
Defensive Execution of Transactional Processes against Attacks

Meng Yu, Wanyu Zang
Department of Computer Science

Monmouth University, 07764
myu@monmouth.edu

Peng Liu
School of Information Sciences and Technology

Pennsylvania State University, 16801
pliu@ist.psu.edu

Abstract

It is a well known problem that the attack recovery of
a self-healing system rolls back not only malicious transac-
tions, but also legitimate transactions that are dependenton
the malicious transactions. Rolling back and re-executing
damaged transactions increase the response time of the sys-
tem and may cause a significant processing delay. In such
situations, the availability of the system is compromised
and the system suffers the vulnerability of Denial of Ser-
vice (DoS). In this paper, we propose a defensive execut-
ing technique and analyze its effectiveness. Our technique
concurrently executes multiple paths of a transactional pro-
cesses based on the prediction generated by a Discrete Time
Markov Chain. The defensive execution can reduce the de-
lay caused by recovery. We also propose a branch cutting
technique to reduce the extra cost introduced by defensive
execution. Our analytical results show that our technique is
practical against transactional level attacks.

1 Introduction

Distributed transactional processing systems (e.g., dis-
tributed database systems and workflow systems) are im-
portant in most critical infrastructures such as financial ser-
vices. These services rely on the correctness, availability,
and reliability of the processing systems. Each transactional
process consists of a set of transactions that are related to
each other in terms of the semantics of a business process.
Each transaction represents a specific unit of work that the
business needs to do (e.g., a specific application program,
a database transaction). A consistent and reliable execution
of distributed transactional processes is crucial for all orga-
nizations.

However, it is well known that system vulnerabilities
cannot be totally eliminated, and such vulnerabilities can
be exploited by attackers who penetrate the system. Even
worse, in such situation, legitimate transactions referring to
the damaged transactions will also be affected since they

0.3

0.8

0.2

0.3

0.7

0.5

0.5

1

1

0.9

0.1

1

1

10.6

0.4

0.7

t1

t2

t3

t4

t5

t6

t7

t8

t9
t10

t11
t12

G〈V,E〉

Figure 1. An example of transactional pro-
cesses

compute results or make decisions based on wrong infor-
mation.

Figure 1 shows an example of damage spreading and re-
pair. In the figure, nodes are transactions and edges indicate
executing paths. The destination node of a directed edge
starts after the source node is complete, e.g.,t12 will start
aftert7 is done. If a node has more than one successors, the
number on an edge indicates the probability that the specific
path (or node) can be taken (Section 3 discusses how to de-
termine the probabilities). In the figure, continuous lines
are the actual executing path and dash lines are possible ex-
ecuting paths.

In Figure 1, patht1t2t5t7t12 has been executed. Ift2 was
compromised by an attacker, it would be possible thatt2
made a wrong decision to selectt5 as its successor.t7 may
also generate wrong information based ont2’s results. The
example shows a single compromised transaction may af-
fects many legitimate transactions. If we want to recover
the transactional process and givent12 is correct anyway (t12

does not depend on any oft2, t5 andt7) we need to roll back

1



(undo)t2t5t7 and redot2 to select correct executing path. In
the procedure, damage tracing and repair are involved.

We have to rely on attack recovery techniques to address
the above problem. After the attacker successfully beats
prevention techniques, attack recovery techniques restore
the integrity level by repairing the damage caused by suc-
cessful intrusions.

Previous work [1, 10, 14, 15] introduced different tech-
niques to trace damage spreading and repair the damage in
transactional processing systems. However, if attacks hap-
pen, all affected transactions will be rolled back (undone)
and redone.

Rolling back and re-executing damaged transactions in-
crease the response time of the system and may cause a sig-
nificant processing delay. In such situations, the availability
of the system is compromised and the system suffers the
vulnerability of Denial of Service (DoS).

In this paper, we propose a defensive executing tech-
nique and analyze its effectiveness. Our technique con-
currently executes multiple paths of a transactional pro-
cesses based on the prediction generated by a Discrete Time
Markov Chain. The defensive execution can reduce the de-
lay caused by recovery. We also propose a branch cutting
technique to reduce the extra cost introduced by defensive
execution. Our analytical results show that our technique is
practical against transactional level attacks.

This paper is organized as follows. Section 2 defines im-
portant terms used in this paper. Section 3 describes the
details of our defensive executing technique. Garbage col-
lection will be discussed in Section 4. We discussed the
effectiveness of our technique in Section 5 and compare it
with related work in Section 6. Finally, Section 7 concludes
the paper.

2 Preliminary

In this section, we introduce some preliminary terms and
concepts used in this paper.

2.1 Dependency relations

Dependency relations are important because not only
data items are calculated through dependency relations, but
also executing orders of concurrent transactions are deter-
mined by dependency relations. Furthermore, we need the
dependency relations to determine proper defensive execu-
tions.

