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Abstract G(V.E)

It is a well known problem that the attack recovery of
a self-healing system rolls back not only malicious transac p
tions, but also legitimate transactions that are dependent st B
the malicious transactions. Rolling back and re-executing ) . .
damaged transactions increase the response time of the sys- O 07 08/ RN . 1
tem and may cause a significant processing delay. In such t2 S04 " o1 3
situations, the availability of the system is compromised 08 : t11 1 t2
and the system suffers the vulnerability of Denial of Ser- 10O s ,b
vice (DoS). In this paper, we propose a defensive execut- 02 05
ing technique and analyze its effectiveness. Our technique to 08T
concurrently executes multiple paths of a transactionat pr ‘\‘ -
cesses based on the prediction generated by a Discrete Time o’
Markov Chain. The defensive execution can reduce the de-
lay caused by recovery. We also propose a branch cutting
technique to reduce the extra cost introduced by defensive
execution. Our analytical results show that our technicgie i
practical against transactional level attacks.

Figure 1. An example of transactional pro-
cesses

compute results or make decisions based on wrong infor-
1 Introduction mation.
Figure 1 shows an example of damage spreading and re-
Distributed transactional processing systems (e.g., dis-pair. Inthe figure, nodes are transactions and edges iedicat
tributed database systems and workflow systems) are im€xecuting paths. The destination node of a directed edge
portant in most critical infrastructures such as finanaal s starts after the source node is complete, ¢;g.will start
vices. These services rely on the correctness, availgbilit aftert is done. If a node has more than one successors, the
and reliability of the processing systems. Each transaatio  humber on an edge indicates the probability that the specific
process consists of a set of transactions that are related t¢ath (or node) can be taken (Section 3 discusses how to de-
each other in terms of the semantics of a business procesgermine the probabilities). In the figure, continuous lines
Each transaction represents a specific unit of work that theare the actual executing path and dash lines are possible ex-
business needs to do (e.g., a specific application programegcuting paths.

a database transaction). A consistent and reliable exgcuti In Figure 1, pathitatststio has been executed. tf was
of distributed transactional processes is crucial for ajbe compromised by an attacker, it would be possible that
nizations. made a wrong decision to seldgtas its successot; may

However, it is well known that system vulnerabilities also generate wrong information basedtgg results. The
cannot be totally eliminated, and such vulnerabilities can example shows a single compromised transaction may af-
be exploited by attackers who penetrate the system. Everfects many legitimate transactions. If we want to recover
worse, in such situation, legitimate transactions refigrto the transactional process and giteris correct anywayt(,
the damaged transactions will also be affected since theydoes not depend on any ©fts andt;) we need to roll back



(undo)totsty and redd; to select correct executing path. In t, makes a decision on which executing path will be se-
the procedure, damage tracing and repair are involved. lected. The selection betwegsis successot; andts is
We have to rely on attack recovery techniques to addresscalledcontrol dependencevhich is denoted bty —¢tz and

the above problem. After the attacker successfully beatst; — ts. In the figure, execution patht,ts was selected.
prevention techniques, at.tgck recovery techniques @stor  aocime — is a relation on set then we define
the mtegnty I_evel by repairing the damage caused by Suc'minimal(f,<) —x|xe SN € .7 X <x}. Note
cessfulllntrusmns. , ) there may be more than one result qualified by the defini-

. Previous work [1, 10, 14, 15]. introduced Q|ﬁerent tech- tion of minimal.#, <). For example, In Figure 1, given
nigues tp trace damage spreading and repalr'the damage in, _ {t1,t2,t0}, sincet; < t; andt;prech, t; is the qual-
transactional processing systems. However, if attacks hapitaq results for minimal?, <). minimal(.#, <) defines

pen, all affected transactions will be rolled back (undone) gt transactions in all left transactions of a transaetio
and redone. process.

