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Abstract

System protection mechanisms such as access controls can be fooled by au-
thorized but malicious users, masqueraders, and misfeasors. Intrusion detection
techniques are therefore used to supplement them. However, damage could have
occurred before an intrusion is detected. In many computing systems the re-
quirement for a high degree of soundness of intrusion reporting can yield poor
performance in detecting intrusions and cause long detection latency. As a result,
serious damage can be caused either because many intrusions are never detected
or the average detection latency is too long. The process of bounding the damage
caused by intrusions during intrusion detection is referred to as intrusion confine-
ment. We justify the necessity for intrusion confinement during detection by using
a probabilistic analysis model, and propose a general solution to achieve intrusion
confinement. The key idea of the solution is to isolate likely suspicious actions
before a definite determination of intrusion is reported. We also present two con-
crete isolation protocols in the database and file system contexts, respectively, to
evaluate the feasibility of the general solution, which can be applied to many types
of information systems.
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1 Introduction

Recently, increasing emphasis has been placed on supplementing protection of net-
works and information systems with intrusion detection [Lun93, MHL94, LM98], and
numerous intrusion detection products have emerged commercially. Recognizing that
access controls, filtering, and other protection mechanisms can be defeated or bypassed
by would-be attackers who take advantage of remaining vulnerabilities, intrusion de-
tection systems monitor system or network activity to discover attempts to disrupt
or gain illicit access to systems. Intrusion detection must be concerned both with at-
tempts by external penetrators to enter or interfere with the system and by authorized
users to exceed their legitimate access or abuse the system in some way. The latter
case also includes seemingly authorized users, such as masqueraders operating under
another user’s identification (id) and password, or outside attackers who successfully
gained system access but eluded detection of the method of entry. The methodology of
intrusion detection can be roughly classed as being either based on statistical profiles
or on known patterns of attacks, called signatures.

Statistical profile-based systems compare relevant data by statistical or other meth-
ods to representative profiles of normal, expected activity on the system or network.
Deviations indicate suspicious behavior. In these systems, stringent requirements ap-
ply not only to reporting an intrusion accurately (this is necessary because abnormal
behavior is not always an intrusion) but also to detecting as many intrusions as possi-
ble (usually, not all intrusions can be detected). However, these two requirements can
often result in conflicting design goals.

Based on the assumption that the more significant the deviation, the larger the
possibility that the behavior of a user is an intrusion, in order to ensure a high degree of
soundness of intrusion reporting, a significant anomaly is required to raise a warning.
However, this requirement usually decreases the number of intrusions that can be
detected because intrusions characterized by a gradual anomaly can be overlooked by
the detector (a formal analysis is presented in Section 2), in which case many intruders
may stay at large and cause substantial damage. Moreover, when the anomaly of an
intrusion is accumulated slowly, detecting it can still cause a long latency even if it is
characterized by a significant anomaly. As a result, substantial damage can be caused
by an intruder within the latency. Relaxing the significancy requirement on deviations
can mitigate these problems; however, the soundness of intrusion reporting can be
dramatically degraded. In other words, innocent users may be mistaken for malicious
ones and legal service requests may be denied in many situations. This situation occurs
because trustworthy users may gradually change their behavior in non-significant ways.

With the requirement of a given degree of soundness, the process of bounding the
damage caused by undetected intrusions and/or detected intrusions during their laten-
cies is referred to as intrusion confinement. Intrusion confinement also encompasses
corresponding strategies and mechanisms taken to enable the process.

Signature-based detection examines sniffer logs, audit data, or other data sources
for evidence of operations, sequences, or techniques known to be used in particular



types of attacks. Signature-based detection techniques cannot be used to detect new,
unanticipated patterns that could be detected by statistical profile-based detection
techniques. However, they are used to detect known attacks. Although a behavior
that partially matches a signature will not cause damage (see that the behavior is not
an intrusion because otherwise the signature can be shorter), serious damage may have
already been caused by the time a signature is matched. The process of bounding this
type of damage is also referred to as intrusion confinement.

This paper makes two contributions: (1) It gives a simple probabilistic model to
measure the effectiveness of an intrusion detection system and to justify the necessity of
intrusion confinement. Based on the degree of effectiveness, the system security officer
(SSO) can decide whether to enforce intrusion confinement and, if so, what mechanisms
and strategies to apply for intrusion confinement. (2) It gives a general solution of
intrusion confinement that is closely coupled with intrusion detection mechanisms and
can be applied to many types of information systems. The basic idea is to isolate
suspicious actions before an intrusion is reported. The solution is illustrated in the
contexts of a database system and a file system, respectively.

When a suspicious behavior is discovered, the intrusion detector or the SSO must
decide how to react and whether to allow continued access by the associated subject,
say B, such as a process, a user, or a host. The system can let B continue to access
the system just as systems do today, risking further damage, or take action to deny B
continued access to the system, which may also be undesirable, for a couple of reasons.
Further investigation may show that the suspicious behavior was actually unusual but
trustworthy activity. If this is the case, denying B access could result in unwarranted
denial of service. It is even possible that an attacker is intentionally spoofing B to
provoke a denial-of-service response against B. On the other hand, if B proves guilty,
immediately denying access to the system may mean losing the opportunity to gather
more information that would help identify the attacker and the objectives of the attack.
Experience with system and network penetrations has shown the usefulness of another
alternative of intrusion confinement: isolation.

Isolating B transparently into a separate environment that still appears to B to be
the actual system allows B’s activities to be kept under surveillance without risking
further harm to the system. An isolation strategy that has been used in such instances
is known as fishbowling. Fishbowling involves setting up a separate lookalike host or
file system and transparently redirecting the suspicious entity’s requests to it. This
approach allows the incident to be further studied to determine the real source, nature,
and goal of the activity, but it has some limitations, particularly when considered at
the application level. First, the substitute host or file system is essentially sacrificed
during the suspected attack to monitor B, consuming significant resources that may
be scarce. Second, since B is cut off from the real system, if B proves innocent, denial
of service could still be a problem. While some types of service B receives from the
substitute, fishbowl system may be adequate, in other cases the lack of interaction with
the real system’s resources may prevent B from continuing to produce valid results.
On the other hand, if the semantics of the application are such that B can continue
producing valid work, this work will be lost when the incident concludes even if B



is deemed innocent and reconnected to the real system. The fishbowling mechanism
makes no provision for re-merging updates from the substitute, fishbowl system back
into the real system.

Within the general solution, we offer an isolation strategy that, while in some
sense a counterpart to fishbowling, takes advantage of action semantics to avoid some
of these limitations. In this isolation approach, as in the case of fishbowling, when
B comes under suspicion, we let B continue working while we attempt to determine
whether there is anything to worry about. At the same time, we isolate the system
from any further damage B might have in mind. However, we provide this isolation
without consuming duplicate resources to construct an entirely separate environment,
we allow options for partial interaction across the boundary, and we provide algorithms
for smoothly merging B’s work back into the real system should B prove innocent.

This work has relevance to information warfare (IW) defense [AJMB97, GSM96,
MG96a, MG96b, PG99]. As pointed out by Ammann, et al. [AJMB97], IW defense
does everything possible to prevent attacks from succeeding, but it also recognizes that
attempting to prevent information attack is insufficient; attacks that are successful
to some degree must be recognized as unavoidable, and comprehensive support for
identifying and responding to attacks is required.

The rest of the paper is organized as follows. In Sections 2 and 3, we use a
probabilistic model to justify the necessity of intrusion confinement and to indicate
when intrusion confinement should be enforced. Section 4 presents a general solution
of intrusion confinement. In Section 5 and 6, we evaluate the feasibility of our solution
by presenting two concrete isolation protocols that can be applied to a database system
and a file system, respectively. Section 7 discusses related work. In Section 8, we
conclude the paper.

2  Why Is Intrusion Confinement Necessary?

Informally, suspicious behavior is the behavior that may have already caused some
damage, or may cause some damage later on, but was not reported as an intrusion
when it happened. In our model, suspicious behavior emerges in four situations:

1. In statistical profile-based detection, as discussed above, to achieve a high degree
of soundness of intrusion reporting, some intrusions characterized by gradual
deviations may stay undetected. The corresponding behaviors can be reported
as suspicious.

2. In statistical profile-based detection, for a detection with a long latency, the
corresponding behavior can be reported as suspicious in the middle of the latency.

3. In statistical profile-based detection, trustworthy behavior can be reported as
suspicious if it is sufficiently unlike the corresponding profile.



4. In signature-based detection, partial matching of a signature can trigger a report
of suspicious behavior.

In the remainder of this section, we present a probabilistic model for justifying the
necessity of intrusion confinement in a statistical profile-based detection system (see
Section 2.1) and a signature-based detection system (see Section 2.2), respectively.
Note that all of the statistics used in this section are computed based on the audit trail
and/or transaction log, where the entire intrusion history is assumed to be recorded.

2.1 Intrusion Confinement for Statistical Profile-Based Detection

Consider a statistical profile-based detection system where a user U; accesses the system
through sessions. A session of U; begins when U; logs in and ends when Uj; logs out. A
behavior of U; is a sequence of actions that can last across the boundaries of sessions.
An action is the basic unit of the audit trail (or the transaction log). A short-term
behavior of U; is a behavior that is composed of a sequence of U;’s most recent actions.
The length of the sequence, which is usually small, is determined by the SSO. In
contrast, a long-term behavior of U; is also a sequence of U;’s most recent actions but
it is usually much longer than a short-term behavior. We assume that the profile of U;
at time ¢ is determined by the long-term behavior of U; at time . We further assume
that the intrusion detector is triggered in every m actions (or m audit/log records),
that is, after m new actions are executed, both the current short-term behavior and
long-term behavior of U; will be upgraded and the deviation of the new short-term
behavior from the new long-term behavior, namely, the profile, will be computed to
see if the current behavior of U; is abnormal (or suspicious). When a short-term
behavior is upgraded, its oldest m actions will be discarded and the newest m actions
will be appended.

