
Chapter 1

DDCS: A MULTIPHASE DATABASE DAMAGE
CONFINEMENT PROTOTYPE SYSTEM

Peng Liu and Ying Wang

Abstract Damage confinement is a critical aspect of database survivability. Damaged data
items of a database should not be allowed to access until they are repaired. Tradi-
tional database damage confinement is one phase, that is, a damaged data item is
confined only after it is identified as corrupted, and one- phase damage confine-
ment has a serious problem, that is, during damage assessment serious damage
spreading can be caused. In this paper, we present the design and implementa-
tion of a multiphase database damage confinement system, called DDCS. The
damage confinement process of DDCS has one confining phase, which instantly
confines the damage that might have been caused by the intrusion(s) as soon
as the intrusion(s) are detected, and one or more later on unconfining phases
to unconfine the data items that are mistakenly confined during the confining
phase and the items that are repaired. In this way, DDCS ensures no damage
spreading during damage assessment. DDCS can confine the damage caused
by multiple malicious transactions in a concurrent manner. DDCS is built on
top of a commercial database server. DDCS is transparent to end users, and the
performance penalty of DDCS is reasonable.

1. INTRODUCTION
Recently, more and more people realized that existing secure systems are still

vulnerable to a variety of attacks. The inability of existing security mechanisms
to prevent every attack is well embodied in several recent large scale Internet
attacks such as the DDoS attack in Feb. 2000. These accidents convince the
security community that traditional prevention- centric security is not enough
and the need for intrusion tolerant or survivable systems is urgent. Intrusion
tolerant systems, with characteristics quite different from traditional secure
systems, extend traditional secure systems to survive or operate through attacks.
The focus of intrusion tolerant systems is the ability to continue delivering
essential services in face of attacks [4, 1].

Being a critical component of almost every mission critical information
system, database products are today a multi-billion dollar industry. Database

1

2

survivability focuses on the ability to correctly execute transactions (or queries)
in face of data corruption by attacks. Unfortunately, several studies show that
traditional database security mechanisms are very limited in surviving attacks.

Since database attacks can be enforced at multiple levels, including hardware
level, OS level, DBMS level, and transaction (or application) level, database
survivability in general requires a multi-layer approach. Although several
effective low-level survivability mechanisms have been developed to tackle
hardware-level attacks [10] and OS-level attacks [2, 8, 9], there are still a lot
of challenges to survive malicious transactions, which should be the major
security threats to databases according to the fact that most attacks are from
insider [3]. In this paper, we focus on how to survive malicious transactions.

A simple transaction level database survivability framework may consist
of an intrusion detector [5], which identifies malicious transactions, and a
repair manager [7], which locates and repairs the damage caused by these
malicious transactions. We assume that the database continues executing new
transactions during intrusion detection and repair. The key challenge of this
simple framework is in fact damage spreading. In particular, in a database the
results of one transaction can affect the execution of some other transactions.
When a transaction �� reads a data object � updated by another transaction �� ,
�� is directly affected by �� . If a third transaction �� is affected by ��, but not
directly affected by �� , �� is indirectly affected by �� . It is easy to see that
when a (relatively old) transaction �� that updates � is identified malicious, the
damage on � has already spread to every object updated by a good transaction
that is affected by��, directly or indirectly. Moreover, during the repair process
of the damage caused by ��, the damage could further spread to many other
data objects.

The main goal of damage confinement is to reduce the amount of damage
spreading during the repair process. At the first glance, it seems that confining
the damage that is already located by the Repair Manager is a good idea.
However, in this one-phase confinement approach the damage caused on an
object will not be confined until the object is identified (by the Repair Manager)
as corrupted. And when there is a significant latency for locating a damaged
object �, during the latency many new transactions may read � and spread the
damage on � to the objects updated by them. As a result, when � is confined
many other objects may have already been damaged, and the situation can
feed upon itself and become worse because as the damage spreads the damage
assessment latency could become even longer.

