
Multi-Phase Damage Confinement in Database Systems for Intrusion Tolerance

Peng Liu Sushil Jajodia
Department of Information Systems Center for Secure Information Systems

UMBC George Mason University

Baltimore, MD 21250 Fairfax, VA 22030

pliu@umbc.edu jajodia@gmu.edu

Abstract

Preventive measures sometimes fail to defect malicious
attacks. With cyber attacks on data-intensive applications
becoming an ever more serious threat, intrusion tolerant
database systems are a significant concern. Intrusion detec-
tors are a key component of an intrusion tolerant database
system. However, a relatively long detection latency is
usually unavoidable for detection accuracy, especially in
anomaly detection, and it can cause ineffective - to some
degree at least - damage confinement. In a busy database
ineffective confinement can make the database too dam-
aged to be useful. In this paper, we present an innova-
tive multi-phase damage confinement approach to solve this
problem. In contract to a traditional one-phase confinement
approach our approach has one confining phase to quickly
confine the damage, and one or more later on unconfining
phases to unconfine the objects that are mistakenly confined
during the first phase. Our approach can ensure no damage
spreading after the detection time, although some availabil-
ity can be temporarily lost. Our approach can be easily ex-
tended to support flexible control of damage spreading and
multiple confinement policies. Our approach is practical,
effective, efficient, and to a large extent assessment inde-
pendent.

Keywords: Damage Confinement, Intrusion Tolerance,
Database Security

1 Introduction

Database security concerns the confidentiality, integrity,
and availability of data stored in a database. A broad span of
research from authorization [GW76, RBKW94, JSSB97],
to inference control [Ada89], to multilevel secure databases
[WSQ94, SC98], and to multilevel secure transaction pro-
cessing [AJG99], addresses primarily how to protect the se-
curity of a database, especially its confidentiality. However,

very limited research has been done on how to survive suc-
cessful database attacks, which can seriously impair the in-
tegrity and availability of a database. Experience with data-
intensive applications such as credit card billing, banking,
air traffic control, logistics management, inventory track-
ing, and online stock trading, has shown that a variety of
attacks do succeed to fool traditional database protection
mechanisms. In fact, we must recognize that not all attacks
– even obvious ones – can be averted at their outset. Attacks
that succeed, to some degree at least, are unavoidable. With
cyber attacks on data-intensive internet applications, i.e., e-
commerce systems, becoming an ever more serious threat
to our economy, society, and everyday lives, attack resistant
database systems that can survive malicious attacks are a
significant concern.

One critical step towards attack resistant database sys-
tems is intrusion detection, which has attracted many re-
searchers [D.E87, LTG+92, JL93, HL93, Lun93, MHL94,
LM98, LB98, LSM99]. Intrusion detection systems moni-
tor system or network activity to discover attempts to dis-
rupt or gain illicit access to systems. The methodology
of intrusion detection can be roughly classed as being ei-
ther based on statistical profiles [JV91, JV94, SM97] or on
known patterns of attacks, called signatures [Ilg93, GL91,
PK92, IKP95, SG97]. Intrusion detection can supplement
protection of network and information systems by reject-
ing the future access of detected attackers and by provid-
ing useful hints on how to strengthen the defense. How-
ever, intrusion detection has several inherent limitations:
(a) Intrusion detection makes the system attack-aware but
not attack-resistant, that is, intrusion detection itself cannot
maintain the integrity and availability of the database in face
of attacks. (b) Achieving accurate detection is usually dif-
ficult or expensive. The false alarm rate is high in many
cases. (c) The average detection latency in many cases is
too long to effectively confine the damage.

To overcome the limitations of intrusion detection, a
broader perspective is introduced, saying that in addition to

1

detecting attacks, countermeasures to these successful at-
tacks should be planned and deployed in advance. In the
literature, this is referred to as survivability or intrusion tol-
erance. In this paper, we will study a critical database intru-
sion tolerance problem beyond intrusion detection, namely
damage confinement, and present a set of innovative algo-
rithms to solve the problem.

1.1 The Problem

The damage confinement problem can only be clearly
identified in the context of an intrusion tolerant database
system. Database intrusion tolerance can be enforced at two
possible levels: operating system (OS) level and transaction
level. Although transaction level methods cannot handle OS
level attacks, it is shown that in many applications where
attacks are enforced mainly through malicious transactions
transaction level methods can tolerate intrusions in a much
more effective and efficient way. Moreover, it is shown that
OS level intrusion tolerance techniques such as those pro-
posed in [Lun93, LM98, MG96a, MG96b, BGJ00], can be
directly integrated into a transaction level intrusion toler-
ance framework to complement it with the ability to tolerate
OS level attacks. This paper will focus on transaction level
intrusion tolerance, and our presentation will be based on
the intrusion tolerant database system architecture shown in
Figure 1.

The architecture is built on top of a traditional COTS
(Commercial-Of-The-Shelf) DBMS. Within the frame-
work, the Intrusion Detector identifies malicious transac-
tions based on the history kept (mainly) in the log. The
Damage Assessor locates the damage caused by the de-
tected transactions. The Damage Repairer repairs the lo-
cated damage using some specific UNDO transactions. The
Damage Confinement Manager restricts the access to the
objects that have been identified by the Damage Assessor
as damaged, and unconfines an object after it is cleaned.
The Policy Enforcement Manager (PEM) (a) functions as a
proxy for normal user transactions and those UNDO transac-
tions, and (b) is responsible for enforcing system-wide in-
trusion tolerant policies. For example, a policy may require
the PEM to reject every new transaction submitted by an
user as soon as the Intrusion Detector finds that a malicious
transaction is submitted by the user. It should be noticed
that the framework is designed to do all the intrusion toler-
ance work on-the-fly without the need to periodically halt
normal transaction processing.

The complexity of the framework is mainly caused by a
phenomenon denoted damage spreading. In a database, the
results of one transaction can affect the execution of some
other transactions. Informally, when a transaction T i reads
an object x updated by another transaction T j , Ti is directly
affected by Tj . If a third transaction Tk is affected by Ti,

Policy Enforcement
Manager

Scheduler

Recovery Manager

Damage Confinement
Manager

Database

Log

User Transactions

Database Applications

Undo Transactions

A Traditional Database System

Intrusion Detector

Damage Assessor

Damage Repairer

Figure 1. An Intrusion Tolerant Database Sys-
tem Architecture

but not directly affected by Tj , Tk is indirectly affected by
Tj . It is easy to see that when a (relatively old) transaction
Bi that updates x is identified malicious, the damage on x
can spread to every object updated by a transaction that is
affected by Bi, directly or indirectly. The job of the Dam-
age Assessor and the Damage Repairer is to locate each
affected transaction and recover the database from the dam-
age caused on the objects updated by the transaction. In
particular, when an affected transaction is located, the Dam-
age Repairer builds a specific UNDO transaction to clean
each object updated by the transaction (and not cleaned yet).
Cleaning an object is simply done by restoring the value of
the object to its latest undamaged version. This job gets
even more difficult as the execution of new transactions con-
tinues because the damage can spread to new transactions
and cleaned objects can be re-damaged by new transactions.
Therefore, the main task of this framework is to guarantee
that damage spreading is (dynamically) controlled in such a
way that the database will not be damaged to a degree that
is unacceptable or useless.

