, RC}

1
1

1
0

0

1 2
site

people

3
ε africa

* 4 5items

asia
6 7items

192.168.0.2

192.168.0.15

192.168.0.16

R1: {`/site/people', 192.168.0.2}
R2: {`//africa/items', 192.168.0.15}
R3: {`//asia/items', 192.168.0.16}

(a) (b)

Figure 2. (a) Qfilter building blocks; (b) Sam-
ple ACRs (object part only).

and incorporate Role Based Access Control [21] to make it
more pragmatic. In our model, database administrators as-
sign roles to users. Each role is given a set of access rights
to data (XML nodes). The authorization is specified via
5-tuple access control rules (ACR): access control rule =
{subject, object, action, sign, type}, where (1) subject is to
whom an authorization is granted (i.e., role); (2) object is
a set of XML nodes specified by XPath; (3) action is one
of “read,” “write,” and “update”; (4) sign ∈ {+,−} refers
to either access “granted” or “denied,” respectively; and (5)
type ∈ {LC, RC} refers to either “Local Check” (i.e., au-
thorization is applied to only attributes or textual data of
context nodes), or “Recursive Check” (i.e., authorization is
applied to current nodes and propagated to all the descen-
dants), respectively. Nodes are inaccessible by default, and
negative rules take precedence upon positive rules in con-
flicts.

QFilter: Enforcing XML Access Controls via Query
Re-writing. One of the recent developments in XML ac-
cess controls is to enforce XML access controls by “re-
writing” input queries (e.g., [19, 15]). In this section, we
introduce a state-of-the-art technique, called QFilter [15],
that we recently proposed. The QFilter captures a set of ac-
cess control rules (ACR) using a Non-deterministic Finite
Automata (NFA), and re-writes any parts of incoming query
Q that violate the given access rights, to yield a safe query
Q′.
QFilter Construction. Four basic building blocks (/x,
/*, //x, //*) of XPath expression are used to construct
NFA fragments, as illustrated in Figure2(a). The NFA for
a complete set of ACR (i.e., XPath expressions in ACR) is
formed by linking the states in sequence. QFilter construc-
tion process is very similar to regular NFA construction. Let
us use ACR of Figure 2(b) as an example (to simplify the
presentation, let us focus only the object part of ACR, ignor-
ing the rest). The QFilter construction starts from R1: we
create state 0 and a transition on token site to state 1 for
element /site; then a transition on token categories
is created on /categories; and so on. Finally, the con-
structed QFilter is shown in Figure 3.
QFilter Execution. In the context of access controls, QFil-

R1: /site/categories//*

R2: /site/regions/*/item/location

R3: /site/regions/*/item/quantity

R4: /site/regions/*/item/name

R5: /site /regions/*/item/description

2

categories

3ε *

*

4

item

*

1site0

5

regions

6

7

8

9

10

11

location
quantity

name
description

“site”
“categories”

“regions”

ε

*

ε

“item”

“location”

“quantity”

“name”

“description”

ε

ε

ε

ε

0
1

2 3/4

5 6

7
8

9

10

11

site people person name
0 1 2 3 4

site people person
0 1 2 3

site people person name
0 1 2 3 4

1
1

0
0

1
1

0
0

1
1

0
0

0
1

0
1

Access
ListAccept ListRole 1:

Role 2:

Merged:

Rule 1: {role1, ``/site/people/person'', read, +, RC}

Rule 2: {role2, ``/site/people/person/name'', read, +, RC}

1
1

1
0

0

1 2
site

people

3
ε africa

* 4 5items

asia
6 7items

192.168.0.2

192.168.0.15

192.168.0.16

R1: {`/site/people', 192.168.0.2}
R2: {`//africa/items', 192.168.0.15}
R3: {`//asia/items', 192.168.0.16}

(a)

(b)

R1: /site/categories//*

R2: /site/regions/*/item/location

R3: /site/regions/*/item/quantity

R4: /site/regions/*/item/name

R5: /site /regions/*/item/description

2

categories

3ε *

*

4

item

*

1site0

5

regions

6

7

8

9

10

11

location
quantity

name
description

“site”
“categories”

“regions”

ε

*

ε

“item”

“location”

“quantity”

“name”

“description”

ε

ε

ε

ε

0
1

2 3/4

5 6

7
8

9

10

11

site people person name
0 1 2 3 4

site people person
0 1 2 3

site people person name
0 1 2 3 4

1
1

0
0

1
1

0
0

1
1

0
0

0
1

0
1

Access
ListAccept ListRole 1:

Role 2:

Merged:

Rule 1: {role1, ``/site/people/person'', read, +, RC}

Rule 2: {role2, ``/site/people/person/name'', read, +, RC}

1
1

1
0

0

1 2
site

people

3
ε africa

* 4 5items

asia
6 7items

192.168.0.2

192.168.0.15

192.168.0.16

R1: {`/site/people', 192.168.0.2}
R2: {`//africa/items', 192.168.0.15}
R3: {`//asia/items', 192.168.0.16}

(a)

(b)