To overcome the limitation of one-phase damage confinement, we propose
a multiphase damage confinement approach. In particular, a multi- phase dam-
age confinement process has one confining phase, which instantly confines the
damage that might have been caused by the intrusion(s) as soon as the intru-
sion(s) are detected, and one or more later on unconfining phases to unconfine
the data items that are mistakenly confined during the confining phase and the
items that are repaired. In this way, since confined data objects are not readable

3

until they are repaired, multi-phase confinement ensures no damage spreading
during the repair process.

In this paper, we present a complete model for multiphase database damage
confinement, and we design and implement a multiphase database damage
confinement system, called DDCS, that enforces this model. A preliminary
version of our model appeared in [6]. In this paper, we extend the model
with the ability to handle multiple malicious transactions and we present a
query-rewriting technique to transparently implement the extended damage
confinement model on top of a commercial DBMS. We also present the detailed
design of DDCS and its components. The key features of DDCS are: (1) DDCS
enforces multiphase damage confinement, so DDCS can guarantee that there
is no damage leakage during the repair process. (2) DDCS can concurrently
confine the damage caused by multiple malicious transactions without any
damage leakage. (3) DDCS is built on top of a commercial DBMS, so DDCS
can be easily transported from one type of DBMS to another type of DBMS.
(4) DDCS is transparent to end- users, so database application developers are
immunized from the complexity of damage confinement.

2. MULTIPHASE DAMAGE CONFINEMENT
ELEMENTS

For clarity, in this section we only consider how to confine the damage caused
by a single malicious transaction �. In next section we will extend the basic
model to handle multiple malicious transactions. In our model, a database is a
set of data objects (or items) which are accessed by transactions. A transaction
is a partial order of read and write operations that either commits or aborts. A
history models the concurrent execution of a set of transactions. We assume
that there is a transaction log that not only keeps the read and write operations
of every transaction in the history but also keeps the commit order of these
transactions. A malicious transaction corrupts (or damages) a data object by
changing its value to a wrong or misleading value. A corrupted data object is
repaired after the value of the object is restored to its latest undamaged version.
We assume the survivable database system has an Intrusion Detector and that
can identify malicious transactions, and a Repair Manager that can locate and
repair the set of data objects corrupted. The Repair Manager is triggered by
the alarms raised by the Intrusion Detector. Note that since the detector is not
100% accurate, some damage may not be able to be located and repaired and
some undamaged data objects may be mistakenly repaired. Finally, we assume
the database continues executing new transactions during intrusion detection
and repair.

Definition 1 [One-phase Damage Confinement] The survivable database sys-
tem enforces one-phase damage confinement if all and only the data objects
that are identified by the Repair Manager as corrupted will be confined until

4

they are repaired. A confined data object cannot be read or updated by any new
transactions.

Definition 2 [Multiphase Damage Confinement] The survivable database sys-
tem enforces multiphase damage confinement if
(1) As soon as a malicious transaction � is detected, a specific set of data
objects, denoted �� , will be instantly confined. �� is determined in such a
way that the set of data objects that are corrupted by�, denoted ��, is a subset
of �� . This phase is called initial confinement. Initial confinement should be
quickly done. The set of confined data objects is called a confinement set. To
ensure no damage spreading after initial confinement, every active transaction
should be rolled back before �� is confined.
(2) The whole multiphase damage confinement process is a sequence of con-
finement sets, namely, �� � ��� ��� ���� ��� ���, that is converged to the empty set
�. �� is the result of initial confinement and may include a lot of undamaged
data objects that are mistakenly confined. �� (with � � �) is the result of
a set of unconfining operations that only unconfine the data objects that are
mistakenly confined or the data objects that are repaired. As a result, �� � ��
for � � �. When the sequence is converged to �, all the confined damage is
repaired and no object needs to be confined. The unconfining operations are
usually grouped into several unconfining phases, although these unconfining
phases can be concurrent.