We assume that statistical methods, such as the method proposed in NIDES [JV94],
are used in the system. We assume that both the short-term and long-term behaviors
of U; at time t are described by a vector of n intrusion detection measures (or variables).
We denote them as vy = (vs1, ..., Vsp) and 07 = (vy1, ..., Uy, ), respectively. The deviation
of v; from 0} is specified by the distance, denoted d(v;, v7), from the point defined by
v to the point defined by o7 in the n-dimension space*. We further assume that the
longer the d(vs,0;), the bigger the probability that vy is an intrusion. In the system, a
warning is raised if d(vs, 0}) is sufficiently long. In particular, we assume the system will
report v as an intrusion if d(vg,v;) > D;, and the system will reject all the following
accesses of U; after this report. Here D; is a specific threshold determined by the SSO.
Interested readers can refer to [JV94] for such details as to which measures can be
used, how these measures can be quantified, and how d(v3, v;) can be computed.

Now we present a simple probabilistic model to evaluate the effectiveness of such a
statistical profile-based detection system at an arbitrary point of time ¢;. Although the
effectiveness of the detection system may vary from time to time depending on how the

“In addition to Euclidian distances, other types of distances can also be used here.



system has been accessed and attacked, the effectiveness of the detection system at ¢;
can represent the performance of the system over a period of time pretty well in many
cases, especially when the system is accessed and attacked in a consistent way. For
brevity, in the following presentation we use the term behavior to denote a short-term
behavior.

In the model, users access the system in a unit of /m actions, called a m-unit, and the
intrusion detector is thus triggered after a m-unit is executed. We assume the actions
of one user are independent of those of others. Therefore, concurrent m-units can be
equivalently viewed as being executed in a serial order. For simplicity, we assume the
system executes one m-unit at a time. We further assume there is a m-unit space that
consists of the set of all possible m-units of interest. Note that each m-unit in the
space belongs to a specific user. We assume that based on the state of the system at
time ¢; we exactly know whether the execution of a m-unit will generate an intrusion
or not; and we exactly know the value of d(v;,9;) of the behavior resulted from the
execution T. We finally assume that there is a specific probability for each m-unit in
the space to be chosen for execution.

We use the following two measures to do the evaluation:

e The rate of detection, denoted Ry, is the conditional probability that when the
execution of a m-unit generates an intrusion, the corresponding behavior is re-
ported as an intrusion. R, indicates the general ability of a detector in detecting
intrusions.

e The rate of errors, denoted R, is the conditional probability that a reported
intrusion is actually not an intrusion. R, indicates the soundness of a detector.
The smaller the R, the higher degree of soundness can be achieved.

R; and R, can be computed as follows based on the parameters listed in Table 1,
which can be easily computed based on the probability for each m-unit to be chosen
for execution. For example, P; equals the summary of the probabilities for one set of
m-units to be chosen for execution divided by the summary of the probabilities for
another set of m-units to be chosen for execution such that (1) the behavior resulted
from the execution of each m-unit in the first set is an intrusion; (2) the value of
d(vy, ;) of the behavior resulted from the execution of each m-unit in the first set is
greater than or equal to D;; and (3) the value of d(vs, v;) of the behavior resulted from
the execution of each m-unit in the second set is greater than or equal to D;. Here, we
assume the values of D; and D; are the same for every user. The model can be easily
extended to support different values of D; and Ds;. We introduce Dy, Ps, and A; to
model intrusion confinement. A formal definition of suspicious behaviors is given in
Definition 1. Based on these parameters, from the viewpoint of the intrusion detector
at time ¢;, user behaviors, according to their values of d(vs,v}), can be classified into
three categories which are shown in Figure 1, although as implied by P; and P, a

For simplicity, we assume the behavior resulted from the execution of a m-unit mu; is independent
of the behaviors resulted from the execution of the m-units preceding mu;.



trustworthy behavior can be mistakenly viewed by the intrusion detector as malicious
and a malicious behavior can be mistakenly viewed as trustworthy.

R, = AP
d = A P+AsPs+(1—A;—As)P,

R.=1-P;

Example 1 Assume the SSO decides that P; should be at least 0.90 to ensure a high
degree of soundness. As a result, the corresponding D; can be determined to ensure
such o P;. However, ensuring such a high P; does not mean we can also detect most
of the intrusions. If we consider the situation where A; = 0.03, A; = 0.20, P, = 0.50,
and Py = 0.01, then the rate of detection is Ry = 0.20, which is very low. On the other
hand, if we decrease the value of P; to detect more intrusions, for example, we set the
value of D; to that of D, then the rate of error is R, = 1 — P; = 0.50, which is too
high.

The above example shows that in many situations if we want to achieve a low
rate of errors, then we cannot achieve a high rate of detection. Therefore, the two
requirements can often result in conflicting design goals. Since the rate of errors cannot
be very high because otherwise substantial trustworthy service requests will be denied,
a high rate of detection cannot be achieved in many cases. Thus, many intrusions can
stay undetected (in Example 1, the undetected intrusion rate is 0.80), and the latency
of an intrusion can be very long. As a result, serious damage can be caused.

Intrusion confinement can bound this damage. Based on the parameters listed in
Table 1, the set of actions that should be isolated can be specified as follows. Note
that since Dy is determined by the SSO based on the value of P he or she prefers,
intrusion confinement systems can be flexibly configured.

Definition 1 A short-term behavior described by vy is suspicious if Dy < d(vs, ;) <
D;. Here, D, is determined by the value of Ps, which is chosen by the SSO.

By isolating suspicious behaviors, we can often protect the system from the damage
caused by most of the intrusions. The effectiveness of isolation can be roughly measured
by the rate of isolation, denoted R;, which is the probability that an intrusion is either
detected or isolated (note that an isolated intrusion could be detected later on). R;
can be formalized as follows. It is clear that R; is never less than R;. However, it
should be noticed that it is not guaranteed that an isolated intrusion will always be
detected later on.

v AP+ AsPs+(1-A;—As) Py

In Example 1, if we keep P; at 0.90, then R; is 0.94.



2.2 Intrusion Confinement for Signature-Based Detection

We define a signature as a sequence of events leading from an initial limited access state
to a final compromised state [PK92, I1g93, IKP95, SG91, SG97, LWJ98]. Each event
causes a transition from one state to another. We identify a signature with length n,
denoted Sig(n), as Sig(n) = soE181...E, sy, where F; is an event and s; is a state, and
FE; causes the state transition from s; 1 to s;. For simplicity, intra-event conditions
are not explicitly shown in Sig(n), although they are usually part of a signature.

A partial matching of a signature Sig(n) is a sequence of events that matches a
prefix of Sig(n). According to previous discussion, a partial matching is usually not
an intrusion. However, it can predict that an intrusion specified by Sig(n) may occur.
The accuracy of the prediction of a partial matching, denoted soF151...EmnSm, can be
measured by the following parameter:

P,,: the probability that the partial matching can lead to an intrusion later. Assume
the number of the behaviors that match the prefix is IV, and the number of the
intrusions that match the prefix is N;, then P, ~ N;/N,,.

Intrusion confinement in signature-based detection is necessary because by the
time an intrusion is reported, serious damage may have already been caused by the
intrusion. In signature-based detection, the set of actions that should be isolated
is defined as follows. Isolating suspicious behaviors can surely confine damage in
signature-based detection because the behavior that is actually an intrusion will, with
a high probability, be prevented from doing harm to the system.

Definition 2 In signature-based detection, a behavior is suspicious if it matches the
prefix of a signature but not the whole signature, and P,, of the prefix is greater than
or equal to a threshold that is determined by the SSO.

3 When Should Intrusion Confinement Be Enforced?

The decision of whether to enforce intrusion confinement depends on the amount of
damage that can be caused. The more serious the damage, the more efforts the SSO
would like to take. In signature-based detection, the decision of whether to enforce
intrusion confinement on a known attack that is specified by a signature is dependent
on the seriousness of the attack and the value of P, for each prefix of the signature.
For example, if the damage is strongly undesirable, and there exists a prefix whose
P, is sufficiently large, then intrusion confinement can be enforced by isolating the
behavior that matches the prefix.

In statistical profile-based detection, however, making this decision can be difficult.
As shown in Section 2, since degrading the requirement on R, (the rate of errors)
usually can improve R, (the rate of detection), the SSO may want to find a trade-
off between R, and Ry; thus, the cost of isolation would be avoided. However, a



satisfactory trade-off may not be achievable in some systems since the relationship
between these two effectiveness measures can dramatically differ from one system to
another.

Consider two systems with the same set of parameters and associated values as in
Example 1. When P; is degraded from 0.90 to 0.85 in both of the systems (so the value
of D; must be decreased), the other parameters may take the values listed in Table 2.
Here we assume the value of D; is unchanged. It is easy to get the following result:
In system 1, Rg = 0.315 and R, = 0.15; In system 2, Ry = 0.63 and R, = 0.15. It is
clear that when P; is degraded to 0.85, system 2 performs much better than system 1.
At a result, the SSO may need only to enforce intrusion confinement in system 1.

It should be noted that the relationship between R, and R4 can be influenced by
many factors, such as the distribution of the number of intrusions on the distance
d(vs,v;) and the distribution of the number of behaviors on d(vs,0;). Three typical
types of relationships between R, and R, are specified as follows (here, a and b are
real numbers):

o R, =1—ael®=Fd) Intrusion confinement is very necessary since a small improve-
ment in Ry can cause a significant degradation of R..

e R.=1—(a—bRy). If b is large, then intrusion confinement is necessary; if b is
small, then a satisfactory trade-off between R, and Ry can be achieved.

e R.=1—alog(b— Ry). A satisfactory trade-off is usually achievable since a small
degradation of R, can cause a significant improvement of Ry.