Rolling back and re-executing damaged transactions in- o B . )
crease the response time of the system and may cause a sig- ONcetz is identified as a transaction compromised by
nificant processing delay. In such situations, the avditgbi e attacker, and the selection of execution peist; was
of the system is compromised and the system suffers theVfong, the execution df andt; need to be recovered. Fur-
vulnerability of Denial of Service (DoS). _thermore, ift;o reads information generated Iy which

In this paper, we propose a defensive executing tech-1S low data dependenagenoted byts —r 12, the damage
nique and analyze its effectiveness. Our technique con-Will b€ spread tdi,. Note that even though no message has
currently executes multiple paths of a transactional pro- Pe€n sent frons to t1, they may still have data dependen-
cesses based on the prediction generated by a Discrete Timg/€S Since they may share data objects.

Markov Chain. The defensive execution can reduce the de- In the above example, damage is spread through depen-
lay caused by recovery. We also propose a branch cuttingdency relations. We can similarly define the other two types
technique to reduce the extra cost introduced by defensiveof data dependence. tif modifies data objects afterreads
execution. Our analytical results show that our technigue i them, thent; is anti-flow dependerant;, which is denoted
practical against transactional level attacks. byti —atj. If i <t;j, and they have common data objects to

This paper is organized as follows. Section 2 defines im- modify, thent; is output dependertnt;, which is denoted
portant terms used in this paper. Section 3 describes theby tj —ot;.
details of our defensive executing technique. Garbage col-
lection will be discussed in Section 4. We discussed the
effectiveness of our technique in Section 5 and compare it
with related work in Section 6. Finally, Section 7 concludes
the paper.

All the relations—¢, —4 and —, are data dependency
relations and are not transitive. From the well known result
of concurrency and parallel computing tjfis data depen-
dent ont;j, then they cannot run in parallel or concurrently,
andt; < tj must be satisfied. Otherwise, the value shared by
ti andt; will be incorrectly calculated.

2 Preliminary

In this section, we introduce some preliminary terms and 2.2 Unrecoverable transactions
concepts used in this paper.

2.1 Dependency relations In a distributed system, we need to consider both inside

operations and interactions with the outside world. The for
Dependency relations are important because not onlymal models in previous work, such as [15, 14] were unable
data items are calculated through dependency relatiohs, buto formalize interactions with the outside world. Since in-
also executing orders of concurrent transactions are-deterteractions with the outside world are not recoverable, we
mined by dependency relations. Furthermore, we need theuse arOW S(outside world site) to model the outside world.
dependency relations to determine proper defensive execuAll transactions happened on &@W Sare unrecoverable

tions. We consider all inputs obtained from users and all outputs
In Figure 1, the start node of an arrow will be executed to the users happen on a user Sevhich is aOW S All
right before the end node, which defineprecedencee- user’s transactions are call€W Ts (outside world trans-

lation. For examplet; precedes4#, which is denoted by  actions). For example, a transaction that a user withdraws
t1 < t2. There are several possible executing paths in Fig- money from a ATM cannot be recovered. It is@# T and
ure 1. One of them igtotst7t10. An other one i totststgtyo. the ATM is anOW S



2.3 Transactional processes tatotststio we also execute patlatgt; andtststs asbackup
executionst;totststi o is calledactual execution
With above notations, transactional processes can be |f the execution of pathitotststi; was manipulated by
modeled agT,S <, —t,—a, —0,—c), WhereT isasetof  the attacker, and pathiststststi2 should be the correct exe-
transactionsSis a set of sites that are corresponding to a cution, we can discard old execution and switch to the cor-
host or a processor in the distributed systéine Sis an  rect execution immediately, which may significantly reduce
OW S and all dependency relations among transactions.  the delay of recovery. Please note that defensive execution
does not handle the situation that the recovery path is the
2.4 Concurrency restrictions and domino-effects  same to the attacked path, which can be handled by previ-
ous work [15, 14].
We use a simple example to explain that there do exist
some restrictions on executing orders of transactions-4n de
pendency relation based recovery. 32 Discrete t|me MarkOV Chain based Self'
Consider transactions : a= 1t : b=2, andt : y = adaptive prediction
a+b, which are executed in the sequence 6t to < t3. We
havet; — ¢ t3 Ato — ¢ t3. Assume that, has been identified
as compromised by an IDS, so the valueba$ corrupted.
Therefore t; is also corrupted since it reads a incorrbct
During the concurrency restrictions, the rolling back aad r
doing damaged transactions have to strictly follow specific  In @ transactional process, if we consider the execution
orders [15, 14]. The effects that a compromised transactionOf e€ach transaction as a state, and associate each transi-
affects all legitimate transactions depending on it aredal  tion from one state to an other, we will get a Discrete Time
Domino-effects Markov Chain (DTMC) [13, 11]. We can predict the most
To recovert, needs to be undone followed by redone. possible executing paths in a transactional process accord
t3 needs to be redone. Please note thatoes not need ing to its DTMC.
to be undone because in the example, no transaction is de- Givenntransactions in a transactional process, the initial
pendent oriz. We must satisfy the sequence of ufdp< probability distribution isrr(0) = (1,0,0,...,0). After the
reddty) < redqts) in the recovery. Any other execution T
will get wrong results. The precedence relations introduce | th
by dependency relations is calledncurrency restrictions
The concurrency restriction is also caused by depen-
dency relations. However, we can break anti-flow depen-
dency relations by introducing multi-version data, as de-
scribed in Section 3.

