
1

KTR: an Efficient Key Management Scheme
for Secure Data Access Control
in Wireless Broadcast Services

Qijun Gu, Peng Liu, Wang-Chien Lee, and Chao-Hsien Chu

Abstract—Wireless broadcast is an effective approach to dis-
seminate data to a number of users. To provide secure access
to data in wireless broadcast services, symmetric key-based
encryption is used to ensure that only users who own the valid
keys can decrypt the data. Regarding various subscriptions, an
efficient key management to distribute and change keys is in great
demand for access control in broadcast services. In this paper, we
propose an efficient key management scheme (namely KTR) to
handle key distribution with regarding to complex subscription
options and user activities. KTR has the following advantages.
First, it supports all subscription activities in wireless broadcast
services. Second, in KTR, a user only needs to hold one set of
keys for all subscribed programs, instead of separate sets of keys
for each program. Third, KTR identifies the minimum set of keys
that must be changed to ensure broadcast security and minimize
the rekey cost. Our simulations show that KTR can save about
45% of communication overhead in the broadcast channel and
about 50% of decryption cost for each user, compared with logical
key hierarchy based approaches.

Index Terms—Wireless broadcast, key management, access
control, key hierarchy, secure group communication, key dis-
tribution

I. I NTRODUCTION

With the ever growing popularity of smart mobile devices
along with the rapid advent of wireless technology, there has
been an increasing interest in wireless data services among
both industrial and academic communities in recent years.
Among various approaches, broadcast allows a very efficient
usage of the scarce wireless bandwidth, because it allows
simultaneous access by an arbitrary number of mobile clients
[1]. Wireless data broadcast services have been available
as commercial products for many years. In particular, the
announcement of the MSN Direct Service (direct.msn.com)
has further highlighted the industrial interest in and feasibility
of utilizing broadcast for wireless data services.

A wireless data broadcast system consists of three compo-
nents as depicted in Figure 1: (1) the broadcast server; (2) the
mobile devices; and (3) the communication mechanism. The
server broadcasts data on air. A user’s mobile device receives
the broadcast information, and filters the subscribed data
according to user’s queries and privileges. The specialty of the
broadcast system is that (a) the server determines the schedule
to broadcast all data on air, and (b) users’ mobile devices
listen to the broadcast channel but only retrieve data (filter data
out) based on users’ queries. The communication mechanism
includes wireless broadcast channels and (optional) uplink
channels. Broadcast channel is the main mechanism for data

Fig. 1. A wireless data broadcast system

dissemination. Data is broadcast periodically so that users can
recover lost or missed data items. The uplink channels, which
have limited bandwidth, are reserved for occasional uses to
dynamically change subscriptions.

In broadcast services, the basic data unit isdata item, such
as a piece of news or a stock price. Data items are grouped
into programs and a user specifies which programs he would
like to access. Typical programs could be weather, news, stock
quotes, etc. For simplicity, we assume that each program
covers a set of data items, and programs are exclusively
complete. A user may subscribe to one or more programs. The
set of subscribed programs is called the user’ssubscription.
Users can subscribe via Internet or uplink channels to specify
the programs that they are interested in receiving.

Previous studies on wireless data broadcast services have
mainly focused on performance issues such as reducing data
access latency and conserving battery power of mobile devices.
Unfortunately, the critical security requirements of thistype of
broadcast service have not yet been addressed, i.e. broadcast
service providers need to ensure backward and forward secrecy
[2], [3] with respect to membership dynamics. In the wireless
broadcast environment, any user can monitor the broadcast
channel and record the broadcast data. If the data is not
encrypted, the content is open to the public and anyone can
access the data. In addition, a user may only subscribe to a
few programs. If data in other programs are not encrypted,
the user can obtain data beyond his subscription privilege.
Hence, access control should be enforced via encrypting data
in a proper way so that only subscribing users can access the
broadcast data, and subscribing users can only access the data
to which they subscribe.

Symmetric-key-based encryption is a natural choice for
ensuring secure data dissemination and access. The broadcast
data can be encrypted so that only those users who own
valid keys can decrypt them. Thus, the decryption keys can
be used as an effective means for access control in wireless

2

data broadcast services. For example, each program has one
unique key to encrypt the data items. The key is issued to
the user who is authorized to receive and decrypt the data
items. If a user subscribes to multiple programs, it needs an
encryption key for each program. Since a user only has keys
for his subscription, he cannot decrypt broadcast data and
rekey messages designated to other users. At the same time,
a data item can be decrypted by an arbitrary number of users
who subscribe to it. This allows many users to receive the
data at the same time and addresses the scalability problem,
or request lost or missed keys.

Nevertheless, when a user subscribes/unsubscribes to a
program, the encryption key needs to be changed to ensure
that the user can only access the data in his subscription
period. Consequently, a critical issue remains, i.e.how can
we efficiently manage keys when a user joins/leaves/changes
the service without compromising security and interrupting
the operations of other users?Regarding unique features of
broadcast services, we are interested in new key management
schemes that can simultaneously providesecurity, efficiency
and flexibility. A broadcast service generally provides many
programs; at the same time, users may like to subscribe to
an arbitrary set of programs. We envision that a user should
be able to flexibly subscribe/unsubscribe to any program
of interests and make changes to his subscription at any
time. Hence, in addition to security and efficiency,flexibility
that a user can customize his subscription at anytime is an
indispensable feature of key management in broadcast services
to support user subscriptions.

Two categories of key management schemes in the literature
may be applied in broadcast services: (1) logic key hierarchy
(LKH) based techniques [2]–[9] proposed for multicast ser-
vices ; and (2) broadcast encryption techniques [10]–[16] in
current broadcast services (such as satellite TV). We notice
that current broadcast encryption techniques, including BISS
[17], Digicipher [18], Irdeto [19], Nagravision [20], Viaccess
[21], and VideoGuard [22], cannot in fact support flexibility.
They normally require users to possess decryption boxes to
receive the subscribed programs, and the broadcast services
can only provide to users a few packages, each of which
includes a fixed set of programs (TV channels). Users cannot
select individual programs within a package. If a user wants
to change his subscription, the user needs to request another
decryption box that can decrypt the subscribed programs.
Hence, in this paper, we will focus on adapting more flexible
LKH-based techniques.

Nevertheless, directly applying LKH in broadcast services
is not the most efficient approach. In broadcast services, a
program is equivalent to a multicast group, and users who
subscribe to one program form a group. Intuitively, we could
manage a separate set of keys for each program, and ask a user
to hold m sets of keys for his subscribedm programs. This
straightforward approach is inefficient for users subscribing
to many programs. If users could use the same set of keys
for multiple programs, there would be fewer requirements
for users to handle keys. Furthermore, when a user changes
subscription, we argue that it is unnecessary to change keysfor
the programs to which the user is still subscribing, as long as

security can be ensured. In this way, rekey cost can be reduced
and fewer users will be affected. Therefore, we propose a
new key management scheme, namely key tree reuse (KTR),
based on two important observations: (1) users who subscribe
to multiple programs can be captured by a shared key tree,
and (2) old keys can be reused to save rekey cost without
compromising security. KTR has two components:shared
key tree and shared key management, and its contribution
includes the following aspects.

Contributions. First, the proposed scheme takes advantage
of a fact in broadcast services: many users subscribe to
multiple programs simultaneously. In other words, programs
overlap with each other in terms of users. Because existing
approaches manage keys by separating programs, they turn to
be demanding for the users who subscribe to many programs.
Hence, this study contributes to the literature a new scheme
(namely KTR) to better support subscriptions of multiple
programs by exploiting the overlapping among programs. KTR
let multiple programs share the same set of keys for the users
who subscribe to these programs. KTR thus inherently enables
users to handle fewer keys and reduces the demands of storage
and processing power on resource-limited mobile devices.

Second, since multiple programs are allowed to share the
same set of keys, a critical issue is how to manage shared keys
efficiently and securely. We find that when keys need to be
distributed to a user, it is unnecessary to change all of them. In
many circumstances, when a user subscribes to new programs
or unsubscribes to some programs, a large portion of keys
that the user will hold in his new subscription can be reused
without compromising security. KTR is a novel approach for
determining which keys need to be changed and for finding the
minimum number of keys that must be changed. Hence, KTR
efficiently handles the rekey of the shared keys and minimizes
the rekey costs associated with possible subscriptions. Our
simulations show that critical keys can be employed in logical
key hierarchy schemes [2], [5] to improve their performance.

The rest of the paper is organized as follows. In Section
II, we present related works on group key management. In
Section III, the first component of KTR is described that fully
utilizes the service structure to reduce the number of keys.
In Section IV, the second component of KTR is presented to
reduce rekey cost when updating and distributing shared keys.
In Section V, we present the results of simulations to illustrate
the performance improvements in KTR. Finally, we conclude
in Section VI.

II. RELATED WORKS ONKEY MANAGEMENT

A. Logical Key Hierarchy

Secure key management for wireless broadcast is closely
related to secure group key management in networking [4].
Logical key hierarchy (LKH) is proposed in [2], [5] that uses
a key tree (depicted in Figure 2) for each group of users who
subscribe the same program. The root (top node) of the tree
is the data encryption key (DEK) of the program. Each leaf
(bottom node) in the tree represents an individual key (IDK)
of a user that is only shared between the system and the user.
Other keys in the tree, namely key distribution keys (KDKs),

3

k1

k2 k3

k4 k5 k6 k7

ku1 ku2 ku3 ku4 ku5 ku6 ku7 ku8
u1 u2 u3 u4 u5 u6 u7 u8Users

KDKs

DEK
Program g1

Fig. 2. Logical key hierarchy

are used to encrypt new DEKs and KDKs. A user only knows
the keys along the path from the leaf of the user to the root
of the key tree.