Figure 3. QFilter example: (a) State transition
map and (b) NFA transition.

ter captures ACR+ and ACR−. For an input XPath query
Q, QFilter has three types of operations during the execu-
tion: (1) Accept: If answers of Q are contained by that of
ACR+ (i.e., Q asks for answers granted by ACR+) and
disjoint from that of ACR− (i.e., Q does not ask for an-
swers blocked by ACR−), then QFilter accepts the query
as it is: Q′ = Q; (2) Deny: If answers of Q are disjoint
from that of ACR+ (i.e., no answers to Q are granted by
ACR+) or contained by that of ACR− (i.e., all answers to
Q are blocked by ACR−), then QFilter rejects the query
outright: Q′ = ∅; (3) Rewrite: if only a partial answer is
granted by ACR+ or partial answer is blocked by ACR− ,
QFilter rewrites Q into the ACR-obeying output query Q′.
At the end, the following property is guaranteed: Q′ is (i)
contained in Q, (ii) contained in ACR+ and (iii) disjoint
with ACR−. Note that, for rewritten queries, the output
could be “UNION” of several XPath queries 1.

For instance, if we only have ACR+: {user,
/site/regions/*/item/name, +, read, LC} and {user,
/site/regions/*/item/location, +, read, LC} is the ACR+

in Figure 3. That is, a role user can read only the
name and location elements under item. Then,
for the input query Q : //item[1]/∗, the QFil-
ter of Figure 3 would yield the following re-written
query Q′ : /site/regions/ ∗ /item[1]/name UNION
/site/regions/ ∗ /item[1]/location.

4 Approaches for In-broker Access Control

4.1 Brokering Indexer

In an XML data brokerage system, users send queries
without knowing where the data is stored. Brokers have

1To be more strict, “DEEP UNION” should be used [16]

R1: /site/categories//*

R2: /site/regions/*/item/location

R3: /site/regions/*/item/quantity

R4: /site/regions/*/item/name

R5: /site /regions/*/item/description

2

categories

3ε *

*

4

item

*

1site0

5

regions

6

7

8

9

10

11

location
quantity

name
description

“site”
“categories”

“regions”

ε

*

ε

“item”

“location”

“quantity”

“name”

“description”

ε

ε

ε

ε

0
1

2 3/4

5 6

7
8

9

10

11

site people person name
0 1 2 3 4

site people person
0 1 2 3

site people person name
0 1 2 3 4

1
1

0
0

1
1

0
0

1
1

0
0

0
1

0
1

Access
ListAccept ListRole 1:

Role 2:

Merged:

Rule 1: {role1, ``/site/people/person'', read, +, RC}

Rule 2: {role2, ``/site/people/person/name'', read, +, RC}

1
1

1
0

0

1 2
site

people

3
ε africa

* 4 5items

asia
6 7items

192.168.0.2

192.168.0.15

192.168.0.16

R1: {`/site/people', 192.168.0.2}

R2: {`//africa/items', 192.168.0.15}

R3: {`//asia/items', 192.168.0.16}

(a)

(b)

Figure 4. An NFA-based indexer in (b) is con-
structed with index rules in (a).

the information about the physical distribution of the XML
documents. In our setting, a query is routed using single-
hop brokering. Thus, given an XML query, the broker is
able to determine the location of requested content. Note
that multi-hop brokering might be employed in lower lay-
ers, e.g., if the destination is identified by IP addresses, IP
layer query forwarding is multi-hop.

The index information is described as Rindex={object,
destination(s)} where “destination” is a network address
(e.g. IP address) and “object” is an XPath expression. An
example is shown in Figure 4(a).

Since the index table look-up process is essentially one-
to-many XPath matching, we design a QFilter-like extended
NFA to handle it. Similar to QFilter, our system constructs
an Query Indexer using the XPath expressions of the in-
dex rules. At each accept state, the destination address is
attached. For instance, Figure 4(b) shows the state transi-
tion map for the index rules in Figure 4(a). The execution
(destination lookup) is a token matching and state transiting
process, which is very similar to any NFA or QFilter exe-
cution. The goal is to match incoming queries with routing
rules captured in the NFA. During the execution process,
the destination addresses are attached to the query when ap-
propriate. Finally accepted queries are forwarded to the list
of destination addresses attached to it. It is possible that
a query does not match any routing rule, which means no
known data source has the requested data, thus the query is
dropped.

4.2 The Multi-role QFilter Approach

4.2.1 QFilter Array

The QFilter approach described earlier is designed for one
single role [15]. In a network setting, access control for
multiple roles (each has its own ACR) is needed. To ad-
dress this need, one intuitive extension is to use an array
of QFilters (called QFilter Array), in which each QFilter
is constructed, stored and executed independently. When a
query is submitted, the role of user is first identified and the
corresponding QFilter is located from the array to process
the query.