Since executing all possible paths in a transactional pro-
cess may cost too many resources, we use a mathematical
model to choose the best candidate backup executions.

step, the probability that a specific transaction will be
executed is given by

mi(n) = m(0)P" 1)

whereP is the state-transition probability matrix of DTMC
3 Defensive execution andP =P-P-.-P. P is given by{a;}, wherea;j is the

n
probability of executing; after transaction; is done.

The initial P can be determined in different ways. For
example, it can be determined by the statistical results of
executions, or provided by the designer of the transadtiona
process. Otherwise, the initi#ll is determined in the fol-
lowing way. Ift; hasmsuccessors, we assiépas the state-

. . . transition probability to each transition.
Domino-effects always happen if transactional processes . o )
Once we have the initid, we revise it according to real

are attacked. During the recovery, all concurrency restric : ’ :
tions have to be strictly followed to guarantee that the re- €X€cutions. We record the actual executing path in each ex-
ecution of the process, then reviBeaccording to how fre-

covery is correct [15, 14]. Both domino-effects and concur- i : : ;
rency restrictions cause significant execution delay of re- duéntly a successor will be selected in previous executions
covery. Therefore, our DTMC based prediction is self-adaptive.

The recovery delay can be reduced or totally removed by ;. 1 F IR B WE Y, Obia SEEHANRIon BRI
Qefenswe execution. The ba5|_c idea of defensive exec_utlonedge_ For example, the edgé fragrto t; is 0.7, which in-
is to concurrently execute multiple paths that are moshlike (icates that aftets is done.t; will have 70% chance to be

to happen. For example, in Figure 1, while executing path taken.tg will have the other 30% change to be taken. The

This section describes the details of mathematical model
based prediction, data structure support, and branchguitti
in defensive executions.

3.1 A motivative example



state-transition probability matriR is as follows. The following theorem serves as a general rule to de-
termine if a specific transaction needs different executing

0 08 0 0 0 0 0 0 @ 0 0 0 H H H
o 0 a3 0 07 o o o o o o o version in a backup execution.
o 0 0 1 0 O O O O O 0 0 _ _
o o 0 0 0O 0O O 1 0 0 0 O Theorem 1 If a task t appears in both executing path P
8 8 8 8 8 °§ 0(')‘71 093 8 8 8 8 and B and one of Pand B is a backup executing path, the
o o 0 o0 0o o0 0 O 0 0 a o9 execution of t will need separate versions for each exegutin
8 8 8 8 o% 3 é’ 3’ c? OS 00 01 path if and only if there existte P, and & € P satisfying
o o o o0 o0 o0 o0 o0 0 0O 1 O the following conditions:
0 0 0 0 0 0 0 0 0 0 0 1
o 0 0 0 0O 0O O O O ©0 0 1
@ 1. 4 #t
ajj in IP is corresponding to the probability that transaction
t; transfers to transactidy. 2. 4¢P A ¢P
We can use equation 1 to predict the execution of trans- 3t £ AL ¢
actions.(1(0), 11(1), 71(2), 7i(3), 11(4), 72(5), 71(6)) " will be A
1 0 0 0o o o o o o o o PROOEF If a taskt appears in both executing pa@handP,
o8 0 0 0O 0O O0O 0 2 0 0 O and one o andP; is a backup executing path, the execu-
0 0 24 0 66 0 0 0 0 10 0 O ; ; ; ;
o 0 0 24 0 40 2 o0 0 0 10 o .tIOI’I oft will need separate versions for each executing path
00 0 O 0 0O @ 3 0 0 .02 .34 if and only the executions dfin different paths generate
o0 0 0o o 0O O 0O 0 0 .03 .97 ;
o 0o o o o 0o o o o o o1 d|fferent_resu_lts. _ _ _
(©) The situation happens if and only if the computation of