The limitation of this architecture is mainly due to the
fact that the effectiveness of the framework is heavily de-
pendent on the performance of the Intrusion Detector (For
example, the framework cannot handle the malicious trans-
actions not captured by the Intrusion Detector), and the fact
that for accuracy a (relatively) long detection latency is usu-
ally caused, especially when anomaly detection based on
statistical profiles is enforced. One main reason for the
latency is that intrusion detection has to make a tradeoff
between meeting the requirement of reporting an intrusion
accurately and the requirement of detecting as many intru-
sions as possible, which can often result in conflicting de-
sign goals. For example, in anomaly detection, for detection

2

accuracy the anomaly threshold for reporting must be high,
thus many intrusions with gradual anomaly cannot be iden-
tified; on the other hand, in order to capture more intrusions,
the threshold should instead be lower, thus the false alarm
rate would increase and many legitimate transactions can
be mistaken for malicious and suffer denial-of-service. To
resolve this dilemma, extending the monitoring time win-
dow is one feasible solution. By collecting and investigating
more proofs about a suspicious activity, usually more accu-
racy can be achieved. However, it should be noticed that
even with a fair latency usually no intrusion detector can
identify every malicious transaction, so it is possible that
some objects are left damaged without being located and
repaired. Cleaning these objects is out of the scope of this
paper. It should also be noticed that since the false alarm
rate is usually not zero, our framework can clean some ac-
tually undamaged objects. This issue is also out of the scope
of the paper.

An instant impact of the detection latency is that a sig-
nificant assessment latency can be caused. It is easy to
see that (a) if every malicious transaction can be identi-
fied before it commits, then aborting the transaction pre-
vents the database from being damaged and no assessment
is needed; (b) if every malicious transaction can be identi-
fied just after it commits, then very little damage can spread,
so damage assessment could be done quickly. However,
since there is usually a significant detection latency, when
a malicious transaction Bi is identified, in the history there
can be already a lot of transactions following B i and many
of them may have already been affected, directly or indi-
rectly, by Bi. Damage assessment at this situation will
certainly cause a significant delay. In addition to detection
delay, another important reason for the assessment latency
is the computing time required for assessment. As shown
in [LAJ00, AJL98], damage assessment itself can spend
substantial computation time, although proportional to the
length of the history. The computation needs to mine the
history log for the set of affected transactions and locate the
objects updated by these transactions.

The problem we want to solve in this paper is not about
how to reduce the detection latency or assessment latency,
instead, the problem is that significant assessment latency
can cause ineffective - to some degree at least - damage
confinement. In the framework, damage will not be con-
fined until an object is reported by the Damage Assessor
as damaged. Hence damage confinement depends on dam-
age assessment. However, since there is usually a signif-
icant latency for locating a damaged object x, during the
latency many new transactions may read x and spread the
damage on x to the objects updated by them. As a result,
when x is confined many other objects may have already
been damaged, and the situation can feed upon itself and be-
come worse because as the damage spreads the assessment

latency could become even longer. This clearly contra-
dicts with our original motivation of damage confinement.
Moreover, in a heavily accessed database this can make the
database become too damaged to be useful. Therefore, how
to effectively confine damage is a significant concern.

1.2 Our Approach and Contribution

In this paper, we present an innovative multi-phase dam-
age confinement approach to solve the above problem. In
contract to prior work where (a) an object x is confined by
an one-phase operation; and (b) damage confinement de-
pends on assessment, our approach has one confining phase,
denoted initial confinement, and one or more later on un-
confining phases, denoted confinement relaxation, to un-
confine the objects that are mistakenly confined during the
first phase. Our approach has the following properties:

� Although the initial confinement phase can mistakenly
confine some undamaged objects, thus it can cause
some availability loss, our approach can guarantee that
no damage will spread after the first phase which can
be instantly done. Hence the database integrity level
can be easily stabilized and the cost of assessment and
repair can be dramatically reduced.

� Except for the final unconfining phase, all previous
confinement phases, including the confining phase and
other unconfining phases, are assessment independent.
In this way, confinement and assessment turn from two
serial processes to two concurrent and collaborative
processes. Hence the negative impact of the assess-
ment latency can be avoided.

� Our approach is efficient and effective, and can be
easily extended to support flexible control of damage
spreading. To one extreme, no damage spreading is al-
lowed; some computing resources are saved but some
availability is lost. To the other extreme, the one-phase
approach is taken; maximum availability is got but
substantial computing resources can be cost.

� Our approach is practical. It can be seamlessly inte-
grated with the existing damage assessment and repair
mechanisms.

The rest of the paper is organized as follows. In Section
2, we formalize the problem. We present our approach in
Section 3. In Section 4, we present some alternatives. We
address some implementation issues in Section 5. In Sec-
tion 6, we discuss related work. We conclude the paper in
Section 7.

3

2 Multi-Phase Damage Confinement: The
Model

In our model, a database is a set of data objects (objects
for short). Objects are handled by transactions. A trans-
action is a partial order of read and write operations that
either commits or aborts. Since aborted transactions have
nothing to do with intrusion tolerance, for simplicity we as-
sume every transaction commits. Two transactions conflict
if they both have an operation on the same object and one of
them is write. The (usually concurrent) execution of a set of
transactions is modeled by a structure called a history. The
correctness of a history is typically captured by the notion of
serializability [BHG87]. We assume strict two-phase lock-
ing (2PL) is used to produce serializable histories where the
commit order indicates the serial order among transactions.
Moreover, we denote the set of objects read by a transaction
Ti as Ti’s read set, and we denote the set of objects written
by Ti as Ti’s write set.