One serious drawback of QFilter Array approach is that

0

1 2
site

people

3
ε africa

*
4 5items

asia
6 7items

192.168.0.2

192.168.0.15

192.168.0.16

R1: /site/categories//*
R2: /site/regions/*/item/location
R3: /site/regions/*/item/quantity
R4: /site/regions/*/item/name
R5: /site /regions/*/item/description

2

categories

3ε *

*

4

item

*

1site0

5

regions

6

6

8

9

10

11

location
quantity
name

description

“site”
“categories”

“regions”

ε

*

ε

“item”

“location”

“quantity”

“name”
“description”

ε

ε

ε

ε

0
1

2 3/4

5 6

7 8

9

10

11

R1: {`/site/people', 192.168.0.2}

R2: {`//africa/items', 192.168.0.15}

R3: {`//asia/items', 192.168.0.16}

site people person name
0 1 2 3 4

site people person
0 1 2 3

site people person name
0 1 2 3 4

1
1

0
0

1
1

0
0

1
1

0
0

0
1

0
1

Access
ListAccept ListRole 1:

Role 2:

Merged:

Rule 1: {role1, ``/site/people/person'', read, +, RC}

Rule 2: {role2, ``/site/people/person/name'', read, +, RC}

1
1

1
0

Figure 5. QFilter Array of two roles are
merged into one Multi-role QFilter.

its memory usage grows linearly with the number of roles in
the system. Although this looks not a problem, practically
when large number of roles exists, it soon grow beyond size
of main memory, and dramatically downgrades the system
performance. To tackle this problem, we introduce Multi-
role QFilter.

4.2.2 Multi-role QFilter

We observe that there is great similarity in access control
rule sets for different roles, therefore their QFilters are also
similar. The idea of Multi-role QFilter (MRQ) is to merging
similar QFilters into one uniform data structure instead of
storing them in an array. Since each QFilter is constructed
for one particular role, this merging method should identify
access control rules to the roles. In our design, we use an
Boolean array (bitmap) since its looking up complexity is
O(1).
MRQ Construction. We construct MRQ in a similar way
as single QFilters, and enhance it by annotating each state
with two bitmaps: access list and accept list, with each bit
representing a Boolean value. Thus a corresponding pair
(access value, accept value) is assigned to each role. The
access value indicates whether the role has access right to
this state and the accept value indicates whether the state
is an accept state for this role. Figure 5 shows an exam-
ple: there are two roles, each is assigned with an access
control rule; a QFilter Array consisting of two individual
QFilters is shown first and the MRQ that serves both roles
is shown underneath. The MRQ (labeled “Merged” in Fig-
ure 5) contains an access list and an accept list at each state
to indicate the accessibility of each role, e.g. the first three
states are accessible by both roles (the access values are 1)
but none of them is an accept state (the accept values are 0).
The state 3 is the accept state for role 1 only and the state 4
is accessible by role 2 only.
MRQ Execution. Similar to a single QFilter, for an input
query (Q, role id), MRQ has three types of execution re-
sults: Accept, Deny, or Rewrite. During the execution, at

each MRQ state, the access right of the role is first checked
based on the role id. If the access value is 0 at a partic-
ular state s for a role R, the execution is stopped for role
R at state S and the query is not accepted. Only when
the access value is 1, the execution proceeds to subsequent
states. In this manner, the access value restricts the region,
in which a query may traverse in a MRQ.

4.3 Indexed Multi-role QFilter Approach

4.3.1 Implementation

In above approaches, access control enforcement is moved
from the data source towards the center of the network -
the brokers. Therefore, brokers hold both indexing and
access control mechanisms. When incoming query Q is
submitted, Multi-role QFilter processes it to safe query Q′,
then Brokering Indexer locates the data source. Since two
mechanisms with similar structure reside at the same place,
it is natural to merge them for to improve both storage
and processing speed. Therefore, we merge them into one
NFA-based structure, namely Indexed Multi-role
QFilter (IMQ), which captures both indexing and access
control rules. A query Q sent to IMQ yields the output of
{Q′, {destination(s)}}, where Q′ is the safe query.
IMQ Construction. As described in Section 4.1, the in-
dex rule is formatted as Rindex={object, destination(s)}.
The merging process is compromised of three steps:
(1)Construct: construct a Multi-role QFilter (MQ) using
ACR; (2) Filtering: executing the XPath of Rindex.object
in MR; and (3) Attach: attach Rindex.destination(s) to
the current accept state, as well as all the descendent accept
states.

Instead of giving the exhausted algorithm, we use an ex-
ample to show the construction of IMQ. As shown in fig-
ure 6 (we assume that MQ is already constructed): (a) rule
{/site/categories//*, 192.168.0.10} reaches state 4, indicat-
ing all /site/categories//* data are accessible and are located
at 192.168.0.10); (b) rule {/site/regions/item/payment,
192.168.0.5} does not reach any accept state, indicating
no user is allowed to access the node although it is lo-
cated at 192.168.0.5); (c) and (d): when rule {/site/regions,
192.169.0.13} is executed, the XPath expression stops at
state 5, then we attach its destination to all the descendant
accept states, e.g. 8, 9, 10 and 11. This means, although
192.169.0.13 holds entire /site/regions node, only some de-
scendants are defined accessible by ACR.
IMQ Execution. For an input query (Q, role id), IMQ
execution is almost identical to Multi-role QFilter execu-
tion, except that the appropriate destination addresses are
attached to accept and rewritten queries. Finally the ac-
cepted/rewritten queries are forwarded to all the attached
destinations.