wherer(k),0 < k < 6 is the probability distribution in step  refers to different data values on different paths, whiah ca

k. For example, according ®(4), in the 4" step, the prob-  be described ast; € Pty —¢t and3t, € Po,tp —¢ t. If

ability to executdy is 0.28 and the probability to executg ~ t1 = t2 (two execution paths may have common pargjll

is 0.36. generate the same results since the calculation is based on
In the above results, if we select transactions with prob- the same data set. Therefotemust be different fronty.

ability higher than @ in each step, we will get transactions Otherwiset cannot generate different results in two paths.

t1,to,t3,t5, ta, te, 7, tg, t11, t12. These transactions cover ex- If t; € P, orta € Py, thenty ort; is in the common part of
acﬂy the path$1t2t5t7t121 tstety andt3t4t8 as we advocated Py ansz, there will be no difference fdrin two executions
paths at the beginning of Section 3. Practically, the thresh Pr andP.. Therefore, we have ¢ P> Atz ¢ Py u
old 0.2 in the example should be changed according to the
applications. 3.3 Multiple revision histories to support
The above example demonstrated how to use the DTMC multiple-branch execution
model to predict the probability of executing a specific
transaction in each step. Generally, in i step of the Defensive executions generate results from backup ex-

execution of a transactional process, after the execuéon s ecutions. The results will be useful if and only if user's
lected a successoto execute, we select predicted transac- executing path is discarded. Before the results become use-
tions, other than, with the highest probabilities in(k) to ful, they should be cached as temporary versions. We use
execute. The probability of failing prediction will be ptet  multiple revision history to address the problem.
low according to the DTMC model. For any data object written at timet,,,, we associatéy

So far we discussed node coverage in a transac-with xas its reversion number. We do not call it a timestamp
tional process. It will be a litle more complicated since we do not perform recovery in real time. We assume

to consider path coverage. Even though Set= that any twa; andt;, wherei # j, are distinguishable in the
{t1,t2,t3,15,1a,t6,t7,t5,t11,t12} coOvers three different paths system.
that we preferredT also covers a patfatgtsti» in Figure 1. A revision history for data objectx has a form

A problem is if we need to consider these paths separately. (x'1,x"2, - .- xn), where eachj, 1 <i < nis a revision num-
Assume that there arexa=5 ints, ax= 3 intg, and ber ofx andy; is later thanv; if j > i. If we know thatx'« is
ay=x+2int;. The path coveringst; and the path cov-  corrupted by the attacker than any transaction that reads
ering tstet; will be totally different. In such situation, the get wrong results.
backup execution df should have a different version from Please note that it is possible thatda revision history,
the actual one. The reason that we need different versionghere is only a specific version that is corrupted. For exam-
of t7 is thatts — t7y andtg — ¢ t7 andt; are covered by two  ple, x is generated periodically by a trustable transaciion
different paths. and an attacker only corrupts a specific versiorx,oé.g.,



X%, Therefore, we cannot concludexfi, wherej > k, is executions operate on caching histories. Once the actual

dirty without further analysis. execution is determined to be discarded, a caching his-
For a specific versio’, when it has a value that it is  tory corresponding to the selected backup execution will be

not supposed to have, it dirty. For example, whex' switched to the working history.

is created by an attacker or computed based on dirty data

objects, it is dirty. Otherwise, it islean 4 Branch cutting and garbage collection

A data object may have omeorking historycorrespond-
ing to the actual executing path and multigiaching his-
tory corresponding to backup executions when necessary e
(see Theorem 1).

