
Incorporating Transaction Semantics to Reduce Reprocessing Overhead in
Replicated Mobile Data Applications �

Peng Liu Paul Ammann Sushil Jajodia

Center for Secure Information Systems
George Mason University

�pliu,pammann,jajodia�@isse.gmu.edu

Abstract

Update anywhere-anytime-anyway transactional repli-
cation has unstable behavior as the workload scales up. To
reduce this problem, a two-tier replication algorithm is pro-
posed in [GHOS96] that allows mobile applications to pro-
pose tentative transactions that are later applied to a master
copy. However, it can suffer from heavy reprocessing over-
head in many circumstances. In this paper, we present the
method of merging histories instead of reprocessing to re-
duce the overhead of two-tier replication. The basic idea
is when a mobile node connects to the base nodes merging
the tentative history into the base history so that substan-
tial work of tentative transactions could be saved. As a
result, a set of undesirable transactions (denoted �) have
to be backed out to resolve the conflicts between the two
histories. Desirable transactions that are affected, directly
or indirectly, by the transactions in � complicate the pro-
cess of backing out �. We present a family of novel rewrit-
ing algorithms for the purpose of backing out �. By in-
corporating transaction semantics, our rewriting methods
are strictly better at saving desirable tentative transactions
than the traditional reads-from transitive-closure based ap-
proach. And in most cases our rewriting methods are better
at saving desirable tentative transactions than an approach
which is based only on commutativity.

Key Words: Mobile Databases, Data Replication, Transac-
tion Processing.

�This effort was sponsored by Rome Laboratory, Air Force Material
Command, USAF, under agreement number F30602-97-1-0139. The U.S.
Government is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright annotation herein. The
views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of Rome Laboratory or the U.S.
Government.

1 Introduction

Data is replicated at multiple network nodes for perfor-
mance and availability. There are typically two ways to
propagate updates to replicas: eager replication keeps all
replicas exactly synchronized at all nodes by updating all
the replicas as part of one atomic transaction; lazy repli-
cation asynchronously propagate replica updates to other
nodes after the updating transaction. Moreover, there are
typically two ways to regulate replica updates: group repli-
cation where any node with a copy of a data item can update
it (this is often called update anywhere), and master replica-
tion where each object has a master node; only the master
can update the primary copy of the object; all other repli-
cas are read-only; other nodes wanting to update the object
request the master do the update.

It is shown in [GHOS96] that update anywhere-anytime-
anyway transactional replication has unstable behavior as
the workload scales up: (1) A ten-fold increase in nodes and
traffic gives a thousand fold increase in deadlocks or recon-
ciliations. (2) Disconnected operation and message delays
mean lazy replication has more frequent reconciliation.

Since eager replication is not an option for mobile ap-
plications where most nodes are normally disconnected,
the unstable behavior of replicated mobile applications can
be more serious. To solve this problem, a modified lazy-
master replication scheme, namely, two-tier replication, is
proposed in [GHOS96]. Assume there are two kinds of
nodes in a mobile database where each data item is repli-
cated on every node: mobile nodes are disconnected much
of the time. Base nodes are always connected. A mobile
node may be the master of some data items. Most items are
mastered at base nodes. The basic idea of two-tier repli-
cation is first allowing users to run tentative transactions
on a mobile node, later when the mobile node connects to
the base nodes, these tentative transactions will be trans-
formed to corresponding base transactions and then reex-

ecuted. Failed reexecutions will be informed to the users
together with the corresponding reasons.

Although two-tier replication can achieve the goals such
as availability, scalability, mobility, serializability, and
convergence [GHOS96], it can suffer from heavy reprocess-
ing overhead in many circumstances. For example, when
the number of mobile nodes are much larger than that of
base nodes, even if the transaction processing on each mo-
bile node is not busy, the reprocessing on the base nodes can
be very busy since the number of the accumulated tentative
transactions waiting for reexecuting at the base nodes can
be huge.

In this paper, we present the method of merging histories
instead of reprocessing to reduce the overhead of two-tier
replication. The basic idea is when a mobile node con-
nects to the base nodes merging the tentative history into
the base history so that substantial work of tentative trans-
actions could be saved. Since the two histories may conflict
with each other, we build the precedence graph which is
proposed in [Dav84] to detect the inconsistency and to com-
pute the set of undesirable transactions (denoted �) whose
backing out can resolve the conflicts. Desirable transac-
tions that are affected, directly or indirectly, by the trans-
actions in � complicate the process of backing out �. We
present a family of novel rewriting algorithms for the pur-
pose of backing out�. By incorporating transaction seman-
tics, our rewriting methods are strictly better at saving de-
sirable tentative transactions than the back-out method used
in [Dav84]�. The approach of merging histories still keeps
the above desirable features of two-tier replication. And it
will not violate the durability property of base transactions.

The paper is organized as follows. In Section 2, we
present the merging protocol. We give our model for rewrit-
ing histories in Section 3. In Section 4 and 5, we give our
rewriting algorithms. In Section 6, we show how to prune a
rewritten history so that a repaired history can be generated.
And we conclude in Section 7.