The advantage of multiphase containment is no damage leakage during
repair and much simpler repair. The drawback is that some undamaged objects
could be mistakenly contained temporarily. A multiphase database damage
confinement system that enforces this model can work as follows:
(a) The initial confinement can be enforced using time stamps. Assume each
data object in the database is associated with a specific time stamp that indicates
when the object is last updated. As soon as a malicious transaction� is detected,
all the objects associated with a time stamp later than the start time of � will
be confined as �� . Since only these objects could be damaged by �, �� is a
subset of �� . Note that �� does not include the objects that are updated after
initial confinement.
(b) The system can have the following four unconfining phases, which start at
the same time but usually proceed with very different speeds.
Phase A: During the process of damage assessment which scans the log (after
� commits) to find out which good transactions are affected by � and which
data objects are corrupted by � and these affected transactions, the Repair
Manager also wants to find out which objects are not damaged and should be
unconfined. In particular, when the Repair Manager finds that a transaction 	
is not affected, all the objects that are updated by 	 and are associated with a
time stamp earlier than the commit time of 	 will be unconfined. Note that in
many cases not all objects updated by 	 can be unconfined because some of
these objects could have been later on damaged.

5

Phase B exploits the dependency relationship among transaction types or access
patterns. In particular, we assume that each transaction belongs to a specific
type and the profile or code for each transaction is pre-known. We found that
the types of data objects that a transaction may read and write could be extracted
from the transaction’s profile. And we call the read (write) set extracted from
a profile the read (write) set template of the transaction type. (Note that a
data object type can indicate a column or a table in a relational database. A
transaction type
�� is dependent upon
�� if the intersection of
��’s write
set template and
��’s read set template is not empty. The rational is that in
the corresponding type history of the (affected) history, if �
�������
������
is not in the transitive closure of the dependent upon relation, then �� is not
affected by �, and ��’s write set template should be unconfined. However,
since some objects in ��’s write set template could be later on damaged, we
cannot unconfine ��’s write set as soon as we find that �� is not affected.
Instead, Phase � puts ��’s write set into a temporary set denoted �. � will not
be unconfined until every transaction that could be affected by � is analyzed.
During this analysis, when we find that a transaction ��’s type is affected by

�����, we will remove the intersection of � and ��’s write set template out
of �.
Phase C: One limitation of Phase � is that in some cases even if
�
�������
������ is in the transitive closure of the dependent upon relation,
�� could still be unaffected, since the granularity of an object (type) kept in
a template is usually very large. To unconfine the writes of such ��, Phase C
materializes the read and write set templates of each transaction in the affected
history and uses the materialized read and write sets to identify the transactions
that are not affected and the objects that should be unconfined. A data object
type (kept in a template) is materialized by replacing a variable associated
with the object type with an input of a transaction instance. A materialized
read (write) set looks no different from a real read (write) set. Phase C does
unconfinement in almost the same way as Phase A except that Phase C uses
materialized read and write sets.
Phase D: After a damaged object � is repaired by the Repair Manager, � will
be unconfined.
(c) It is easy to see that Phase A is accurate, that is, every object that is
mistakenly confined will be unconfined. However, Phase A is in general very
slow. During the damage assessment latency, substantial availability could be
lost. Phases B and C can provide a lot more availability, although they may
miss some objects that should be unconfined. That is, Phases B and C are in
general much quicker than Phase A since they do not need to analyze the read
and write operations of transactions.
(d) Finally, it should be noticed that periodically after a repair is done, the time
stamp based confinement control should be dismissed.

6

RE-Bi
time

Unconfine

t
Bid

t
Bic

t
CE-Bi

Repair

t

Figure 1.1 The confinement timeline of ��

3. HANDLING MULTIPLE MALICIOUS
TRANSACTIONS

In many cases, multiple malicious transactions can be detected at different
points of time with some intervals between each other. So it is possible that
a new malicious transaction is detected before the repair of the set of already
detected malicious transactions is done. Under such situations, we found that
some data objects that are already unconfined could have been corrupted by
the new malicious transaction and should not be unconfined any longer. To
illustrate, let’s consider a simple example where when malicious transaction
�� is detected �� is still under repair. If �� were not detected, the damage
confinement and repair process of �� can be shown by Figure 1.1. Assume