In a history, a transaction Ti is dependent upon another
transaction Tj , if there exists an object x such that Ti reads
x after Tj updates it, and there is no transaction that updates
x between the time Tj updates x and Ti reads x. The de-
pendent upon relation indicates the path along which dam-
age spreads. In particular, if a transaction which updates an
object x is dependent upon a malicious transaction which
updates an object y, we say the damage on y spreads to x,
and we say x is damaged. If a transaction which updates
an object x reads a damaged object y, we also say that the
damage on y spreads to x. Moreover, a transaction Tu af-
fects transaction Tv if the ordered pair (Tv; Tu) is in the
transitive closure of the dependent upon relation. Therefore
if a malicious transactionBi affects an innocent transaction
Gj , the damage on Bi’s write set will spread to Gj’s write
set, or every object in Gj ’s write set will be damaged.

Damage assessment can be done by computing which
transactions are affected when a malicious transaction B i

is identified because only the write sets of affected transac-
tions will be damaged and such write sets are easy to get
from the log. In order to compute the set of affected trans-
actions, we assume a specific graph, denoted dependency
graph, is used [AJL98]. We define a dependency graph for
a set of transactions S in a history as DG(S) = (V;E) in
which V is the union of S and the set of transactions that
are affected by S. There is an edge, Ti ! Tj , in E if
Ti 2 V , Tj 2 (V �S), and Tj is dependent upon Ti. Since
besides S DG(S) includes all and only the transactions af-
fected by a transaction in S, computingDG(S) does the job
of assessing the damage caused by S. To illustrate, consider
the following history over (B1; G1; G2; G3; G4) where B1

is malicious and others are innocent. DG(B1) is shown in
Figure 2(a). Since the write sets of B1, G1, G2, and G4

are fx; ug, fx; yg, fy; vg, and fu; y; zg, perspectively, the

damaged part of the database is fx; y; u; v; zg.

H1 : rB1
[x]wB1

[x]rB1
[u]wB1

[u]cB1
rG1

[x]wG1
[x]rG3

[z]
wG3

[z]cG3
rG1

[y]wG1
[y]cG1

rG2
[y]wG2

[y]rG2
[v]

wG2
[v]cG2

rG4
[u]wG4

[u]rG4
[y]wG4

[y]rG4
[z]wG4

[z]cG4

We model the initial confinement phase as a simple es-
timation problem. When a malicious transaction B i is de-
tected, the initial confinement phase gets the set of objects
to confine by ‘estimating’ which objects in the database may
have been damaged. This set is called a confinement set, de-
noted SE . Accurate damage assessment is not possible in
this phase, since our approach requires the confining phase
be finished in a very short period of time so that the dam-
age can be confined before any new transaction is executed
(to possibly spread the damage), and the Damage Assessor
usually needs a much longer period of time to do the as-
sessment. Assume at this moment the set of objects that
are really damaged is SD , then the relation between SE and
SD is of four types: (1) SE = SD (exact estimation); (2)
SE � SD (over estimation); (3) SE � SD (not enough
estimation); (4) SE \ SD 6= SE , and SE \ SD 6= SD (ap-
proximate estimation).

Exact estimation is our goal, but it is almost impossible
to achieve. Over estimation is a reasonable strategy in most
cases because it can guarantee that after SE is confined no
damage will spread. Not enough estimation can only sup-
port partial confinement, and it is too restrict for an estima-
tion. When approximate estimation is enforced, confined
data objects may not be damaged and damaged objects may
not be confined. Over estimation and approximate estima-
tion are two better strategies. However, as we will mention
in Section 4, none of these two strategies is strictly better
than the other. In this paper, we will focus on over esti-
mation, although in Section 4 some approximate estimation
methods are discussed.

We model each later on unconfining phase as a process to
transform one confinement set to another. Hence the whole
multi-phase confinement process can be modeled by a se-
quence of confinement sets, denoted SE ; S2; S3; :::Sn; SD.
SE indicates the result of the initial confinement phase. S i,
2 � i � n, indicates the result of the ith phase. The goal of
the whole confinement phase is to converge the sequence to
SD. The sequence can be converged to SD in many differ-
ent ways. The way our approach will take is that SE � S1,
Si � Sj for i < j, and Sn � SD . It should be noticed
that the above discussion does not take into account the ob-
jects that are cleaned by the Damage Repairer during the
confinement process. Typically the objects cleaned during
a confinement phase i should be removed from S i.

Integrity and availability of a database are measured in
different ways in different contexts. In our model, avail-
ability is measured by the percentage of unconfined objects,
and integrity is measured by the percentage of undamaged

4

or clean data objects. Note that our measurement of in-
tegrity is very different from traditional database systems
where integrity is measured based on integrity constraints.

It is helpful to reconsider the different kinds of multi-
phase damage confinement processes from another angle,
namely damage leakages. In our model, damage leakages
of the initial confinement phase are measured by the set of
objects that are not put into SE . Damage leakages of an
unconfining phase are measured by the set of objects that
are damaged but are mistakenly unconfined. Multi-phase
damage confinement mechanisms can be broken down into
two categories based on whether or not they might cause
damage leakages during the whole confinement process. A
multi-phase damage confinement mechanism is strict if no
damage leakages are caused in either the confining phase
or some later on unconfining phase, otherwise, it is un-
strict. When a strict mechanism is enforced, no damage
will spread, and the damage assessment process can be ter-
minated after the last transaction that commits before the
detection of Bi is scanned because no transaction executed
after the detection of Bi will be affected. However, when a
mechanism is unstrict, the Damage Assessor needs to con-
tinue scanning new transactions until all the damage spread
to these new transactions is repaired. More comparison of
these two categories will be discussed in Section 4.

3 Multi-Phase Damage Confinement: The
Approach

In this section, we will present a strict multi-phase con-
finement approach. The techniques for approximate or un-
strict confinement are addressed in Section 4. We start with
a basic scheme using time stamps. However, Scheme I
can cause damage leakages. We then show how to extend
Scheme I to achieve strict confinement and less availability
loss. At last, we describe our final scheme which satisfies all
the properties we mentioned earlier. For clarity, we assume
after a malicious transaction Bi is identified no other mali-
cious transactions will be identified until the damage caused
by Bi is repaired. Our approach can be easily extended to
support multiple malicious transactions.

3.1 Data Structures

Our approach uses the following major data structures:

� each object x is associated with a time stamp, denote
tsx, which indicates when x is updated. Time stamps
are supported by many DBMS, for example, Oracle
supports time stamps by maintaining them in a specific
field of a record.

� a Committed Transaction Table (CTT) that is an array
of records. Each record has four fields: (1) a trans-

action ID that uniquely identifies a transaction; (2) a
commit time that indicates when the transaction com-
mits; (3) a transaction type that indicates the category
of the transaction (Note that ad-hoc transactions have
no transaction types); and (4) a list of input arguments
of the transaction.

� an unconfinement set, denoted SU , which maintains
the set of objects that should be unconfined. SU is
changed from time to time.

� a dependency graph for the identified malicious trans-
action Bi, denoted DG(Bi).