2 The Proposed Replication Scheme

2.1 The Protocol

In two-tier replication, there are two kinds of transac-
tions: base transactions work only on master data since lazy
master replication where reads go to the master gives ACID
serializability, and they produce new master data. They in-
volve at most one connected-mobile node and may involve
several base nodes. Tentative transactions work on local
tentative data. They produce new tentative versions.

�This implys that our rewriting methods can also be used to improve
the performance of optimistic replication protocols in distributed database
systems.

In our merging protocol, there are two kinds of serializ-
able histories: (1) Base History: A base history is an exe-
cution history of base transactions that read and write only
master data. (2) Tentative History: A tentative history is
an execution history of tentative transactions originated and
executed on a mobile node.

The merging protocol works as follows:

1. When a mobile node connects to the base nodes, we
construct a precedence graph similar to [Dav84], de-
noted����� ���, using both the tentative history (de-
noted ��) and the base history (denoted ��) as fol-
lows �:

� Let �� and �� be two tentative transactions that
perform conflicting operations on a data item �.
There is a directed edge �� � �� if �� precedes
�� .

� Let �� and �� be two base transactions that per-
form conflicting operations on a data item. There
is a directed edge �� � �� if �� precedes �� .

� Let �� be a tentative transaction, �� be a base
transaction. If �� read a data item that has
been updated by ��, then there is a directed edge
�� � ��. If �� read a data item that has been
updated by ��, then there is a directed edge
�� � ��.

2. Detect if the precedence graph has any cycles. If so,
compute the set of undesirable transactions � whose
backing out can break these cycles. In order to ensure
the durability of base transactions, only tentative trans-
actions can be put into �. Several back-out strategies
for getting� are proposed in [Dav84].

3. Rewrite �� so that transactions in � are moved to
the end of ��, and a prefix of the rewritten history
is composed of only desirable transactions (the prefix
is referred to as the repaired history). The rewriting
model and algorithms are presented in Section 3, 4,
and 5.

4. Prune the rewritten history using the methods proposed
in Section 6 so that the repaired history can be ex-
tracted.

5. Forward updates from tentative transactions in the re-
paired history to the base nodes. Note that for each
data item � modified by a transaction in the repaired
history, we only need the value of � in the final state of
the repaired history to merge�� and��.

��� and �� must start with the same database state because otherwise
the correctness of the merger can not be ensured.

�Two operations conflict if one is write.

2

T

T

T

T

T

T

m1

m2

m3

m4

b1

b2

Figure 1. The Precedence Graph for the His-
tory in Example 1

6. Try to reexecute each backed-out tentative transaction.
Failed reexecutions will be informed to the users to-
gether with the corresponding reasons.

It should be noticed that here we assume that the differ-
ences between the result of a tentative transaction in ��

and that in the merged history are acceptable. Handling the
differences that are unacceptable is out of the scope of the
paper.

Example 1 Consider the six transactions given below:
����	�� (���) =
����	�� (���) = ���� ���,
����	�� (���) = ���� ���,
����	�� (���) =
����, ����	�� (���) = ���� ��� ��� ���,

����	�� (���) = ���� ���,
����	�� (���) =
����	�� (���) = ����,
����	�� (���) =
����	�� (���) = ����,
����	�� (���) = ���� ���,
����	�� (���) = ��.

Assume �� = ��� ��� ��� ���, �� = ��� ���. The
precedence graph � is shown in Figure 1. Since the graph
has a cycle, conflict exists among the transactions. Note
that since ��� read the item �� which is then updated by
���, ��� should precede ���; since ��� should precede
���, ��� should precede ���; however, since ��� read the
item �� which is then updated by ���, ��� should precede
���, since ��� should precede ���, ��� should precede ���,
yielding a contradiction.

However, after ��� and ��� are backed out, it is clear
that the reconstructed precedence graph is acyclic. And
clearly the history � � ��� ��� ��� ��� is an equivalent
merged history which can generate the same database state
as the state generated by forwarding the updates of ��� and
��� to the base nodes.

The correctness of the precedence-graph based approach
is shown in the following theorem, which is similar to The-
orem 2.2.2 in [Dav84].

Theorem 1 Given �� and ��, the precedence graph
����� ��� is acyclic if and only if �� and �� are seri-
alizable (i.e., equivalent to some merged history�).

Cycles in����� ��� indicate that there are conflicts be-
tween �� and ��. In order to resolve these conflicts, we
have to back out enough tentative transactions. According
to [Dav84], there are two kinds of tentative transactions that
have to be backed out: undesirable transactions are the set
of transactions whose absence from the precedence graph
can break all the cycles (Note that the set is �). For exam-
ple, in Example 1 � � �����. Affected transactions are
the set of transactions that are in �’s transitive-closure of
the reads-from relation �. For example, in Example 1 ���

is an affected transaction since it reads �� from ���, thus is
in the reads-from transitive-closure.

Minimizing the number of transactions in � is NP-
complete although in our protocol only tentative transac-
tions can be backed out. The reason is similar to [Dav84].
Although this result discourages attempts to minimize the
total back-out cost, the simulation results of [Dav84] show
that in many situations several back-out strategies, in partic-
ular breaking two-cycles optimally, can still achieve good
performance. Interested readers can refer to [Dav84] for
more details on these back-out strategies.