��� is the commit time of ��;
��� is the time when �� is detected and known
to every component of the survivable database system;
����� is the time
when all the damage caused by �� is repaired; and
	���� is the time when
all the unconfining phases for �� end. Assume �� is detected after
��� but
before
	���� and assume that
��� is before
��� , then it is possible that
an unconfining phase for �� has already unconfined a data object � which is
updated after
��� and not damaged by ��. However, if � is actually damaged
by �� , then after the initial confinement of �� is done � should no longer
be unconfined. In this section, we propose a multiphase damage confinement
algorithm for multiple malicious transactions. Our algorithm can guarantee
that on damage will leak out of any confined part of the database.

Algorithm 1 Handling multiple malicious transactions
We assume at one point of time the confined part of the database is specified by a confinement time window
denoted �
��
��, and an unconfinement set denoted � �� . Any data object updated within the confine-
ment time window should be confined except that the object is in � �� .

// We specify the algorithm by induction
When the system has only one malicious transaction �� being repaired and a new malicious transaction ��
is detected:

// Note that at this moment,
� is the start time of �� ,
� is the time when the initial confinement
// for �� is enforced, and � �� contains the data objects that are already unconfined by the
// unconfining operations for ��

Confinement operations:
(a) roll back all the active transactions;
(b) set the value of
� to the current time;
(c) set the value of
� to ����
��� �
����. Here
��� and
��� are the start times of �� and �� , respec-
tively; //Note that �� could start before ��
(d) allow new transactions to come in after � �� is adjusted by the following unconfinement operations;
// This adjustment includes any changes to � ��

7

Unconfinement operations:
Case 1 �� commits before ��
(a) remove every data object from � �� ;
(b) shut down all the current unconfining phases;
(c) restart unconfining phases A, B, and C by scanning the log from the point where �� starts. The restarted
phases should now handle �� � �� instead of only ��. For example, Phase A should put only the objects
that are neither corrupted by �� nor corrupted by �� into � �� ;
(d) restart the repair process (and unconfining phase D) by scanning the log from the point where �� starts.
The restarted repair process and Phase D should now handle �� � ��;
(e) whenever a data object is unconfined, put the data object into � �� ;
Case 2 �� commits after ��
if no unconfining phase has scanned the part of the log that contains the operations that were performed
after �� commit

continue each unconfining phase in such a way that each confining phase is adjusted
to handle �� � �� instead of only ��;

else for each unconfining phase (including the repair process) that has scanned some of the operations that
were performed after �� commit

(a) shut down the unconfining phase (or the repair process);
(b) remove every data object that was updated after �� commit but is unconfined by this
phase (or process) from � �� ;
(c) restart this unconfining phase (or the repair process) by re-scanning the log from the
point where �� starts. The restarted phase (or repair process) should now handle �� � �� .

When the system has � malicious transactions ����� ���� ���� ���� being repaired concurrently and a
new malicious transaction �� is detected:
[Confinement operations] The difference from the above is:
(d1) set the value of
� to ����
� ��
����. Here
� � indicates the current value of
� before �� is detected;
[Unconfinement operations] The difference from the above is:
Case 1
��� �
�

�

(d1) restart unconfining phases A, B, and C by scanning the log from the point where�� starts. The restarted
phases should now handle ����� ���� �������� ���;
(d2) restart the repair process (and unconfining phase D) by scanning the log from the point where �� starts.
The restarted repair process and Phase D should now handle ����� ���� �������� ���;
(d3) whenever a data object is unconfined, put the data object into � �� ;
Case 2
��� �
�

�

if no unconfining phase has scanned the part of the log that contains the operations that were performed
after �� commit

(d1) continue each unconfining phase in such a way that each confining phase is adjusted
to handle ����� ���� ���� ���� ���;

else for each unconfining phase that has scanned some of the operations performed after �� commit
(d1) restart this unconfining phase (or the repair process) by re-scanning the log from the
point where �� starts. The restarted phase should now handle ���� � ���� ���� ���� ���;

Theorem 1 In a survivable database system where multiple malicious trans-
actions can be repaired concurrently, Algorithm 1 ensures that: All the damage
that is caused by a malicious transaction will be confined as soon as the mali-
cious transaction is detected, and At any point of time, no damage will spread
out of the confined part of the database.