When a user joins or leaves the group, the server needs to
change and broadcast the corresponding new keys, and this
operation is calledrekey, and the broadcast message of new
keys is calledrekey message. In our system, data and rekey
messages are broadcast in the same broadcast channel to the
users. Assume useru1 leaves the group (in Figure 2). The
server needs to changek4, k2 andk1 so thatu1 will no longer
decrypt any data for this group, which is encrypted byk1. The
rekey message is

{k′

4}ku2
, {k′

2}k′

4
, {k′

2}k5
, {k′

1}k′

2
, {k′

1}k3

wherek′

i is the new key ofki and{k′

i}kj
meansk′

i is encrypted
by kj . When u2 receives this message,u2 first decrypts
{k′

4}ku2
based on his individual keyku2

to obtaink′

4, then
usesk′

4 to decrypt{k′

2}k′

4
and so on to obtaink′

2 and k′

1.
Similarly, other users can obtain the new keys in their own
paths. It is obviousu1 cannot obtain any new keys from this
message, and thus the broadcast data in the future will not be
decrypted byu1.

Now assumeu1 joins the group, and the server needs to
changek4, k2 and k1 so thatu1 cannot use the old keys to
decrypt old broadcast data. Note thatu1 may have already
eavesdropped on some broadcast data before he joined the
group. If the server givesu1 the old keys,u1 can decrypt the
eavesdropped broadcast data. The rekey message is

{k′

4}ku1
, {k′

2}ku1
, {k′

1}ku1
, {k′

4}k4
, {k′

2}k2
, {k′

1}k1

The first three components are foru1 to use his individual key
to decrypt the new keys, and the last three are for all existing
users to use their old keys to decrypt the new keys. In this
way, u1 will not obtain any old key.

LKH is an efficient and secure key management for multi-
cast services in that each user only needs to holdO(log2(n))
keys for the user’s group, and the size of a rekey message
is also O(log2(n)), where n is the number of group users.
It is also a flexible key management approach that allows a
user to join and leave the multicast group at any time. Many
variations of LKH have been proposed. Because LKH simply
uses independent keys, researchers developed several other
approaches [23], [24] that generate new keys by exploiting
the relation between child and parent keys or the relation
between old and new keys. Our scheme is complementary to
these schemes, since our scheme mainly examines whether

keys need be changed in stead of how keys are generated.
[6] proposes a combination of key tree and Diffie-Hellman

key exchange to provide a simple and fault-tolerant key
agreement for collaborative groups. [23] reduces the number
of rekey messages, while [9], [25] improve the reliability of
rekey management. Balanced and unbalanced key trees are
discussed in [5] and [26]. Periodic group re-keying is studied
in [7], [8] to reduce the rekey cost for groups with frequent
joins and leaves. Issues on how to maintain a key tree and how
to efficiently place encrypted keys in multicast rekey packets
are studied in [8], [26]. Moreover, the performance of LKH is
thoroughly studied [3], [8].

B. Broadcast Encryption

There are some other key management schemes in the
literature for multicast and broadcast services. [10] used
arbitrarily revealed key sequences to do scalable multicast
key management without any overhead on joins/leaves. [11]
proposed two schemes that insert an index head into packets
for decryption. However, both of them require pre-planned
subscription, which contradicts the fact that in pervasivecom-
puting and air data access a user may change subscriptions at
any moment. In addition, [11] only supports a limited combi-
nation of programs. [13] proposed a scheme to yield maximal
resilience against arbitrary coalitions of non-privileged users.
However, the size (entropy) of its broadcast key message is
large, at leastO(n) [12]. Zero-message scheme [14], [15] does
not require the broadcast server to disseminate any messagein
order to generate a common key. But it is only resilient against
coalitions ofk non-privileged users, and requires every user
to storeO(klog2(k)log2(n)) keys. Naoret al. [16] proposed
a stateless scheme to facilitate group members to obtain up-
to-date session keys even if they miss some previous key
distribution messages. Although this scheme is more efficient
than LKH in rekey operations, it mainly handles revocation
when a user stops subscription. It does not efficiently support
joins, which are crucial in our system. Finally, [24], [27] pro-
posed self-healing approaches for group members to recover
the session keys by combining information from previous key
distribution information.

Compared with LKH-based approaches, key management
schemes in broadcast encryption are less flexible regarding
possible subscriptions. Conforming to the current practice
described in RFC2627 [2], we select binary trees to present
our scheme. Note that our scheme does not require binary trees
and can be applied in trees of other degrees.

III. SHARED KEY STRUCTURE

Directly applying LKH is not efficient in broadcast services.
We use a shared key structure to address the key management.
In the following, we describe how a shared key structure is
applied and then raise the security and efficiency problems of
this scheme. We then present a novel shared key management
in Section IV that ensures security and minimizes rekey
cost, and also address major issues when applying KTR in
a broadcast server.

4

g1 g2

u1 u2

g1 g2Programs

Users u1 u1

DEK

KDK

u2

(a) No Share (b) Share

ku1

kg1

ku2

kg2

ku1 ku2

kg1

ku1

kg2

Fig. 3. Shared key tree

A. Key Forest

To address scalability and flexibility in key management,
LKH is used as the basis of our scheme. An intuitive solution
is to use a key tree for each program as shown in Figure
3(a). However, when useru1 subscribes to two programs
simultaneously, he needs to manage two sets of keys in both
trees which is not very efficient (see Figure 3(a)). Hence,
shared key tree (SKT) is proposed to reduce this cost in
key management. As shown in Figure 3(b), we let the two
programs share the same sub key tree as represented by the
gray triangle. We regroup users so that users subscribing to
both programs only need to manage keys in the gray triangle.
The advantage of shared key tree is clear: any user subscribing
to bothg1 andg2 only needs to manage one set of keys for both
programs. Moreover, when a user joins or leaves a tree shared
by multiple programs, the encryption and communication cost
for rekey operations can be significantly less than conventional
LKH approaches.

In this study, shared keys are modeled as a key forest (see
Figure 4), in which all keys form a directed and acyclic graph.
The top keys in the forest are the DEKs of the programs.
All other keys (KDKs) form trees. Users are placed in trees
according to their subscriptions. A tree represents not only
a unique subscription, but also a group of users having this
subscription. Since a subscription is a set of programs, the
root of the subscription’s tree is connected to the DEKs of
the programs belonging to the subscription. As keys in a tree
are shared by the programs, a user only needs to handle the
keys in the tree and the DEKs of the connected programs. For
example, in Figure 4, sincetr4 represents a subscription ofg1

andg2, its rootkr4
is connected to bothkg1

andkg2
. The keys

in tr4 is shared by bothg1 andg2. A userus in tr4 subscribes
g1 andg2 and needs to handle keys in the path from his leaf
node to the DEKs of the subscribed programs:kus

, knL
, kr4

,
kg1

and kg2
. Finally, kg1

, kg2
and kg3

are DEKs to encrypt
broadcast data, and all other keys are KDKs.

In order to ensure that a user will not pay for subscribed
programs multiple times, the key forest obviously should have
the following properties, which are guaranteed in any directed
and acyclic graph.

Property 3.1: Only one path exists by following the upward
links from the root of a treetrs to the DEKs of the programs
that sharetrs;

Property 3.2: Only one path exists by following the upward
links from any leaf node in a tree to the root;

kr1

g1 g2 g3programs

kr4 kr2 kr6 kr5 kr3

knJknL

root graph

tr1 tr2 tr5 tr3tr4 tr6

kc
kus

users us

joinleave
us

shift

kg1 kg2 kg3

trees

DEKs

KDKs

Fig. 4. Key forest

kr1 kr2 kr3

k1 k4k2 k5k3

g1 g2 g3

kr1 kr2 kr3

k1 k4k2 k5k3

g1 g2 g3programs

root graph

trees

DEKs

KDKs

Fig. 5. Multi-layer root graph

Property 3.3: Each user belongs only to one tree in the key
forest, and his individual key is the leaf node of the tree.

B. Root Graph

The root graph in Figure 4 depicts how programs share
keys. Sincem programs could generate2m − 1 different
subscriptions, such a two-layer structure in fact brings two
major problems in terms of rekey overheads when the number
of programs is large.

First, a program may be included in many subscriptions,
which means the DEK of the program is connected with many
trees. Assume the DEK is connected withn trees. When a user
stops subscribing the program, the DEK needs to be updated
and distributed to users inn trees. Because the new DEK is
encrypted with the roots of then trees in rekey,O(n) rekey
items are generated. Obviously, ifn is large, a leave event
results in a huge rekey message. For example, in Figure 5(a),
3 programs are included in5 different subscriptions. Program
g1’s DEK kg1

is connected with 4 rootskr1
, kr2

kr3
andkr5

.
Hence, whenkg1

is updated due to a leave event, 4 rekey items
are needed.

To solve this problem, we use a multi-layer structure to
connect the DEK with the roots of the shared trees. As in
Figure 5(b),kg1

is connected (bold lines) withkr1
, kr2

kr3

and kr5
via two intermediate key nodes (gray circles). Such

a multi-layer structure inherently exploits the advantages of
LKH. For a leave event, the number of rekey items in the
root graph is reduced toO(log2(n)). Note that, for different
programs, the number of intermediate nodes and the number
of layers may be different, which is obviously determined by
the number of trees to which the program is connected. In
Figure 5, program2 is connected with3 trees, and thus1
node is needed. No node is needed for program3, because it
is only connected with2 trees.