Most IDSs have delays that are corresponding to their

tection windows. After the detection window, IDSs usu-

ally do not check back. Then it will be safe to remove all

i . . results generated by backup executions to save computing

3.4 Operations on the revision history resources. However, the IDS delay could be a random vari-
able that subjects to a probability distribution. Furthere)

A normal transaction reads data objects with the highestan IDS may detect intrusions not in a temporal order, which
revision number, and it writes data objects with the highest complicates the decision on the proper time to remove un-
revision number in their revision histories. So, a revision necessary results. We will address this problem in this sec-
history does not change dependency relations among nortjon.
mal transactions. It operates just as if multiple versiads d
not exist. 4.1 General cases

A recovery transaction, whether it is an undo or redo
transaction, operates on data objects with the same revi- afier a specific period, if the probability that a backup
sion numbers as it used the first time it executed. For X-path will be used is low enough, we can remove the backup
ample, a undgi) is implemented by removing all specific  gyecution. We call such operationtamnch cutting
versions from revision histories of data objects writterfby Proper branch cutting can benefit consequent execution
Aredd(T;) will generate data objects with the same revision greatly. For example, after a IDS detection window, if no
number as it executed first time. A revision history does not j,i-sion has been detected in the pathts of the process
change dependency relations among recovery transactiong, Figure 1, we can remove the backup execution The
either. We can consider that recovery transactions are fory5nch cutting is marked as phase 1 in the figure. In the
revising part of the history of the system. _ consequent execution, it is not necessary totginas a

When we find a dirty versior’, there are two possible  pack up execution again, which reduce the cost of defensive
ways that the dirty version was generated. One possibility ayecution.
is thatx'k should not e?<ist at all, e.g,.it was created by the Similarly, aftert; is done, the IDS may find no intrusions
attacker. Any transaction that reaxts is supposed to read i, the execution pathtststz. We can safely cut the backup
x-1instead ok’. Another possibility is that hasadirty  executing branctistet;. Therefore, the backup execution
value and needs to be recomputed by a redo transactiontetgt12 will be not necessary in the following steps.

Any transaction that readsk needs to wait until tf\]le redo In the above example, the total extra cost of defensive ex-
transaction has complet\?d to get a correct valugofIn  ocytion werds andts, which has been significantly reduced
this case, we mark’ asx;* to block possible reading until by branch cutting operations.

the redo transaction is complete. Garbage collection will be done whenever branch cutting

among recovery transactions and normal transactions,|| revision histories generated by cut branches to save the
which enable us to run the recovery transactions and nor-siorage.

mal transactions concurrently. According to the structire Let us assume that the IDS delay is normally distributed

the revision history, operations on old versions happe_n aSwith parameteT and o (If the IDS delay has a different
in the past.” Therefore, execution of normal transactions probability distribution, our following equations can ke r

does not corrupt recovery transactions. vised accordingly). The probability density function is as
Please note that flow dependencies cannot be brokensg|iows.
which guarantees that the semantics of execution are cor- F(x) = 1 o (x-T)2/202 @

rect. From the point of view of recovery transactions (or
normal transactions), there is only a single version foheac

. ) The expected value of IDS delay is
data object to ensure correct semantics. P y

By introducing multiple revision histories, the actual ex- 1 ® (x-T)2/202
ecution will work on the working history and all backup E(X)= V2mo /4,6 dx=T )
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Figure 2. An example of the relationship be-
tween the waiting and the missing probability

and the variation of IDS delay is

Var(X) = E[(X —T)?] = a2 (6)
The cumulative distribution function will be
a—T
Fa—o (20 )
where 1 <
D(X) = —— / e /2 8
==/ y ®)

is the cumulative distribution of a standard normal distrib
tion (a normal distribution with parameter 1 and 0).