After � is computed, [Dav84] backs out every affected
transaction. This approach, however, can still result in a big
set of affected transactions in many cases. For example, in
Example 1 if ��� and ��� commute, then the work of ���

can be saved by compensating ��� at the end of ��. Our
goal is to save the work of affected transactions as much as
possible.

The rewriting approach, enforced in step 3 and step 4
and proposed in Section 4, 5 and 6, has the following de-
sirable features which can be exploited to save more trans-
actions, ensure the correctness of the merging protocol, and
achieve better performance. For lack of space, the proofs of
all the Lemmas and Theorems about the rewriting approach
except Theorem 4 are omitted. Interested readers can refer
to [LAJ99] for the proofs.

� It can save every affected transaction.

� In most situations, it can save more transactions than
the approaches which are based only on commutativ-
ity.

� Every rewritten history is equivalent to the original his-
tory in that they always generate the same final state.

� Every repaired history generated by the rewriting ap-
proach is consistent.

�A transaction �� reads � from �� if �� reads � after �� has updated �
and there are no transactions that update � between the time �� updates �
and �� reads �.

3

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������������

time

t1

t2

t3

t4

H

H

H t0

m2

m1

b

Figure 2. The Relation Between Multiple Ten-
tative Histories

� After a rewritten history is pruned, we can always get
the same state as that generated by re-executing the
repaired history.

2.2 Synchronizing Multiple Tentative Histories

The synchronization among multiple tentative histories
when there are several mobile nodes is a critical issue. As-
sume there are � active tentative histories at time
, namely,
���, ..., ���. These histories might start to be merged
at different points of time, for example (See Figure 2), the
base history�� began at time
�, tentative history��� be-
gan and ended at time
� and
� respectively, tentative his-
tory ��� began and ended at time
� and
� respectively,
both ��� and ��� were active during the period of time
from
� to
�.

Two possible isolation strategies may be applied here.
Strategy 1 is to let tentative histories, i.e., ��� and ���,
take different database states as their original states. For
example,��� takes the database state at time
�, and���

takes that at time
�. Since the value of some data item �
may change during the period of time from
 � to
�, different
values of � can be given to��� and���.

Strategy 1 can cause serious problems. In Figure 2, sup-
pose data item � was updated by ��� and read by ���,
suppose further that � had not been updated by � � from
�
to
�, then after ��� was merged into �� at time
�, the
transaction in ��� which updated � could be merged into
�� in a position between ��
�� and ��
�� (��
� denotes the
position of the latest committed transaction in�� at time
).
In this situation, the value of � in the database state at ��
��
would be changed, and the new value of � should have been

given to ��� when it read �. Since ��� might read � be-
fore the merge, when ��� is going to be merged into ��,
we may fail to find a subhistory of �� into which can ���

be merged.

Strategy 2 is to let every tentative history take the same
base database state as its original database state. Strategy 2
avoids the above problem and allows merging multiple ten-
tative histories individually into the base history, because no
matter how other mergers will take place, a tentative history
��� can always find a proper base history to merge into,
that is, the base sub-history which begins with the same
database state as ���. This is also the reason why we took
this strategy in our merging protocol. However, we need to
reset the original state periodically for all the tentative his-
tories because otherwise the back-out cost of mergers will
increase substantially as the base history grows longer and
longer. The resynchronization can work as follows: assume
there is a time window within which each mobile node will
connect to the base nodes at least once, then we can reset
the original state at the beginning of each time window. As
a result, all of the mobile nodes that connect to the base
nodes in a time window will take the same state, i.e., the
state of the base history at the beginning of the time win-
dow, as the original states for their new tentative histories
after the mergers in the time window. In addition, when a
mobile node connects to the base nodes too late, i.e., the
next time window is already open, its tentative history will
not be merged. Instead, its transactions will be reexecuted.

3 The Rewriting Model

Given a tentative history � to be merged, after � �
����� ���� ���� ���� is computed in step 2, we denote other
transactions in � as G � ����� ���� ���� ����. We denote
the set of affected transactions as��. We assume� is se-
rializable and there is an explicit serial history� � of� . We
assume that transactions do not issue blind writes. That is,
if a transaction writes some data, the transaction is assumed
to read the value first. Although the rewriting approach can
be adapted to blind writes, doing so complicates the presen-
tation.

For a serial tentative history � �, we augment � � with
explicit database states so that the result is a sequence of
interleaved transactions and database states. The sequence
begins and ends with a state. The state that immediately
precedes a transaction in � � is called the before state; the
state that immediately follows a transaction in � � is called
the after state. For an example, consider the augmented
history��

� � �� �� �� �� �� where

�� � �� � � � ���� � �� �� 	�

�� � � �� �� �

4

The states associated with��
� are:

�� � �� � �� � � �� 	 �
�
�� � �� � �� � � �
� 	 �
�
�� � �� � �� � � �
� 	 �
�

In rewriting histories, the general goal is either to move
transactions in � towards the end of a history or to move
transactions in � towards the beginning of a history. It
turns out that rewriting histories for recovery purposes re-
quires some care with respect to state equivalence of histo-
ries. Two augmented histories � �

� and ��
� are final state

equivalent if they are over the same set of transactions and
the final states are identical. Note that two final state equiva-
lent histories might not be conflict equivalent, or view equiv-
alent [BHG87].