Of course, there are many systems in which the relationship between R, and Ry is
none of these. However, the SSO can make a sound decision by a similar analysis.

4 How Can Intrusion Confinement Be Enforced?

In this section, we present a general solution for enforcing intrusion confinement in
information systems. In particular, an intrusion confinement system architecture is
proposed and its characteristics are investigated. It should be noticed that the archi-
tecture is not restricted to any specific type of information system.

4.1 Architecture Support

The architecture of an intrusion confinement system from the perspective of informa-
tion warfare [AJMB97] is shown in Figure 2.

The Policy Enforcement Manager enforces the access controls in accordance with
the system security policy on every access request. We assume no data access can by-
pass these access controls. We further assume that users’ accesses (including updates)
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will be audited in the audit trail. For database systems and transactional file systems,
users’ accesses on data objects such as tables and files are usually recorded in specific
transaction logs maintained for recovery purposes, in addition to the audit trail. For
simplicity, these logs are not explicitly shown in Figure 2. We assume that they are
associated with each trustworthy or suspicious data version store.

The Intrusion Detection and Confinement Manager applies either statistical profile-
based or signature-based detection techniques, or both to identify suspicious behavior
as well as intrusions. The detection is typically processed based on the information
provided by the audit trail and the logs.

Initially, when there are no suspicious or malicious transactions identified, each
data object has only one data version (version for short), called the main data version;
and all user accesses are processed on the Main Data Version Store where the main
versions of all data objects are stored. The main version of each object is believed to
be undamaged.

When a suspicious behavior is identified, the corresponding user is marked sus-
picious. At this point, first we need to deal with the effects that the behavior has
already made on the Main Data Version Store because these effects may have already
caused some damage. In signature-based detection systems, we can accept these effects
because a partial matching is not an intrusion. In statistical profile-based detection
systems, if the SSO does not think the effects can cause any serious damage, we can
accept these effects. If the SSO thinks these effects can cause intolerable damage, we
can isolate and move these effects from the Main Data Version Store to a separate
Suspicious Data Version Storet, which is created to isolate the user. The process of
isolation may need to roll back some trustworthy actions that are dependent on the
actions contained in the behavior. At this point, we can apply another strategy that
moves the effects of the behavior as well as the affected trustworthy actions to the
Suspicious Data Version Store.

Second, the Intrusion Detection and Confinement Manager notifies the Policy En-
forcement Manager to direct the subsequent suspicious actions of the user to the sep-
arate Suspicious Data Version Store. Since we focus on the isolation itself, we can
simply assume that when a suspicious behavior starts to be isolated, no damage has
been caused by the behavior. Since there can be several different suspicious users, e.g.,
S1, ..., Sn, being isolated at the same time, multiple Suspicious Data Version Stores
can exist at the same time. However, since Suspicious Data Version Stores contain
only versions of the objects that are suspected to be damaged, they are usually much
smaller than the Main Data Version Store.

When a suspicious user turns out to be malicious, that is, his/her behavior has
led to an intrusion reporting, the corresponding Suspicious Data Version Store can be
discarded to protect the Main Data Version Store from harm. On the other hand, when
the user turns out to be innocent, the corresponding Suspicious Data Version Store
is merged into the Main Data Version Store. A suspicious behavior can be malicious

A Suspicious Data Version Store is a collection of data versions which are believed to be suspicious.



11

in several ways: (1) In signature-based detection, a complete matching can change a
behavior from suspicious to malicious; (2) Some statistics of gradual anomaly, such as
frequency and total number, can make the SSO believe that a suspicious behavior is
malicious; (3) The SSO can find that a suspicious behavior is malicious based on some
non-technical evidence.

A suspicious behavior can be innocent in several ways: (1) In signature-based
detection, when no signatures can be matched, the behavior proves innocent; (2) The
SSO can prove the behavior to be innocent by some non-technical evidence. For
example, the SSO can investigate the user directly; (3) Some statistics of gradual
anomaly can also make the SSO believe that a behavior is innocent.

Since intrusion confinement cannot isolate every intrusion in most cases (see that
the rate of isolation, R;, is usually less than 1.0), intrusions do happen on the Main
Data Version Store. When such an intrusion is detected (this type of intrusion is
usually detected by some other approaches beyond the standard mechanisms), the
corresponding user is marked as malicious. The Intrusion Detection and Confinement
Manager then notifies the Damage Confinement and Assessment Manager to confine
and assess the damage caused by the intrusion. The confinement can be done by
notifying the Policy Enforcement Manager to reject the subsequent access of the user
and to restrict the access of other users to the damaged data. For example, damaged
data may be forbidden to be read for a specific period of time. However, concrete
damage confinement mechanisms are beyond the scope of the paper.

After the damage is assessed, the Reconfiguration Manager reconfigures the system
to allow access to continue in a degraded mode while repair is being done by the
Damage Recovery Manager. In many situations damage assessment and recovery are
coupled with each other closely. For example, recovery from damage can occur during
the process of identifying and assessing damage. Also, the system can be continuously
reconfigured to reject accesses to newly identified, damaged data objects and to allow
access to newly recovered data objects. Interested readers can refer to [AJL, LAJOO]
for more details on damage confinement, damage assessment, system reconfiguration,
and damage recovery mechanisms in the database context.

Intrusion confinement can significantly mitigate the overhead of damage confine-
ment, damage assessment, system reconfiguration, and damage recovery, because sub-
stantial intrusions can be isolated before they happen; thus, they will not cause damage
to the Main Data Version Store. However, we need to pay the extra cost of enforcing
intrusion confinement.

Damage recovery may influence the process of intrusion confinement. For example,
when a set of actions is found to be malicious and requires system recovery, some actions
affected by these malicious actions may have already been marked as suspicious and
isolated. At this point, removing the effects of these malicious actions from the Main
Data Version Store can lead to removing the effects of these affected actions from the
corresponding Suspicious Data Version Store. For simplicity and to focus on isolation
itself, in the rest of the paper we assume that when a suspicious behavior is isolated,
there is no damage caused in the Main Data Version Store.
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4.2 Types of Isolation and Mergers

In the normal course of events when all users are believed to be trustworthy, each data
object has only one version, namely, the main data version; any updates by a user
are seen by all other users of the system and vice versa. When a suspicious user S; is
detected, the following types of data flow can occur between the trustworthy actions
working on the Main Data Version Store and the suspicious actions of S;:

Complete Isolation: Updates by S;’s actions are not disclosed to any trustworthy
action, and any updates by a trustworthy action are not disclosed to S;.

One-way Isolation: Updates by S;’s actions are not disclosed to any trustworthy
action, but all updates by a trustworthy action, if needed, can be disclosed to
Si;. When an update is disclosed to an action, the action can read the updated
value. By one-way isolation, S; can read the latest value of the data versions
kept in the Main Data Version Store.

Partial Isolation: Some updates by S;’s actions are disclosed to trustworthy actions
and vice versa. This situation can happen when S;’s updates on some data
objects are not considered risky, while anything else S; attempts to update is
confined to the Suspicious Data Version Store. By partial isolation, if some of the
updates by trustworthy users are considered sensitive, they could be selectively
withheld from being propagated to the Suspicious Data Version Store where they
would be divulged to the suspicious user. One drawback of disclosing S;’s updates
to trustworthy users is that after .S; is revealed as malicious, some trustworthy
actions affected by S;’s updates may need to be backed out.

Data flows among suspicious users can also be grouped into the above three types.
However, we have not found many situations where it is useful to disclose updates
among Suspicious Data Version Stores, except when the SSO finds that several suspi-
cious users cooperate with each other to do something. At this point, it is helpful that
these suspicious users are isolated within one Suspicious Data Version Store because if
they are malicious users who collude to do intrusions and to protect themselves from
being detected, then isolating each user within a separate Suspicious Data Version
Store can alert them to the fact that something is wrong. If they are innocent users,
then isolating each user in a separate Suspicious Data Version Store can prevent them
from communicating. However, since collusions are usually difficult to detect, and it
is usually a complicated and computing intensive process to ensure the correctness of
such data flows, we will not address the problem in this paper and we would like to
address it in our future research.

When a user is discovered to be malicious or innocent, a decision must be made
on how to accept and merge his or her updates into the Main Data Version Store. At
this point, two types of mergers are possible:

Complete Merger: When a user is discovered to be malicious, all of his/her updates
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are discarded. When a user is discovered to be innocent, all of his/her updates
are considered for merging.

Partial Merger: Remerging of the data version stores could be partial. Even if a user
were found to be a malefactor, it might be desirable to accept certain of his/her
updates into the Main Data Version Store (for example, after being examined,
or those on particular data items) rather than discarding all of them.

4.3 Identification and Resolution of Conflicts

In isolation, unless all other trustworthy or suspicious users are forbidden to update
a data object that has already been updated by a suspicious user §;, it is possible to
have two independent updates to a data object z. Since we consider the restriction
is unreasonable, we will take the approach that updates can be made independently
by S; and other users. As a result, there can be four states associated with each data
object x (Let S denote the set of suspicious users; G denote the set of trustworthy
users): (1) z has not been updated by either S or G; (2) = has been updated by S,
but not by G; (3) = has been updated by G, but not by S; (4) z has been updated by
both S and G.

Since updates can be made independently by trustworthy and suspicious users,
conflicts may arise between trustworthy and suspicious actions. As a result, the Main
Data Version Store and these Suspicious Data Version Stores may become inconsistent.
For example, a trustworthy action and a suspicious action may update the same data
object z; thus, neither the main version of x nor the suspicious version of z is correct
when we decide to merge the corresponding Suspicious Data Version Store into the
Main Data Version Store.