5

Second, a subscription is not a conventional plan that a
broadcast service provides, because the subscribed programs
of a plan normally cannot be changed by a user. In this paper,
users are able to customize the selection of programs in their
subscriptions. Thereby, a broadcast service could easily have
a large number of different subscriptions. For example, even
if a service provides only 30 programs that is a small number
in many broadcast services, there could be230 = 1 billion
different subscriptions, which is much larger than the number
of users. Hence, managing keys for all possible subscriptions
would overload the server. Now, assume the service hasn

users and2m ≫ n. Although 2m − 1 different subscriptions
exist, at mostn subscriptions are valid, since the number of
valid subscriptions cannot be more than the number of users.
Hence, this problem can be easily solved by letting the server
only manage the valid subscriptions that have at least one user.

Assumingn users are distributed toe trees (e ≤ n), and
each tree is shared byd programs on average (d ≥ 1), then
each tree would haven

e
users, and each program would have

ed
m

trees. As discussed in Section V-A, KTR requires that
the broadcast server manageO((2n

e
− 1)e + (ed

m
− 1)m) =

O(2n − e + ed − m) keys. In the worst case wheree = n,
the server needs to manage onlyO(n(1 + d) − m) keys. In
contrast, LKH requires the server to manageO(2nd−m) keys.
Obviously, KTR allows the server to manage much fewer keys
than conventional LKH-based approaches.

C. Rekey Operations

In this study, we consider user activities of
joining/leaving/shifting among trees, instead of
joining/quitting/changing among programs. Table I lists
the mapping between tree-oriented operations and the
corresponding program-oriented user events. Consider the
example in Figure 4, where a userus shifts from tr4 to tr6.
Whenus was intr4, us subscribedg1 andg2. After he shifts
to tr6, he subscribesg1, g2 and g3. Hence, the shift in fact
means the user addsg3 into his current subscription. Note
that the discussion of rekey operations in this study only
considers individual user events.

To issue new keys upon a user event, the main task is to
identify the keys that need to be changed. We use two types
of paths in the key forest to represent the to-be-changed keys.
When a user leaves a tree, we say, aleave path is formed,
which consists of keys that the user will no longer use. When
a user joins a tree, we say, anenroll path is formed, which
consists of keys that the user will use in the future. Similarly,
when a user shifts from one tree to another, a leave path and
an enroll path are formed. In KTR, a complete path starts from
the leaf node and ends at the multiple DEKs of the subscribed
programs that share the tree. For example, in Figure 4, when
us shifts from tr4 to tr6, the leave path consists ofknL

and
kr4

, and the enroll path consists ofknJ
, kr6

, kg1
, kg2

andkg3
.

Note that in this example,kg1
and kg2

are the keys thatus

already has and still needs in the future. Hence,kg1
andkg2

are not in the leave path, althoughus leavestr4.
To broadcast new keys, the server should first compose

rekey packets. In this study, we take the standard LKH

TABLE I
REKEY OPERATIONS

Tree Program oriented events
Join Assume a user has not subscribed to any program.
a tree • He subscribes to one or multiple programs.
Leave Assume a user has subscribed to several programs.
a tree • He unsubscribes to all current programs.
Shift Assume a user has subscribed to several programs.
among • He subscribes to one or a few more programs.
trees • He unsubscribes to a part of the current programs.

• He changes a part of the current programs.

approach to encrypt a new keyk′

i in a rekey item {k′

i}kj
. If

k′

i is in an enroll path,kj is the oldki, i.e. {k′

i}kj
≡ {k′

i}ki
.

If k′

i is in a leave path,kj is a child key ofk′

i. Readers can
refer to [2], [5] for examples of rekey packets.

Although LKH changes all keys in leave and enroll paths,
KTR takes different rekey operations for leave path and enroll
paths: keys in a leave path are changed as in LKH, while only
a few keys in an enroll path are changed as long as security
is ensured. In addition, KTR identifies an enroll path with the
minimum number of must-be-changed keys to reduce rekey
cost without compromising security. The detailed approachis
presented in Section IV.

D. Challenges in Shared Key Management

If keys are shared by multiple programs, it is not always
cost saving, especially when a user shifts to a new tree where
some previously subscribed programs are still subscribed to
by the user. Consider the example in Figure 4 whereus shifts
from tr4 to tr6. Apparently,g1 andg2 are still subscribed to
after the shift. In general, two sets of keys need to be changed
to ensure security:knL

and kr4
in the leave path, andknJ

,
kr6

, kg1
, kg2

andkg3
in the enroll path.

When keys are not shared (i.e. each program has one
individual key tree), fewer keys are involved in the example
shift event. As in Figure 4,tr4 is shared byg1 andg2, while
tr6 is shared byg1, g2 and g3. The shift from tr4 to tr6

in fact indicates thatus adds the programg3 to his current
subscription ofg1 and g2. Hence, if keys are not shared and
each program has one individual key tree, only keys ing3’s
tree need to be changed. Thus, the shared key scheme has
more rekey cost than conventional LKH in this example.

Nevertheless, becauseus in tr6 is still subscribing to
programsg1 and g2 as he was intr4, we find that keys in
the enroll path (e.g.knJ

, kr6
, kg1

and kg2
) might be reused

by us without compromising security. For example, no matter
whetherus was intr4 or shifts totr6, us always knowskg1

or
kg2

. Hence, these two keys can be reused in this shift event.
With an in-depth analysis, we find that under certain conditions
kr6

andknJ
can be reused as well.

Deciding whether or not a key in an enroll path can be
reused depends on whether or not the key can reveal the
programs’ DEKs thatus is not supposed to know. Assume that
in the example shift event,kr6

has never been changed since
t0, us joins tr4 at t1 and shifts totr6 at t2, andt0 < t1 < t2.

6

There are at least two situations wherekr6
must be changed

at t2. Either kr6
was used to encryptkg3

as {kg3
}kr6

during
t0 and t2; or kr6

was used to encryptkg1
or kg2

as{kg1
}kr6

or {kg2
}kr6

during t0 and t1.
In the first situation, ifkr6

is reused,us can decryptkg3

from {kg3
}kr6

, and then decryptg3’s data that was broadcast
beforeus shifts totr6 at t2. Hence, the reusedkr6

revealskg3

beforeus addsg3 into his subscription. In the second situation,
if kr6

is reused,us can decryptkg1
or kg2

from {kg1
}kr6

or
{kg2

}kr6
, and then decryptg1’s or g2’s data that was broadcast

beforeus joins tr4 at t1. Hence, the reusedkr6
revealskg1

or kg2
beforeus joins the service. In summary,kr6

must be
changed in both situations. Ifkr6

is reused without any change,
it can reveal DEKs thatus should not know. Except these two
situations, ifkr6

has never been used in the encryptions as
discussed above,kr6

can be reused without any change.
A similar but more complicated inspection is required on

other keys intr6. The principle is to check whether a key
in an enroll path can reveal the previous DEK or another
program’s DEK. The difficulty is that a key may indirectly
reveal DEKs, because its parent key may not be a DEK.
For example, althoughknJ

’s parent key iskr6
, knJ

can still
indirectly reveal the DEKkg3

. Assume thatknJ
was used

to encryptkr6
and thenkr6

was used to encryptkg3
. In this

situation, a sequence of rekey items{kr6
}knJ

,{kg3
}kr6

exist in
all broadcast messages. IfknJ

is reused without any change,
us can first decryptkr6

and thenkg3
. Thus, knJ

must be
changed. If no such sequence of rekey items exist,knJ

can
be reused. Hence, the challenge in reusing keys lies in how
to find out which sequences of rekey items may compromise
security and which keys in such sequences may reveal DEKs.

In the following section, we propose a novel approach in
KTR to efficiently address the security issue in reusing keys.
Since rekey cost is determined by the number of must-be-
changed keys, the cost can be minimized if we can find the
minimum number of must-be-changed keys when the user
joins or shifts to the tree. We name the must-be-changed keys
in an enroll path ascritical keys. KTR changes all keys in a
leave path and only the critical keys in an enroll path, while
leaving all the other keys unchanged. In this way, the rekey
cost can be minimized.

IV. SHARED KEY MANAGEMENT

In this section, we first present some important concepts in
Section IV-A and IV-B, which are used for identifying critical
keys . Then, we present the condition under which a key is
critical in Section IV-C and IV-D and the corresponding key
management algorithms.

A. Rekey Spots

KTR basically logs how a key was used in rekey messages.
We can always find two operations in any rekey message: 1) a
key’s value is changed or 2) a key is used to encrypt its parent
key when the parent key’s value is changed. Accordingly, we
define two types of spots to log the time points when either
operation is committed.

Algorithm 1 Update of refresh and renew spots
Assumeki is used in the rekey messages upon a user event.

1: if ki is in a leave paththen
2: renew spots must be added to allki’s spot series;
3: end if
4: if ki is critical in an enroll paththen
5: renew spots must be added to allki’s spot series;
6: end if
7: if ki’s parent keykj is in a leave paththen
8: refresh spots must be added toki’s spot series that are

associated with the programs sharingkj ;
9: end if

Definition 4.1: Renew spot of a keyki: the time pointt
whenki’s value is changed.ki’s new value starting fromt is
denoted aski(t).