4. DDCS
DDCS is a prototype system that implements the multiphase database dam-

age confinement algorithm presented in Section 3. DDCS is built on top of an
Oracle DBMS but DDCS is in general not dependent on the specific DBMS. In
order to support time-stamp based confinement control, DDCS transparently
adds an extra time-stamp column to each table and maintains time stamp in-

8

Oracle Server

table 1 table m

Unconfinement
Executor

Repair
Manager

Read Extractor

TRANS_LIST

READ_WRITE_TEMPLATE STATEMENT_LIST

TYPE_GRAPH

... ...

Confinement
Executor

... ...trigger trigger

Transaction
Proxy

User Transactions

Users

Mediator

WRITE_LOG

U_SET

READ_LOG

BAD_TRANS_LOG

Intrusion
Detector

Applications

Figure 1.2 The components of DDCS

formation by rewriting SQL statements. The major components of DDCS are
shown in Figure 1.2. In general, the Intrusion Detector informs DDCS which
transactions are malicious. The Transaction Proxy proxies user transactions
for the purpose of keeping track of the status and the SQL statements of trans-
actions (in the TRANS LIST table). The triggers and the Read Extractor are
responsible for keeping track of the read and write operations of transactions,
which are necessary for the unconfining operations. Note that the Read Extrac-
tor extracts transaction read information from the SQL statements kept by the
Transaction Proxy. The Confinement Executor is responsible for (1) maintain-
ing the confinement time window as new malicious transactions are reported
by the Intrusion Detector, (2) enforcing the damage confinement control with
the help of the � ��� , and (3) maintaining the time stamp information by
rewriting user SQL queries. Unconfining phases B and C are enforced by the
Unconfinement Executor. Unconfining phases A and D are enforced by the
Repair Manager, which also performs damage assessment and repair. In [7],
the Intrusion Detector, the Triggers, the Read Extractor, the Transaction Proxy,
and the Repair Manager are described in detail. In this section, we will focus
on the Confinement Executor and the Unconfinement Executor.

The key operations of DDCS are triggered by three main events. (1) When
a new user transaction � arrives, the Transaction Proxy will proxy the transac-
tion, and the Unconfinement Executor will enforce the confinement control and
maintain the time stamps for the data objects that are updated by � . At the same
time, the read operations of � will be extracted from � ’ SQL statement(s) and
put into the READ LOG. (2) When a new malicious transaction � is detected,
the Confinement Executor will set a new confinement time window, the Un-
confinement Executor will adjust the � ��� and its unconfining operations

9

to cover �, and the Repair Manager will adjust its damage assessment and
repair operations to cover �. (3) When the Repair Manager finishes the re-
pair for the set of detected malicious transactions, the Unconfinement Executor
will discontinue enforcing the confinement control. (4) When a transaction �
commits, the write operations of � will be put into the WRITE LOG by the
triggers.

4.1 CONFINEMENT EXECUTOR
When the Confinement Executor retrieves a new malicious transaction from

its message queue, it will perform the confinement operations specified in
Algorithm 1. In particular, it will (1) stop executing new transactions, (2)
abort all the active transactions, (3) adjust the confinement time window, and
(4) allow new transactions to execute after getting a ����� message from
both the Unconfinement Executor and the Repair Manager saying that the
� ��� is adjusted. Since the TRANS LIST table contains the identifiers of
the active transactions, the Confinement Executor can ask the DBMS to abort
these transactions. Since the start times of transactions are also kept in the
TRANS LIST table, it should be easy to adjust the confinement time window.