� a dependency graph for the type of B i, denoted
DG(type(Bi)). This graph is built in a way sightly
different from a normal dependency graph.

� a materialized version of DG(type(Bi)).

� the log that records the history. We assume every read
or write operation of the history is recorded in the log
(COTS DBMS usually do not record read operations,
techniques for getting read information are addressed
in [AJL98]).

3.2 Scheme I: Time Stamp Based Damage Con-
finement

When a malicious transaction Bi is identified:

Initial confinement: The initial confinement is done by
rejecting the access from users to Bi’s write set and every
object x associated with a time stamp later than the com-
mit time of Bi, denoted ctBi

, which is obtained from the
CTT table (Note that all the objects updated by Bi must be
associated with a time stamp earlier than ctBi

). The ratio-
nal is that any object x which has not been updated after
Bi commits, except those updated by Bi, will not be dam-
aged, because if we suppose such a x is damaged, then since
damage can only spread along the affect relation, x must be
updated by a transaction Gj which is affected by Bi. How-
ever, according to strict 2PL the fact that Gj is affected by
Bi implies that x is updated after Bi commits. This contra-
dicts the assumption.

Although when the initial confinement is enforced no
new transaction can access confined objects, continuous ex-
ecution of the set of active transactions (if any) that had read
some confined objects before the initial confinement (but
will not read any confined object after the initial confine-
ment) can certainly spread the damage. Hence these active
transactions must be aborted. Since only the objects that are
updated after Bi commits could be damaged, and since no
active (or new) transaction will spread the damage, the ini-
tial confinement phase causes no damage leakages.

5

B 1

G 1

G 2

G 4

(a) Graph 1

Order-Status

Delivery

Payment

(b) Graph 2

A

B

C D

(c) Graph 3

Figure 2. Example Dependency Graphs

Confinement Relaxation: We assume the Damage As-
sessor uses DG(Bi) to do damage assessment. DG(Bi)
is built as the history log is scanned by the Damage Asses-
sor. The scanning starts at Bi. When a transaction Gj is
scanned, if it is not in DG(Bi) then its write set will be put
into SU , that is, Gj’s write set are unconfined and open to
access again. The rational is that since Gj is not affected,
Gj’s updates should cause no damage. If Gj is in DG(Bi),
then a specific UNDO transaction is executed to clean the
damage on Gj ’s write set. Since every transaction will be
logged, an UNDO transaction can also be scanned. When
an UNDO transaction Uk is scanned, Uk’s write set will be
put into SU . The rational is that after a damaged object is
cleaned it should be unconfined.

In order to enable confinement relaxation, when a trans-
action asks to access an object x we let the PEM first check
if tsx � ct Bi. If so the access is allowed, if not we let
the PEM check if x is in SU . If x is in SU then the access
should be allowed (subject to other DBMS access control
rules). Moreover, in order to support UNDO transactions,
we let the PEM allow UNDO transactions to access objects
updated after Bi commits.

3.3 Scheme II: Handling Damage Leakages dur-
ing Assessment and Repair

Scheme I has a serious problem, that is, it can cause dam-
age leakages. Reconsider historyH1 presented in Section 2.
Here we assume B1 is identified after G4 commits. Since
G3 is not in the graph (shown in Figure 2(a)) when it is
scanned, according to Scheme I G3’s write set, namely fzg,
will be unconfined. However, the fact that z is not dam-
aged after G3 is executed does not guarantee that z will not
be damaged later. In fact, when z is later on updated by
G4, the damage spreads from B1’s write set and G2’s write
set to z. Since z is damaged before the initial confinement,
and when z is unconfined it is impossible that z is cleaned
by an UNDO transaction (because the UNDO transaction that
cleans z will only be executed whenG4 is later on scanned),
so z is damaged when it is unconfined. Although when G4

is found affected z can be re-confined, till then the leaked
damage may have already spread to many other objects.

The goal of Scheme II is to avoid the damage leakages
caused by Scheme I. The algorithm is as follows. Note that
here only the differences from Scheme I are presented.

� When a transaction Gj is scanned, if it is not in
DG(Bi) then instead of putting the whole write set
of Gj into SU , the PEM checks the time stamp of each
object x updated by Gj . If tsx � ctGj

, then the PEM
puts x into SU ; otherwise, the PEM keeps x confined.

As shown in Theorem 1, Scheme II will cause no dam-
age leakages. Therefore Scheme II bounds the assessment
and repair process within the part of the history that be-
gins with Bi and ends when the initial confinement phase is
done, thus Scheme II can significantly simplify the intrusion
tolerance process.

Theorem 1 Scheme II causes no damage leakages.

Proof: During the confinement relaxation phase, when a
transaction Gk is scanned and found not in DG(Bi), for
each object x updated by Gk, if tsx � ctGk

, we are sure
that x is latestly updated by Gk. Since Gk is not affected, x
is not damaged. If tsx > ctGk

, then there must be at least
one transaction updating x after Gk commits. If all these
transactions are unaffected by Bi, then x is undamaged;
otherwise, x will be damaged by at least one of these trans-
actions. Hence keeping x confined when tsx > ctGk

avoids
all the possible damage leakages. Note that it is impossible
for tsx to be later than the initial confinement phase, be-
cause if so then x must have been updated after the initial
confinement phase. Since x is updated by Gk after Bi com-
mits, the initial confinement phase will confine x until Gk

is scanned, so no transactions executed after the initial con-
finement phase can update x before Gk is scanned. This
contradicts with the assumption. 2

6

3.4 Scheme III: Exploiting Transaction Access
Patterns

Schemes I and II enforce the initial confinement based
on time stamps and confine every object updated after B i

commits. However, in most cases only a small portion of
the objects updated after Bi commits are damaged. There-
fore, Schemes I and II can confine a large number of un-
damaged objects during the confining phase. Although later
on unconfining phases can unconfine these undamaged ob-
jects, the relaxation latency, which is measured by the time
window between the time an undamaged object x is mistak-
enly confined and the time x is unconfined, is usually long
because Schemes I and II depend on a slow assessment-
triggered unconfining process. As a result, substantial avail-
ability can be lost during the relaxation latency.

The goal of scheme III is to reduce the relaxation la-
tency. The idea is to exploit transaction profiles to insert one
or two assessment independent, much quicker unconfining
phases between the confining phase and the assessment trig-
gered unconfining phase. The advantage is that with a much
shorter relaxation latency a large number of undamaged but
confined objects could be unconfined by these assessment
independent phases. It should be noticed that this approach
is only good for canned applications where (1) the code of
each transaction is fixed and pre-known, and (2) transac-
tions running the same code belong to the same type. For
ad-hoc transactions, since transaction codes are known only
at run time, no pre-computations can be done to reduce the
relaxation latency. In the following, we assume each trans-
action belongs to a specific type and the profile or code for
each transaction type is pre-known.