If we wait for time a and no intrusion is reported by
the IDS, the probability that we mistakenly cut a branch in
which the IDS may report an intrusion later is-F (a). We
define 1- F(a) as themissing probability

The missing probability is the probability that users will

th | 2] t3 t5 | t6 | t7

S

Figure 3. Overlap of Two Segments

We can take a smalléefor a risky branch cutting, which
greatly reduces the cost of defensive execution but has the
risk of cutting useful backup execution. We can also take a
largerk for a conservative branch cutting with more cost and
less risks. Our equations provide the missing probability
guideline for selections with different strategies.

4.2 Time wrapping reports of the IDS

In a distributed system, message may arrive the desti-
nation not in the same order as they were sent. An IDS
may identify damage not in the same order as the damage
happened. These situations affect the progress of recovery
analysis.

Definition 1 If an IDS reports an incidents sequence
i1ip---in, where for anyjand i, 1 < j <k<n, ij <y
then the IDS reports incidenis the temporal order

It is possible that IDSs do not report incidents according
to the temporal order, then the situation in Figure 3 needs to
be considered.

In the figure, curve lines are dependency relations. The
IDS, or a message from other sites, firstly repastas a
damaged transaction, which leadd4d;, andtg identified
as damaged transactions. All these transactions are in seg-
mentS,. Transactiort; may be reported as damaged after
the incident reportings. According to the dependency rela-

not be benefited from defensive execution since the usefulions denoted by curve arrows in the figure, segnSemtill
backup execution has been mistakenly discarded. A branchyq ra_scanned. There will be a overlap betwgeand S,
cut by mistake will not affect the correctness of recovery whereS; NS,  @.

in a self-healing system. The user has to suffer a recovery The above situation is reflected a2, the variation of

delgy, Whtiﬁh ilngo(;n":al ".q current"se(ljf.-r;elsli?g dsyitr(]ams. the random variable in Equation 4. The detectiort;ah
ven the €lay 1S normally distributed with param- Figure 3 simply has a longer delay than others. Therefore,

_ 2_ ; L
etng = 3 seconds anpf N 9 Figure 2 ShO.WS. the re'a“oﬂ whether the IDS reports intrusions in a temporally order
ship between the waiting time and the missing probability. does not affect our discussion on the missing probability.

If we wait for 4T = 12 seconds and no intrusion has been
reported, then the missing probability will be0013 ac-
cording to the above discussion.

We can select a prop&rand waitkT for the IDS reports.
The missing probability will be

1-F(a) = 1¢<%1T)

5 Effectiveness

Defensive executions introduce larger throughput and
more overload to the system. In this section we will discuss
several arguments that affect the effectiveness of defensi
executions.

©)



5.1 Redundant rate

o©
3
a1

Given a transactional process defined ®V,E), the
actual executing pattP, and m backup executing paths
P, P, ..., Py in a specific defensive execution, we use the
total number of executed transactions to measure the cost o
the specific defensive execution.

We define

Experimental results

o
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— linear

o
o
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o
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I
0
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C =|(PLURU...UPn) —P| (10)

Turnaround time (millisecond)
o
{9l
o

asredundant cost Please note thd&,1 < i < mcould be 0.45¢

a partial path that does not cover the start node and the enc
node due to branch cuttin@, is the general extra cost gen-

0.4r

erated by a defensive gxecunon. 035, = - o o _— o
Accordlngly, we define Throughput (transactions/second)
o= G (11) i i i it
P Figure 4. Turnaround time with a fitting func-

tion y; =0.0006219%+ 0.35454and the norm of
as theredundant rate A 100% redundant rate indicates that residuals = 0.38164

the number of backup transactions is as many as the number
of transactions requested by the user. A 0% redundant rate

indicates that there is no defensive execution at all. ) )
In the worst case of defensive executi@pwill be [V — time from the moment that a transaction enters the system

P|, where we execute all transactions, or all paths, in the to the moment that the transaction leaves the system) and

transactional processes as backups. In such situation, wéhe throughput (the number of transactions that the system
havePLUP,U...UPn =V (C: could be even greater than Processes in each second) of the system.