The example above helps to clarify this point. After we
make the transformation of exchanging the order of� � and
��, ��

� is clearly not final state equivalent to the serial his-
tory ���� since they result in different final states. At this
situation, if��

� has more transactions following����, i.e.,
���������, then this transformation will change the before
state of��. As a result, after the transformation, the rewrit-
ten history may not be consistent any longer because the
precondition of some ��, � � � � �, may not be satisfied
any more. Even if the rewritten history is still consistent,
the rewritten history usually can not result in the same final
state, and the new final state is usually very difficult to get,
thus semantics-based compensation is disabled. Therefore,
keeping the final state equivalence of rewritten histories dur-
ing a rewrite is essential to the success of the rewrite.

We approach this problem by decorating each transac-
tion � in an augmented history � � with special values for
read purposes by � . The decoration is facilitated by the
notation fix which is specified below.

Definition 1 A fix for transaction �� in history ��, de-
noted ��, is a set of variables read by � given values
as in the original position of � in � �. That is, �� =
����� ���� ���� ���� ����, and �� is what �� read for �� in the
original history.

The notation ��
�� indicates that the values read by �� for

variables in �� should not come from the before state of � �,
but from ��.

To reduce notational clutter, we show just the variable
names in �� and omit the associated values.

Consider the augmented history � �
� � �� �� �� �� ��

above. As discussed, the history� �
� � �� �� �� �� �� with

�� � �� � �� � � �� 	 �
� results in a different value
of � in the final state, but the history� �

� � �� �� �� �
��
� ��

ends in final state �� for �� � ���. States �� and �� differ
in the value of �; this discrepancy is captured by ��, where

� is associated with the value �, which is the value �� read
for � in the original history� �

� .

In what follows, each transaction �� is assumed to have
an associated fix ��. For ordinary serializable execution his-
tories, each such fix �� � �, the empty fix. In the example
above, the two histories

��
� � �� �

�
� �� �

�
� ��

��
� � �� �

�
� �� �

���
� ��

are final state equivalent.

Definition 2 Given a history � � over � � �, ��
	 is a re-

paired history of � � if (1) ��
	 is over some subset of �,

and (2) There exists some history� �

 over��� such that

(a) ��
	 is a prefix of ��

 and (b) � �

 and �� are final state

equivalent.

Our notion of a repaired history is that only desirable
transactions remain (condition 1) and further that there is
some extension to the repair that captures exactly the same
transformation to the database state as the original history
(condition 2). Note that the reads-from transitive-closure
based approach satisfies the first part of the definition of a
repaired history where the subset of G is����.

Armed with a definition of repairs to histories, we are
now ready to consider algorithms to construct them.

4 Can-follow Rewriting

We denote the set of items read or written by a transac-
tion � as ��������
 or �����
���
, and the set of items read
or written by a sequence of transactions � � ��������� as
��������
 or �����
���
. Due to our assumption of no
blind writes, �����
���
 	 ��������
.

Definition 3 Transaction � can follow a sequence of trans-
actions � if �����
���

 ��������
 � �.

There are some properties of can follow: (1)If
������
���
 is not empty, then transaction �� can not follow
itself. (2)The fact that �� can follow transaction �� and ��
can follow transaction �� does not imply that �� can follow
��. (3) Read-only transactions can follow any transaction.
(4) Transaction � can follow a sequence of transactions �
iff � can follow every transaction in �.

The can follow relation captures the notion that a trans-
action � can be moved to the right past a sequence of trans-
actions � if no transaction in � reads from � .

The can follow relation can be used to rewrite a history
to move transactions in ���� to the beginning of the
history, namely, move transactions in� ��� backwards.

5

Algorithm 1 Can-Follow Rewriting
Input: the serial history �� to be rewritten and the set � of bad
transactions�� .
Output: a rewritten history with transactions in � � �� preceding
transactions in� ���.
Method: Scan forward from the first good transaction after �� until the
end of �� , for each transaction �

case � � � skip it;
case � � �

if each transaction between �� and � (including ��) can
follow � , then move � to the position immediately preceding �� .

Algorithm 1 does not describe how to compute the fix
with any transaction which has some transaction being
moved to the left of it. The reason is that repair can sim-
ply be accomplished by undo. However, if we want to save
some of the transactions in AG then we need to maintain the
fix information for these transactions. Fixes are computed
as follows:

Lemma 1 Suppose transaction � can follow sequence �
in history ��

� � �� �
�� �� � �� Then for fix �� � �� �

���������

 �����
���
� history ��
� � �� � �� �

�� ��
is final state equivalent to � �

� . The values associated with
each data item in the fixes are those originally read by � .

The correctness of Algorithm 1 is specified as follows.

Theorem 2 Given a history � �, Algorithm 1 produces a
history��

 with a prefix��
	 such that:

1. All and only transactions in���� appear in � �
	 .

2. ��

 and�� order transactions in���� identically.

And they order transactions in � ��� identically.