The techniques to identify and resolve these conflicts usually vary from system to
system. For example, the techniques we will propose for database systems in Section
5 are quite different from the techniques we will propose for file systems in Section 6.
However, we can generally classify these techniques into two categories:

Static Resolution allows both the main action history, i.e., the sequence of actions
performed on the Main Data Version Store, and the suspicious action histories,
i.e., the sequences of actions performed on the Suspicious Data Version Stores,
to grow without any restrictions. Identification and resolution of conflicts are
delayed until some suspicious history is designated to be merged into the main
history.

Dynamic Resolution does not allow either the main history or the suspicious his-
tories to grow unless the mutual consistency is guaranteed.
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4.4 Requirements for an Isolation System

An isolation system should satisfy the following general requirements to ensure the
security and correctness of intrusion confinement.

Disclosure Property: The isolation strategy should never cause risky data flows
from Suspicious Data Version Stores to the Main Data Version Store.

Consistency Property: Before and after each merger, the Main Data Version Store
and the Suspicious Data Version Stores should be kept consistent. The con-
sistency of the Main Data Version Store can be relaxed when some suspicious
updates are disclosed to it. The consistency of a Suspicious Data Version Store
can be relaxed when some trustworthy updates are disclosed to it.

Synchronization Property: Suspicious histories should be isolated in a way such
that the merging of one history into the main history will not make some conflicts
between the merged main history and some other suspicious history unidentifiable
or unresolvable.

5 Intrusion Confinement in Database Systems

In this section, we will present a concrete isolation protocol in the database system
context to evaluate the feasibility of our general intrusion confinement solution.

5.1 Overview

In the protocol, a data item x has only one trustworthy version and may have multiple
suspicious versions. We use some specific version numbers to distinguish one version
from another. One and only one suspicious version of z is produced for each suspicious
user that has updated z. If z has never been updated by a suspicious user, it has
no suspicious versions. However, all these versions are stored in the same physical
database for efficiency. We conceptually break down the database into several version
stores. The Main Version Store is composed of the trustworthy version of each data
item in the database. We maintain a different Suspicious Version Store for every
suspicious user under isolation. The Suspicious Version Store for user .S; is composed
of all and only the suspicious versions produced for S;. A suspicious version of a data
item z is produced for S; when §; first updates z.

Users access the database through transactions. Isolation is achieved by control-
ling the access of transactions to versions. For example, under one-way isolation,
trustworthy transactions can only read and update trustworthy versions; suspicious
transactions can read but not update trustworthy versions. In particular, transactions
of a suspicious user S; can only update the suspicious versions produced for S;. When
a transaction of S; wants to read a data item z, if a suspicious version of z has not been



15

produced for S;, then the trustworthy version of z is read. Otherwise, the suspicious
version is read.

When a suspicious user S; is proved malicious, the Suspicious Version Store main-
tained for S; will be deleted. However, if S; is proved innocent, then the updates of S;’s
transactions should be merged back into the Main Version Store. Since independent
updates could be performed by both S; and a trustworthy user on the same data item
(but different versions) after S; was isolated, the Suspicious Version Store for S; and
the Main Version Store may be inconsistent. Hence we cannot correctly merge these
two version stores by simply forwarding the updates of one version store to the other.
In order to achieve a consistent merging, we use a specific graph (called a precedence
graph), which is built from the transactions that commit within these two version stores
after S; was isolated, to figure out how to back out some specific transactions from the
Main Version Store or the Suspicious Version Store so that the two resulted version
stores can be consistent, and update-forwarding can be used to correctly merge them.

The protocol also supports dynamic resolution. For this purpose, we need to main-
tain the precedence graph on-the-fly, and use the graph to dynamically maintain the
consistency between these two version stores. As a result, when a merging needs to be
done, the two involved version stores may have already been consistent.

5.2 Isolation Model

In the model, a database is specified as a collection of data items (objects). The
database state is determined by the values of these data items. Data items are operated
by transactions. A transaction is a partial order of read and write operations that either
commits or aborts. Two operations conflict if one is write.

The execution of a set of transactions is modeled by a history, which is a partial
order (), <p), where Y is the set of all operations executed by these transactions,
and <y indicates the execution order of those operations. Two histories are equivalent
if (1) they are defined over the same set of transactions and have the same operations,
and (2) they order conflicting operations of nonaborted transactions in the same way.
A history H is serial if, for any two transactions T; and T} that appear in H, either all
operations of T; appear before those of T} or vice versa. A history H is serializable if
its committed projection is equivalent to a serial history. We assume that the DBMSs
employ a concurrency control protocol that produces serializable histories [BHG87].
For simplicity, we assume also that the read set of a transaction always contains its
write set.

We specialize the solution proposed in Section 4 as follows: (1) We assume that
there are no data flows among Suspicious Data Version Stores. (2) We assume that
one-way isolation is the isolating strategy chosen by the SSO. (3) We assume that
complete merger is the merging strategy chosen by the SSO. Note that the isolation
protocol presented next can be easily extended to incorporate other kinds of isolating
and merging strategies.
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In the model, a behavior of a user is a sequence of transactions submitted by the
user. Containing such actions as read, write, commit and abort, each transaction
causes a transition from one database state to another. When a suspicious behavior
is detected, the corresponding user is marked suspicious, and the Intrusion Detec-
tion and Confinement Manager notifies the Policy Enforcement Manager to direct the
subsequent transactions submitted by the user to a separate Suspicious Data Version
Store, namely, a separate database. The transactions executed on this store generate
a suspicious history. In contrast, the transactions executed on the Main Data Version
Store, namely, the main database, generate a trustworthy history. At one point of time,
there can be multiple suspicious histories but only one trustworthy history, called the
main history. When a suspicious user turns out to be malicious, the corresponding
suspicious history is discarded to protect the Main Data Version Store from harm. On
the other hand, when the user turns out to be innocent, the history is merged into the
main history.

For clarity, we present our isolation solution in the database context by two steps.
Step 1, which is described in Section 5.3, deals only with the situations when there is
only one suspicious user identified. Step 2, which is described in Section 5.4, extends
Step 1 to isolate multiple suspicious users at the same time.

5.3 Isolating a Single Suspicious User
5.3.1 Isolation Protocol

When there is only one suspicious user identified, the one-way isolation strategy can be
achieved by the following protocol where each data item may have one or two versions
and each version is identified by a specific version number. Note that: 1) Each data
item has a MAIN version; all these MAIN versions compose the Main Data Version Store.
2) Every item that has been updated by a suspicious user S; has a t; version; all
these t; versions compose the Suspicious Data Version Store for S;. 3) Trustworthy
transactions will never read a version associated with a time stamp version number,
however, a suspicious transaction can read MAIN versions.

Protocol 1 Isolating a Single Suspicious User

e Before a database system starts to run transactions, each data item x has only
one version which is associated with the same version number MAIN, denoted
Z[MAIN].

e When a trustworthy transaction 7" wants to read or update z, 2[MAIN] is given
to T.

e When a transaction submitted by a suspicious user S; wants to update z,

— If  has only the MAIN version, then first an additional version of x, which
is associated with a unique version number, e.g., the time stamp (denoted
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t;) generated when S; was found suspicious, is created by copying the value
of z[MAIN]. The ¢; version is then given to S; to do updates.

— Otherwise, the t; version must exist, and it is given.

e When a transaction submitted by a suspicious user S; wants to read x, if there
is a t; version of z, then the ¢; version is given. Otherwise, the MAIN version is
given.

5.3.2 Static Identification and Resolution of Conflicts

Since a data item can be updated by both trustworthy and suspicious users, trust-
worthy transactions and suspicious transactions can conflict with each other during
isolation. In this section, we propose a method to identify and resolve the possible
conflicts between the main history and the history on a Suspicious Data Version Store.
The method is adapted from Davidson’s protocol [Dav84], which is used in partitioned
distributed database systems.

In distributed database systems, groups of sites can be partitioned by communica-
tion failures. Davidson’s optimistic protocol [Dav84] allows transactions to be executed
within each partitioned group independently. As a result, a serializable history is gen-
erated within each partition. We denote the equivalent serial history of the history
generated within partition P; as H;. When two partitions P; and P, are reconnected,
Davidson’s protocol builds a precedence graph using Hy and Hs, denoted G(Hy, Hs),
to identify and resolve the conflicts between these two partitioned histories. Davidson
proved that if there is no cycle in G(Hy, Hs), then Hy and Hs can be merged without
conflicts. The merging is done by forwarding the updates of H; to P or by forwarding
the updates of Hy to P;.

Viewing the suspicious history and the suffix of the main history which starts when
the Suspicious Data Version Store becomes non-empty as two partitioned histories,
Davidson’s protocol can be directly used in complete isolation because partitions are
totally isolated. However, since our protocol is a one-way isolation protocol, we need
to deal with the data flows from the Main Data Version Store to the Suspicious Data
Version Store, which are not addressed in [Dav84]. It should be noticed that here a
specific suffix of the main history instead of the whole main history is viewed as a
partitioned history. The reason is that the corresponding prefix of the main history
will never conflict with the suspicious history. For brevity, we call the specific suffix
the main history in the following presentation.

In our approach, we build a similar precedence graph, which has one more type of
edge than that in [Dav84] based on the main history and the suspicious history when
the suspicious history turns out to be innocent as follows:

e Let T; and T} be two suspicious transactions or two trustworthy transactions that
perform conflicting operations on a data item. There is a directed edge T; — T}
if T; precedes Tj.
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e If an update of a trustworthy transaction T, was disclosed to a suspicious trans-
action T during the isolation, then there is a directed edge T, — T,. This type
of edge is called a read edge. We add read edges to the traditional precedence
graph to support one-way isolation.

e Let Tj be a trustworthy transaction that reads a data item that has been updated
by a suspicious transaction T§, and there is no path from T} to T, then there is
a directed edge T;, — T5.

e Let T be a suspicious transaction that reads a data item that has been updated
by a trustworthy transaction T, and there is no path from T}, and 7%, then there
is a directed edge Ty — Tj,.