192.168.0.10
2

categories

3ε *

*

4

item

*

1site0

5

regions

6

7

8

9

10

11

location
quantity

name
description

192.168.0.10
2

categories

3ε *

*

4

item

*

1site0

5

regions

6

7

8

9

10

11

location
quantity

name
description

X

192.168.0.10
2

categories

3ε *

*

4

item

*

1site0

5

regions

6

7

8

9

10

11

location
quantity

name
description

192.168.0.11

192.168.0.12

192.168.0.13

192.168.0.14

192.168.0.10
2

categories

3ε *

*

4

item

*

1site0

5

regions

6

7

8

9

10

11

location
quantity

name
description

192.168.0.11

192.168.0.12

192.168.0.13

192.168.0.14

(a) The accept case.

(b) The reject case.

(c) Filtering process.

(d) Traversing process.

Figure 6. IMQ Construction.

4.3.2 Performance Analysis

The performance of Indexed Multi-role QFilter can be
qualitatively analyzed over two parameters: memory and
processing time. In terms of memory: (1) Brokering In-
dexer is removed; (2) each time we attach destination to a
Multi-role QFilter state, only four bytes (if we use IP ad-
dress to identify destinations) are added. However, consid-
ering both the savings and the additional cost, on the whole
we achieve significant storage savings. In terms of query
processing time, incoming queries only need to traverse one
NFA, instead of two NFAs in series.

5 Experiment and Analysis

We have implemented the three brokering mechanisms
proposed in Section 4 in Java. In this section, we present
two experiments based on the implementation. In the first
experiment, we investigate how memory cost and query fil-
tering time change with parameters (the number of roles and
rules per role) in QFilter Array approach and Multi-role
QFilter approach. A reasonable setting is then chosen for
the second experiment, and we measure the overall memory
consumption and query brokering time in three approaches
and show the Indexed Multi-role QFilter approach performs
best in both.

5.1 Effectiveness of Role-merging

We wish to show how the memory cost and query fil-
tering time change with parameters in both approaches and
how much saving achieved by the Multi-role QFilter ap-
proach over the QFilter approach at the same setting. The
saving is due to the effectiveness of the states sharing among
access control rules in the role-merging process.

Settings. We use a DTD from XMark, a well-known
XML benchmark [22]. This DTD defines 77 element and 16
attribute types for an on-line auction scenario. The maximal
depth of the XPath expressions is set to 6 as suggested in

[8]. To mostly simulate the real-world cases, synthetic rules
are generated by randomly assigning wildcards (* or //) or
predicates to each rule at some given ratios. The complete
randomness offsets the impact of the rule pattern. Then we
vary the number of roles from 10 to 500 and the average
number of rules (with 10% wildcard ratio and no predicate)
for each role from 5 to 300 and construct the QFilter Array
and Multi-role QFilter accordingly. To evaluate the query
filtering time, we generate a synthetic query set SQ of 500
queries (with 10% wildcard and 1 predicate per rule).

Memory Cost. Memory consumption in QFilter Ar-
ray approach and Multi-role QFilter approach is shown in
Figure 7. In experiments shown in Figure 7(a) and 7(b),
a wildcard occurs at each state of access control rules at a
given ratio 10%. As expected (see Figure 7(a)), memory
consumption for QFilter Array is right proportional to the
number of roles and increases below-linear with the num-
ber of rules per role. This dues to the percentage of state
sharing in both dimensions. Sharing can occur among rules
in the same QFilter and the more the rules per role, the more
possibility the states share; and no sharing among the rules
belong to different roles since they are situated in multi-
ple QFilters. Look at Figure 7(b), we can see a significant
saving in memory along both dimensions. This is because
all rules are contained in a big QFilter-structure, and states
share even when they belong to different roles. To show the
curve more clear, a setting with no wildcard in each ACR
is used and the experiment result is shown in Figure 7(c)
and 7(d). Under this setting, only 105 distinct XPath-based
ACR are generated and the percentage of sharing is ex-
tremely high. In both settings, the memory requirement for
Multi-role QFilter is one order of magnitude smaller than
that of the QFilter Array.

Similar result is obtained for the ACR set with predi-
cates. We do not list the result here due to space constrains.

Query Filtering Time. There are three possible results
when queries are passed to the access control mechanisms:
denied, accepted with rewriting, or accepted without rewrit-
ing. Accepted queries take a longer time than the denied
ones, while the rewritten queries take the longest time. For
SQ, 198 queries are rejected and 302 queries are accepted.
The ratio of filtering time (tf) in Multi-role QFilter over the
one in QFilter Array are calculated and grouped in query
types (as shown in Figure 8(a)-(c)). Figure 8(d)gives an
overall comparison based the average of all three types. It is
clear to see that the Multi-role QFilter approach costs about
4 times in filtering time than the QFilter Array approach no
matter which type of query is examined. We can also calcu-
late the overall filtering time based on the proportion of the
query types and their average filtering time. Figure 8(e) and
8(f) shows that Multi-role QFilter spends 1.5 to 5 times in
filtering than QFilter Array.