Definition 4.2: Refresh spot of a keyki: the time pointt
whenki is used to encrypt its parent keykj ’s new value in a
refreshmentδ(kj , t; ki, t

′).
Definition 4.3: Refreshment,δ(kj , t; ki, t

′): a rekey mes-
sage broadcast att in the form of {kj(t)}ki(t′), and t′ ≤ t.

At a refresh spott, we sayki is refreshed when it is used to
encrypt its parent keyki’s new value as in theδ(kj , t; ki, t

′).
At a renew spott, we sayki is renewed when its valued is
changed.ki is renewed only when it is in a leave path or
critical in an enroll path. Accordingly, the rekey message to
renewki has two possible forms. Ifki is critical in an enroll
path, ki’s new value is encrypted with its old value. Hence,
the renew message is{ki(t)}ki(t′). If ki is in a leave path,
ki’s new value is encrypted with its child keykc. Hence, the
renew message ofki is also the refresh message ofkc, i.e.
{ki(t)}kc(t′).

When a user changes his subscription, the server needs to
change certain keys according to the algorithm presented in
Section IV-C and broadcast corresponding rekey messages.
Then, refresh and renew spots are logged to the keys that
are used in the rekey messages. The sequence of refresh and
renew spots thus forms spot series in the time order. If a key
is shared by multiple programs, we let the key have multiple
spot series, each of which is associated with one program (see
examples in Section IV-B).

Algorithm 1 describes the procedure to log refresh and
renew spots upon a user event. According to Definition 4.1,
renew spots are logged to a key when the key is changed to a
new value. Hence, when a key is in a leave path or critical in
an enroll path, the key must be changed and renew spots must
be logged to that key. Furthermore, according to Definition
4.2, refresh spots must be logged to a key when the key’s
parent is in a leave path, because the key is used to encrypt
its parent in order to renew its parent.

As previously discussed, refreshments may contain informa-
tion that threatens past confidentiality. For example, assume a
user joins a tree shared by programgm at tc, and k1 is in
the enroll path. From all previous broadcast rekey messages,
a dangerous rekey sequencefor k1 is defined as,

Definition 4.4: A sequence of refreshments

7

Algorithm 2 Update of revive spots
1: let k be kv;
2: let t be tv;
3: UPDATEREVIVE(k, t, tv, gv);
4: function UPDATEREVIVE(k, t, tv, gv)
5: let V be the set of all child keys ofk;
6: for ki ∈ V do
7: find ti the renew spot ofki that satisfiesti ≤ t;
8: if δ(k, t; ki, ti) existsthen
9: if ti is the latest renew spot ofki then

10: add tv to ki’s revive spot series associated
with gv

11: end if
12: UPDATEREVIVE(ki, ti, tv, gv);
13: end if
14: end for
15: end function

δ(k2, t2; k1, t1), δ(k3, t3; k2, t2), · · · , δ(km, tm; km−1, tm−1)
that satisfies
• ki is ki−1’s parent key,
• t1 ≤ t2 ≤ · · · ≤ tm < tc,
• k1(t1) has never been changed sincet1,
• km(tm) is the value ofgm’s DEK.
If the server sendsk1 to the user without any change, the

user can decryptk2(t2) and then iteratively decryptk3(t3) to
km(tm). Past confidentiality attm is thus compromised, if the
user useskm(tm) to decrypt the data items that are broadcast
during tm and tc, which should otherwise be inaccessible to
that user. Past confidentiality attm is preserved if the user
either cannot find such a sequence of refreshments to obtain
km(tm) or has already legitimately obtainedkm(tm) and the
data items duringtm and tc.

Therefore, to identify whether a key is critical in a program,
we use a third type of spot to mark the key based on its renew
and refresh spots. Similarly, the sequence of revive spots forms
revive spot series in the time order. If a key is shared by
multiple programs, the key has multiple revive spot series,
each of which is associated with one program (see examples
in Section IV-B).

Definition 4.5: Revive spot of a key: the time pointt when
(1) the DEK of this key’s associated program has changed or
(2) a dangerous rekey sequence exists as in Definition 4.4.

After the update of refresh and renew spots, the server
updates revive spots according to Algorithm 2. Assumekv (the
DEK of programgv) is renewed attv. Algorithm 2 updates
the revive spots of corresponding keys iteratively, starting from
kv. At the beginning, letk = kv and t = tv. The algorithm
iteratively uses the function UPDATEREVIVE(k, t, tv, gv) to
update revive spots of related keys. Assuming that the al-
gorithm checks a keyk which was renewed att and was
refreshed at sometime later thant, it first selects aki from
all k’s child keys. According to Definition 4.5, ifδ(k, t; ki, ti)
does not exist, there is no need to log a revive spot toki and
no need to further checkki’s child keys. Also, ifδ(k, t; ki, ti)
does exist butti is not ki’s latest renew spot, there is still no
need to log a revive spot toki but the algorithm continues

refresh spot
renew spot

time

g1
g2
g3

t1 t2 t3 t4 ...

Fig. 6. Spot series of keykr6

refresh spot
renew spot

kr2
kr6
knJ

t1 t2 t3 t4t0 time...

Fig. 7. Spot series regarding programg2

to checkki’s child keys as they may have revive spots. If
δ(k, t; ki, ti) does exist andti) is ki’s latest renew spot, a
revive spot is logged toki and the algorithm continues to
checkki’s child keys.

B. Examples of Spots

In this part, we demonstrate the spot series from two
different dimensions. First, a key has multiple spot series
associated with its programs. Figure 6 depicts the spot
series of kr6

in the key forest of Figure 4. Becausekr6

is shared by three programs (i.e.g1, g2 and g3), it has
three spot series, and each series is represented by a line
in Figure 6. In this example, att1, a user leavestr6. kr6

is first renewed, and all its spot series get a renew spot.
Right after it is renewed,kr6

is used in the refreshments
δ(kr1

, t1; kr6
, t1), δ(kr2

, t1; kr6
, t1), δ(kr3

, t1; kr6
, t1).

Because these refreshments are related to all the programs,
refresh spots are added to allkr6

’s spot series. Att2, a user
leavestr5. Because onlykr2

andkr3
need to be changed,kr6

is
used in the refreshmentsδ(kr2

, t2; kr6
, t1), δ(kr3

, t2; kr6
, t1).

Hence, only two refresh spots are added to the series
associated withg2 and g3. Readers can find that the other
spots are for the events where a user joinstr6 at t3, and
another user shifts fromtr4 to tr3 at t4. In brief, renew
spots of a key are the same in all of its series, while refresh
and revive spots are different regarding their corresponding
programs.

The second dimension of spot series is illustrated in Fig-
ure 7, where we draw spot series ofknJ

, kr6
and kr2

associated with only one programg2. At t1, a user leaves
tr6. Assumekr6

and kr2
are in the leave path, butknJ

is
not. Hence, the broadcast server composes the refreshments
δ(kr6

, t1; knJ
, t0), δ(kr2

, t1; kr6
, t1) to changekr6

andkr2
. At

t2, a user leavestr5. The refreshmentδ(kr2
, t2; kr6

, t2) is
broadcast to changekr2

. At t3, a user joinstr6. AssumeknJ
,

kr6
and kr2

are in the enroll path, these keys are changed.
At t4, a user shifts fromtr4 to tr3, and δ(kr2

, t4; kr6
, t4)

is broadcast to changekr2
. Note that at a refresh spot (for

instance,t1 of δ(kr6
, t1; knJ

, t0), the symmetric keyknJ
is

refreshed simultaneously as its parent keykr6
is renewed.

In Figure 8, we draw the revive spot series of the three keys
associated withg2 based on Figure 7. Att2, kr2

is changed
and δ(kr6

, t1; knJ
, t0), δ(kr2

, t2; kr6
, t1) can be recorded by

any user. Revive spots are added to bothkr6
andknJ

, since the

8

revive spot

timet1 t2 t3 t4

kr6
knJ

renew spotkr2

t0 ...

Fig. 8. Revive spots regarding programg2

refreshments can exposekr2
at t2 to a new user if eitherkr6

or
knJ

is given to the user without any change. However, att4, a
revive spot is only added tokr6

, because onlyδ(kr2
, t4; kr6

, t4)
is potentially insecure. No revive spot is added toknJ

at t4,
since it is not used in the rekey operation.

C. Critical Keys

By logging spots to keys, the server can inspect a key’s past
usage. We introduce the concepts of key age and subscription
age to decide whether a key is a critical key.

Definition 4.6: Age of a key: (1) if the key is a DEK, its
age is the time interval between the current time to its latest
renew spot; (2) if the key is a KDK, its age is the time interval
between the current time to the revive spot that is located
between the current time and the latest renew spot and is
closest to the latest renew spot. Note that a key may have
multiple ages if it is shared by multiple programs, and each
age is associated with one program.

According to the above definition, the age of a KDK is 0
if and only if there is no revive spot between the current time
and the latest renew spot. Otherwise, the age of the key is
greater than 0.

Definition 4.7: Age of a subscription: the time interval
between the current time to the latest beginning time the user
is in a program. Note that if a user subscribes to multiple
programs, he has one subscription age for each program.

According to the above definition, the subscription’s age is
0 if and only if the user is not in the program. Otherwise,
the user is in the program, and his subscription age is greater
than 0. If a user stops subscribing a program, the subscription
age associated with this program turns to 0. If a user shifts
from a tree to another tree while staying in a program, his
subscription age with this program continues. Finally, a user
can have different subscription ages for different programs.