Example 2 Consider the five transactions given below:

READSET (Ty1) = WRITESET (T1) = {d1,d3}

READSET (Tyy) = WRITESET (Tj2) = {d1,da}
READSET (Ty3) = {dy,dy,ds}, WRITESET (Ty3) = {ds}
READSET (T,;) = WRITESET (Ty1) = {d7}

READSET (Tyy) = {dy,dy,ds,d;}, WRITESET (Tyy) = {dy,ds}
READSET (Ty3) = {d3,ds}, WRITESET (Ty3) = {dg}

Assume that the trustworthy history is Hy = T,1 Tys Ty3 and the suspicious history
is Hy = Ty T2 Ts3. The precedence graph G(H,, Hy) is shown in Figure 3. Since the
graph has a cycle, conflicts exist among the transactions. For example, since Tso reads
item dy, which is updated by T2, T2 should precede T9; since Ty should precede T3,
T should precede Ty3; however, since Ty3 reads item d», which is updated by Tio, T3
should precede Tyo, yielding a contradiction.

This example also shows that incorporating read edges can decrease the number of
cycles in the precedence graph in many situations. Thus, it can mitigate the inconsis-
tency between the Main Data Version Store and the Suspicious Data Version Store in
these situations. In the example, if no read edges are allowed and we take a complete
isolation strategy, then there will be four more cycles in the graph: the first includes
Ty1 and To; the second includes Ty, Ts2, and Ty3; the third includes Ty, Tyo, Ty3,
and Tso; the fourth includes all of the five transactions.

Example 3 Suppose we change the read set of Ty3 to {ds,ds}. Suppose further that
the database executes the transactions in the following order: Ts1 Ty Ty2Ts2Ts3Ty3.

The resulting conflict graph, shown in Figure 4, is acyclic, denoting that there are
no conflicts among these transactions. In fact, the history H = Ts; Ty1 T Tyo T3 Ty3
is an equivalent merged history that can generate the same database state as the state
generated by merging H; into Hy, i.e., forwarding the updates of H, to the Main Data
Version Store. However, it should be noticed that the initial executing order of these
transactions does not construct a correct merged history.
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The correctness of the approach is shown in the following theorem. Since the proof
is similar to that of Theorem 2.2.2 in [Dav84], it is omitted.

Theorem 1 Given H, and Hj, the precedence graph G(Hy, Hy) is acyclic if and only
if there is an equivalent merged history H that can generate the same database state
as generated by merging H into Hy, i.e., forwarding the updates of H, to the Main
Data Version Store.

In order to build the precedence graph, we need to keep track of read and write
sets of each transaction T in H, or H,. We can get the write set of T" from the logs
associated with the Main Data Version Store or the Suspicious Data Version Store,
where every write operation of 7' is recorded; we can get the read set of T" by several
ways, such as augmenting the write log with read information (read records); extracting
read sets from the profiles of transactions; extracting read information from physical
or logical logs, etc. The discussion on these approaches is out of the scope of the paper.

Moreover, we need to keep track of every read edge. This can be done as follows:
When a suspicious transaction reads an item z from the Main Data Version Store, we
search the log associated with the Main Data Version Store to get the latest record
where z was updated. The identifier of the trustworthy transaction that did the update
is maintained in the record. If the trustworthy transaction is in the main history, then
a read edge from the trustworthy transaction to the suspicious transaction is captured.

After some conflicts are identified, we usually need to back out a number of com-
mitted suspicious or trustworthy transactions so that the conflicts could be resolved.
For example, the conflict shown in Figure 3 can be resolved by backing out T3. After
Ty3 is backed out, a correct merged history can be H = Ty Ty T Tyo Ty3. The
merger can then simply be done by forwarding the updates of Ty, Tso, and T3 to the
Main Data Version Store.

Unfortunately, it is shown in [Dav84] that just minimizing the number of trans-
actions backed out is NP-complete, let alone minimizing the total back-out cost, i.e.,
assigning each transaction a weight or back-out cost and then minimizing the total
back-out cost. Although this result discourages attempts to minimize the total back-
out cost, the simulation results of [Dav84] show that in many situations where the
size of transactions is small and there is a relatively small number of transactions, a
relatively large number of data-items in the database and large percentage of read-only
transactions, several back out strategies, in particular breaking two-cycles optimally,
can achieve good performance. Interested readers can refer to [Dav84] for more details
on these back out strategies.

5.3.3 Dynamic Identification and Resolution of Conflicts

The static resolution approach has several drawbacks: (1) The performance of normal
transaction processing can be seriously degraded during the merger since the identi-
fication and resolution can spend a substantial amount of system resources, although
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after the identification, transactions accessing other data items may safely execute. (2)
Minimizing the number of transactions backed out is NP-complete and thus is compu-
tation intensive. (3) In many cases, when a transaction T is backed out to break a cycle
in the precedence graph all the transactions that are affected, directly or indirectly by
T, have to be backed out at the same time. For example, in Example 2 if T is chosen
to be backed out, then T3 needs to be backed out since it reads the item dy after it is
updated by T)po.

In this section, we adopt a dynamic approach to identify and resolve conflicts. The
dynamic approach works as follows. The basic idea is that neither a trustworthy nor a
suspicious transaction is allowed to commit unless we can ensure that the transaction
will not introduce a cycle in the precedence graph; thus, conflicts are resolved as they
arise. Note that dynamic resolution cannot be enforced in [Dav84].

1. We build an online precedence graph G(Hy, Hy) based on the growing H, and
H; in the same way as the static approach.

2. When a suspicious transaction 7T is going to commit, we first check if T will
introduce a cycle to the precedence graph. If so, then T is rolled back; if not,
then T is committed and added to H,.

3. When a trustworthy transaction Ty is going to commit, we first check if Tj
will introduce a cycle to the precedence graph. If not, then 7}, is committed and
appended to Hg; if so, then either T;; needs to be backed out or a set of suspicious
transactions need to be backed out. The SSO can make the choice based on the
costs of these two strategies. For example,

e Assume the set of suspicious transactions with the minimum total weights
that can be backed out to remove all the new cycles caused by T} is TS;

e Assume the suspicion factor of Hg, a real number between 0 and 1 which
measures the extent of the suspicion that the system has on Hy, is «;

o Let Weight(T,) denote the weight of T, then if Weight(Ty) > (1—a)Weight(TS),
that is, the cost of rollbacking T}, is greater than or equal to the cost of back-
ing out 7'S, then T'S is backed out; otherwise, T} is rolled back.

To illustrate, assume that in Example 2 the system executes transactions in the
following order: T1T41Ts2Ty2Ts3Ty3, when Ty3 is going to commit, we will find that
Tys will bring a cycle to the precedence graph (shown in Figure 3). At this point,
we can either roll back T3 or back out Tyo and T3 to remove the cycle. Assume the
weight for each transaction is 1; if the suspicion factor of H, is less than 0.5, then T3
will be rolled back; otherwise, Ty and Ts3 will be backed out.

Compared with static resolution, dynamic resolution can support flexible strate-
gies in resolving conflicts and can give users more availability and less service delay.
Although dynamic resolution may introduce extra costs when H; turns out to be ma-
licious, for example, the cost of maintaining the precedence graph for Hg, the merging
of H into H,; can be done with almost no delay, and transactions can be processed
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with almost no wait when H turns out to be innocent. In addition, the complexity of
the static approach can be dramatically decreased, since in dynamic resolution when a
potential cycle is detected it can be removed in a very simple way, for example, backing
out the transaction that causes the cycle.

For H, and Hj, the costs of back-out, i.e., the total number of transactions that
need to be backed out to merge these two histories, in either static resolution or dy-
namic resolution, depend on the access characteristics of the transactions in H, and H
and the interleaving of the trustworthy transactions in H, and the suspicious transac-
tions in H,. For example, if the transactions that may cause cycles are executed earlier
in each history, then dynamic resolution may back out fewer transactions; however,
if there are many situations where several transactions are responsible for one cycle,
then the static approach may achieve better results.

5.4 Isolating Multiple Suspicious Users

The complexity of isolating multiple suspicious users lies in two facts: (1) Different
suspicious users are usually identified and isolated at different points of time. (2) As
clarified in Section 5.4.1, the merging of one suspicious history into the main history,
in either static or dynamic resolution, can make some other active suspicious histories
invalid, if these histories are not properly tailored or synchronized. In this section, we
investigate the negative impact that merging of one history may have on other suspi-
cious histories. Corresponding algorithms to remove this impact are also presented.

5.4.1 Impact of Merging on Active Suspicious Histories

The negative impact of the merging of one history on other suspicious histories is
twofold: First, after the merging, the main history usually contains more transactions.
As a result, more conflicts can exist among the main history and the other suspicious
histories after the merging. In static resolution, these conflicts can be identified and
resolved in the same way as described in Section 5.3.2 when any of these suspicious his-
tories is going to be merged. Strategies to handle these conflicts in dynamic resolution
will be addressed in Section 5.4.3.

Second, the merging of one history can make some other suspicious histories invalid
in two possible situations: One is that during a merging the back-out of a trustworthy
transaction T}, can make invalid all of the other suspicious histories that have one or
more read edges from T,. The reasons are that after T} is backed out, its updates will
become invalid, and the suspicious transactions pointed to by these read edges can also
become invalid because they have read the results of some of these invalid updates.
For similar reasons, all the other suspicious transactions that have read, directly or
indirectly, from these suspicious transactions can also become invalid.