3. The fix associated with each transaction in � �
	 is

empty.

4. �� and ��

 are final state equivalent. And � �

	 is a
repaired history of� �.

In realistic applications, although Lemma 1 gives users
a sound approach to capture fixes in Algorithm 1, it is not
efficient in many cases since whenever a transaction � � is
moved to the left of another transaction �� , �� may need be
augmented. A better way to compute fixes is as follows:

Lemma 2 For any history � �, assume rewriting � � using
Algorithm 1 generates a history � �

 with a prefix ��
	 (��

typically looks like:
��������� �

���
�� �����

�� ����
���
�� �����

���
�� . The subhistory

before ����
�� is ��

), and assume all the fixes are computed
��In the rest of the paper, we use �� to denote the first bad transaction

in ��

according to lemma 1 during the rewriting, then the history
��

�, generated by replacing each non-empty fix � � in ��

with � �
� � ���������
 � ������
���
, is final state equiva-

lent to ��

 .

According to Lemma 2, there can be two methods to get
���������
�������
���
 for a transaction ��: one is to first
get the readset and writeset of �� after a history is generated
using the approaches proposed in Section 7, then compute
���������
 � ������
���
; the other is to let each transac-
tion �� write the set ���������
 � ������
���
 as a record
to the database when it is executed, then when we rewrite
�� all the fixes can be directly got from the database.

The major result of this section is an equivalence the-
orem between the effect of a reads-from transitive-closure
based algorithm and the history produced by Algorithm
1. The reads-from transitive-closure based algorithm re-
stores the values of all elements updated by transactions in
� � ��. In particular, the theorem shows that the opti-
mizations in the following section are strict improvements
over the reads-from transitive-closure based algorithm.

Theorem 3 Given ��, let ��
	 be the serial history pro-

duced by eliminating all transactions in � � �� as in the
dependency-graph based algorithm. Given � �, let ��

 be
the result of Algorithm 1. Then� �

	 is a prefix of��

 .

5 Saving Additional Desirable Transactions

In this section, we show how to integrate the notion of
commutativity with Algorithm 1 to save not only the trans-
actions in � � ��, but potentially transactions in AG as
well.

5.1 Motivating Example

Consider the following history:

�� � ������

��: if � � �� then � �� �� ���� � �� � � 	�
��: � �� �� 	�
��: � �� �� ��� � �� � � ��

The result of Algorithm 1 is the history � �

 � ���

�
�
� ��,

thus �� need to be undone. Note that �� commutes back-
ward through ��
�

� for any value of ���, and so a final
��We adapt the notation of commutativity from [LMWF94, Wei88].

Transaction �� commutes backward through transaction �� if for any
state � on which ���� is defined, ��������� � ���������; �� and ��
commute if each commutes backward through the other. Note that one-
sided commutativity (i.e., commutes backward through) is enough for our
purpose.

6

state equivalent history is �����
�
�
� . Compensation for

�
�
�
� can be applied directly to this history, but an undo ap-

proach requires more care. Suppose we decide to undo � �

by restoring the before values for � and � from the log en-
tries for �. After � is undone the value of � is unchanged
because only �� updates �. The value of � is unchanged
because only �� updates �. The effect of �� on � is wiped
out because both�� and� update �, and after � is undone
� no longer reflects the effects of��. However � can be re-
paired by re-executing the corresponding part of� �’s code,
that is, � � � � ��, and the cumulative effect is that of
history ����. We call this last step an undo-repair action.
Both the undo approach and the compensation approach to
repair are discussed in detail in section 6.

The presence of fixes for transactions limits the extent to
which commutativity can be applied. Consider the follow-
ing history:

�� � �� �� �� �� �� �� ��
��: if � � 	�� then � �� �� ��� else � �� � � 	
��: � �� � � ���
��: if � � 	�� then � �� �� �� else � �� ��	

�� can follow �� with fix �� � ��� for ��. Although
�� commutes backward through ��, �� does not commute
backward through � ��

� , because the value of � produced by
���
� depends on the value of y in the fix ��. For example,

if the initial value of � is 100 and fix value of � is 150, then
the final value of � in history ���

��
� �� is 190, but the final

value of � in history �����
��
� is 180.

The example shows that sometimes a fix can interfere
with the commutativity of transactions. This motivates our
definition of can precede:

Definition 4 A transaction �� can precede a transaction ��
for fix � if for any assignment of values to the variables in
� and for any state �� � � on which � �

� �� is defined,

1. ����
� is defined on ��, and

2. The same final state is produced by � �
� �� and ����

� .

Similar to commutativity [LMWF94, Wei88], can pre-
cede relation can be detected by analyzing the semantics
of transaction profiles (or codes). For example, in ��, ��

can precede ��
�
� because the operations of �� and ��

on data item �, respectively, commute no matter to which
value � is assigned. For canned systems which are widely
used in real applications such as banking systems and airline
ticket reservation systems, since transactions are of limited
number of types and the code of each transaction type is
available, so the can precede relation between two transac-
tions can be pre-detected by detecting the relation between

the corresponding two transaction types in advance. For
some non-canned systems where codes of transactions are
recorded when they are executed, the can-precede relation
can be detected at the time of repair. However, the cost of
detection can be untoleratable if there are so many transac-
tions in the history and few transactions are of the same type
because automatic approaches are usually limited in doing
this thus some amount of manual work is often required.
For some non-canned systems where codes of transactions
are not recorded, the can precede relation usually can not be
detected, thus only can follow rewriting can be enforced.