When a new user transaction arrives after the above confinement operations
are done, the Confinement Executor needs to enforce the damage confinement
control in such a way that any data object updated within the confinement time
window is not allowed to access except the objects � ��� . The confinement
control algorithm is as follows. Note that the damage confinement control
is enforced in terms of SQL statements instead of transactions since (1) read
extraction is also in terms of SQL statements, (2) in some transactions the
execution of some later SQL statement may depend on the results of a precious
statement, and (3) in this way quicker confinement checking can be achieved.
For a transaction with multiple SQL statements, if the first SQL statement wants
to read a data object that is confined, we can reject or delay the access of this
transaction to the database without checking the reads of any of the other SQL
statements.

Algorithm 2 Damage Confinement Control
// Assume the Unconfinement Executor maintains the set of detected malicious
// transactions that are not yet repaired, which is denoted as�. For
// simplicity, we assume the write set of a transaction is a part of the read set of the transaction

while TRUE
if a new SQL statement wants to be executed

if B is not empty
retrieve the read set of this SQL statement from the READ LOG via Trans ID and S Pattern as
following: SELECT Table Name, Record ID FROM READ LOG WHERE
Trans ID=S.Trans ID AND S Pattern=S.S Pattern;

// We assume at this moment the Read Extractor has already extracted the reads
// of , otherwise, the Unconfinement Executor needs to wait for a while

for each read item � in the read set of , search � in the
� �� table. If � is not in the � �� table

retrieve the timestamp of � from the WRITE LOG. If the timestamp
is within the confinement time window

abort or delay the transaction (based on the preference of the user);

10

jump to the beginning of the loop;
use Algorithm 3 to rewrite the SQL statement;
// At this moment, it is clear that S will not read any data item that is confined

else // B is empty
use Algorithm 3 to rewrite the SQL statement;

end while

DDCS needs the time stamp information to enforce damage confinement
control, however, asking the applications to maintain time stamp information is
not only not secure because this enables malicious applications to manipulate
time stamps, but also not transparent to existing applications which usually do
not maintain time stamps. In order to maintain the time stamp information
in a transparent and secure manner, DDCS does three things: (1) DDCS
transparently adds a TIME STAMP column to each user table. (2) DDCS
rewrites user queries to associate time stamps with each write. (3) DDCS
does not allow any (end) user to change time stamp information. The query-
rewriting algorithm is as follows. (Due to space limit, only part of the algorithm
is presented.)

Algorithm 3 Time Stamp Maintenance by Rewriting Queries
while TRUE

if the SQL statement is a SELECT statement
forward the SQL statement to the Oracle server without any change;

else if the SQL statement is an INSERT statement
if the format is: INSERT INTO tablename (...) VALUES (...)

rewrite to: INSERT INTO tablename (..., timestamp) VALUES (..., SYSDATE);
// The value of SYSDATE, an Oracle system variable, is the current system time.
forward the rewritten SQL statement to the Oracle server;

...
else if the SQL statement is an UPDATE statement

if the format is: UPDATE tablename SET ... WHERE ...
rewrite to: UPDATE tablename SET ..., timestamp=SYSDATE WHERE ... ;
forward the rewritten SQL statement to the Oracle server;

else if the SQL statement is a DELETE statement
forward the SQL statement to the Oracle server without any change;

end while

4.2 UNCONFINEMENT EXECUTOR
The Unconfinement Executor is responsible for unconfining phases B and

C. To enable Phase B, DDCS needs to maintain the dependency relationships
among transaction types. In particular, DDCS uses the TYPE GRAPH table
to keep the type dependencies. An example TYPE GRAPH table is shown in
the following table. The first record says that transaction type TA, TE, and TD
are affected by TD, directly or indirectly. So the TYPE GRAPH maintains the
transitive closure of the type dependency relationship.