Under this situation, we can tailor each invalid history as follows to make it valid
again. Since backing out a trustworthy transaction during a merging can cause extra
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back-outs in other suspicious histories, we must make sure that these extra costs are
taken into account when we plan to back out a trustworthy transaction.

e When T}, is backed out, for each active suspicious history H which has a read
edge from T, and for each such read edge, denoted T, — T

— Back out T5.

— Back out each suspicious transaction in Hg which is dependent on T, i.e.,
in T,’s reads-from closure’.

— In dynamic resolution, T§’s reads-from closure can be obtained directly from
the precedence graph maintained on-the-fly for Hs. In static resolution, a
dependence graph of Hg, which contains all and only the reads-from edges
among transactions in Hg, can be instead maintained on-the-fly to enable
quick identification of the closure. Although this may cause extra costs when
a suspicious history turns out to be malicious, the costs are usually much
less than those caused in dynamic resolution because dependence graphs
are usually much simpler to maintain than precedence graphs. Moreover,
dependence graphs can be used directly later to build precedence graphs
when mergings are needed.

The other situation is shown in Figure 5. Assume that the main history H, began
at time tp, suspicious history Hg; began and ended at times ¢; and t3 respectively,
suspicious history Hgs began and ended at times ¢5 and 4 respectively, and both Hg
and Hgo were active during the period of time from ¢5 to t3. Assume that transaction
Ty in Hyy was executed before Ty in Hy, and T, was executed before T3 in Hyo. Assume
the read and write sets of T, To, and T3 are as follows.

READSET(Ty) = {dy,dy}, WRITESET(Ts) = {dy}
READSET(T;) = {d,}, WRITESET(Ty) = {d;}
READSET(Ts) = {dy,dy,ds}, WRITESET(Ts) = {ds}

We further assume that from ¢y to t3, ds had only been updated by T3, and d; had only
been updated by T5. Then after H,; was merged into H, at time 3, 71 will be merged
into Hy in a position preceding T because T} read x before 2 was updated by T, (here
we assume neither 77 nor T will be backed out). At this point, H, 4 between 1 and ?
is changed. And from the viewpoint of the new Hy, T3 should have read dy from T}
according to one-way isolation because T35 had read d; from Ty and T was serialized
before T>. However, T3 had not read dy from T; because T was not in H, when T3
read ds. This makes T3 invalid in terms of one-way isolation. This situation is also
denoted as the phantom problem. See that after H; is merged, from the viewpoint of
the system (the main history), 73 is a phantom that should have not been executed.

$Within a single history, a transaction T; reads z from Tj if Tj reads « after T; has updated = and
there are no transactions that update x between the time T; updates « and Tj reads x. T; reads from
T; if T; reads an item from Tj;.



23

The characteristics of phantoms (also denoted phantom transactions) are specified by
the following definition.

Definition 3 A transaction T in a suspicious history H; is a phantom with respect
to the main history H, if and only if there is a transaction T, in H, such that

1. T is dependent on a transaction T in Hy to which an update of T, was disclosed;
or T itself is Tyy.

2. Ts had read an item x that had been updated by another transaction Ty in Hg,
which is serialized before T}, but the update of T;;, on z was not disclosed to T%.

Fortunately, we found that the phantom problem can be tackled in both static and
dynamic resolution, as illustrated in Sections 5.4.2 and 5.4.3, respectively.

5.4.2 Extension for Static Resolution

We found that phantom transactions can be detected and removed using the precedence
graph. For the example shown in Figure 5, after Hy; is merged into H,, the part of the
precedence graph G(H,, Hy2) that contains 77, Tb, and T3 can be as shown in Figure
6. We build the precedence graph in the same way as specified in Section 5.3.2. Note
that there is no read edge from T} to T3 because T3 had not read ds from Ti. It is
easy to observe that the precedence graph has a cycle involving a read edge. This is
special because when isolating a single suspicious user no precedence graph will have
such cycles. This also raises the question of whether every phantom transaction is
included in a cycle containing read edges, which is answered by the following theorem.

Theorem 2 When a suspicious history H, is merged into the main history Hy, a
transaction T in Hg is a phantom transaction if and only if in the precedence graph
G(Hga HS)

e T is included in a cycle containing a single read edge (Assume T}; is the source
transaction of the read edge), and

e Within the cycle, there is an edge from T to a transaction in H,, and there is a
path from the transaction to Ty; which includes only transactions in H,.

Proof: Only If: According to Definition 3 and the way we build the precedence
graph, since there must be a trustworthy transaction T, such that an update of T} is
disclosed to T or a transaction on which T is dependent, there must be a path from T},
to Ts in G(Hgy, Hy). It is clear that the path can contain only one read edge, denoted
(Ty4i,Ts;), and no cycles. Note that Ty; can be Ty or a transaction in H, serialized
after T,; T; can be T or a transaction in H; serialized before T. Since Ty must have
read an item x which had been updated by a transaction T, in H, which is serialized
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before Ty, but the update of Ty, on x was not disclosed to T, there must be an edge
from T to Ty, and a path from Ty, to T,, which contains only transactions in H,.
These three paths compose the cycle where T is included.

If:  We denote the read edge contained in the cycle where T is included as
(Tys, Tsj). We denote the specific edge from T, to Hy as (Ts,Ty). According to
Definition 3, we need to find three specific transactions T, T, and T,. Here we
show that Ty;, Ts;, and Ty can just be the three transactions, respectively. Since there
is an edge from T to Ty, T had read an item which had been updated by T, and T
did not read the item from T;. Since there is a path from Ty to Tjy; which includes
only transactions in Hy, Ty, is serialized before T;;. Therefore, condition 2 of Definition
3 holds. In order to show that condition 1 of Definition 3 holds, we need to show that
Ts is dependent on Ty; or Ty itself is Ty; (See that since there is a read edge from
Tyi to Tsj, an update of T; is disclosed to Tyj;). If T is T, then the proof is done.
Otherwise, showing that T is serialized after T§; can also complete the proof. Since
T, and T; are in the cycle, a serial order must exist between them. Suppose Ty is
serialized before T§;, then in the cycle T has two paths to Ts;: one is through Tj; and
Ty;, and the other is through some transactions in Hy. This contradicts the definition
of cycles. O

Theorem 2 justifies our observation and provides a way to detect phantom transac-
tions. The following theorem goes further, showing us during a merging how to remove
the detected phantom transactions and resolve the conflicts between the main history
and histories containing phantom transactions. Since the proof is similar to that of
Theorem 2.2.2 in [Dav84], it is omitted.

Theorem 3 When a suspicious history Hj is merged into the main history Hg,

e The precedence graph G(H,, Hy) is acyclic only if Hy does not contain any phan-
tom transactions.

e G(Hgy, H,) is acyclic if and only if there is an equivalent merged history H which
can generate the same database state as generated by merging H; into Hy, i.e.,
forwarding the updates of H; to the Main Data Version Store.

5.4.3 Extension for Dynamic Resolution

In dynamic resolution, the merging of one suspicious history Hg; can cause some
transactions in another suspicious history Hg to become phantoms. In the example
shown in Figure 5, before Hy; is merged at time t3, T3 is not a phantom. However, after
Hg; is merged, T3 becomes a phantom. As shown in Theorem 2, these phantoms will
introduce cycles to G(Hy, Hy2), which is maintained on-the-fly. However, more new
cycles can be introduced to G(Hg, Hyz) by the normal conflicts (between H, and H,»)
introduced by the merging. To deal with the two types of cycles, several strategies can
be taken after Hg; is merged:
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1. Break all the cycles introduced to G(H,, Hs2) before any new transaction is
processed. It should be noticed that cycles usually cannot be broken concurrently
for multiple precedence graphs, since different sets of transactions in H, can be
backed out in breaking the cycles of different precedences graphs. However, in
order to enable concurrent and quick cycle breaking, we can allow no trustworthy
transactions in H, to be backed out during cycle breaking, although this may
cause more back-out costs.

2. When some cycles are introduced to G(Hg, Hy2), leave them alone until the time
when Hgs must be merged or discarded.

3. When some cycles are introduced to G(Hy, Hy2), remove only part of the cycles.

Strategy 1 may suspend normal transaction processing when a merging is done;
however, it can ensure that every merging can be done with almost no delay. Strategy
2 may allow transactions to be executed continuously after a merging is done; however,
at the time when a suspicious history is merged into the main history, there can be
cycles in the precedence graph, and breaking these cycles may cause significant service
delay. Strategy 3 is a trade-off between strategies 1 and 2.

Compared with static resolution, in dynamic resolution a merging seems to have
more serious impact on other suspicious histories. However, dynamic methods may still
be able to enhance the performance of static methods to some extent, since usually
most of the cycles in a precedence graph will be removed during normal processing of
transactions.

5.5 Implementation Issues

The isolation protocol we have presented above can be easily implemented by adapt-
ing a multi-version DBMS. We assume the multi-version DBMS has a classic three
module structure [BHG87] where (1) a Transaction Manager performs any required
preprocessing of database and transaction operations it receives from transactions; (2)
a Scheduler controls the relative order in which database and transaction operations
are executed; (3) a Data Manager (DM) manages the cache and uses a transaction log
to ensure atomicity and durability.