5.2 Can-Follow and Can-Precede Rewriting

We present a repair algorithm which integrates both can
follow and can precede. For brevity, only the modifications
to Algorithm 1 are specified.

Algorithm 2 Can-Follow and Can-Precede Rewriting
Method:

case � ��
if for each transaction �� between �� and � (including ��),

either � � can follow � or � can precede ��, then move � to the position
immediately preceding �� . As � is pushed through each such �� between
�� and � to the left of ��

if � � can follow � , then push � to the left of �� and
modulate the fix of � � correspondingly according to Lemma 1;

else push � to the left of �� .

In Algorithm 1, Lemma 2 provides an efficient way to
compute fixes. However, Lemma 2 may not hold for Algo-
rithm 2 if the system does not have the following property.

Property 1 Transaction �� can precede transaction �� for
a fix �� only if ����������
 � ������
���
 � ���

�� ����
���
 � � and ��� �������
 � �� ����
���
�

������
���
 � �.

It should be noticed that Property 1 is not strict since if
Property 1 does not hold, � ��

� �� and ���
��
� usually can not

result in the same final state.

Lemma 3 Lemma 2 holds for Algorithm 2 if the system
has Property 1.

Commutativity can be directly used to rewrite histo-
ries. The rewriting algorithm based on commutes back-
ward through can be adapted from Algorithm 1 by replac-
ing the word can-follow with the word commutes backward
through. We found that in most cases Algorithm 2 can save
more transactions than algorithms based on commutativity.

Theorem 4 Let FPR(��) and CBTR(��) represent the
sets of saved transactions after� � is rewritten by Algorithm
2 and the rewriting algorithm based on commutes backward
through, respectively. If the system has Property 1, then �
��, CBTR(��) 	 FPR(��).

7

The proof of Theorem 4 is in Appendix A.

6 Pruning Rewritten Histories

After a rewritten history � �

 , is generated from � �, we

need to prune � �

 such that the effect of � �

	 can be gener-
ated. If ��

 is produced by Algorithm 1, then the pruning
can be easily done by undoing each transaction in� �

��
�
	 .

However, if ��

 is produced by Algorithm 2, undo does not

give the pruning in most cases.

In this section, two pruning approaches are presented:
the compensation approach is more direct, but compensat-
ing transactions may not be specified in some systems. The
undo approach is a syntactic approach, but it imposes some
restrictions on transaction programs.

6.1 The Compensation Approach

We denote the compensating transaction of transaction
�� as �	�

� [GM83, GMS87, KLS90]. � 	�
� semantically

undoes the effect of ��. It is reasonable to assume that
�	�
� ����
���
 	 ������
���
, and for simplicity we fur-

ther assume that every transaction �� has a compensating
transaction. �	�

� is usually not enough to compensate � ��
�

where �� is not empty. Fixes must be taken into account for
the compensation to be correct.

Definition 5 The fixed compensating transaction of � ��
� ,

denoted � �	�����
� , is the regular compensating transaction

of �� (denoted �	�
�) associated with the same fix ��.

The effects of � ��
� can be removed by executing

�
�	�����
� , this is justified by the following lemma.

Lemma 4 Transaction � ��
� can be fix compensated, that

is, for every consistent state �� on which � ��
� is defined,

�
�	�����
� ����

� ����� � ��, if ��
 ������
���
 � �.

Lemma 4 shows that every � �

 produced by Algorithm

2 can be fix compensated because for each transaction
�� in ��

 which is associated with a non-empty fix ��,
��
 ������
���
 � � always holds. The pruning algo-
rithm by compensation therefore is straightforward: based
on the final state of � �, executing the fixed compensating
transaction for each transaction in � �

 � �
�
	 in the reverse

order as they are in � �.

6.2 The Undo Approach

Given a rewritten history � �

 , the undo approach first

undo all transactions in � �

 � �

�
	 , then execute the undo-

repair actions for the transactions in both�� and� �
	 in the

same order as they are in� �
	 .

Our algorithm described below is based on the following
assumptions about transactions:

� a transaction is composed of a sequence of statements,
each of which is either: (1) An operation, or (2) A con-
ditional statement of the form: if � then 		� else 			,
where 		� and 			 are sequences of statements, and
� is a predicate;

� each statement can update at most one data item;

� each data item is updated only once in a transaction;

Algorithm 3 Build Undo-repair Actions
Input: an affected transaction ��� .
Output: the undo-repair action ���� for ��� .
Method:
1. Copy the codes of ��� to ���� . Assign ���� with the same input
parameters and the same values associated with them as ��� .
2. Parse ���� . For each statement to be scanned

case it is a read statement, keep it;
case it is an update statement of the form: � ��

	��
 ��
 ��
 ������ where 	 specifies the function of the statement,
��
 ���
 �� are the data items used in the statement. Some input parame-
ters may also be used in the statement, but they are not explicitly stated
here.

if � has not been updated by any other transaction in����
Remove the statement from ����;

elseif � has not been updated by any transaction in����
which precedes ��� in ��

Replace the statement with: � �� ����
	�����
����,
that is, get the value of � from the after state of ��� in ��;

else for each �� (including �)
if �� has not been updated by any preceding statement

and has not been updated by any transaction in � ��� which precedes
��� in ��

Bind �� with ������	�����
����;
3. Reparse ���� . Remove every read statement which reads some item
never used in an update statement of ���� , or reads some item � used in
one or more update statements but � is bound with a value in these state-
ments.