In Figure 1, the start node of an arrow will be executed
right before the end node, which defines aprecedencere-
lation. For example,t1 precedes t2, which is denoted by
t1 ≺ t2. There are several possible executing paths in Fig-
ure 1. One of them ist1t2t5t7t12. An other one ist1t2t3t4t8t12.

t2 makes a decision on which executing path will be se-
lected. The selection betweent2’s successort3 and t5 is
calledcontrol dependence, which is denoted byt2 →c t3 and
t2 →c t5. In the figure, execution patht1t2t5 was selected.

Assume ≺ is a relation on setS then we define
minimal(S ,≺) = {x | x ∈ S ∧ ∄x′ ∈ S ,x′ ≺ x}. Note
there may be more than one result qualified by the defini-
tion of minimal(S ,≺). For example, In Figure 1, given
S = {t1, t2, t9}, sincet1 ≺ t2 and t1prect9, t1 is the qual-
ified results for minimal(S ,≺). minimal(S ,≺) defines
start transactions in all left transactions of a transactional
process.

Once t2 is identified as a transaction compromised by
the attacker, and the selection of execution patht1t2t5t7 was
wrong, the execution oft5 andt7 need to be recovered. Fur-
thermore, ift12 reads information generated byt5, which
is flow data dependencedenoted byt5 → f t12, the damage
will be spread tot12. Note that even though no message has
been sent fromt5 to t12, they may still have data dependen-
cies since they may share data objects.

In the above example, damage is spread through depen-
dency relations. We can similarly define the other two types
of data dependence. Ift j modifies data objects afterti reads
them, thent j is anti-flow dependenton ti , which is denoted
by ti →a t j . If ti ≺ t j , and they have common data objects to
modify, thent j is output dependenton ti , which is denoted
by ti →o t j .

All the relations→ f , →a and→o are data dependency
relations and are not transitive. From the well known results
of concurrency and parallel computing, ift j is data depen-
dent onti , then they cannot run in parallel or concurrently,
andti ≺ t j must be satisfied. Otherwise, the value shared by
ti andt j will be incorrectly calculated.

2.2 Unrecoverable transactions

In a distributed system, we need to consider both inside
operations and interactions with the outside world. The for-
mal models in previous work, such as [15, 14] were unable
to formalize interactions with the outside world. Since in-
teractions with the outside world are not recoverable, we
use anOWS(outside world site) to model the outside world.
All transactions happened on anOWSare unrecoverable.
We consider all inputs obtained from users and all outputs
to the users happen on a user siteSu which is aOWS. All
user’s transactions are calledOWTs (outside world trans-
actions). For example, a transaction that a user withdraws
money from a ATM cannot be recovered. It is anOWT and
the ATM is anOWS.

2



2.3 Transactional processes

With above notations, transactional processes can be
modeled as(T,S,≺,→ f ,→a,→o,→c), whereT is a set of
transactions,S is a set of sites that are corresponding to a
host or a processor in the distributed system,Su ∈ S is an
OWS, and all dependency relations among transactions.

2.4 Concurrency restrictions and domino-effects

We use a simple example to explain that there do exist
some restrictions on executing orders of transactions in de-
pendency relation based recovery.

Consider transactionst1 : a = 1, t2 : b = 2, andt3 : y =
a+b, which are executed in the sequence oft1 ≺ t2 ≺ t3. We
havet1 → f t3∧ t2 → f t3. Assume thatt2 has been identified
as compromised by an IDS, so the value ofb is corrupted.
Therefore,t3 is also corrupted since it reads a incorrectb.
During the concurrency restrictions, the rolling back and re-
doing damaged transactions have to strictly follow specific
orders [15, 14]. The effects that a compromised transaction
affects all legitimate transactions depending on it are called
Domino-effects.

To recover,t2 needs to be undone followed by redone.
t3 needs to be redone. Please note thatt3 does not need
to be undone because in the example, no transaction is de-
pendent ont3. We must satisfy the sequence of undo(t2) ≺
redo(t2) ≺ redo(t3) in the recovery. Any other execution
will get wrong results. The precedence relations introduced
by dependency relations is calledconcurrency restrictions.

The concurrency restriction is also caused by depen-
dency relations. However, we can break anti-flow depen-
dency relations by introducing multi-version data, as de-
scribed in Section 3.

3 Defensive execution

This section describes the details of mathematical model
based prediction, data structure support, and branch cutting
in defensive executions.

3.1 A motivative example

Domino-effects always happen if transactional processes
are attacked. During the recovery, all concurrency restric-
tions have to be strictly followed to guarantee that the re-
covery is correct [15, 14]. Both domino-effects and concur-
rency restrictions cause significant execution delay of re-
covery.

The recovery delay can be reduced or totally removed by
defensive execution. The basic idea of defensive execution
is to concurrently execute multiple paths that are most likely
to happen. For example, in Figure 1, while executing path

t1t2t5t7t12 we also execute patht5t6t7 and t3t4t8 as backup
executions. t1t2t5t7t12 is calledactual execution.

If the execution of patht1t2t5t7t12 was manipulated by
the attacker, and patht1t2t5t6t8t12 should be the correct exe-
cution, we can discard old execution and switch to the cor-
rect execution immediately, which may significantly reduce
the delay of recovery. Please note that defensive execution
does not handle the situation that the recovery path is the
same to the attacked path, which can be handled by previ-
ous work [15, 14].