The multi-version DBMS can be adapted as follows to support intrusion confine-
ment:

e The Scheduler is informed by the Policy Enforcement Manager a list of current
suspicious users, including the times when these users were isolated (the list
is refreshed whenever a user is identified suspicious and whenever a suspicious
user is proved malicious or innocent). The Scheduler also maintains for each
Suspicious Version Store a list of the data items that have a version in the store.

e Instead of producing a new wversion of a data item z for each Write on z, the DM
produces a new version of a data item x only for the first Write of a suspicious



26

user on z. For each Write on x, the Scheduler not only decides when to send the
Write to the DM, but it also tells the DM whether to produce a new version or
not. If the answer is YES, the Scheduler tells the DM the corresponding version
number. If the answer is NO, the Scheduler tells the DM which one of the versions
of x to write. Similarly, for each Read on x, the Scheduler decides both when to
send the Read to the DM and which one of the versions of  the DM should read.
It should be easy to see that the Scheduler can correctly make these decisions
based on the concurrency control algorithm and the lists it maintains.

e The Scheduler needs not to achieve one-copy serializability because (1) each data
item z has only one trustworthy version; and (2) each suspicious user has a sep-
arate history. Instead, the Scheduler needs only a concurrency control algorithm
to achieve serializability for the main history and each suspicious history.

e An Isolation Manager (IM) is added for two purposes: (1) When a suspicious
user S; is proved malicious, the IM constructs a specific transaction and submits
it to the DBMS to delete all the suspicious versions produced for S;; (2) When a
suspicious user S; is proved innocent, the IM merges the updates of S; back into
the Main Version Store after it identifies and resolves all the conflicts between
S;i’s transactions and the main history based on a specific precedence graph. In
static resolution, the graph is built by the IM based on (1) the transaction log
where both the main history and each suspicious history are recorded; and (2)
the read edges maintained by the Scheduler. While in dynamic resolution the
Scheduler is responsible for maintaining the online precedence graph. When a
set of transactions is determined to be backed out to resolve these conflicts, the
IM constructs a set of specific transactions and submits them to the DBMS to se-
mantically remove the effects of these transactions (Note that these transactions
cannot be directly rolled back because they are already committed). Finally, in
order to merge the two resulted consistent version stores, the IM constructs a set
of specific transactions and submits them to the DBMS to forward updates. Note
that these transactions are executed by the DBMS just as normal trustworthy
transactions.

When multiple suspicious users are isolated at the same time, the IM is also
responsible for (1) identifying and removing phantom transactions; and (2) re-
moving all the other negative impact that the merging of S;’s history may have
on other active suspicious histories.

6 Intrusion Confinement in File Systems

In this section, we will present a concrete isolation protocol in the file system context
to evaluate the feasibility of our general intrusion confinement solution.
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6.1 Isolation Protocol

Consider a file system with a set of files, denoted f1, fo, ..., fn, that is accessed by
users. These files can be of many types, such as normal files, directories, and devices.
A user can access a file in various ways, such as reading, writing, modifying, renaming,
deleting, copying, and moving. Each file access is modeled as an action.

In this section, we choose one-way isolation as the isolation strategy and complete
merger as the merging strategy, and we forbid data flows among Suspicious Data
Version Stores.

The isolation protocol specified below is adapted from [PPR*83], in which a proto-
col is proposed to detect and resolve mutual inconsistencies in distributed file systems.
In this protocol, the isolation is processed in terms of each file. A file f; always has a
main version (unless it is deleted) that is believed to be undamaged, and it may have
several isolated versions depending on how many suspicious users have updated the
file. When f; is modified by a suspicious user S;, the modification and the possible
following modifications of S; on f; will be isolated until S; proves to be malicious or
innocent. To identify the conflicts between the modifications of S; on f; and the mod-
ifications of trustworthy users on f;, we associate a specific version vector with the
main version of f; and every isolated version of f;. For two versions of a file f;, if their
version vectors are compatible, then they do not conflict. Otherwise, they conflict with
each other, and either manual or automatic resolution is needed. Note that if a file has
never been modified by a suspicious user, then it has no associated version vectors.

Protocol 2 Isolation Protocol for a File System

e Each file f; is associated with a system-wide, unique identifier, called the origin
point (denoted OP(f;)), which is generated when f; is created. It is an immutable
attribute of f;, although f;’s name is not immutable (indeed, f; may have different
names in different versions). Thus, no number of modifications or renamings of

fi will change OP(f;).

e At the very beginning when there are no suspicious users, the version vector of
the main version of a file f; can be viewed as < G : 0 >, although such a vector
does not exist until f; is updated by a suspicious user. Here, G denotes the main
version.

e When a file f; is first modified by a suspicious user (denoted S;), an isolated
version of f; (with the same OP(f;)), called the Si-version of f;, is created for S;
to perform the modification. As a result, two different versions of f; exist after
the modification: one is the main version, with no effects of the modification
on it; the other is the Sj-version on which the modification is performed. We
generate the corresponding version vectors as follows: (1) For the main version,
< G :0,5 :0 > is created as the version vector. S; : 0 signifies that the
version has not been modified by S;. G : 0 signifies that the version has not
been modified by trustworthy users since f; is first modified by a suspicious user
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(here the user is S1). (2) For the S;-version, < G : 0,51 : ‘m/ > is created as the
version vector. The G dimension (G : 0) is copied from the main version vector.
Sy : ‘m/ signifies that f; has been modified by S;. Note that ‘m’ is not a number.
The S; dimension remains to be ‘m’ no matter how many times the S;-version
is modified.

e When a trustworthy user asks to delete a file f;, if the main version has already
been deleted, i.e., the main version does not exist, then the user will be informed
that f; does not exist. Otherwise,

— If the main version vector does not exist, then the main version is directly
deleted.

— If the main version vector exists, then its G dimension is changed to G : ‘d’,
which indicates that the main version is deleted, and the main version will
then be removed. However, the origin point OP(f;) associated with the
main version vector will remain. We will keep the vector because at this
time some suspicious versions of f; could still exist.

e When a trustworthy user asks to modify a file f;, if the main version of f; is
deleted, then the user will be informed that f; does not exist. Otherwise, the
modification will be performed on the main version, and if the main version
vector exists, it will be changed as follows: (1) after each such modification, its
value in the G dimension will be increased by 1, i.e., from G : n to G : n+1; and
(2) the value in any other dimension will be unchanged.

e When a suspicious user S; asks to delete a file f;,

— If there was an S;-version of f; but it has been deleted, i.e., the value of the
S;-version vector in the S; dimension is ‘d’, then the user will be informed
that f; does not exist.

— If there exists an S;-version, then the S; dimension of the S;-version vector
will be changed to S; : ‘d’, and the S;-version will then be removed. However,
the origin point OP(f;) associated with the S;-version vector of f; will
remain.

— Otherwise, the S; dimension with the value S; : 0 will be inserted into the
main version vector of f;, and the S;-version vector of f;, which will remain,
will be created by first copying the main version vector and then changing
its S; dimension to S; : ‘d’. Note that here no S;-versions need be deleted
since they do not exist.

e When a suspicious user S; asks to modify a file f; (we assume f; has already
been modified by some suspicious users),
— If an S;-version of f; exists, then the version will be given.

— If there was an S;-version of f; but it has been deleted, then the user will
be informed that f; does not exist.
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— Otherwise, we will first insert into the main version vector of f; the S;
dimension with the value S; : 0, and then create the S;-version of f; on
which the modification will be performed. The S;-version vector will be
created by first copying the main version vector and then changing its S;
dimension to S; : ‘m’. As before, additional modifications of S; on f; will
not change the S;-version vector.

e When a suspicious S; asks to read a file f;, if there is an S;-version of f;, then
the version will be given. If the main version of f; exists, then the main version
is given; otherwise, the user will be informed that f; does not exist.

e When a suspicious version is merged with the main version, the main version
vector of f; can have more dimensions than the suspicious version vector. To
identify and resolve the conflicts between these two versions, we need to pad
the suspicious version vector such that the two vectors have the same set of
dimensions. The padding can be done by inserting each missed dimension with
the value 0 into the suspicious version vector. The techniques used to identify
and resolve the conflicts are presented in the next section.

6.2 Identification and Resolution of Conflicts

We wish to consider two types of conflicts: name conflicts and version conflicts. A
name conflict occurs when two files with different origin points have the same name. In
contrast, a version conflict occurs when two versions of the same file (the same origin
point) have been incompatibly modified. For example, two versions of a file generated
by independent modifications of an older version of the file can introduce a version
conflict. Two versions of a file are compatible iff there is no version conflict between
them.

When a suspicious version is merged into the main data version, we identify the
version conflicts on a file f; as follows:

e If both the suspicious version of f; and the main version of f; are deleted, or at
least one of them is deleted, then they are compatible.

e If none of them are deleted, then the two versions are compatible if their corre-
sponding version vectors are compatible. Two version vectors are compatible if
one vector v; dominates the other vector v in the value of every dimension. If
so, we say v; dominates vj. In our model, value domination is defined as follows:
(1) A value dominates itself. (2) A number n; dominates another number ny if
ny is larger than no. (3) The value ‘m’ dominates the value 0. (4) The value ‘d’
is dominated by any other values.

Name conflicts can be easily resolved by renaming files after all of the version
conflicts have been resolved. Resolution of version conflicts should be accompanied by
resolution of version vector conflicts because we cannot merge two versions without
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merging their version vectors. When the conflicts between a suspicious S;-version
(with version vector v;) and a main data version (with version vector vy) of a file f;
are identified, we resolve the conflicts and merge the two versions as follows. The
protocol can ensure that in the merged vector: (1) G : ‘d’ indicates the merged version
is removed; otherwise, it exists. (2) S; : 0 indicates there is (or was) a suspicious
S;-version. The version may still be active or may have already been discarded. (3)
S; : ‘d’ indicates there was a suspicious S;-version that has been deleted by S;, who
is innocent. (4) S; : ‘m’ indicates there was a suspicious S;j-version. The version is
modified by S; (who is innocent) and is merged into the main version.