The assessment independent unconfining phases still use
a dependency graph to compute which objects are not dam-
aged. However, the dependency graphs used here are built
not based on the log, but based on transaction profiles. The
first step to build the graphs is to extract the read and write
sets of a transaction from its profile. Here we use an ex-
ample to show the idea. We call the read and write sets
extracted from transaction profiles templates because they
are not captured from real transaction executions.

We start with the transaction profile of TPC-A, a well
known database benchmark [Gra93], as an example. TPC-
A is stated in terms of a hypothetical bank. The bank has
one or more branches. Each branch has multiple tellers.
The bank has many customers , each with an account. The
database represents the cash position of each entity (branch,
teller, and account). TPC-A has only one type of trans-
actions, which represents the work done when a customer
makes a deposit or a withdrawal against his account. The
transaction profile is specified as follows:

Input: Aid, Tid, Bid, Delta
BEGIN TRANSACTION

Update Account Balance where Account ID = Aid:
Read Account Balance from Account
Set Account Balance = Account Balance + Delta
Write Account Balance to Account

Write to History:
Aid, Tid, Bid, Delta, Time stamp

Update Teller where Teller ID = Tid:
Set Teller Balance = Teller Balance + Delta
Write Teller Balance to Teller

Update Branch where Branch ID = Bid:
Set Branch Balance = Branch Balance + Delta
Write Branch Balance to Branch

COMMIT TRANSACTION

Here, Aid(Account ID), Tid(Teller ID),
and Bid(Branch ID) are keys to the relevant records. The
read and write set templates for this type of transactions are
specified as follows. Note that they are specified at both the
tuple (record) level where each object denotes a record, and
the element (field) level where each object denotes a field
of a record (Finer confinement is achieved at the element
level).

At the tuple level:
Read Set= fAccount.Aid, Teller.Tid, Branch.Bidg
Write Set= fAccount.Aid, Account.Tid, Branch.Bidg

At the element level:
Read Set= f Account.Aid.Account Balance,
Teller.Tid.Teller Balance, Branch.Bid.Branch Balance g
Write Set= f Account.Aid.Account Balance,
Teller.Tid.Teller Balance, Branch.Bid.Branch Balance g

Getting a template is generally not a easy job. First, in
many applications, a transaction can run several SQL state-
ments and each statement can be very complex. Second,
many transactions have conditional branches in their con-
trol flows. Which branch will be chosen in a real execution
depends on the input arguments and the current database
state. In [AJL98], a general approach to extract read set
templates, which can be easily extended to extract write set
templates, is proposed. Several specific guidelines (or rules)
are provided to deal with the complexities we have men-
tioned above. In this paper, we justify the feasibility of this
approach using a practical inventory management database
application which handles millions of records. In partic-
ular, we investigate how to extract templates from TPC-C
transaction profiles. TPC-C benchmark [Gra93] simulates a
practical inventory management database application. The
results of our study, namely the read and write set templates
of TPC-C profiles, are shown in Appendix B. Our study
shows that good templates can be got from real world ap-
plications such as TPC-C.

Templates can tell us which kind of data objects (i.e.,
which table or which column) will be read or written by

7

a transaction, but cannot tell us which objects are actually
read or written by the transaction. In order to get a concrete
read or write set of a transaction T , we have to materialize
T ’s templates using T ’s input arguments. Materialization
is usually not a complicated process (A general approach is
proposed in [AJL98]). For example, for a TPC-A transac-
tion instance with the input Aid=‘A1591749’, Tid=‘T0002’,
Bid=‘BGMU001’, Delta=$1000, the read and write sets of
the transaction at the element level are as follows. It is
clear that materialized templates are much more concrete
than unmaterialized templates.

Read Set = Write Set= f
Account.‘A1591746’.Account Balance,
Teller.‘T0002’.Teller Balance,
Branch.‘BGMU001’.Branch Balance g

Templates are useful for damage confinement in two
ways: first, a dependency graph built from materialized
templates, called a materialized dependency graph, can be
used to do quicker confinement relaxation. A materialized
template of a transaction T looks just like a normal read or
write set. So a materialized dependency graph can be built
in generally the same way as a normal dependency graph.
The only difference is that the materialized read (write) set
of T may be just an approximation of the real read (write)
set of T because the complexities of transactions can result
in such templates that make exact materialization impossi-
ble (For example, some templates of TPC-C do not sup-
port exact materialization). Since materialization is much
quicker a process than damage assessment, using material-
ized dependency graphs can significantly reduce the relax-
ation latency for the set of objects that can be unconfined by
materialized dependency graphs.

Second, a dependency graph built from unmaterialized
templates, called a type dependency graph, can be used
to do even quicker confinement relaxation, although us-
ing type dependency graphs can only unconfine a much
smaller number of objects than using materialized depen-
dency graphs in many cases. In our approach, a type de-
pendency graph is built in a way slightly different from a
normal dependency graph. In particular, (1) the dependent
upon relation is defined in a way that is execution order ir-
relevant. A transaction type Yi is dependent upon another
transaction type Yj if the intersection of Yj’s write set tem-
plate and Yi’s read set template is not empty; (2) a trans-
action type can be dependent upon itself. The type depen-
dency graph for type(T) captures all and only the types of
transactions whose execution (after T) could be affected by
T . To illustrate, the type dependency graph for TPC-C De-
livery transactions is shown in Figure 2(b). Based on this
graph, it is easy to see that if Bi is a delivery transaction,
then any New Order or Stock Level transaction will not be
affected.

The advantage of using type dependency graphs is that
since all type dependency graphs can be pre-computed
and since checking whether or not a transaction G j is af-
fected can (basically) be done by checking whether or not
type(Gj) is in the type dependency graph for type(B i), this
method typically causes much less relaxation delay than
other methods. The limitation of using type dependency
graphs is that since materialized templates are much more
concrete than unmaterialized templates, using type depen-
dency graphs can only unconfine a much smaller number of
objects than using materialized dependency graphs in many
cases. For example, one TPC-A transaction and another
TPC-A transaction are always dependent upon each other if
we use templates directly. However, if these two transac-
tions are for different Account IDs, Teller IDs, and Branch
IDs, then they are independent upon each other.

In order to ensure no damage leakages when exploiting
transaction access patterns, we need to enforce the follow-
ing constraint on the process of extracting templates:

Containment Rule: Whenever a read set template or a
write set template is extracted from a transaction pro-
file, any transaction T of that type, when executed,
must have a real read set contained by the material-
ized read set template and a real write set contained by
the materialized write set template.