V —P| if the situation defined in Theorem 1 happens, where ~ For simplicity, we can use a linear expressifyfix) =

a transaction may need more than one versions including0-0006219k + 0.35454 to describe the relationship in Fig-

backups.). ure 4. Please note that we can also use other functions in
We will show that there exists aeffective upper bound ~ stead offi(x) for better accuracy. Functiofy(x) can be

B > 0, such that for any defensive execution with> 3, determined by experimental study and curve fitting for any

the situation will be worse than that without defensive ex- given system as we did.

ecutions. After finding ou, we can select an @ a < We definef,(x) = xfi(x) as thesystem load function

min(%,ﬂ) to make sure that the defensive execution is We can get the corresponding system load shown in Fig-

worth doing. ure 5. For example, when the system has throughput 100

transactions/second, the turnaround time for each transac
5.2 Measurements of effectiveness tion is about 0.4 milliseconds. Therefore, 100 transastion

can be done in 40 milliseconds. In each second, the system

Since we need to compare our techniques in this paperSPends around 42000= 4% tl_meoon processing transac-
to that without defensive executions, we firstly did experi- t!ons. Hence the system load is 4% according to our defini-

ments on a prototype recovery system that was built based'o"-

on our techniques developed in [15, 14] to create relation- ~Because most systems are running under unsaturated
ships between critical parameters. system load{ 100%), in this paper, we are more interested
All our experiments were done on a computer with a " the linear part of the system load as shown in Figure 5.
Pentium 4 2.4Ghz CPU and 512MB RAM. The database The measurements of effectiveness are shown in Fig-
management system was PostSQL 7.4.5 under a Debianire 6.
Linux with kernel version 2.6.8-2. The prototype sys- The top part of the figure shows an execution without
tem was developed with Java(TM) 2 Runtime Environment, defensive executions. After timig, if the execution was
Standard Edition, build 1.4.84-b04. To get stable results, identified by the IDS as intruded, we need tiffieto re-
each experiment lasts more than 300 seconds for given pacover the execution, which includes necessary damage as-
rameters, e.g., throughput. sessment, undo tasks, and redo tasks [14, 15].
The experimental results shown in Figure 4 demonstrates Figure 7 shows the experimental results%szhere we
the relationship between thernaround time(the duration defineattacking densityas the number of malicious trans-
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5.3 The effective upper bound of redundant
Te Tr Normal execution rate_B
Atl . . . . .
Ty Aty We classify applications into two types according to
Defensive execution whether they are sensitive to the turnaround time of trans-
actions.

Figure 6. Time measurements of effective-

ness L iy .
5.3.1 In the case of turnaround time insensitive appli-

cations

The first type of applications is that the user’s application
are not sensitive to the turnaround time while they are sen-
sitive to the throughput of the transactional processirgy sy
According to our experimental results, the attacking den- tem. Such applications are processing systems for bank
sity has more significant impact o% With higher at- transactions, daily business transactions, etc. We willvsh
tacking densities, e.g., 24% and 34%, The recovery timethat the value of\t; can be ignored if we keep the system
T, could be even longer than the original execution tilpe ~ Working on the linear part of system load.
_ o Given a throughputi of user’s transactions, the defen-
_Assume than transactions can be executed in tifie  gjye execution will increase the throughput(fo+ o )u. As
without defenswe.execunons. The bottorr_1 part of the figure long as the system load is not saturated100%), user’s
shows the scenario of a defenswe execu'tlon. To exepute th%pplication will not feel any performance degradation be-
same number of user's transactions a3dna longer time  c5yse the throughput of user's application is not changed.

Ta > Te needs to be spent, because the defensive executiofrhe yser’s throughput is only part of the whole throughput
has(1+ a)n transactions to execute, wheme> 0. Since  of the system.

the throughput will be higher in defensive executions, the ¢ 4,0 highest throughput that the system can process is
turnaround time of each transaction will increase accord-

actions found in each second divided by the throughput.

ingly. Thus the total ion tinfey will be | W, we have
ingly. Thus the total execution timig will be longer. (1+au<w (12)
In the figure Aty = Tq — Te is the increased total process- .
ing time caused by defensive executidtt, = Te+ Ty — Ty to prevent the system load from being saturated. Therefore,
is the reduced processing time gained by the defensive exe- W
cution when attacks happen. as o -1= B (13)



wheref is the upper bound af to make the defensive ex-
ecution effective. We caf8 as theeffective upper boundf
redundant rate.

where f1(x) is the turnaround time function of throughput,
like the curve fitting function in Figure 4. Equation 16 ex-
plains the time cost we paid for defensive executions.