3.2 Discrete time Markov chain based self-
adaptive prediction

Since executing all possible paths in a transactional pro-
cess may cost too many resources, we use a mathematical
model to choose the best candidate backup executions.

In a transactional process, if we consider the execution
of each transaction as a state, and associate each transi-
tion from one state to an other, we will get a Discrete Time
Markov Chain (DTMC) [13, 11]. We can predict the most
possible executing paths in a transactional process accord-
ing to its DTMC.

Givenn transactions in a transactional process, the initial
probability distribution isπ(0) = (1,0,0, . . . ,0

︸ ︷︷ ︸

n−1

). After the

kth step, the probability that a specific transaction will be
executed is given by

π(n) = π(0)Pn (1)

whereP is the state-transition probability matrix of DTMC
and P = P ·P · · ·P

︸ ︷︷ ︸

n

. P is given by{ai j }, whereai j is the

probability of executingt j after transactionti is done.

The initial P can be determined in different ways. For
example, it can be determined by the statistical results of
executions, or provided by the designer of the transactional
process. Otherwise, the initialP is determined in the fol-
lowing way. If ti hasmsuccessors, we assign1

m as the state-
transition probability to each transition.

Once we have the initialP, we revise it according to real
executions. We record the actual executing path in each ex-
ecution of the process, then reviseP according to how fre-
quently a successor will be selected in previous executions.
Therefore, our DTMC based prediction is self-adaptive.

In Figure 1, we may obtain state-transition probabili-
ties after enough executions, as associated numbers to each
edge. For example, the edge fromt6 to t7 is 0.7, which in-
dicates that aftert6 is done,t7 will have 70% chance to be
taken. t8 will have the other 30% change to be taken. The

3



state-transition probability matrixP is as follows.





















0 0.8 0 0 0 0 0 0 0.2 0 0 0
0 0 0.3 0 0.7 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0.6 0.4 0 0 0 0 0
0 0 0 0 0 0 0.7 0.3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.1 0.9
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0.5 0 0 0 0 0.5 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1





















(2)

ai j in P is corresponding to the probability that transaction
ti transfers to transactiont j .

We can use equation 1 to predict the execution of trans-
actions.(π(0),π(1),π(2),π(3),π(4),π(5),π(6))T will be












1 0 0 0 0 0 0 0 0 0 0 0
0 .8 0 0 0 0 0 0 .2 0 0 0
0 0 .24 0 .66 0 0 0 0 .10 0 0
0 0 0 .24 0 .40 .26 0 0 0 .10 0
0 0 0 0 0 0 0.28 .36 0 0 .02 .34
0 0 0 0 0 0 0 0 0 0 .03 .97
0 0 0 0 0 0 0 0 0 0 0 1












(3)

whereπ(k),0≤ k≤ 6 is the probability distribution in step

k. For example, according toπ(4), in the 4th step, the prob-
ability to executet7 is 0.28 and the probability to executet8
is 0.36.

In the above results, if we select transactions with prob-
ability higher than 0.2 in each step, we will get transactions
t1, t2, t3, t5, t4, t6, t7, t8, t11, t12. These transactions cover ex-
actly the pathst1t2t5t7t12, t5t6t7 andt3t4t8 as we advocated
paths at the beginning of Section 3. Practically, the thresh-
old 0.2 in the example should be changed according to the
applications.

The above example demonstrated how to use the DTMC
model to predict the probability of executing a specific
transaction in each step. Generally, in thekth step of the
execution of a transactional process, after the execution se-
lected a successort to execute, we select predicted transac-
tions, other thant, with the highest probabilities inπ(k) to
execute. The probability of failing prediction will be pretty
low according to the DTMC model.

So far we discussed node coverage in a transac-
tional process. It will be a little more complicated
to consider path coverage. Even though setT =
{t1, t2, t3, t5, t4, t6, t7, t8, t11, t12} covers three different paths
that we preferred,T also covers a patht5t6t8t12 in Figure 1.
A problem is if we need to consider these paths separately.

Assume that there are ax = 5 in t5, a x = 3 in t6, and
a y = x+ 2 in t7. The path coveringt5t7 and the path cov-
ering t5t6t7 will be totally different. In such situation, the
backup execution oft7 should have a different version from
the actual one. The reason that we need different versions
of t7 is thatt5 → f t7 andt6 → f t7 andt7 are covered by two
different paths.

The following theorem serves as a general rule to de-
termine if a specific transaction needs different executing
version in a backup execution.

Theorem 1 If a task t appears in both executing path P1

and P2 and one of P1 and P2 is a backup executing path, the
execution of t will need separate versions for each executing
path if and only if there exist t1 ∈ P1 and t2 ∈ P2 satisfying
the following conditions:

1. t1 6= t2

2. t1 /∈ P2∧ t2 /∈ P1

3. t1 → f t ∧ t2 → f t

PROOF: If a taskt appears in both executing pathP1 andP2

and one ofP1 andP2 is a backup executing path, the execu-
tion of t will need separate versions for each executing path
if and only the executions oft in different paths generate
different results.