Analysis. There is a tradeoff between the memory con-

of rules
per role

of rules
per role# of roles # of roles

M
em

or
y

co
ns

um
pt

io
n

(M
 B

yt
es

)

×10

of rules
per role

of rules
per role# of roles # of roles

(a) QA in 10% wildcard ratio setting

×10 ×10

×10

M
em

or
y

co
ns

um
pt

io
n

(M
 B

yt
es

)

M
em

or
y

co
ns

um
pt

io
n

(M
 B

yt
es

)

M
em

or
y

co
ns

um
pt

io
n

(M
 B

yt
es

)

(b) MQ in 10% wildcard ratio setting

(c) QA in no wildcard ratio setting (d) MQ in no wildcard ratio setting

Figure 7. Memory consumption of QFilter-
Array approach and Multi-role QFilter ap-
proach under two settings.

sumption and filtering time. However, the filtering time is
in the scale of milliseconds, much smaller than the network
latency (in the scale of hundreds of milliseconds). Thus, the
impact is not as significant as memory consumption. We
conclude that Multi-role QFilter is a better solution than
QFilter Array.

Since the impact of role number and rule number has
been examined in the experiment, and the relative perfor-
mance of Multi-role QFilter approach and QFilter Array ap-
proach is investigated in a great extent, we are able to decide
a setting which is applicable in real-world cases for the next
experiment.

5.2 Effectiveness of the Indexed Multi-
role QFilter Approach

Three brokering mechanisms are proposed in Section 4:
first using QFilter Array or Multi-role QFilter for access
control and then using Indexer for indexing, or using a all-
in-one Indexed Multi-role QFilter. In this test, we wish
to evaluate the overall performance of these three mecha-
nisms.

Settings. We fix the number of roles to 80 and the
number of rules per role to 50, and randomly generate the
synthetic access control rules with 10% wildcard ratio and 1
predicate for each rule. For indexing, we generate synthetic
XPath-based index paths at 10% wildcard ratio to offset the
impact of path pattern. Since we do not consider predicate
parsing in our index scheme, we assume no predicate in the
index path. Two sets are built, one with 1000 index paths
(SP1) and the other with 4000 index paths (SP2). To mea-
sure the query brokering time, the same synthetic query set

(d) For all three types Queries

of rules
per role# of roles # of rules

per role# of roles

t f
in

 M
ul

ti-
ro

le
 Q

fil
te

r
ov

er
 t f

 in
 Q

fil
te

r A
rr

ay

(c) For Rewritten Queries

1

of rules
per role

of rules
per role# of roles # of roles

t f
in

 M
ul

ti-
ro

le
 Q

fil
te

r
ov

er
 t f

 in
 Q

fil
te

r A
rr

ay

of rules
per role# of roles

(a) For Accepted Queries (b) For Denied Queries

t f
in

 M
ul

ti-
ro

le
 Q

fil
te

r
ov

er
 t f

 in
 Q

fil
te

r A
rr

ay

of rules
per role

of roles

O
ve

ra
ll

A
ve

ra
ge

Fi

lte
rin

g
Ti

m
e

(m
s)

(f) tf of Multi-role QFilter approach

O
ve

ra
ll

A
ve

ra
ge

Fi

lte
rin

g
Ti

m
e

(m
s)

(e) tf of QFilter Array approach

t f
in

 M
ul

ti-
ro

le
 Q

fil
te

r
ov

er
 t f

 in
 Q

fil
te

r A
rr

ay

Figure 8. Compare the query filtering time of
QFilter Array approach and Multi-role QFilter
approach.

SQ of 500 queries is used.
Memory Cost. Memory cost for brokering includes the

consumption for both access control and indexing. The
indexer with 1000 and 4000 index paths consumes about
418KB and 1027KB memory storage respectively. Overall
memory consumption of three mechanisms is summarized
in Table 1. It can be clearly observed that Indexed Multi-
role QFilter requires the least amount of memory, while
Multi-role QFilter+Indexer consumes much less than the
naive QFilter Array+Indexer. By merging the index paths
with the access control rules already in Multi-role QFilter,
the Indexed Multi-role QFilter (with 1000 index paths) only
requires an additional memory (compare with mechanism
MQ+I) of 125KB instead of the original 418KB (used by
the Indexer). When the amount of index paths increase to
4000, the saving is much more significant.

Query Brokering Time. The brokering time includes
query filtering time (tf) and query index time (ti). The time
for directing all 500 queries in SQ though SP1 and SP2 is
402ms and 1131ms respectively, and the average is 0.804ms
and 2.262ms respectively. The overall brokering time in
three mechanisms are listed in Table 1. Since the Indexer
is not as efficient as the security check process, it domi-
nates the overall performance especially when the amount

Table 1. Compare the memory and query bro-
kering time of three in-broker approaches.