The traditional LKH approach to protect past confidentiality
is to always have the server change keys in the enroll path
so that no previous refreshment can be exploited. Although
this ensures past confidentiality, this approach is costly.There
are some situations where the old refreshments only contain
secrets that the user already knows. In these situations, the user
can use the old symmetric key to decrypt the old refreshments,
thus keeping past confidentiality intact. That being the case,
the server can directly distribute the old symmetric key without
compromising the past confidentiality.

In the following, we give a generic method to identify criti-
cal keys in the enroll path and reduce the rekey cost. Assuming
key k is shared bym programs and will be distributed to
useru, we can get allk’s ages and allu’s subscription ages
associated with these programs, denoted as[ka1, ..., kam]k and
[ua1, ..., uam]u. Programgi is thus associated with a pair of
ages, denoted as(kai, uai)k,u.

Theorem 4.1:Theorem of Critical Key (TCK): k in the
enroll path is acritical key , i.e. k must be changed before
being distributed tou to ensure past confidentiality, if and
only if at least one pair of(kai, uai)k,u satisfieskai > uai at
current timet, i.e. the key is older than the user’s subscription
regarding programgi.

a) Proof of the sufficient condition:If k is the DEK ofgi,
the proof is obvious. Ifk’s age is older thanu’s subscription
age, there are some data items encrypted byk before the user
joins the program. Hence,k needs to be changed so that the
user cannot decrypt those data items.

If k is not a DEK, letki be the DEK of programgi, and the
latest renew spot ofk is tk. Assume a pair of(kai, uai)k,u that
satisfieskai > uai at current timet. According to Definition
4.6, k’s value has never been changed sincet − kai and was
revived att−kai. According to Definition 4.5,u can find such
a sequence of refreshments from all previous broadcast rekey
messages att − kai: δ(kα, tα; k, tk), ..., δ(ki, t − kai; kβ, tβ),
where tk ≤ tα ≤ ... ≤ tβ ≤ t − kai. Hence, ifk is sent to
u without any change,u can deriveki at t − kai from these
refreshments.

According to Definition 4.7,u joined gi at t − uai, which
meansu is only allowed to decrypt data items ofgi broadcast
after t − uai. Becausekai > uai, t − kai < t − uai. If k is
not changed,u can decrypt data items ofgi broadcast between
t− kai andt− uai, and thus past confidentiality att− kai is
compromised.

Therefore, if at least one pair of(kai, uai)k,u satisfieskai >

uai at current timet, k in an enroll path needs to be changed
before being distributed to useru to ensure past confidentiality.

b) Proof of the necessary condition:The necessary con-
dition is that if all pairs of(kai, uai)u,k satisfykai ≤ uai, k

does not need to be changed. Ifk is the DEK ofgi, the proof
is obvious. Ifk’s age is younger than user’s subscription age,
the user has already known all data items encrypted byk.
Hence,k does not needs to be changed.

If k is not a DEK, select any programgi that sharesk. Let
ki be the DEK ofgi, and the latest renew spot ofk is tk.
We use reduction to absurdity to prove. The opposite of the
necessary condition is that past confidentiality for program gi

will be broken if all pairs of(kai, uai)k,u satisfykai ≤ uai

at current timet, andk is sent tou without any changed.
According to Definition 4.7,u joined gi at t − uai and is

allowed to decrypt data items ofgi broadcast aftert − uai.
If past confidentiality for programgi is compromised,u must
have derivedki’s value beforet − uai. Becausekai ≤ uai,
t−kai ≥ t−uai. u must have derivedki’s value at a time point
t′ beforet− kai, i.e. t′ < t− kai. Hence,u must have found
the refreshments from all previous broadcast rekey messages:
δ(kα, tα; k, tk), ..., δ(ki, t

′; kβ, tβ).
According to Definition 4.5,t′ is a revive spot ofk. If kai =

0, no revive spot exists aftertk, and thust′ cannot exists. If
kai > 0, t′ is a revive spot afterk’s latest renew spottk,
and thustk < t′ < t − kai. However, according to Definition
4.6, there cannot be any revive spot ofk betweentk and t −
kai. Hence,t′ cannot exist, and the opposite of the necessary
condition is false. Consequently, past confidentiality forany
program gi will not be broken if the pair of(kai, uai)k,u

9

Algorithm 3 Algorithm of KTR in Broadcast Server
1: if a join or shift event happensthen
2: according to TCK, find all critical keys in the tree the

user wants to join or shift to;
3: select the best enroll path that has the minimum

number of critical keys;
4: change all critical keys in the best enroll path, and

broadcast corresponding rekey messages;
5: end if
6: if a leave or shift event happensthen
7: change all keys in the leave path, and broadcast

corresponding rekey messages;
8: end if
9: update renew, refresh and revive spots according to the

latest rekey messages;

satisfieskai ≤ uai at current timet, andk is sent tou without
any changed.

Theorem 4.1 indicates that changing only critical keys can
ensure past confidentiality. Hence, given a key forest, Algo-
rithm 3 is applied to find the best enroll path and minimize the
rekey cost. When a join or shift event happens to a tree, the
algorithm uses the depth-first tree traversal approach to find all
critical keys in the tree. If a path is found to have fewer critical
keys than previously visited paths, the algorithm records it as
the best enroll path.

D. Examples of Critical Keys

Corollary 4.1: When a user joins a tree, a key in the enroll
path is a critical key if and only if one of the key’s ages is
greater than 0.

Before a user joins the tree, his subscription ages for all of
the programs sharing this tree are 0. Hence, if the age of a key
in the enroll path for this program is greater than 0, the key is
older than the user’s subscription. According to Theorem 4.1,
the key needs to be changed before being distributed to the
user.

Example:consider a user event where a useru2 joins tree
tr4 at timet2 in Figure 4. Assume that beforet2, another user
u1 shifts from treetr4 to tr6 at t1, and no other event happens
betweent1 andt2. At t1, assumeknL

andkr4
are in the leave

path. Att2, assumeknL
andkr4

are in the enroll path. Now, we
determine which keys are critical att2 according to Corollary
4.1.

At t1, becauseu1 is still in g1 andg2, the broadcast server
does not need to changekr1

andkr2
, and only needs to send

the refreshmentsδ(knL
, t1; kc, tkc

), δ(kr4
, t1; knL

, t1), where
kc is a child key ofknL

and not known byu1. According to
Definition 4.5, no revive spot is added toknL

and kr4
, and

these two keys are renewed aftert1. Consequently, according
to Definition 4.6, att2, the ages of bothknL

and kr4
are 0.

The server can giveknL
and kr4

to u2 without any change
according to TCK, sinceu2 cannot derivekr1

andkr2
before

t2 from the previous refreshments.
In this example,knL

andkr4
are not critical keys, although

they are in the enroll path att2. However,kr1
and kr2

are

critical keys att2 because their ages are greater than 0. The
server needs to changekr1

andkr2
before distributing them to

u2. This shows that it is not necessary to change all keys in the
enroll path when a user subscribes the broadcast data services
as would be required in the traditional LKH approach.

Corollary 4.2: After a user enrolls in a tree, all keys in the
enroll path are not older than the user.

According to Theorem 4.1, if a key is older than the user’s
subscription regarding a program, the key needs to be changed.
Hence, at the time when the user enrolls in a tree, the keys,
whose ages are older than the user, are renewed and their
ages turns to be 0. If the key is not older than the user’s
subscription regarding any program, the key does not need to
be changed. Hence, the key continues to be not older than the
user. Therefore, after a user enrolls in a tree, all keys in the
enroll path are not older than the user.

Corollary 4.3: When a user shifts from a tree to another
tree, the keys overlap both trees do not need to be changed.

Assume the user shifts from treetrα to treetrβ . According
to Corollary 4.2, after the user enrolls intrα, all keys in the
enroll path cannot not be older than the user. Hence, when
the user shifts totrβ , the overlapped keys, which were in
the enroll path when user enrolled intrα, do not need to be
changed according to Theorem 4.1.

Example:in Figure 4, useru shifts from treetr4 to tr6 at
t1. Assume useru is in tr4 sincet0, i.e. u can decrypt data
items of g1 and g2 since t0. kr1

and kr2
are the overlapped

keys withtr4 andtr6. Becauseu is still in g1 andg2 after he
shifts to tr6, kr1

andkr2
do not need to be changed.

E. Security Analysis

To ensure multicast or broadcast security, group key man-
agement should satisfy four security properties [2], [3]: non-
group confidentiality, collusion freedom, future confidentiality
(forward secrecy), and past confidentiality (backward secrecy).
In the following, we discuss how KTR satisfies these proper-
ties.

Property 4.1: Non-group confidentiality: passive adver-
saries should not have access to any group key.

Because keys are encrypted when being broadcast, passive
adversaries can not decrypt any key without knowing decryp-
tion key. Hence, KTR obviously satisfies Property 4.1.

Property 4.2: Collusion freedom: by sharing group keys,
multiple present users can not derive any group key that they
are not holding.

When multiple users collude, they may try to share their
keys to derived unknown group keys. The sharing can be
represented by a subgraph of the paths belonging to the
colluding users. However, in KTR, a user does not know any
key not on this path. Hence, colluding users do not know any
key outside the subgraph that represents the collusion. KTR
thus satisfies Property 4.2.

Property 4.3: Future confidentiality (forward secrecy): a
leaving user should not have access to any group key after
leaving his present group.