Trans Type Affected Types

TD TA+TE+TD

TA TA+TD

11

When the Unconfinement Executor retrieves a new malicious transaction ��
from its queue, the following two procedures proceed concurrently.
Phase B Procedure. The Unconfinement Executor will follow Algorithm 1
exactly. To know if this phase has already scanned some of the operations
that were performed after �� commit or not, the Unconfinement Executor
compares within the ����� ���� table the location where �� commit and
the location where the current scan is performed. Note that the����� ����
table keeps both the start time and commit time of transactions. Before the
Unconfinement Executor scans the ����� ���� to do unconfinement, the
Executor will first search the �� �� 	���� table for the types that are
affected by
����� (note that � is usually a set of malicious transactions).
Then for each transaction � , if
���� � is not among the search results, the
Executor will get the object types that could have been updated by � from
the ���� ����� �������� table (i.e., the write set template of

���� �), and put these object types in the � table. To enable the Executor to
adjust the � ��� , the Executor associates a timestamp with each object type
put into the � ��� in such a way that the timestamp indicates when the object
(type) was updated. After the � ��� is adjusted in terms of both Phase B
and Phase C, the Executor will send a ����� message to the Confinement
Executor.
Phase C Procedure. Phase C is similar to Phase B except that (1) the Executor
needs to apply the techniques described in [7] to extract the input arguments
of transactions from their SQL statements and use the input arguments to
materialize both the read set and the write set of each transaction in the history;
(2) the Executor needs to use the materialized read and write sets to reason the
affecting relationships among transactions in such a way that many transactions
that are not affected by � can be identified. The timestamps used in Phase C
are obtained in the same way as Phase B.

5. CONCLUSION
In this paper, we present the design and implementation of DDCS, a mul-

tiphase database damage confinement system. DDCS enforces multiphase
damage confinement to substantially reduce the amount of damage spreading
during damage assessment and repair. DDCS can confine the damage caused
by multiple malicious transactions in a concurrent manner without any dam-
age leakage. DDCS is built on top of a commercial database server. DDCS
is transparent to end users. Our preliminary testing shows that the confine-
ment control process, the unconfinement operations, and the query-rewriting
process are pretty efficient, and the performance penalty of DDCS is reasonable.

Acknowledgments
This work is supported by the Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Material Command, USAF, under agreement number

12

F30602-00-2-0575, by DARPA and AFRL under agreement number F20602-02-1-0216, by
NSF CCR- 0233324, and by Department of Energy Early Career Award.

References

[1] P. Ammann, S. Jajodia, C.D. McCollum, and B.T. Blaustein. Surviving
information warfare attacks on databases. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 164–174, Oakland, CA, May
1997.

[2] D. Barbara, R. Goel, and S. Jajodia. Using checksums to detect data cor-
ruption. In Proceedings of the 2000 International Conference on Extending
Data Base Technology, Mar 2000.

[3] Carter and Katz. Computer Crime: An Emerging Challenge for Law En-
forcement. FBI Law Enforcement Bulletin, 1(8), December 1996.

[4] R. Graubart, L. Schlipper, and C. McCollum. Defending database manage-
ment systems against information warfare attacks. Technical report, The
MITRE Corporation, 1996.

[5] S. Ingsriswang and P. Liu. Aaid: An application aware transaction-level
database intrusion detection system. Technical report, Dept. of Information
Systems, UMBC, 2001.

[6] P. Liu and S. Jajodia. Multi-phase damage confinement in database systems
for intrusion tolerance. In Proc. 14th IEEE Computer Security Foundations
Workshop, Nova Scotia, Canada, June 2001.

[7] P. Luenam and P. Liu. Odar: An on-the-fly damage assessment and repair
system for commercial database applications. In Proceedings of the 2001
IFIP WG 11.3 Working Conference on Database and Application Security,
2001.

[8] U. Maheshwari, R. Vingralek, and W. Shapiro. How to build a trusted
database system on untrusted storage. In Proceedings of 4th Symposium
on Operating System Design and Implementation, San Diego, CA, October
2000.

[9] J. McDermott and D. Goldschlag. Towards a model of storage jamming. In
Proceedings of the IEEE Computer Security Foundations Workshop, pages
176–185, Kenmare, Ireland, June 1996.

[10] S. Smith, E. Palmer, and S. Weingart. Using a high-performance, pro-
grammable secure coprocessor. In Proc. International Conference on Fi-
nancial Cryptography, Anguilla, British West Indies, 1998.