The correctness of the undo approach is specified as fol-
lows.

Theorem 5 For any rewritten history � �

 generated by Al-

gorithm 2, after all transactions in � �

 � �

�
	 are undone,

executing the undo-repair actions which are generated by
Algorithm 3 for the affected transactions in� �

	 , in the same
order as their corresponding affected transactions are in� �

	 ,
produces the same effect of� �

	 .

7 Discussion and Conclusion

7.1 Discussion

One important question we need to answer is: ‘Is the
merging protocol always more efficient than the original

8

two-tier replication protocol? If not, in which situations will
the merging protocol win?’

We break down the costs of either the merging protocol
or the two-tier replication protocol into three parts: (1) the
communication costs between mobile nodes and the base
node, (2) the computing costs at the mobile codes, and (3)
the computing costs at the base node. It is clear that the
above question can be roughly answered by making a com-
parison between the total cost paid by the merging protocol
to save a set of tentative transactions (denoted ���), and
the total cost paid by the two-tier replication protocol to re-
process each transaction in ���.

Consider a scenario where there is only one mobile node
(similar analysis can be applied to scenarios with multiple
mobile nodes), in the two-tier replication protocol, we need
to transmit the code and input arguments of each transac-
tion in ��� to the base node for reprocessing��, and send
the execution result back. In contrast, in the merging pro-
tocol we need to first transmit the readset and writeset of
each transaction in the tentative history (denoted��), and
the precedence graph of �� (denoted �����) to the base
node for building the precedence graph����� ��� (�� de-
notes the base history), then send the set � back to the mo-
bile node, then transmit the updates of ��� to the base
node after the rewrite for merging. Therefore, we can see
that if transaction codes need be transmitted by the two-
tier replication protocol, then the communication costs of
these two protocols are comparable if many transactions are
saved, otherwise, the two-tier replication protocol usually
costs less.

At the base node, the costs of the two-tier replication pro-
tocol include: (1) the cost of transforming tentative transac-
tions to base transactions. (2) the cost of query processing.
Each transaction is usually composed of several queries.
The processing of each query includes parsing, query vali-
dation, view resolution, optimization, plan compilation and
execution. (3) the cost of concurrency control. Transac-
tions in ��� are usually reexecuted concurrently in or-
der to enhance the system throughput. (4) the cost of I/O.
The updates of each tentative transaction must be forced to
durable logs when it commits. In addition, query process-
ing can cause more I/O operations. In contrast, the costs of
the merging protocol include: (1) the cost of constructing
����� ���, which can be built by parsing the log for ��

and the log for�� only once if read operations (or read sets)
are recorded in the log. [AJL98] shows that for canned sys-
tems read-set information can be extracted from transaction
profiles by offline analysis, thus the performance penalty
of logging reads is avoided. (2) the cost of computing �.
[Dav84] shows that each of the proposed back-out strate-

��Note that in canned systems transaction type information can be sent
instead of codes.

gies can compute � in polynomial time. (3) the cost of
forwarding updates. Forwarding the updates of ��� can
be done within one transaction. So all the updates need be
forced to durable logs only once.

At the mobile node, in the two-tier replication protocol
we need to inform users the results of the reprocessed trans-
actions in ���. In contrast, the costs of the merging pro-
tocol include: (1) the cost of constructing �����. (2) the
cost of backing out �. The reads-from transitive-closure
can be extracted from the graph within �!� time where
! is the size of the closure. Given the can-follow and the
can-precede relation between transactions, both Algorithm
1 and Algorithm 2 can be done within ���� time where �
is the length of ��. The can-follow relation can be deter-
mined during the construction of �����. The detection of
can precede relation is mentioned in section 5. The reads-
from transitive-closure based approach may save more time,
however, it may back out much more transactions than the
rewriting approach in a system where many transactions
commute with each other. (3) the cost of pruning. If the
number of backed-out transactions is much smaller than �,
then the cost of compensation or the undo approach is rela-
tively very small.

In summary, the result of the comparison depends mainly
on (1) how many transactions can be saved (the size of
���), (2) the characteristics of transactions (i.e., size,
read-set, write-set, semantics), and the characteristics of the
system (i.e., canned or non-canned). We can see that when
the size of ��� is big enough the two-tier replication pro-
tocol can cause more I/O and CPU costs although it may
cause less communication costs, thus the merging protocol
can win. On the contrary, when the size of ��� is very
small the merging protocol will probably lose.