According to Algorithm 3, KTR changes all keys in the
leave path, because the leaving user holds these keys. Hence,

10

the leaving user will not have the new keys after the user
leaves his group. KTR thus satisfies Property 4.3.

Property 4.4: Past confidentiality (backward secrecy): a
joining user added at time t should not have access to any
keys used to encrypt data before t.

According to Algorithm 3, KTR changes all critical keys
in the enroll path when a user joins. Theorem 4.1 basically
proves that the joining user can only derive past group keys
from critical keys. Hence, changing critical keys and reusing
non-critical keys prevent the joining user from obtaining past
group keys. KTR thus satisfies Property 4.4.

V. PERFORMANCEEVALUATION

In this section, we analyze and evaluate the performance
of KTR at the server side and the client side respec-
tively. We define the following parameters for the analysis.
• The service providesm programs;
• n users subscribes the service;
• n users are distributed toe trees;
• Each tree is shared byd programs on average;
• The leave rate isλl: the number of users unsubscribing
to the service per unit time;
• The join rate isλj : the number of users subscribing to
he service per unit time;
• The shift rate isλs: the number of users changing
subscriptions per unit time;
• The total event rateΛ = λl + λj + λs

A. Server Side

1) Analysis:Since a server is generally abundant in energy
and memory, its computation capacity becomes the main factor
that affects the performance of the whole system. If the
processing time for each event is large, this would delay user’s
request. We measured the management cost of a server by two
metrics: (a) the total number of keys to be managed, and (b)
the number of keys to be inspected and updated per rekey
event.

Since a tree hasn
e

users in average, there areO(2n
e
− 1)

keys to be handled, including the root. Fore trees, the server
needs to manageO(e(2n

e
− 1)) = O(2n − e) keys. Because

a key in any tree needs to keep a separate spot series for
each program that shares the tree and each tree is shared byd

programs on average, the server needs to keepO((2n − e)d)
spot series. In the multi-layer root graph, the server needsto
manage DEKs and other non-root keys. Because one program
is connected withO(ed

m
) trees, the server needs to manage

O((ed
m

− 1)m) = O(ed−m) keys (including DEKs and non-
root keys) form programs. We notice that any one of these
keys is connected with only one program. Hence, each key
requires only one spot series, and thus the server needs to keep
O(ed − m) spot series. In total, the server needs to manage
O(2n−e+ed−m) keys with a storage requirement ofO((2n−
e)d + ed−m) = O(2nd−m). In comparison, LKH requires
that the server managesO((2 ed

m
n
e
−1)m) = O(2nd−m) keys.

According to Algorithm 3, KTR needs three steps for each
rekey operation: (1) find the leave path and the best enroll
path, (2) change keys in the leave path and critical keys in the

TABLE II
COMPUTATION AT THE SEVER SIDE

service parameters inspe- upd- computa-
size n m e d ction ate tion (ms)

small 10K 5 31 2.5 655 50K 16 ± 2
large 10K 50 300 12 141 240K 68 ± 16

enroll path, and (3) update renew, refresh and revive spots
for affected keys. Compared with LKH, steps (1) and (3)
in KTR incur extra cost that includes only comparison and
assignment operations. The leave path simply consists of keys
that the user will no longer hold, and thus the server can
easily find out the leave path. Nevertheless, the server needs
to inspect the to-be-joined tree and find out the enroll path
with the minimum number of critical keys. Hence, according
to Algorithm 3, the computation complexity on the server side
is mainly determined by the number of keys to be inspected
and the number of updates to be committed.

The number of keys to be inspected is determined by the
number of users in the to-be-joined tree and the number
of programs that share that tree. Inside the tree, there are
O(2n

e
) keys. The root of the tree is connected to DEKs of

the programs that share the tree. As in Figure 5, the path
between the root and one DEK hasO(log2(

ed
m

)) keys on
average. Hence, there areO(dlog2(

ed
m

)) keys between the root
and the connected DEKs. In total, the server needs to inspect
O(2n

e
+ dlog2(

ed
m

)) keys in order to find the best enroll path
and the critical keys.

The number of updates to be committed is determined by
the number of DEKs that must be changed. In the worst case,
all DEKs need to be changed and all keys under the DEKs
need to be changed. Because each tree is shared byd programs
on average, one DEK is connected withde

m
trees. Hence, in the

worst case, a changed DEK will require the server to update
all keys in the trees that are connected with the DEK. Hence,
for each DEK,O(2de

m
n
e
) = O(2dn

m
) keys need to be updated.

In the worst case (i.e.m DEKs need to be changed), the server
needs to commitO(2dn) updates.

2) Simulation:We did simulations on a server (a computer
with a 2GHz CPU and 2GB RAM running Linux). On average,
the server uses tens of milliseconds for one rekey operation
in the KTR scheme. Table II shows the simulation results for
two services with 10000 users. The first row is a small service
that provides only 5 programs and 31 valid trees, and each
tree is shared by 2.5 programs on average. The second row
is a large service that provides 50 programs and 300 valid
trees, and each tree is shared by 12 programs on average.
Column “inspection” is the estimate of the number of keys to
be inspected in the worst case. Column “update” estimates the
number of updates to be committed in the worst case. Column
“computation” measures the average computation time for one
rekey operation in simulation.

Obviously, the computation time on the server side is mainly
determined by the number of updates to be committed in the
simulations, as the computation time is almost proportional to
the number of updates (via regression analysis). First, since
the number of users is fixed in these simulations, when the

11

service has more trees, the average number of users in one tree
decreases. Accordingly, the server takes less time to inspect
keys in the large service than in the small service. Hence,
the server spends the most time on updating spots for affected
keys. Since a program is connected with more trees in the large
service, a changed DEK will affect more keys. According to
the estimation, in the worst case, the server needs to commit
updates in the large service24000050000 = 4.8 times as much
as in the small service. Overall, as measured, the server’s
computation time in the large service is6816 = 4.3 times as
much as in the small service.

B. Client Side

1) Analysis: At the client side, three main performance
metrics need to be measured:average rekey message size per
event, average number of decryption per event per user, and
maximum number of keys to be stored, that can well capture
the overhead of KTR on resource limited mobile devices
in terms of communication, storage, power consumption and
computation. Based on these three metrics, we can infer other
metrics that are more directly related to the mobile devices.
For example, if we decide a particular encryption algorithm,
we know the length of a key, the time to compute a key, and the
energy consumption to execute the algorithm. Consequently,
we can obtain metrics, such as the communication overhead
in the rekey messages, etc.

The first metric,average rekey message size per event, is
measured as the number of encryptions{∗}k in the rekey
message, represents communication cost and power consump-
tion in a mobile device. In a leave event, the rekey message
consists of rekey items for keys in the leave path. Hence, the
number of encryptions isO(2(log2(

n
e
)+dlog2(

de
m

))). In a join
event, the rekey message consists of rekey items for critical
keys in the enroll path. Hence, the number of encryptions is
O((1+ρ)(log2(

n
e
)+dlog2(

de
m

))), whereρ is the ratio of critical
keys over all keys in the enroll path. Our simulation shows that
ρ is around22.9±1.8% in an enroll path. In a shift event, the
rekey message consists of rekey items for keys in the leave
path and critical keys in the enroll path. Hence, the number of
encryptions isO((3 + ρ)(log2(

n
e
) + dlog2(

de
m

))). Considering
user activities, the average rekey message size would be
O(1

Λ (2λl + (1 + ρ)λj + (3 + ρ)λs)(log2(
n
e
) + dlog2(

de
m

))).
The second metric,average number of decryption per event

per user, measures computation cost and power consumption
in a mobile device, since the device needs to decrypt new
keys from rekey messages. Define the height of a key as its
distance to the bottom of a tree. For example, if a tree hasn

users, the height of its root key islog2n. Obviously, if a key’s
height is h, 2h users need to decrypt it when it is updated
in a rekey event. Hence, in a tree ofn users, when a path
of keys need to be changed, the total number of decryptions
is O(

∑logn
2

i=1 2i) ≈ O(2n). In a leave event, because there are
O(n

e
de
m

) users under a to-be-changed DEK, the total number
of encryptions for this DEK and its downward keys isO(2nd

m
).

Becaused DEKs need to be changed in a leave event,O(2nd2

m
)

decryptions are committed by affected users. Similarly, ina
join event, the total number of decryptions isO(2ρnd2

m
). In

a shift event, the number of decryptions isO(2(1 + ρ)nd2

m
).

Considering user activities, the average number of decryptions
would be O(1

Λ (2λl + 2ρλj + 2(1 + ρ)λs)
nd2

m
). Hence, on

average, each user decryptsO(1
Λ (2λl +2ρλj +2(1+ρ)λs)

d2

m
)

rekey items upon receiving a rekey message.
The third metric,maximum number of keys to be stored,

represents the storage demand which is proportional to the
number of keys a user needs to hold. Inside a tree, a user
needs to hold keys along the path from its leave node to the
root of the tree. Because a tree hasO(n

e
) users, a user holds

O(log2(
n
e
)) keys inside a tree. In the root graph, a user hold

keys from the root of the tree to all DEKs of the programs
that share the tree. Because a root is connected withd DEKs
and each DEK is connected withO(ed

m
) trees, a user holds

O(dlog2(
de
m

)) keys in the root graph. In total, a user should
hold O(log2(

n
e
) + dlog2(

de
m

)) keys. Because a user stays in
multiple trees in LKH, the user should holdO(dlog2(

n
e
) +

dlog2(
de
m

)) keys if keys are not shared.