In such situation, the defensive execution is transparent For a given IDS delay and attacking density: % can
to the user’s application. If attacks happen, the defensivebe measured as shown in Figure 7. To let the defensive
execution can save as much timeTagrom recovery work.  execution to be effective, we need to guarantee that
For example, in Figure 7, when the attacking density is 34%
and the IDS delay is 15 seconds,is about 16Te. In other
words, if the IDS identifies an executing path as intruded
after 15 seconds, we can savé & 15= 24 seconds from
the recovery.

The cost we paid for the defensive execution is the high-

(1+a)C
Aty =CiT / Hdx<T =rTe  (17)
C1

Considering that the turnaround time functidi(x) is al-
ways incremental, thus

est user’s throughput we can achieve. Giveandw, the a< i fl—l(L +f1(C1)—1=p (18)
highest throughputmax of user’s application can be derived Ci Ci
from Equation 12 as follows. With the above inequation, we can get the effective upper
W boundp.
Umax < ira (14) For example, givenfi(x) = 0.0006219% + 0.35454,

C; =100, andr = 1.6 (when the IDS delay is 15 seconds
and the attacking density is 34%), we can solve the inequa-
tion to geta < 1.49. Thusf = 1.49 is the effective upper
bound of redundant rate. Any larger redundant rate will
cause that the defensive executions take longer time then
the normal execution time plus recovery time.

Please note that we need to consider both types of appli-
cations for a real system. Assume that we Betvhen we
consider only the throughput as we did in Section 5.3.1, and
we getf, when we consider the turnaround time, the final
effective redundant rate should be 1tBn, 32).

The degradation of the highest throughput of user’s appli-

cation will be
aw

W= tmax= 177

(15)

For example, as shown in Figure 4 and Figure 5, If nor-
mally the throughput of user’s applicationus= 200 trans-
actions/second, thea = 1.5 will not be a problem at all
for the system. Whenr = 1.5 the throughput of the whole
system is(1+ a)u = 500 transactions/second. It is still in
the linear part of the system loadt could be even larger
since the system load is far from 100%.

Given a system with the capability of peak throughput
5000 transactions/second, if we selact 4, than the peak No IDS system is perfectly accurate. False positive
throughput of user's application will be reduced to 1000 ajarms (false alarms on legitimate activities) and falggane
transactions/second. Please note that the redundantscost e alarms (where the IDS failed to identify intrusionspca
as four times many as the user’s transactions. That is whaly|s affect the effectiveness of our techniques.

we paid for saving the recovery time. False positive alarms cause unnecessary branch cutting
and switching of execution paths, which counteracts alt ben
efits generated by defensive executions. However, the sys-
tem incorporating our techniques just acts as a regular re-
covery system. It will not be worse. The users have to suffer
Another type of applications is that the user’s applicagion the recovery time.
are sensitive to the turnaround time of each transaction, or False negative alarms can only be solved by the interven-
the total processing time of all transactions. Such appli- tion of administrators of the system. Since usually human
cations are computing intensive applications, like decisi  intervention takes longer time than the IDS, the branch cut-
supporting systems, etc. In such situation, the valutpf  ting will have been done. The user will not be benefited
matters. from our techniques.

Assume that the throughput of users’ transactio@is In summary, in the worst case, an inaccurate IDS can
without defensive executions. Given a redundanteate0, force our techniques to work as a regular recovery system.
At can be determined by the following equation.

5.4 The accuracy of the IDS

5.3.2 In the case of turnaround time sensitive applica-

tions

6 Related work

Aty CiTe(f2((1+a)Cp) — f1(Cy))

(1+C{)C1
T / (%)

C1

(16)
An Intrusion Detection System (IDS) [7] can detect in-

dx trusions. In a transactional processing system, the dasnage
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