7.2 Conclusion

In this paper, we present the method of merging histories
instead of reprocessing to reduce the overhead of two-tier
replication, a replication protocol to reduce the problem that
update anywhere replication has unstable behavior as the
workload scales up. When a tentative history is merged into
the base history, a set of undesirable transactions (denoted
�) have to be backed out to resolve the conflicts between
the two histories. Desirable transactions that are affected,
directly or indirectly, by the transactions in � complicate
the process of backing out �. We present a family of novel
rewriting algorithms for the purpose of backing out �. By
incorporating transaction semantics, our rewriting methods
are strictly better at saving desirable tentative transactions
than the traditional reads-from transitive-closure based ap-
proach. And in most cases our rewriting methods are better
at saving desirable tentative transactions than an approach

9

which is based only on commutativity.

References

[AJL98] P. Ammann, S. Jajodia, and P. Liu. Re-
covery from malicious transactions. Techni-
cal report, George Mason University, 1998.
http://isse.gmu.edu/
pliu/papers/dynamic.ps.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Good-
man. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading,
MA, 1987.

[Dav84] S. B. Davidson. Optimism and consistency in
partitioned distributed database systems. ACM
Transactions on Database Systems, 9(3):456–
581, September 1984.

[GHOS96] J. Gray, P. Helland, P. O’Neil, and D. Shasha.
The dangers of replication and a solution. In
Proceedings of ACM-SIGMOD International
Conference on Management of Data, pages
173–182, Montreal, Canada, 1996.

[GM83] H. Garcia-Molina. Using semantic knowl-
edge for transaction processing in a distributed
database. ACM Transactions on Database Sys-
tems, 8(2):186–213, June 1983.

[GMS87] H. Garcia-Molina and K. Salem. Sagas. In
Proceedings of ACM-SIGMOD International
Conference on Management of Data, pages
249–259, San Francisco, CA, 1987.

[KLS90] H.F. Korth, E. Levy, and A. Silberschatz. A
formal approach to recovery by compensating
transactions. In Proceedings of the Interna-
tional Conference on Very Large Databases,
pages 95–106, Brisbane, Australia, 1990.

[LAJ99] P. Liu, P. Ammann, and S. Jajodia. Rewriting
histories: Recovering from malicious trans-
actions. Distributed and Parallel Databases,
1999. To appear.

[LMWF94] N. Lynch, M. Merritt, W. Weihl, and A. Fekete.
Atomic Transactions. Morgan Kaufmann,
1994.

[Wei88] W. E. Weihl. Commutativity-based concur-
rency control for abstract data types. IEEE
Transactions on Computers, 37(12):1488–
1505, December 1988.

A Proof Sketch of Theorem 4

Proof Sketch: Given a history � �, showing that �� �
FPR(��) holds for each transaction �� � CBTR(��) gives
the proof. We prove this by induction on " where �� is the
"st transaction moved into CBTR(� �).

Induction base: (" � �) We want to show that �� �
FPR(��). If there are no transactions between �� and ��
which are in FPR(��), then �� will be moved into FPR(� �)
according to Algorithm 2 because �� can precede every
transaction � �

� between �� and ��. Otherwise, there must
be some transaction �� with a non-empty fix �� staying be-
tween �� and �� (including ��) in the rewritten history
when �� is scanned in Algorithm 2. Here we assume that
�� is captured by Lemma 1. At this point, assume �� cannot

precede � ��
� , then ��
 ����������
 � ������
���
� �� �

because otherwise �� can precede � ��
� (The reason is: for

every state �� on which � ��
� �� is defined, replacing �� with

another state �� where the value of each item � in ��
 ��
is replaced with �’s value in �� , then � �

� �� is defined on

��. According to Property 1, since �� can precede � �
� , so

��� �������
 � �� ����
���
�
 ������
���
 � �. Since
�� 	 ��� �������
 � �� ����
���
� according to Lemma
1, so ��
 ������
���
 � �. So �� will not read or up-

date any item in �� . Therefore, � ��
� ������ � � �

� ������,

and ���
��
� ���� � ���

�
� ����. Since �� commutes back-

ward through �� , so � �
� ������ � ���

�
� ����. Therefore,

�
��
� ������ � ���

��
� ����, so �� can precede � ��

�). There-
fore, ��, such that, � � ��
 ����������
� ������
���
�.
Since � � �� , so according to Algorithm 2 there must
be a transaction ��, such that �� is now in FPR(��),
and � � ������
���
. Otherwise, � will not be put into
�� by Lemma 1. Hence ������
���

 ����������
 �
������
���
� �� �. This conflicts with Property 1 since ��
can precede � �

� . Therefore, �� can precede � ��
� . So �� can

precede every transaction between�� and ��, so �� will be
moved into FPR(� �).

Induction hypothesis: for each � � " � �, if �� �
CBTR(��), then �� � FPR(��).

Induction Step: Let " � ���, then when �� is scanned
in both algorithms, every transaction �� , which is between
�� and �� in the rewritten history generated by Algorithm
2, is between �� and �� in the rewritten history gener-
ated by the commutes-backward-through rewriting algo-
rithm. Therefore, �� commutes backward through every
such �� . For the same reason as in the induction base step,
we know that �� will be moved into FPR(� �).

This completes the proof.

10