The situation happens if and only if the computation oft
refers to different data values on different paths, which can
be described as∃t1 ∈ P1, t1 → f t and∃t2 ∈ P2, t2 → f t. If
t1 = t2 (two execution paths may have common part),t will
generate the same results since the calculation is based on
the same data set. Therefore,t1 must be different fromt2.
Otherwise,t cannot generate different results in two paths.

If t1 ∈ P2 or t2 ∈ P1, thent1 or t2 is in the common part of
P1 andP2, there will be no difference fort in two executions
P1 andP2. Therefore, we havet1 /∈ P2∧ t2 /∈ P1. ¤

3.3 Multiple revision histories to support
multiple-branch execution

Defensive executions generate results from backup ex-
ecutions. The results will be useful if and only if user’s
executing path is discarded. Before the results become use-
ful, they should be cached as temporary versions. We use
multiple revision history to address the problem.

For any data objectx written at timetm, we associatetm
with x as its reversion number. We do not call it a timestamp
since we do not perform recovery in real time. We assume
that any twoti andt j , wherei 6= j, are distinguishable in the
system.

A revision history for data objectx has a form
〈xv1,xv2, · · · ,xvn〉, where eachvi ,1≤ i ≤ n is a revision num-
ber ofx andv j is later thanvi if j > i. If we know thatxvk is
corrupted by the attacker than any transaction that readsxvk

get wrong results.
Please note that it is possible that inx’s revision history,

there is only a specific version that is corrupted. For exam-
ple, x is generated periodically by a trustable transactionT
and an attacker only corrupts a specific version ofx, e.g.,

4



xvk. Therefore, we cannot conclude ifxv j , where j > k, is
dirty without further analysis.

For a specific versionxvk, when it has a value that it is
not supposed to have, it isdirty. For example, whenxvk

is created by an attacker or computed based on dirty data
objects, it is dirty. Otherwise, it isclean.

A data object may have oneworking historycorrespond-
ing to the actual executing path and multiplecaching his-
tory corresponding to backup executions when necessary
(see Theorem 1).

3.4 Operations on the revision history

A normal transaction reads data objects with the highest
revision number, and it writes data objects with the highest
revision number in their revision histories. So, a revision
history does not change dependency relations among nor-
mal transactions. It operates just as if multiple versions did
not exist.

A recovery transaction, whether it is an undo or redo
transaction, operates on data objects with the same revi-
sion numbers as it used the first time it executed. For ex-
ample, a undo(Ti) is implemented by removing all specific
versions from revision histories of data objects written byTi .
A redo(Ti) will generate data objects with the same revision
number as it executed first time. A revision history does not
change dependency relations among recovery transactions
either. We can consider that recovery transactions are for
revising part of the history of the system.

When we find a dirty versionxvk, there are two possible
ways that the dirty version was generated. One possibility
is thatxvk should not exist at all, e.g, it was created by the
attacker. Any transaction that readsxvk is supposed to read
xvk−1 instead ofxvk. Another possibility is thatxvk has a dirty
value and needs to be recomputed by a redo transaction.
Any transaction that readsxvk needs to wait until the redo
transaction has completed to get a correct value ofxvk. In
this case, we markxvk asxvk

b to block possible reading until
the redo transaction is complete.

Multi-version data objects break dependency relations
among recovery transactions and normal transactions,
which enable us to run the recovery transactions and nor-
mal transactions concurrently. According to the structureof
the revision history, operations on old versions happen as
“in the past.” Therefore, execution of normal transactions
does not corrupt recovery transactions.

Please note that flow dependencies cannot be broken,
which guarantees that the semantics of execution are cor-
rect. From the point of view of recovery transactions (or
normal transactions), there is only a single version for each
data object to ensure correct semantics.

By introducing multiple revision histories, the actual ex-
ecution will work on the working history and all backup

executions operate on caching histories. Once the actual
execution is determined to be discarded, a caching his-
tory corresponding to the selected backup execution will be
switched to the working history.

4 Branch cutting and garbage collection

Most IDSs have delays that are corresponding to their
detection windows. After the detection window, IDSs usu-
ally do not check back. Then it will be safe to remove all
results generated by backup executions to save computing
resources. However, the IDS delay could be a random vari-
able that subjects to a probability distribution. Furthermore,
an IDS may detect intrusions not in a temporal order, which
complicates the decision on the proper time to remove un-
necessary results. We will address this problem in this sec-
tion.

4.1 General cases

After a specific period, if the probability that a backup
path will be used is low enough, we can remove the backup
execution. We call such operation asbranch cutting.

Proper branch cutting can benefit consequent execution
greatly. For example, after a IDS detection window, if no
intrusion has been detected in the patht1t2t5 of the process
in Figure 1, we can remove the backup executiont2t3. The
branch cutting is marked as phase 1 in the figure. In the
consequent execution, it is not necessary to runt3t4 as a
back up execution again, which reduce the cost of defensive
execution.