Approaches (with 1000 indexes) QA+I MQ+I IMQ
Memory for Index (KB) 418 418 -
Memory for access control (KB) 2934 969 -
Memory for in-broker total (KB) 3352 1387 1094
Time for Index (ms) 402 1131 -
Time for access control (ms) 105 482 -
Time for in-broker total (ms) 507 884 447
Time for in-broker average (ms) 1.014 1.768 0.895
Approaches (with 4000 indexes) QA+I MQ+I IMQ
Memory for Index (KB) 1027 1027 -
Memory for access control (KB) 2934 969 -
Memory for in-broker total (KB) 3961 1996 1119
Time for Index (ms) 1131 1131 -
Time for access control (ms) 105 482 -
Time for in-broker total (ms) 1638 2015 459.3
Time for in-broker average (ms) 3.276 4.030 0.919

of index paths goes large. The QFilter Array approach is
tailed by the Indexer even though it performs fifth times
better than the Multi-role QFilter approach. The Indexed
Multi-role QFilter approach performs best because the in-
dex process is embedded into its security check.

6 Architecture Level Analysis

6.1 Analysis on End-to-End Query Di-
recting Time and Network Occupancy

Murata and Kudo have conducted experiments under a
dynamic manner to investigate the static accepted queries
and static denied queries [19]. They show that 40% of the
queries are type ‘G’, where all XPath expressions in the
query are always granted; 25% queries are type ‘D’, where
at least one of the XPath expressions is always denied; and
35% of the queries are type ‘-’, where at least one XPath
expression in the query is rewritten. We assume a similar
distribution in our experiment accordingly.

End-to-End Query Directing Time. We define the end-
to-end query directing time as the summation of query fil-
tering time (tf), query index time (ti), and network latency
(tn). Since exactly the same query set reaches the DBMS
after the security check, the processing time tp and back-
ward network latency tn3 are the same and are not counted
in. General network latency is 200ms 2, so we assume the
value of tn1 and tn2 for a single query is both 100ms. Since
25% queries fail the security check and get rejected at the

2http://www.internettrafficreport.com/samerica.htm#graphs.

Table 2. Compare the end-to-end query di-
recting time.

Approach/Time(ms) tn1 tf +ti tn2 overall
SAC with QA 100 1.014 100 201.014
SAC with MQ 100 1.768 100 201.768
IAC with QA 100 1.014 75 176.014
IAC with MQ 100 1.768 75 176.768
IAC with IMQ 100 1.004 75 176.004

broker in the In-broker Access Control architecture (IAC),
the average time of tn2 is reduced to 75ms. Based on the
results in experiment 2, we calculate the end-to-end query
directing time for three brokering mechanisms under two
architectures and list the value in Table 2. It is clear that the
network latency dominant, and thus the performance under
IAC architecture is much better than the one using SAC ar-
chitecture.

Network Occupancy. Defined as total traffic demand
over total link capacity, we calculate the network occupancy
of a link l as latencyl × total traffic(inByte). We mea-
sure the size of 500 queries in SQ and take the average 30
Bytes as the value for one query. Further assume all queries
are enclosed in TCP packets, which brings an additional
header of 40 Bytes. Then, we calculate the network oc-
cupancy as latency(100ms)× traffic(30 + 40Bytes)×
No. of queries. Since 25% queries are denied, the sav-
ing of IAC over SAC and EAC in network occupancy is:
(100× 70× 500 + 100× 70× 500× 75%)/(100× 70×
500× 2) = 87.5%.

6.2 Overall System-wide Security Discus-
sions

In information brokerage systems, security is not only
a database concern as in the traditional DBMS system but
also a system concern. The overall security of information
brokerage systems is not limited to prohibiting users from
accessing unauthorized data, rather, it provides a broader
concept as the security of the whole system, where DBMS
lies at the boundary. The system-wide security benefits
from the early denial of suspicious actions and intrinsic
replication among brokers.

As whole system, suspicious actions should be detected
and denied at the entrance of the system, instead of letting
it walk around the core system (brokerage network) and
reach the far boundary (designated data server) to be re-
jected there. However, in traditional information brokerage
networks, brokers do not carry any access control function.
By sending fake queries to the system, any user (unautho-
rized or even unregistered user) could bring risk. For in-
stance, let us assume data source DSA holds sensitive in-

formation (e.g., //creditcard nodes) and data source DSB

holds public data (e.g., //person nodes, but not //creditcard).
In a traditional brokerage system, a low-level user (e.g. the
attacker) could send a “snooping query” (say //creditcard)
to trace and locate DSA, where the query reaches and gets
rejected. In this way, one can get a whole picture of the sys-
tem such as where the servers are and what data they have
by keep sending these snooping queries, and do further af-
ter successfully finding out the locations of sensitive infor-
mation. In the contrary, our in-network access control ap-
proach conceals servers with sensitive data (such as DSA)
and blocks potential misfeasance at the brokers. Thus, it
brings more overall system security.