To end this section, we present an integrated algorithm,
which is as follows, to exploit transaction access patterns to
do quicker confinement relaxation. The algorithm is built
on top of Scheme II. The algorithm uses both materialized
dependency graphs and type dependency graphs to do con-
finement relaxation, although in two different consecutive
unconfining phases. Note that these unconfining phases
could overlap with each other during some period of time.
Note also that damage assessment is still necessary because
it can achieve exact unconfinement.

� The initial confinement is done in the same way as
Scheme II.

� The first unconfining phase uses type dependency
graphs. We scan the transactions kept in the CTT
table after Bi (following the commit order) until a
transaction that commits after the initial confinement
is scanned. During the scan process, we use an ex-
tra set, denoted QU , to temporarily contain the objects
that could be unconfined later on. For each transaction
Gk that is scanned, if type(Gk) is not in the type de-
pendency graph for type(Bi), then we put each object
type type(x), which is kept in Gk’s write set template,
into QU . If type(Gk) is in the type dependency graph
for type(Bi), then we remove the intersection of QU

and Gk’s write set template out of QU . When the scan

8

process ends, we move every object type kept in QU to
SU .

During this unconfining phase, we need QU because
an object type which is found undamaged during a pre-
vious scan could be damaged by a transaction scanned
later on. Although an object type can be put into SU
only after this unconfining phase is finished, since this
unconfining phase does not need to scan the log or ma-
terialize templates, it is still (in general) much quicker
than other unconfining phases. Finally, it should be
noticed that unconfining an object type is equivalent to
unconfining every object of this type. For example, in
TPC-A object type Account.Aid.Account Balance in-
dicates the whole Account Balance column of the Ac-
count table.

� The second unconfining phase which uses materialized
dependency graphs starts to build the materialized de-
pendency graph for Bi, denoted MDG(Bi), instantly
after Bi is identified. When a transaction Gk is found
not in MDG(Bi), for each object x kept in Gk’s ma-
terialized writeset, if tsx � ctGk

, then we put x into
SU .

� The third unconfining phase is just the confinement re-
laxation phase of Scheme II. The only difference is that
when an object x is asked to be unconfined it may have
already been unconfined during the first or the second
unconfining phase. At this situation, the unconfining
operation is not needed.

� When a new transaction Gj wants to access an object
x, since SU can contain object types, we may need to
match x with an object type at this stage.

The correctness of Scheme III is shown in the following
theorem. It can be proved in a way similar to Theorem 1.

Theorem 2 Scheme III causes no damage leakages, if the
Containment Rule is not violated.

Scheme III does not start to built MDG(Bi) until Bi is
identified. In some cases materialized dependency graphs
can be maintained on-the-fly to further reduce the relaxation
delay. However, since we cannot know which transaction is
malicious in advance, we need to maintain a graph for each
transaction, or maintain the dependency upon relationships
among all the transactions.

3.5 Scheme IV: Stateful Damage Confinement

Scheme III uses the type dependency graph for
type(Bi)) in a stateless fashion, that is, when a transac-
tion Gk is scanned, Scheme III simply checks if type(Gk)
is in the graph or not, without using the state information

about previously scanned transactions. As a result, Scheme
III can prevent many undamaged objects from being uncon-
fined. The reason is that many transactions of such trans-
action types that are indirectly affected by type(B i) may
actually not be affected by Bi. Consider the following his-
tory where each transaction is associated with a transaction
type:

H = (Bi; A) (G2; C) (G3; C) (G4; B)

Assume the type dependency graph for type(B i) is as
shown in Figure 2(c), when G2 and G3 are scanned, since
type(G2) and type(G3) are in the type dependency graph,
according to Scheme III their writesets will not be uncon-
fined. However, since typeC is not directly affected by type
A, and between Bi andG2 there is no transaction of type B
executed, so neither G2 nor G3 has been affected by Bi, so
their writesets should be (at least partially) unconfined.

In order to solve this problem, Scheme IV works as fol-
lows. Note that here only the difference from Scheme III is
described. Note also that the way we useMDG(Bi) cannot
be optimized because MDG(Bi) is built based on the real
history along the commit order, thus the above problem will
not be caused when using materialized dependency graphs.
It is clear that Scheme IV will unconfine G2 and G3 in the
above example.

� During the first unconfining phase, we dynamically
maintain a type list which is initialized with type(Bi).
As a transaction Gk is scanned, if type(Gk) is not di-
rectly affected by any type kept in the list, then for each
object type kept in Gk’s write set template, we put the
object type into QU . Otherwise, we add type(Gk) to
the type list (and remove the intersection of QU and
Gk’s write set template out of QU).

4 Additional Considerations

4.1 Strict vs. Unstrict Damage Confinement

As we mentioned in Section 2, strict damage confine-
ment mechanisms have the merit that a lot of damage as-
sessment and repair work can be saved. The limitation is
that compared with unstrict confinement usually less avail-
ability is provided. Schemes II, III, and IV are strict damage
confinement mechanisms.

Although unstrict damage confinement mechanisms
have the advantage of providing more availability (via
looser initial confinement), it faces a critical challenge, that
is, since the leaked damage can keep on spreading as new
transactions are executed and old damage is repaired, it is
possible that the assessment and repair process can never be
finished if the assessment and repair speed is slower than

9

the damage spreading speed. Although we can make the re-
covery process be terminated in a limited amount of time by
reducing the speed of damage spreading through some ad-
ministration interference, i.e., slowing down the process of
new transactions, we still face the following problem: how
can the system detect the termination? Without this ability,
the recovery process will continue even if there is no dam-
age to repair. We denote this problem the termination de-
tection problem. Fortunately, in [AJL98] it is found that the
termination detection problem is solvable, and a solution is
proposed. The basic idea is to use current repair state infor-
mation to reason whether or not new damage is possible to
be caused.

In summary, both strict confinement and unstrict con-
finement are feasible. The basic relation between them is
a trade-off between availability and computing resources.
Strict confinement mechanisms trade availability for re-
sources. Unstrict confinement mechanisms trade resources
for availability. In real applications, it is the job of the sys-
tem security officer to do the trade-off based on the seman-
tics of the application. It should be noticed that the trade-off
is highly application dependent.

4.2 Approximate Damage Confinement Methods

In this section, we discuss several ideas to do unstrict
damage confinement that allows damage leakages, the ad-
vantage is that more availability can be provided. As shown
above, the damage leakages can be located and repaired by
the Damage Assessor and the Damage Repairer. Unstrict
or approximate damage confinement can be done based on
time stamps, transaction access patterns, or object access
patterns. Moreover, approximate damage confinement can
happen during the initial confining phase and each follow-
ing unconfining phase.