Similarly, aftert7 is done, the IDS may find no intrusions
in the execution patht1t2t5t7. We can safely cut the backup
executing brancht5t6t7. Therefore, the backup execution
t6t8t12 will be not necessary in the following steps.

In the above example, the total extra cost of defensive ex-
ecution weret3 andt6, which has been significantly reduced
by branch cutting operations.

Garbage collection will be done whenever branch cutting
happens. The garbage collection operation simply removes
all revision histories generated by cut branches to save the
storage.

Let us assume that the IDS delay is normally distributed
with parameterT and σ (If the IDS delay has a different
probability distribution, our following equations can be re-
vised accordingly). The probability density function is as
follows.

f (x) =
1√
2πσ

e−(x−T)2/2σ2
(4)

The expected value of IDS delay is

E(X) =
1√
2πσ

∫ ∞

−∞
e−(x−T)2/2σ2

dx= T (5)

5



3 4 5 6 7 8 9 10 11 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (in seconds)

P
ro

ba
bi

lit
y

Missing probability (T=3, σ=3)

Figure 2. An example of the relationship be-
tween the waiting and the missing probability

and the variation of IDS delay is

Var(X) = E[(X−T)2] = σ2 (6)

The cumulative distribution function will be

F(a) = Φ
(

a−T
σ

)

(7)

where

Φ(x) =
1√
2π

∫ x

−∞
e−y2/2dy (8)

is the cumulative distribution of a standard normal distribu-
tion (a normal distribution with parameter 1 and 0).

If we wait for time a and no intrusion is reported by
the IDS, the probability that we mistakenly cut a branch in
which the IDS may report an intrusion later is 1−F(a). We
define 1−F(a) as themissing probability.

The missing probability is the probability that users will
not be benefited from defensive execution since the useful
backup execution has been mistakenly discarded. A branch
cut by mistake will not affect the correctness of recovery
in a self-healing system. The user has to suffer a recovery
delay, which is normal in current self-healing systems.

Given the IDS delay is normally distributed with param-
eterT = 3 seconds andσ2 = 9. Figure 2 shows the relation-
ship between the waiting time and the missing probability.

If we wait for 4T = 12 seconds and no intrusion has been
reported, then the missing probability will be 0.0013 ac-
cording to the above discussion.

We can select a properk and waitkT for the IDS reports.
The missing probability will be

1−F(a) = 1−Φ
(

k−1
σ

T

)

(9)

S1

S2

t1 t2 t3 t4 t5 t6 t7 t8

Figure 3. Overlap of Two Segments

We can take a smallerk for a risky branch cutting, which
greatly reduces the cost of defensive execution but has the
risk of cutting useful backup execution. We can also take a
largerk for a conservative branch cutting with more cost and
less risks. Our equations provide the missing probability
guideline for selections with different strategies.

4.2 Time wrapping reports of the IDS

In a distributed system, message may arrive the desti-
nation not in the same order as they were sent. An IDS
may identify damage not in the same order as the damage
happened. These situations affect the progress of recovery
analysis.

Definition 1 If an IDS reports an incidents sequence
i1i2 · · · in, where for any ij and ik, 1 ≤ j < k ≤ n, i j ≺ ik
then the IDS reports incidentsin the temporal order.

It is possible that IDSs do not report incidents according
to the temporal order, then the situation in Figure 3 needs to
be considered.

In the figure, curve lines are dependency relations. The
IDS, or a message from other sites, firstly reportst3 as a
damaged transaction, which leads tot4, t7, andt8 identified
as damaged transactions. All these transactions are in seg-
mentS2. Transactiont1 may be reported as damaged after
the incident reportingt3. According to the dependency rela-
tions denoted by curve arrows in the figure, segmentS1 will
be re-scanned. There will be a overlap betweenS1 andS2,
whereS1∩S2 6= φ .

The above situation is reflected asσ2, the variation of
the random variable in Equation 4. The detection oft1 in
Figure 3 simply has a longer delay than others. Therefore,
whether the IDS reports intrusions in a temporally order
does not affect our discussion on the missing probability.

5 Effectiveness

Defensive executions introduce larger throughput and
more overload to the system. In this section we will discuss
several arguments that affect the effectiveness of defensive
executions.

6



5.1 Redundant rate

Given a transactional process defined byG〈V,E〉, the
actual executing pathP, and m backup executing paths
P1,P2, . . . ,Pm in a specific defensive execution, we use the
total number of executed transactions to measure the cost of
the specific defensive execution.

We define

Cr = |(P1∪P2∪ . . .∪Pm)−P| (10)

asredundant cost. Please note thatPi ,1 ≤ i ≤ m could be
a partial path that does not cover the start node and the end
node due to branch cutting.Cr is the general extra cost gen-
erated by a defensive execution.

Accordingly, we define

α =
Cr

|P| (11)

as theredundant rate. A 100% redundant rate indicates that
the number of backup transactions is as many as the number
of transactions requested by the user. A 0% redundant rate
indicates that there is no defensive execution at all.