Moreover, our in-broker brokerage system provides a
full replication of access control and location information
among all the brokers, which brings higher robustness to
the whole system. In traditional information brokerage sys-
tems, attackers could block a portion of data sources by DoS
attacks. Since the security check is at the DBMS end, the
attackers could exhaust the network access and the system
resource of the target data server by sending a huge num-
ber of identical (or similar) queries which have no access
right to the requested data. In our in-broker access control
approach, not only the DoS attacking data cannot reach the
data server but also the broker can easily recovery with the
help of other brokers. However, compared with databases
(relational tables or XML trees), the size of access control
rules is minimum. In our in-network access control system,
it is practically applicable to maintain a full version of ac-
cess control rules at each broker, i.e. access control function
components are fully replicated at each broker. In this way,
attackers are not able to block-out a portion of data, since
their fake queries are mostly closed-out at the brokers. The
brokers endure the incoming attacks, while the brokerage
network and data sources are successfully protected. To
turn down the system, attackers need to successfully DoS
all the brokers. This is practically impossible considering
the number of brokers in the system. Since the broker only
holds the access control and location information, replica-
tion at the broker level is not as expensive as the data level
replication in other two architectures. However, the con-
cern of the replication cost is one reason of the multi-hop
brokering exploration in our future work.

Another concern of pushing access control to the bro-
kers is the trust level of the brokers. It is reasonable to
assume the brokers have a certain level of trust in intra-
organizations brokerage systems, and are only partially
trusted in inter-organizations brokerage systems. For the
latter circumstance, we should notice that the brokers could
be hacked (by outsiders) or abused (by insiders) even with-
out access control enforcement mechanism. In respond to
this, we can use dual access control (i.e., double-check or
validate if an access control policy is correctly enforced

at the data source side) and ene-to-end auditing systems
to help monitoring brokers’ behavior. Since the in-broker
access control is a bonus of the query forwarding process
considering the performance which we will discuss later
and only the passed queries experience the second security
check at the data source side, the dual access control does
not greatly hurt the overall query response performance and
is an acceptable solution.

7 Related Work

Publish/Subscribe systems (e.g., [26, 2, 11]) are based on
events and provide many-to-many communication between
event publishers and subscribers. What we have proposed
in not a publish/subscribe system for its spontaneous query
answering capability. As an XML-based overlay network,
[24] proposed a mesh-based overlay network that supports
XML queries. In [6] XML content-based routing is ad-
dressed using the query aggregation scheme given in [5].
In [13], content-based routing of XPath queries in P2P sys-
tems is studied. However, none of these work addresses
the integration of information brokerage and access control,
which is one of our main emphases. The Content Distribu-
tion Networks (CDN) provide an infrastructure that delivers
static or dynamic Web objects to clients from cache or repli-
cas to off-load the main site [6, 1]. Some of recent works
has focused on allowing users to specify coherence require-
ments over data [2, 23]. This differs from our approach
in that it does not give users a powerful query language.
Also, our focus is how to distributes access controls, not
data, among brokers. [25] gives a good overview on access
control in collaborative systems. Although many, existing
“distributed” access control theories and techniques focus
on the policy, modeling, and flexibility aspects. However,
our work focuses on performance-optimizing enforcement
strategies using in-broker access controls.

In the proposed XML brokerage system, we used the ac-
cess control model proposed by [10, 21]. However, since
ours is not tightly coupled with one specific model, our
proposed techniques can be applied to other access con-
trol models (e.g., [9, 3, 12, 14]). As to enforcing XML
access controls, by and large, existing approaches either
use “views” (e.g., compressed accessibility map of [27]) or
rely on the underlying XML engine (e.g., [7]). Our pro-
posal is based on the QFilter – query re-writing access con-
trols – that does not use views nor require any support from
XML databases. Finally, compared with various researches
on the equivalence/containment/re-writing of XML queries
[17, 18], our approach is NFA-based and security-driven.
[4], independently developed, bears some similarity to our
QFilter approach in that it also uses NFA to process stream-
ing XML data for access controls. In this paper, we extend
the idea of QFilter further to the context of in-broker access

controls. Therefore, our access controls can occur anywhere
in the network freely – at client, server, and in-between.

8 Conclusion

In this paper, we focus on access control issues in XML
information brokerage systems, where end-users send in
queries without knowing where data is actually stored, and
brokers take the responsibility to locate the data sources
and forward the queries. We propose a general framework
that categories access control approaches into three archi-
tectures, namely SAC, EAC and IAC. We show that IAC
architecture is desired in terms of network efficiency and
robustness. However, due to limitations of access control
enforcement mechanisms, none of existing takes IAC ar-
chitecture. In this paper, we adopt an access control mech-
anism named QFilter, which was previously proposed by
us. By constructing a QFilter for each role and sit it in the
brokers, we developed the first In-Network Access Control
approach, which pulls access control out of data sources to-
wards the users to enjoy all the benefits of IAC architec-
ture. Observing the great extent of similarities existing be-
tween access control policies of different roles, we further
optimize the first approach by merging QFilters of different
roles into one. Moreover, we propose and NFA based In-
dexer for brokers to efficiently locate data sources for user
queries. We finally merge NFA based Indexer into Multi-
Role QFilter to obtain Indexed Multi-Role QFilter. Through
detailed experiments, we demonstrate and compare the per-
formance of all structures and approaches.