� During the initial confining phase, we can break down
the time after ctBi

into several time windows or slots,
and cluster the objects updated within each time slot
with a set. As a result, we can get a sequence of sets,
denotedS1, S2, ..., Sn. Then we can estimate the prob-
ability that an object x in Si is damaged, and use the
probability to do approximate confinement. For exam-
ple, we can confine a set Si only if the probability asso-
ciated with Si is above a specific threshold. The prob-
ability can be estimated based on previous attack expe-
riences. For example, if among 10 previous attacks S i
(relative to each attack) is affected 6 times, and on av-
erage 20% of Si are damaged each time, then the prob-
ability can be measured by 0:6�0:20 = 0:12. Note that
here (1) we assume that each object is equally impor-
tant; (2) we treat an object damaged multiple times and
an object damaged only once equally. More advanced
methods are certainly possible.

Time stamp based approximate confinement is typi-
cally more effective when the application is (relatively)
time dependent. For example, for a bank at the end
of each month there is usually a burst of summarizing
and reporting transactions; but at the beginning of each
month, there are very few such transactions. However,
if the distribution of transactions is not relevant to time,
then the effectiveness of this method will be very poor.
Therefore, this method is heavily dependent on appli-
cation semantics.

� Object access patterns can be used to achieve applica-
tion independent unstrict damage confinement. More-
over, this method does not require the application to
use only canned transactions. The idea is do confine-
ment based on a probabilistic object affecting pattern.
For each object x, based on the previous object access
history, we can estimate the probability that another
object y is affected by x, directly or indirectly. Then
we can construct a susceptible object set for x, which
contains every object whose probability of being af-
fected by x is above a specific threshold. When a ma-
licious transaction Bi is identified, we can just confine
the objects in the union of the susceptible object sets
for each object updated by Bi.

� The first unconfining phase can be adapted to support
approximate confinement. One idea is that we can
measure how serious one type B can be affected by
another type A and use the measurements to do ap-
proximate confinement. For example, when a mali-
cious transaction Bi is identified, we can confine only
the transactions whose types will probably be seriously
affected by type(Bi).

� The second and the third unconfining phases can also
be adapted to support approximate confinement. For
example, when a transaction Gk is scanned and found
not in DG(Bi) or MDG(Bi), then for each object x
in Gk’s writeset, if tsx > ctGk

and the probability
that x has been damaged is above a specific threshold,
then we confine x. Otherwise, we do not confine x.
Here the probability is estimated based on the previous
access history.

5 Implementation Issues

A multi-phase damage confinement system (prototype)
is being developed in the context of the intrusion tolerant
database system architecture shown in Figure 1. The pro-
totype is being implemented on top of an Oracle 8i DBMS.
The main components of the prototype are shown in Figure
3 (For clarity, the inputs to the Intrusion Detector are not
shown). In general, the Intrusion Detector is responsible

10

for reporting malicious transactions; the PEM is responsible
for the initial confinement phase and confinement enforce-
ment; the Damage Confinement Manager is responsible for
the first and the second unconfining phases; the Damage
Assessor is responsible for the third unconfining phase.

We maintain the time stamp of an object in a specific
field of the table where the object is stored. Time stamps
can be maintained at either the record level or the element
level. Here we maintain a time stamp for each record.
Since our system is transparent to user applications, if a
user application does not keep time stamps, we let the PEM,
which proxies every transaction, rewrite each INSERT or
UPDATE SQL statement in a slightly different way such
that whenever a record is inserted or updated, the corre-
sponding time stamp will be kept in the TIME STAMP field
of the record. Moreover, the CTT table is maintained by the
PEM. SU is maintained by both the Damage Confinement
Manager and the Damage Assessor.

One key challenge is how to get read and write operation
information. Oracle Redo logs record every write opera-
tion, however, unfortunately its structure is confidential, so
getting information about writes from Oracle Redo logs is
very difficult. This prototype uses triggers to capture the
write operations associated with a DELETE, UPDATE, or
INSERT statement. Moreover, this prototype uses read set
templates to gather information about reads through mate-
rialization (Note that Oracle does not maintain read infor-
mation). For this purpose, the Transaction Proxy module
proxies every SQL statement. We assume user applications
use OCI calls, a standard interface for Oracle, to access the
database. To proxy user transactions, the Transaction Proxy
proxies every OCI call by providing the Applications with
a pseudo OCI interface, which forwards each OCI call to
the Proxy instead of the Oracle Server. In this way, ev-
ery SQL statement together with its input arguments can be
captured by the Proxy, and the CTT table can also be easily
maintained. Using these input arguments and the read set
templates extracted from transaction profiles, the Read Ex-
tractor can trace the reads of transactions. Note that in ad-
dition to OCI calls, the prototype can be easily extended to
support a variety of other Oracle interfaces such as ODBC,
JDBC, and SQL*NET.

Using the read and write operation information kept in
the Write Log and the Read Log, the Damage Assessor can
handle the third unconfining phase when a malicious trans-
action is reported. Using the read and write set templates
kept in the Read and Write Set Template Table, the Read
Log, the input arguments kept in the SQL Statement Ta-
ble, and the CTT table, the Damage Confinement Manager
(1) can buildMDG(Bi) and handle the second unconfining
phase, and (2) can build the dependency graph for type(B i)
and handle the first unconfining phase.

Another key challenge is confinement enforcement,

Oracle Server

SQL Statement
Table

table 1 table m

Log

Write

S
U

Damage
Assessor

Detector
Intrusion

CTT table

Damage
Confinement
Manager

Read Log

Read Extractor

... ...

Confinement
Executor

... ...trigger trigger

PEM

Transaction
Proxy

Read and Write Set
Template Table

User Transactions

Users

Applications

Figure 3. Components of the Multi-Phase
Damage Confinement System

which is handled by the PEM based on SU , the CTT ta-
ble, and the time stamps associated with each record. In
particular, first, when a SQL statement of a transaction is
proxied by the PEM, how can the PEM know which ob-
jects the statement will access (so that the PEM can check
whether or not these objects are in SU)? Second, since Ora-
cle 8i can only grant and revoke table-specific and column-
specific privileges, and cannot handle row-specific or field-
specific privileges, the DBMS is unable to ensure that a con-
fined record (or field) will not be accessed, and the PEM has
to enforce this kind of confinement by itself. Fortunately,
we have figured out some ad-hoc solutions. For example,
templates can be used to help the PEM estimate the set of
objects that a transaction wants to access, and SQL state-
ment rewriting can be used to do time stamp based access
control.