In the worst case of defensive execution,Cr will be |V −
P|, where we execute all transactions, or all paths, in the
transactional processes as backups. In such situation, we
haveP1∪P2∪ . . .∪Pm = V ( Cr could be even greater than
|V−P| if the situation defined in Theorem 1 happens, where
a transaction may need more than one versions including
backups.).

We will show that there exists aneffective upper bound
β > 0, such that for any defensive execution withα > β ,
the situation will be worse than that without defensive ex-
ecutions. After finding outβ , we can select an 0< α ≤
min( |V−P|

|P| ,β ) to make sure that the defensive execution is
worth doing.

5.2 Measurements of effectiveness

Since we need to compare our techniques in this paper
to that without defensive executions, we firstly did experi-
ments on a prototype recovery system that was built based
on our techniques developed in [15, 14] to create relation-
ships between critical parameters.

All our experiments were done on a computer with a
Pentium 4 2.4Ghz CPU and 512MB RAM. The database
management system was PostSQL 7.4.5 under a Debian
Linux with kernel version 2.6.8-2. The prototype sys-
tem was developed with Java(TM) 2 Runtime Environment,
Standard Edition, build 1.4.204-b04. To get stable results,
each experiment lasts more than 300 seconds for given pa-
rameters, e.g., throughput.

The experimental results shown in Figure 4 demonstrates
the relationship between theturnaround time(the duration

0 100 200 300 400 500 600
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Throughput (transactions/second)

T
ur

na
ro

un
d 

tim
e 

(m
ill

is
ec

on
d)

Experimental results
   linear

Figure 4. Turnaround time with a fitting func-
tion y1 = 0.00062191x+0.35454and the norm of
residuals = 0.38164

time from the moment that a transaction enters the system
to the moment that the transaction leaves the system) and
the throughput (the number of transactions that the system
processes in each second) of the system.

For simplicity, we can use a linear expressionf1(x) =
0.00062191x+0.35454 to describe the relationship in Fig-
ure 4. Please note that we can also use other functions in
stead of f1(x) for better accuracy. Functionf1(x) can be
determined by experimental study and curve fitting for any
given system as we did.

We define f2(x) = x f1(x) as thesystem load function.
We can get the corresponding system load shown in Fig-
ure 5. For example, when the system has throughput 100
transactions/second, the turnaround time for each transac-
tion is about 0.4 milliseconds. Therefore, 100 transactions
can be done in 40 milliseconds. In each second, the system
spends around 40/1000= 4% time on processing transac-
tions. Hence the system load is 4% according to our defini-
tion.

Because most systems are running under unsaturated
system load (< 100%), in this paper, we are more interested
in the linear part of the system load as shown in Figure 5.

The measurements of effectiveness are shown in Fig-
ure 6.

The top part of the figure shows an execution without
defensive executions. After timeTe, if the execution was
identified by the IDS as intruded, we need timeTr to re-
cover the execution, which includes necessary damage as-
sessment, undo tasks, and redo tasks [14, 15].

Figure 7 shows the experimental results ofTr
Te

, where we
defineattacking densityas the number of malicious trans-

7



0 100 200 300 400 500 600
0

10

20

30

40

50

60

Throughput (transactions/second)

S
ys

te
m

 L
oa

d 
(%

)

Experimental results
   linear

Figure 5. System load with a fitting function
y2 = 0.066455x−2.9864and the norm of resid-
uals = 9.3156

Defensive execution

Normal executionTe Tr

∆t1
∆t2Td

Figure 6. Time measurements of effective-
ness

actions found in each second divided by the throughput.

According to our experimental results, the attacking den-
sity has more significant impact onTr

Te
. With higher at-

tacking densities, e.g., 24% and 34%, The recovery time
Tr could be even longer than the original execution timeTe.

Assume thatn transactions can be executed in timeTe

without defensive executions. The bottom part of the figure
shows the scenario of a defensive execution. To execute the
same number of user’s transactions as inTe, a longer time
Td > Te needs to be spent, because the defensive execution
has(1+ α)n transactions to execute, whereα > 0. Since
the throughput will be higher in defensive executions, the
turnaround time of each transaction will increase accord-
ingly. Thus the total execution timeTd will be longer.

In the figure,∆t1 = Td−Te is the increased total process-
ing time caused by defensive execution.∆t2 = Te+Tr −Td

is the reduced processing time gained by the defensive exe-
cution when attacks happen.

10 15 20 25 30 35 40
0.5

1

1.5

2

IDS delay (seconds)

T
r/T

e

Attacking density 6%
Attacking density 24%
Attacking density 34%

Figure 7. The experimental results of recovery
time vs. executing time ( Tr

Te
).

5.3 The effective upper bound of redundant
rate—β

We classify applications into two types according to
whether they are sensitive to the turnaround time of trans-
actions.

5.3.1 In the case of turnaround time insensitive appli-
cations

The first type of applications is that the user’s applications
are not sensitive to the turnaround time while they are sen-
sitive to the throughput of the transactional processing sys-
tem. Such applications are processing systems for bank
transactions, daily business transactions, etc. We will show
that the value of∆t1 can be ignored if we keep the system
working on the linear part of system load.