Protocol 3 Merging Protocol for a File System

e If both of the two versions are deleted, then they need not be merged; however,
their version vectors need to be merged. The merging is done by taking vy with
its value in the S; dimension changed to S; : ‘d" as the merged vector.

e Suppose that the main version is deleted, but the S;-version is not deleted. If the
value of v in the S; dimension is ‘m’, then the S; version is the merged version,
and the merged vector is v, with its value in the G dimension changed to that
of vy and its value in the S; dimension changed to ‘m’. Otherwise, the deleted
main version is the merged version, and the merged vector is v_ﬂ.

e Suppose that the S;-version is deleted, but the main version is not deleted. If
either of the following two conditions holds, then the main version is the merged
version, and vy with its value in the S; dimension changed to S; : ‘d’ is the merged
vector.

1. The value of vy in the G dimension is larger than that of vg, that is, f; has
been modified by some trustworthy users after f; was isolated for S;.

2. There is a dimension such that the value of v in the dimension is ‘m’ but
the value of v, in the dimension is 0 or v; does not include the dimension
at all (Here we assume padding is not used), that is, some modification was
performed on f; by some suspicious user (who was isolated earlier than S;)
after f; was isolated for S; and the modification has been merged into the
main version, or some modification was performed on f; by some suspicious
user (who was isolated later than S;) and has been merged into the main
version.

Otherwise, the deleted S; version is the merged version, and v, with its value in
the G dimension changed to ‘d’ and its value in the S; dimension changed to ‘d’
is the merged vector.

e If none of the two versions are deleted:

T The decision is made because at this point S; has done nothing to the file while some trustworthy
user has deleted the file, so the deletion should be valid.
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— If vy dominates v;, then the main version is the resolved version. vy is the
merged vector.

— If v; dominates vy, then the suspicious version is the resolved version. vy is
the merged vector.

— If v and v; are incompatible, then the resolution can be done either manu-
ally or automatically, based on the semantics of the modifications that have
been applied on these versions. After the resolution, vy with its value in the
S; dimension changed to ‘m’ is the merged vector. Note that here a version
conflict can happen only if the value of v; in the S; dimension is ‘m/.

Example 4 Assume that when the Ss-version is merged into the main version, the
main version vector of a file f; is vg(fi) =< G : 0,51 : 0,82 : 0 >. At this point, if the
Sa-version vector of f; is v5(f;) =< G : 0,81 : 0,89 : m >, then since vs(f;) dominates
vg(fi), there are no conflicts, the So-version is the merged version, and vy(f;) is the
merged vector. If vs(f;) =< G : 0,51 : 0,89 : d >, then the two versions are still
compatible. The deleted Sy-version is the merged version, and < G : d, Sy : 0,52 : d >
s the merged vector.

Consider another scenario where vg(f;) =< G : 2,51 : 0,82 : 0 > and vy(f;) =< G :
0,51 : 0,82 : m >. vg(fi) and v3(f;) conflict. Note that the version of f; with the vector
<G:0,51:0,5 : 0 > has been independently modified by So and some trustworthy
actions. At this point, manual or automatic approaches need to be applied to resolve
the conflicts. The version vector of the resolved version is < G : 2,51 : 0,5y : m >.

To reduce the overhead of maintaining version vectors, we need to reset main
version vectors. The reset for the main version vector of f; can be processed when
there are no active accesses to f; and when f; has not been modified or deleted in any
active suspicious versions that have not been merged or discarded. The reset can be
easily done by removing the main version vector.

Although there is no general way to resolve conflicts automatically, conflict resolu-
tion can be automated in many file systems by exploiting the operational semantics.
For example, reconciliation for two important types of files in LOCUS [PPR*83], di-
rectories and user mailboxes, is handled automatically. Interested readers can refer to
[PPR*83] for more details on this topic.

6.3 Dealing with Multiple Suspicious Users

Synchronizing multiple suspicious file access histories in the file system context is much
simpler than synchronizing multiple suspicious transaction histories in the database
system context, since in the file system context,

e Conflicting updates are identified and resolved in terms of each data object (file)
instead of each transaction or history.
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e Conflict resolution of one data object (file) will not affect the values of other
objects (files).

e The resolution of the conflicts on each data object (file) that has been updated
independently by two histories implies the resolution of the conflicts between
these two histories.

Therefore, in the file system context suspicious access actions need not be synchronized.

7 Related Work

A substantial body of work has been done on intrusion detection [Lun93, MHL94,
LM98], based on either detecting deviations from expected statistical profiles [JV94]
or pattern-matching against known methods of attack [I1g93, GL91, PK92, IKP95,
SGI1, SG97, LWJ98]. In [JV94], the idea of setting multiple alert levels is proposed,
where each alert level corresponds to a specific degree of anomaly and different actions
are taken at each alert level. However, the issues of what actions should be taken at
each level and how to enforce these actions are not addressed in [JV94]. Our isolation
scheme can be viewed as a realization of the idea in which two alert levels are set. At
the first alert level, we isolate users’ accesses when a suspicious behavior is discovered.
At the second level, we reject users’ accesses when an intrusion is reported. Multi-level
isolation schemes are certainly possible.

In [HL93] and [HLR92], a probabilistic model of intrusion detection is proposed in
which (1) computer use is modeled as a mixture of two specific stochastic processes
that generate, respectively, normal actions and misuse actions/l; and (2) the objective
of intrusion detection is to identify the actions that are most likely to be generated by
the stochastic process that generates misuse actions. Our probabilistic model can be
viewed as a simplified version of the model proposed in [HL93] and [HLR92]. We focus
on the performance of a detection system at a single point of time. However, our main
purpose is to help the SSO to justify the necessity of intrusion confinement when he
or she wants to enforce intrusion confinement in an information system, as opposed to
accurately modelling an intrusion detector and measuring its effectiveness. Moreover,
our model is based on behaviors which are a sequence of actions, whereas the model
presented in [HL93] and [HLR92] is based on single actions.

In [JLMO98], an application-level isolation protocol is proposed to cope with mali-
cious database users. In this paper, we extend the work of [JLM98] in several aspects:
(1) [JLM98] does not answer clearly such questions as “Why are there suspicious
actions?”, “How can these suspicious actions be detected?”, “Why is isolation neces-
sary?”, and “When should isolation be enforced?”. In this paper, we give clear answers
to these questions by proposing, modeling, and analyzing intrusion confinement based
on a probabilistic model presented to evaluate the effectiveness of current intrusion
detection systems. (2) [JLM98] is limited to the database context. In this paper, we

In [HL93] and [HLR92], actions are called transactions.
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extend the isolation mechanisms proposed in [JLM98] to a general solution that can be
applied to many types of information systems, such as file systems and object systems.
(3) In the database system context, [JLM98| achieves complete isolation; our solution
achieves one-way isolation. (4) We present a novel isolation protocol for file systems
that is not addressed by [JLM98].

Although the area of IW defense is new, some relevant work exists. Graubart
et al. [GSM96] identify a number of aspects of the management of a DBMS that
affect vulnerability with respect to IW. McDermott and Goldschlag [MG96a, MG96b)]
identify some techniques for defending against data jamming that, while primarily
intended for detection, could also help deceive the attacker and confuse the issue of
which data values are critical.

Finally, Ammann et al. [AJMB97] take a detailed look at the problem of surviving
IW attacks on databases. They identify a number of phases of the IW process and
describe activities that occur in each of them. To maintain precise information about
the attack, they propose to mark data to reflect the severity of detected damage as
well as the degree to which the damaged data has been repaired. They define an access
protocol for normal transactions and show that transactions following the protocol will
maintain database consistency even if part of the database is damaged.

8 Conclusion

In this paper, we proposed, modeled, and analyzed the problem of intrusion confine-
ment. It is shown that intrusion confinement can effectively resolve the conflicting
design goals of an intrusion detection system by achieving both a high rate of detec-
tion and a low rate of errors. It is also shown that as a second level of protection in
addition to access control intrusion confinement can dramatically enhance the security
(especially integrity and availability) of a system in many situations.

We proposed a general solution that is based on a specific isolation mechanism to
achieve intrusion confinement. We evaluated the feasibility of the solution by present-
ing two concrete isolation schemes that can be enforced in the database and file system
contexts, respectively. It is shown that these protocols are more flexible, economical,
and efficient than fishbowling, and they can be applied to every database or file sys-
tem. Finally, we should mention that the general intrusion confinement solution can
be applied to many other types of information systems in addition to databases and file
systems, such as object-oriented systems, distributed information systems, and work-
flow management systems. Developing concrete isolation protocols for these systems
is a topic of our future research.
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Parameter Meaning

D; the value of a distance such that if d(v;,v;) > D;, then v; is reported as an intrusion.

P the conditional probability that when a behavior is reported as an intrusion,
that is, d(vg,v;) > D, it is really an intrusion.

D, the value of a distance such that if Dy < d(vs, ;) < D;, then v; is reported
as suspicious.

P the conditional probability that when a behavior is reported as suspicious, that is,
D, < d(vs,07) < Dj, it is an intrusion.

A; the probability that a behavior deviates from the corresponding long-term behavior
with d(vs, v7) > D;.

A the probability that a behavior deviates from the corresponding long-term behavior
with Dy < d(vs,0;) < D;.

P, the conditional probability that a behavior with d(v;,0;) < D is an intrusion.

Table 1: Evaluation Parameters for a Statistical Profile-Based Detection System

System No. | P; P A; A; | Pg
1 0.85 | 0.47 | 0.05 | 0.18 | 0.01
2 0.85 | 0.32 | 0.10 | 0.13 | 0.01

Table 2: Values of the Other Parameters

Set of trustworthy behaviors

-

Set of suspicious behaviors Set of malicious behaviors

Figure 1: Classification of User Behaviors
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Figure 2: Architecture of the Intrusion Confinement System

Figure 3: Precedence Graph for the History in Example 2

Figure 4: Precedence Graph for the History in Example 3
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Figure 5: The Phantom Problem
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