2) Simulation: The analysis gives estimates on major per-
formance metrics. We notice that some factors could bring
more insightful results. For example, users may not be evenly
distributed in trees due to the fact that some programs may be
more popular than other programs. Also, users may be more or
less likely to stay in current subscriptions than to frequently
change their subscriptions. Hence, in the following, we use
simulation to examine the impacts of these user behaviors.

In the simulation, we compare KTR with three other rep-
resentative schemes: SKT, eLKH, LKH, as listed in Table
III, to illustrate how shared keyand critical key improve
the performance of key management in wireless broadcast
services. SKT is the approach in [28] where only shared key
tree is applied. eLKH is an approach where only critical key is
applied to enhance LKH. Neither shared key tree nor critical
key is adopted in LKH. If shared key tree is adopted, key
management is based on the key forest as illustrated in Figure
4; otherwise, a key tree is created for each program and a
user is assigned to all trees corresponding to the programs he
subscribes. If critical key is used, a key in an enroll path is
changed if and only if it is a critical key; otherwise, all keys
in the enroll path need to be changed (as in the other old
schemes). Table III lists four schemes representing different
solutions which may or may not adopt these two ideas. The
names of the schemes are self-explanatory. If key tree reuse
is adopted, key management is based on the key forest as
illustrated in Figure 4; otherwise, a key tree is created for
each program and a user is assigned to all trees corresponding
to the programs he subscribes. If critical key is used, a key
in an enroll path is changed if and only if it is a critical key;
otherwise, all keys in the enroll path need to be changed (as
in other schemes). Note that the well-known LKH is used as
a base line (i.e. neither shared key nor critical key is adopted).

a) Settings: We assume that the server provides 50
programs. In our experiments, the key forest consists of 300
trees when shared key tree is adopted. Each tree represents a
different option of subscriptions. We also assume that there
are 10000 users (on average) subscribing to the services. The
root graph in key forest was automatically generated according

12

TABLE III
KEY MANAGEMENT SCHEMES

Schemes shared key critical key
KTR Y Y
SKT Y N

eLKH N Y
LKH N N

to subscriptions. Each program had a different depth in root
graph depending on the number of subscriptions that include
the program. In the worst case where a program is included in
all subscriptions, the depth for this program in root graph is 9.
Most programs had a depth of 8 or less, because the probability
that a program is selected by more than 256 subscriptions is
low. At the same time, the tree depth is around 5, since 10000
users are randomly distributed to 300 trees.

In each experiment, we compare two equivalent key graphs
for shared key schemes and non-shared key schemes. We first
generate a random key forest and assign users to leaf nodes
of the key forest. Then, for non-shared key schemes (LKH
and eLKH), we assign users to different key trees according
to their subscriptions in shared key schemes. Any user event
in shared key schemes was also mapped into the equivalent
event in non-shared key schemes.

All three user events (i.e. join, shift and leave) are modeled
as independent Poisson processes. We letλl = λj so the total
number of users remains constant (i.e. around 10000). We vary
λl andλs separately in order to observe their impacts on the
rekey performance. The result of our performance comparison
is obtained by averaging the rekey cost over 3000 random user
events. Here, a user event is referred to an event in schemes
that adopt shared key tree. Such an event is mapped into
several user events in schemes that do not adopt shared key
tree. For example, a user joins a tree of multiple programs
in KTR is mapped as a sequence of events in LKH (each is
corresponding to the user joining a tree of these programs).

Four test cases are generated for evaluation based on major
subscriptions and major events (summarized in Table IV). In
Case I and Case III, 80% of the users subscribe to multiple
programs and the other 20% only subscribe to one of the
programs. In Case II and Case IV, 20% of the users subscribe
to multiple programs and the other 80% subscribe to only one
program. Furthermore, in Case I and Case II, the major events
are joins and leaves; while in Case III and Case IV, the major
events are shifts. In the simulations, we vary the rates for the
major events while keeping the other rates at 1.

b) Average Rekey Message Size Per Event:We first
evaluate performance of the key management schemes in terms
of average rekey message size, by fixingλs = 1 and varying
λl (x-axis) from 1 to 9 as shown in Figure 9(a) and (b).
KTR and SKT that adopt shared keys significantly outperforms
LKH, Because the major user events are join and leave, a
user only needs to join or leave one tree when he subscribes
or unsubscribes to multiple programs. In contrast, LKH that
does not have shared keys requires a user needs to join or
leave multiple trees for multiple programs. Furthermore, KTR
is better than SKT, because critical key in KTR allows the

TABLE IV
CASES IN KEY MANAGEMENT

Case Major subscriptions Major events
Case I Multiple Join and leave
Case II Single Join and leave
Case III Multiple Shift
Case IV Single Shift

server to change fewer keys.
Then, we evaluate performance of the key management

schemes by fixingλl = 1 and varyingλs (x-axis) from 1 to
9 as shown in Figure 9(c) and (d). Obviously, when the shift
rate grows, the performance of SKT turns worse because of
the extra overhead that is introduced in managing shared keys
when a user quits or adds some but not all of his subscribed
programs. Obviously, the adoption of critical keys incurs the
major improvement in terms of rekey message size. KTR and
eLKH are the best solutions.

By comparing CASE III and CASE IV (corresponding to
the subscriptions of multiple programs and single program,
respectively), we found that the extra overhead of shift is
higher in CASE III. Figure 9 also shows that KTR and STK are
more sensitive to these types of major user events than eLKH
and LKH. The average rekey message size in KTR and STK
grows as the shift rate increases and shrinks as the join/leave
rate increases. On the contrary, the average rekey message size
in eLKH and LKH remains almost flat regardless of the rate
of user events.

Based on our experimental results, by adopting only shared
key tree, SKT reduces the rekey message size to around 60% to
90% of LKH. By adopting critical keys alone, eLKH reduces
the rekey message size to around 55% to 65% of LKH. This
result also validates our claim that many keys in the enroll path
do not need to be changed. In fact, over all the experiments,
only around 23% keys in the enroll path need to be changed.

c) Average Number of Decryption Per Event Per User:
Power consumption and computation cost are two primary
concerns for mobile users. We use the average number of
decryptions to measure these costs. Similar to the experiments
in the previous section, we vary the rates of major events to
observe their impacts on decryption overhead. Figure 10 shows
that the schemes adopting critical keys (i.e. KTR and eLKH)
are better than SKT and LKH. The number of decryption in
eLKH is around 80% of that in LKH, and KTR’s is around
80% of SKT’s too. In all schemes, the number of decryptions
drops as the join/leave rate increases and rises as the shiftrate
increases.

However, the adoption of shared key has negative impacts
on reducing user’s decryption cost. In Figure 10, LKH is better
than SKT, especially when the shift rate is high. So does eLKH
in comparison with KTR. This can be explained as follows. In
shared key schemes, when a user shifts from a tree to another,
some users will be affected by the changed keys in both the
leave and the enroll paths if they subscribe to the programs that
the user keeps subscribing to. As previously discussed, shared
key schemes introduce extra rekey cost because they change
keys in two paths. On the contrary, in non-shared key schemes,

13

2 4 6 8
Join and leave rate

150

200

250

300

350

400

S
iz

e
of

 r
ek

ey
 m

es
sa

ge

KTR
SKT
eLKH
LKH

(a) Case I

2 4 6 8
Join and leave rate

150

200

250

300

350

400

S
iz

e
of

 r
ek

ey
 m

es
sa

ge

KTR
SKT
eLKH
LKH

(b) Case II

2 4 6 8
Shift rate

150

200

250

300

350

400

S
iz

e
of

 r
ek

ey
 m

es
sa

ge

KTR
SKT
eLKH
LKH

(c) Case III

2 4 6 8
Shift rate

150

200

250

300

350

400

S
iz

e
of

 r
ek

ey
 m

es
sa

ge

KTR
SKT
eLKH
LKH

(d) Case IV

Fig. 9. Average rekey message size per event

2 4 6 8
Join and leave rate

6

7

8

9

10

11

12

N
um

be
r

of
 d

ec
ry

pt
io

n KTR
SKT
eLKH
LKH

(a) Case I

2 4 6 8
Join and leave rate

2.0

2.5

3.0

3.5

4.0

N
um

be
r

of
 d

ec
ry

pt
io

n KTR
SKT
eLKH
LKH

(b) Case II

2 4 6 8
Shift rate

6

8

10

12

14

N
um

be
r

of
 d

ec
ry

pt
io

n

KTR
SKT
eLKH
LKH

(c) Case III

2 4 6 8
Shift rate

2.0

2.5

3.0

3.5

4.0

4.5

5.0

N
um

be
r

of
 d

ec
ry

pt
io

n

KTR
SKT
eLKH
LKH

(d) Case IV

Fig. 10. Average number of decryption per event per user

no key needs to be changed for the programs the user keeps
subscribing to. Hence, those users who are affected by keys in
two paths in shared key schemes only need to decrypt keys in
the leave path in non-shared key schemes. As a consequence,
the decryption cost per user is less in non-shared key schemes
that that in shared key schemes.

Figure 10 also shows that the user subscription pattern has
a great impact on the average number of decryptions. The
average number of decryptions in Case II and Case IV (where
only 20% of users subscribe multiple programs) is around 55%
of that in Case III and Case IV (where 80% of users subscribe
multiple programs). Obviously, if a user subscribes to more
programs, it is more likely that he will be affected by other
user activities.

d) Average Number of Keys Held Per User:Finally,
we evaluate the storage demand on mobile devices, which
is measured as the average number of keys held by each
user. One goal is to save storage by reducing the number of
keys each user needs to hold. Since KTR makes programs
share keys, KTR saves storage for a user when the user joins
a tree shared by more programs. As analyzed before, the
structure that programs share trees determines the number of
keys that can be saved. However, since users may favor some
subscriptions, users may concentrate in some trees. For users
subscribing to single programs, KTR has no advantage over
LKH.