Given a throughputu of user’s transactions, the defen-
sive execution will increase the throughput to(1+α)u. As
long as the system load is not saturated (< 100%), user’s
application will not feel any performance degradation be-
cause the throughput of user’s application is not changed.
The user’s throughput is only part of the whole throughput
of the system.

If the highest throughput that the system can process is
w, we have

(1+α)u≤ w (12)

to prevent the system load from being saturated. Therefore,

α ≤ w
u
−1 = β (13)

8



whereβ is the upper bound ofα to make the defensive ex-
ecution effective. We callβ as theeffective upper boundof
redundant rate.

In such situation, the defensive execution is transparent
to the user’s application. If attacks happen, the defensive
execution can save as much time asTr from recovery work.
For example, in Figure 7, when the attacking density is 34%
and the IDS delay is 15 seconds,Tr is about 1.6Te. In other
words, if the IDS identifies an executing path as intruded
after 15 seconds, we can save 1.6×15= 24 seconds from
the recovery.

The cost we paid for the defensive execution is the high-
est user’s throughput we can achieve. Givenα andw, the
highest throughputumaxof user’s application can be derived
from Equation 12 as follows.

umax≤
w

1+α
(14)

The degradation of the highest throughput of user’s appli-
cation will be

w−umax=
αw

1+α
(15)

For example, as shown in Figure 4 and Figure 5, If nor-
mally the throughput of user’s application isu = 200 trans-
actions/second, thenα = 1.5 will not be a problem at all
for the system. Whenα = 1.5 the throughput of the whole
system is(1+ α)u = 500 transactions/second. It is still in
the linear part of the system load.α could be even larger
since the system load is far from 100%.

Given a system with the capability of peak throughput
5000 transactions/second, if we selectα = 4, than the peak
throughput of user’s application will be reduced to 1000
transactions/second. Please note that the redundant cost is
as four times many as the user’s transactions. That is what
we paid for saving the recovery time.

5.3.2 In the case of turnaround time sensitive applica-
tions

Another type of applications is that the user’s applications
are sensitive to the turnaround time of each transaction, or
the total processing time of all transactions. Such appli-
cations are computing intensive applications, like decision
supporting systems, etc. In such situation, the value of∆t1
matters.

Assume that the throughput of users’ transaction isC1

without defensive executions. Given a redundant rateα > 0,
∆t1 can be determined by the following equation.

∆t1 = C1Te( f1((1+α)C1)− f1(C1)) (16)

= C1Te

∫ (1+α)C1

C1

f ′1(x)dx

where f1(x) is the turnaround time function of throughput,
like the curve fitting function in Figure 4. Equation 16 ex-
plains the time cost we paid for defensive executions.

For a given IDS delay and attacking density,r = Tr
Te

can
be measured as shown in Figure 7. To let the defensive
execution to be effective, we need to guarantee that

∆t1 = C1Te

∫ (1+α)C1

C1

f ′1(x)dx≤ Tr = rTe (17)

Considering that the turnaround time functionf1(x) is al-
ways incremental, thus

α ≤ 1
C1

f−1
1 (

r
C1

+ f1(C1))−1 = β (18)

With the above inequation, we can get the effective upper
boundβ .

For example, givenf1(x) = 0.00062191x + 0.35454,
C1 = 100, andr = 1.6 (when the IDS delay is 15 seconds
and the attacking density is 34%), we can solve the inequa-
tion to getα ≤ 1.49. Thusβ = 1.49 is the effective upper
bound of redundant rate. Any larger redundant rate will
cause that the defensive executions take longer time then
the normal execution time plus recovery time.

Please note that we need to consider both types of appli-
cations for a real system. Assume that we getβ1 when we
consider only the throughput as we did in Section 5.3.1, and
we getβ2 when we consider the turnaround time, the final
effective redundant rate should be min(β1,β2).

5.4 The accuracy of the IDS

No IDS system is perfectly accurate. False positive
alarms (false alarms on legitimate activities) and false nega-
tive alarms (where the IDS failed to identify intrusions) can
also affect the effectiveness of our techniques.

False positive alarms cause unnecessary branch cutting
and switching of execution paths, which counteracts all ben-
efits generated by defensive executions. However, the sys-
tem incorporating our techniques just acts as a regular re-
covery system. It will not be worse. The users have to suffer
the recovery time.

False negative alarms can only be solved by the interven-
tion of administrators of the system. Since usually human
intervention takes longer time than the IDS, the branch cut-
ting will have been done. The user will not be benefited
from our techniques.

In summary, in the worst case, an inaccurate IDS can
force our techniques to work as a regular recovery system.

6 Related work

An Intrusion Detection System (IDS) [7] can detect in-
trusions. In a transactional processing system, the damages

9



directly caused by the attacker may be spread by executing
legitimate transactions without being detected by the IDS.
The IDS is unable to trace damage spreading and cannot
locate all damage to the system.