References

[1] Websphere application server net-
work deployment. http://www-
306.ibm.com/software/webservers/appserv/was/ net-
work/edge.html.

[2] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley,
and T. D. Chandra. Matching events in a content-based sub-
scription system. In Symposium on Principles of Distributed
Computing, pages 53–61, 1999.

[3] E. Bertino and E. Ferrari. Secure and selective dissemination
of XML documents. ACM Trans. Inf. Syst. Secur., 5(3):290–
331, 2002.

[4] L. Bouganim, F. D. Ngoc, and P. Pucheral. Client-based
access control management for XML documents. In VLDB,
pages 84–95, Toronto, Canada, 2004.

[5] C. Y. Chan, W. Fan, P. Felber, M. N. Garofalakis, and
R. Rastogi. Tree pattern aggregation for scalable xml data
dissemination. In VLDB, pages 826–837, 2002.

[6] R. Chand and P. A. Felber. A scalable protocol for content-
based routing in overlay networks. In IEEE International
Symposium on Network Computing and Applications, page
123, Washington D.C., 2003.

[7] S. Cho, S. Amer-Yahia, L. V. S. Lakshmanan, and D. Srivas-
tava. Optimizing the secure evaluation of twig queries. In
VLDB, pages 490–501, China, 2002.

[8] B. Choi. What are real dtds like? In WebDB, pages 43–48,
2002.

[9] E. Damiani, S. Vimercati, S. Paraboschi, and P. Samarati.
Design and implementation of an access control processor
for XML documents. Computer Networks, 33(1-6):59–75,
2000.

[10] E. Damiani, S. Vimercati, S. Paraboschi, and P. Samarati.
A fine-grained access control system for XML documents.
ACM Trans. Inf. Syst. Secur., 5(2):169–202, 2002.

[11] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an Internet-
scale XML issemination service. In VLDB Conference,
Toronto, August 2004.

[12] S. Godik and T. Moses. eXtensible Access Control Markup
Language (XACML) version 1.0. OASIS Specification Set,
Feb 2003.

[13] G. Koloniari and E. Pitoura. Content-based routing of path
queries in peer-to-peer systems. In EDBT, pages 29–47,
2004.

[14] M. Kudo and S. Hada. XML document security based
on provisional authorization. In CCS ’00: Proceedings of
the 7th ACM conference on Computer and communications
security, pages 87–96, New York, NY, USA, 2000. ACM
Press.

[15] B. Luo, D. Lee, W.-C. Lee, and P. Liu. QFilter: Fine-grained
run-time XML access control via NFA-based query rewrit-
ing. In 13th ACM Int’l Conf. on Information and Knowledge
Management (CIKM), Washington D.C., USA, nov 2004.

[16] B. Luo, D. Lee, W.-C. Lee, and P. Liu. Deep set operators
for XQuery. In ACM SIGMOD Workshop on XQuery Im-
plementation, Experience and Perspectives (XIME-P), Bal-
timore, MD, USA., 2005.

[17] G. Miklau and D. Suciu. Containment and equivalence
for an XPath fragment. In PODS ’02: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 65–76, Wisconsin,
2002.

[18] J. Moffett, M. Sloman, and K. Twidle. Specifying discre-
tionary access control policy for distributed systems. Com-
put. Commun., 13(9):571–580, 1990.

[19] M. Murata, A. Tozawa, and M. Kudo. XML access control
using static analysis. In ACM conf. on Computer and Com-
munication Security, Washington D.C., 2003.

[20] Y. Papakonstantinou and V. Vassalos. Architecture and im-
plementation of an XQuery-based information integration
platform. In IEEE Data Eng. Bull., volume 25 of 1, pages
18–26, 2002.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE Com-
puter, 29(2):38–47, 1996.

[22] A. Schmidt, F. Waas, S. Manegold, and M. Kersten. “The
XML Benchmark Project”. Technical report, INS-R0103,
CWI, April 2001.

[23] S. Shah, S. Dharmarajan, and K. Ramamritham. An efficient
and resilient approach to filtering and disseminating stream-
ing data. In VLDB, pages 57–68, 2003.

[24] A. C. Snoeren, K. Conley, and D. K. Gifford. Mesh-based
content routing using XML. In Symposium on Operating
Systems Principles, pages 160–173, 2001.

[25] W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong. Access control
in collaborative systems. ACM Comput. Surv., 37(1):29–41,
2005.

[26] T. W. Yan and H. Garcia-Molina. The SIFT information
dissemination system. ACM Transactions on Database Sys-
tems, 24(4):529–565, 1999.

[27] T. Yu, D. Srivastava, L. V. S. Lakshmanan, and H. V. Ja-
gadish. Compressed accessibility map: Efficient access con-
trol for XML. In VLDB, pages 478–489, China, 2002.