The average storage demand is also affected by how users
are distributed in trees. In Figure 11, we vary the ratio
of users who only subscribe single programs and illustrate
the average storage demand. Obviously, when most users
subscribe to multiple programs (i.e. only20% users subscribe
single programs), KTR can save45% storage on average for
each user compared to LKH which assigns a separate set of
keys to each program. When more users (80% users) subscribe

0.2 0.4 0.6 0.8
Ratio of single-program subscription

40

60

80

100

120

140

S
to

ra
ge

Reuse
Nonreuse

Fig. 11. Average number of keys hold per user

to single programs, the storage reduction in KTR is only10%.
In summary, KTR combines the advantages of both shared

key tree and critical key. Among all schemes, it has a light
communication overhead (i.e. its average rekey message size
per event is the least or close to the smallest), incurs less
computation and power consumption on mobile devices than
the other schemes (i.e. its average number of decryption per
event per user is the smallest), and requires least storage in
mobile devices (i.e. its average number of keys held per user
is the smallest). Because a mobile receiver generally only has
limited resources, such an overhead saving can greatly benefit
the receivers so that they can have a longer working duration
and more computation capacity to process broadcast data.

VI. CONCLUSION

In this work, we investigated the issues of key management
in support ofsecurewireless broadcast services. We proposed
KTR as a scalable, efficient and secure key management
approach in the broadcast system. We used the key forest to
exploit the overlapping nature between users and programs
in broadcast services. KTR let multiple programs share a
single tree so that the users subscribing these programs can

14

hold fewer keys. In addition, we proposed a novel shared
key management approach to further reduce rekey cost by
identifying the minimum set of keys that must be changed
to ensure broadcast security. This approach is also applicable
to other LKH-based approaches to reduce the rekey cost as
in KTR. Our simulation showed that KTR can save about
45% of communication overhead in the broadcast channel and
about 50% of decryption cost for each user, compared with the
traditional LKH approach.

ACKNOWLEDGMENT

This work was partially supported by NSF ANI-0335241,
NSF CCR-0233324, and Department of Energy Early Career
PI Award. Wang-Chien Lee was supported in part by the
National Science Foundation under Grant no. IIS-0328881,
IIS-0534343 and CNS-0626709.

REFERENCES

[1] J. Xu, D. Lee, Q. Hu, and W.-C. Lee, “Data broadcast,” inHandbook of
Wireless Networks and Mobile Computing, I. Stojmenovic, Ed. New
York: John Wiley and Sons, 2002, pp. 243–265.

[2] D. Wallner, E. Harder, and R. Agee, “Key management for multicast:
issues and architectures,”IETF RFC 2627, 1999.

[3] J. Snoeyink, S. Suri, and G. Varghese, “A lower bound for multicast key
distribution,” in IEEE Infocom, vol. 1, 2001, pp. 422–431.

[4] S. Mittra, “Iolus: a framework for scalable secure multicasting,” inACM
SIGCOMM, vol. 277-288, 1997.

[5] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications
using key graphs,” inACM SIGCOMM, 1998, pp. 68–79.

[6] Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-tolerant key
agreement for dynamic collaborative groups,” inACM CCS, 2000, pp.
235–244.

[7] S. Setia, S. Koussih, S. Jajodia, and E. Harder, “Kronos:a scalable
group re-keying approach for secure multicast,” inIEEE Symposium on
Security and Privacy, 2000, pp. 215–228.

[8] Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam, “Reliable group
rekeying: a performance analysis,” inACM SIGCOMM, 2001, pp. 27–
38.

[9] M. Onen and R. Molva, “Reliable group rekeying with a customer
perspective,” inIEEE GLOBECOM, vol. 4, 2004, pp. 2072–2076.

[10] B. Briscoe, “Marks: zero side effect multicast key management using
arbitrarily revealed key sequences,” inNGC, 1999, pp. 301–320.

[11] A. Wool, “Key management for encrypted broadcast,”ACM Transactions
on Information and System Security, vol. 3, no. 2, pp. 107–134, 2000.

[12] M. Just, E. Kranakis, D. Krizanc, and P. v. Oorschot, “On key distribu-
tion via true broadcasting,” inACM CCS, 1994, pp. 81–88.

[13] M. Luby and J. Staddon, “Combinatorial bounds for broadcast encryp-
tion,” in Advances in Cryptology, Eurocrypt, 1998, pp. 512–526.

[14] A. Fiat and M. Naor, “Broadcast encryption,” inAdvances in Cryptology,
CRYPTO, 1994, pp. 480–491.

[15] C. Blundo and A. Cresti, “Space requirements for broadcast encryption,”
in Advances in Cryptology, Eurocrypt, 1994, pp. 471–486.

[16] D. Naor, M. Naor, and J. B. Lotspiech, “Revocation and tracing schemes
for stateless receivers,” inAdvances in Cryptology, CRYPTO, 2001, pp.
41–62.

[17] Basic Interoperable Scrambling System,
http://www.ebu.ch/CMSimages/en/tecdoc t3292 tcm6-10493.pdf,
2002.

[18] “North american mpeg-2 information,” http://www.coolstf.com/mpeg/.
[19] “Irdeto access,” http://www.irdeto.com/index.html, 2006.
[20] Markus G. Kuhn, “Analysis of the nagravision video scrambling

method,” University of Cambridge, Tech. Rep., 1998.
[21] “Viaccess,” http://www.viaccess.com/en/, 2006.
[22] “Nds videoguard: Security, flexibility, and growth,”

http://www.ndsworld.com/conditionalaccess/conditionalaccess.html,
2006.

[23] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas,
“Multicast security: a taxonomy and some efficient constructions,” in
IEEE Infocom, vol. 2, 1999, pp. 708–716.

[24] A. Perrig, D. Song, and D. Tygar, “Elk, a new protocol for efficient large-
group key distribution,” inIEEE Symposium on Security and Privacy,
2001, pp. 247–262.

[25] C. K. Wong and S. S. Lam, “Keystone: a group key management
service,” in International Conference on Telecommunications, 2000.

[26] M. Moyer, J. Rao, and P. Rohatgi, “Maintaining balancedkey trees for
secure multicast,”draft-irtf-smug-key-tree-balance-00.txt, 1999.

[27] J. Staddon, S. Miner, M. Franklin, D. Balfanz, M. Malkin, and D. Dean,
“Self-healing key distribution with revocation,” inIEEE Symposium on
Security and Privacy, 2002, pp. 241–257.

[28] Y. Sun and K. R. Liu, “Scalable hierarchical access control in secure
group communications,” inIEEE Infocom, 2004.

Qijun Gu is an assistant professor of Computer
Science at Texas State University - San Marcos. He
received the Ph.D. degree in Information Sciences
and Technology from Pennsylvania State University
in 2005, the Master degree and the Bachelor degree
from Peking University, China, in 2001 and 1998.
His research interests cover various topics on net-
working, security and telecommunication, including
vulnerability in sensor applications, authentication in
ad hoc and sensor networks, and security in peer to
peer systems, denial of service in wireless networks,

key management in broadcast services, worm propagation andcontainment.

PLACE
PHOTO
HERE

Peng Liu is an associate professor of Information
Sciences and Technology at the Pennsylvania State
University. He is the Research Director of the Penn
State Center for Information Assurance, and Director
of the Cyber Security Lab. His research interests
are in all areas of computer and network security.
Dr. Liu has published a book and over 100 refereed
technical papers. His research has been sponsored
by DARPA, NSF, AFOSR, DOE, DHS, ARO, NSA,
CISCO, HP, Japan JSPS, and Penn State. Dr. Liu is a
recipient of the US Dept. of Energy Early CAREER

PI Award.

Wang-Chien Leeis an Associate Professor of Com-
puter Science and Engineering at Pennsylvania State
University. He received his B.S. from the Infor-
mation Science Department, National Chiao Tung
University, Taiwan, his M.S. from the Computer
Science Department, Indiana University, and his
Ph.D. from the Computer and Information Science
Department, the Ohio State University. He is par-
ticularly interested in developing data management
techniques (including accessing, indexing, caching,
aggregation, dissemination, and query processing)

for supporting complex queries in a wide spectrum of networking and
mobile environments such as peer-to-peer networks, mobilead-hoc networks,
wireless sensor networks, and wireless broadcast systems. Meanwhile, he
has worked on XML, security, information integration/retrieval, and object-
oriented databases. His research has been supported by NSF and industry
grants. Most of his research result has been published in prestigious journals
and conferences in the fields of databases, mobile computingand networking.

PLACE
PHOTO
HERE

Chao-Hsien Chu is a Professor of Information
Sciences and Technology and the founding director
of the Center for Information Assurance at Penn
State. His Ph.D. in Business Administration was
from Penn State. Dr. Chu’s recent research fo-
cuses on information assurance & security, RFID
technologies integration, security, and deployment,
emerging information/intelligent technologies, and
supply chain integration. He has published more than
110 refereed articles in top-ranking journals and in
major conference proceedings. Three of his papers

received the best paper awards. His research was supported by National
Science Foundation, Department of Defense, National Security Agency, HP,
Cisco Systems, and others.