The checkpoint [8, 9] techniques also do not work for
efficient attack recovery. A checkpoint rolls back the whole
transactional processes to a specific time. All work, includ-
ing both damaged transactions and clean transactions after
the specific time, will be lost, especially when the delay of
the IDS is very long. In addition, checkpoints introduce ex-
tra storage cost.

The failure handling of transactional process has been
discussed in recent work [4, 3, 12]. Failure handling occurs
when the transactional process are in progress. When the
IDS reports attacks, the malicious transactions usually have
been successfully executed. Failure handling is not appli-
cable because no failure occurred. Attack recovery is sup-
posed to remove the effects of malicious transactions after
they are committed..

Rollback recovery, e.g. [6, 2], is surveyed in [5]. It fo-
cuses on the relationship of message passing and considers
temporal sequences based on message passing. In the mes-
sage passing model, a process runs on a single site and er-
rors occur at the end of the process. A transactional process
usually runs on multiple sites and intrusions are detected at
the middle of the process. Further more, rollback recovery
handles errors while attack recovery handles intrusions. In
brief, we are working on a different model for a different
goal from theirs.

Previous work [1, 10, 14, 15] introduced different tech-
niques to trace damage spreading and repair the damage in
transactional processing systems. However, if attacks hap-
pen, all affected transactions will be rolled back (undone)
and redone.

Rolling back and re-executing damaged transactions in-
crease the response time of the system and may cause a sig-
nificant processing delay. In such situations, the availabil-
ity of the system is compromised and the system suffers the
vulnerability of Denial of Service (DoS). Our technique can
reduces the recovery delay with reasonable cost.

7 Conclusion

In this paper, we described a defensive executing tech-
nique against transactional level attacks. The defensive ex-
ecution reduces the recovery delay by introducing extra ex-
ecuting cost if attacks happen. We also discussed the effec-
tiveness of our technique and discussed conditions to make
our technique to be more effective. Our work demonstrates
that defensive executions are desirable if users of a self-
healing transactional processing system prefer low process-
ing latency under attacks.

Acknowledgment

We thank Professor Pierangela Samarati for her valuable
and insightful comments. Our thanks also to the anonymous
reviewers. Their comments were very helpful and greatly
improved the quality of this paper. Peng Liu is partially
supported by NSF CCR-TC-0233324.

References

[1] P. Ammann, S. Jajodia, and P. Liu. Recovery from malicious
transactions.IEEE Transaction on Knowledge and Data En-
gineering, 14(5):1167–1185, 2002.

[2] Y. bing Lin and E. D. Lazowska. A study of time warp
rollback machanisms.ACM Transactions on Modeling and
Computer Simulations, 1(1):51–72, January 1991.

[3] Q. Chen and U. Dayal. Failure handling for transaction hi-
erarchies. In A. Gray and P.-Å. Larson, editors,Proceedings
of the Thirteenth International Conference on Data Engi-
neering, April 7-11, 1997 Birmingham U.K, pages 245–254.
IEEE Computer Society, 1997.

[4] J. Eder and W. Liebhart. Workflow recovery. InConference
on Cooperative Information Systems, pages 124–134, 1996.

[5] E. N. M. Elnozahy, L. Alvisi, Y. min Wang, and D. B. John-
son. A survey of rollback-recovery protocols in message-
passing systems.ACM Computing Surveys, 34(3):375–408,
September 2002.

[6] D. R. Jefferson. Virtual time.ACM Transaction on Program-
ming Languages and Systems, 7(3):404–425, July 1985.

[7] W. Lee and S. J. Stolfo. A framework for constructing
features and models for intrusion detection systems.ACM
Transactions on Information and System Security, 3(4):227–
261, 2000.

[8] J.-L. Lin and M. H. Dunham. A survey of dis-
tributed database checkpointing.Distributed and Parallel
Databases, 5(3):289–319, 1997.

[9] J.-L. Lin and M. H. Dunham. A low-cost checkpointing
technique for distributed databases.Distributed and Parallel
Databases, 10(3):241–268, 2001.

[10] P. Liu, S. Jajodia, and C. McCollum. Intrusion confinement
by isolation in information systems.Journal of Computer
Security, 8(4):243–279, 2000.

[11] R. A. Sahner, K. S. Trivedi, and A. Puliafito.Performance
and Reliability Analysis of Computer Systems. Kluwer Aca-
demic Publishers, Norwell, Massachusetts, USA, 1996.

[12] J. Tang and S.-Y. Hwang. A scheme to specify and imple-
ment ad-hoc recovery in workflow systems.Lecture Notes
in Computer Science, 1377:484–??, 1998.

[13] H. C. Tijms. Stochastic Models. Wiley series in probability
and mathematical statistics. John Wiley & Son, New York,
NY, USA, 1994.

[14] M. Yu, P. Liu, and W. Zang. Self-healing workflow sys-
tems under attacks. InThe 24th International Conference
on Distributed Computing Systems(ICDCS’04), pages 418–
425, 2004.

[15] M. Yu, P. Liu, and W. Zang. Multi-version based attack re-
covery of workflow. InThe 19th Annual Computer Security
Applications Conference, pages 142–151, Dec. 2003.

10