One significant concern about the prototype is its perfor-
mance. We found that the major impact of the multi-phase
damage confinement system on normal transaction process-
ing is the service delay caused by the PEM. Our preliminary
testing using simulated data shows that the average response
time delay caused (only) by the Proxy is between 10% and
30%, which is reasonable. Although adding the Confine-
ment Executor module will cause more delay, the extra de-
lay can still be reasonable since for a transaction with multi-
ple SQL statements, the confinement checking on previous
statements and the execution of later on statements can be
concurrently processed. Finally, it should be noticed that
the performance can be significantly improved if the dam-
age confinement mechanism is integrated into the DBMS

11

kernel.

6 Related Work

Although database intrusion tolerance is a new topic,
there are already some work in this field. In [AJMB97],
a fault tolerant approach is taken to survive database attacks
where (a) several phases are suggested to be useful, such
as attack detection, confinement, damage assessment, at-
tack recovery, and fault treatment; (b) a color scheme for
marking damage and repair in databases and a notion of in-
tegrity suitable for databases that are partially damaged are
used to develop a mechanism by which databases under at-
tack could still be safely used. Their mechanism can be
viewed as a confinement mechanism. However, their mech-
anism assumes that each data object has an (accurate) ini-
tial damage mark, our approach does not. In fact, our ap-
proach focuses on how to automatically mark (and confine)
the damage, and how to deal with the negative impact of in-
accurate damage marks. These issues are not addressed in
[AJMB97].

In [LJM], an interesting technique called isolation is
proposed. The idea is setting up a separate environment
for allowing suspicious transactions to be executed un-
der surveillance without risking further harm to the sys-
tem. Isolation can immunize the database from the damage
caused by suspicious transactions without suffering denial-
of-service. Isolation can confine the damage caused by
suspicious transactions, however, isolation cannot confine
the damage caused by the transactions that are not isolated.
Moreover, for cost reasons, many suspicious transactions
will not be isolated. Therefore, although isolation cannot
be used to replace multi-phase damage confinement mech-
anisms, isolation can effectively complement multi-phase
damage confinement.

Damage recovery has been investigated in several works.
In [JMA99], a general model of damage recovery, and some
general principles of trusted recovery are proposed. Dam-
age recovery techniques have been developed from two an-
gles: (1) Since damage is caused and spread by transac-
tions, so damage can be recovered in terms of transactions.
In [AJL98, LAJ00], a set of transaction oriented damage re-
covery algorithms are proposed. The damage assessment
and repair algorithms used in our framework are adapted
from [AJL98]. (2) Since the subjectives of attacks are data
objects, so damage can be recovered in terms of objects.
In [PG98], a data object oriented framework is presented
where transactions are used to identify damage spreading,
and a specific piece of code is constructed to repair each
corrupted object. Data object oriented approaches can ex-
ploit blind-write transactions to achieve more accurate dam-
age locating in an easier way, however, constructing specific
pieces of code to do repair is not only expensive, but also

prone to errors.
Our framework cannot (directly) handle OS level at-

tacks. Some other techniques can. In [MG96a, MG96b]
a technique is proposed to detect storage jamming, mali-
cious modification of data, using a set of special detect ob-
jects which are indistinguishable to the jammer from normal
objects. Modification on detect objects indicates a storage
jamming attack. In [BGJ00], checksums are smartly used to
detect data corruption. Both detect objects and checksums
can be used to make our framework resistant to OS level
attacks.

7 Conclusion

With cyber attacks on data-intensive applications becom-
ing an ever more serious threat, intrusion tolerant database
systems are a significant concern. Intrusion detectors are
a key component of such systems. However, the detection
latency, which is usually significant, can cause ineffective
- to some degree at least - damage confinement. In this
paper, we present an innovative multi-phase damage con-
finement approach to solve this problem. Our approach
can ensure no damage spreading after the detection time,
although some availability can be temporarily lost. Our ap-
proach can be easily extended to support flexible control of
damage spreading and multiple confinement policies. Our
approach is practical, effective, efficient, and to a large ex-
tent assessment independent.

As mentioned earlier in the paper, in many cases approx-
imate methods can be very useful when availability is the
most wanted thing. Some general ideas of approximate con-
finement are mentiond in Section 4, detailed study of these
approximate methods could be a good topic for future re-
search.

Acknowledgments
Peng Liu is supported by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Labo-
ratory, Air Force Material Command, USAF, under agree-
ment number F30602-00-2-0575. In particular, our work is
supported by DARPA/ISO’s Organically Assured and Sur-
vivable Information Systems (OASIS) Program. We also
thank the anonymous referees for many helpful comments
on an earlier version of this paper.

References

[Ada89] M. R. Adam. Security-Control Methods for Statisti-
cal Database: A Comparative Study. ACM Comput-
ing Surveys, 21(4), 1989.

[AJG99] V. Atluri, S. Jajodia, and B. George. Multilevel Se-
cure Transaction Processing. Kluwer Academic Pub-
lishers, 1999.

12

[AJL98] P. Ammann, S. Jajodia, and P. Liu. Recovery from
malicious transactions. Technical report, George Ma-
son University, Fairfax, VA, 1998.

[AJMB97] P. Ammann, S. Jajodia, C.D. McCollum, and B.T.
Blaustein. Surviving information warfare attacks on
databases. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 164–174, Oakland, CA,
May 1997.

[BGJ00] D. Barbara, R. Goel, and S. Jajodia. Using check-
sums to detect data corruption. In Proceedings of the
2000 International Conference on Extending Data
Base Technology, Mar 2000.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database Sys-
tems. Addison-Wesley, Reading, MA, 1987.

[D.E87] D.E.Denning. An intrusion-detection model. IEEE
Trans. on Software Engineering, SE-13:222–232,
February 1987.

[GL91] T.D. Garvey and T.F. Lunt. Model-based intrusion
detection. In Proceedings of the 14th National Com-
puter Security Conference, Baltimore, MD, October
1991.

[Gra93] J. Gray, editor. The Benchmark Handbook for
Database and Transaction Processing Systems. Mor-
gan Kaufmann Publishers, Inc., 2 edition, 1993.

[GW76] P. P. Griffiths and B. W. Wade. An Authorization
Mechanism for a Relational Database System. ACM
Transactions on Database Systems, 1(3):242–255,
September 1976.

[HL93] P. Helman and G. Liepins. Statistical foundations of
audit trail analysis for the detection of computer mis-
use. IEEE Transactions on Software Engineering,
19(9):886–901, 1993.

[IKP95] K. Ilgun, R.A. Kemmerer, and P.A. Porras. State tran-
sition analysis: A rule-based intrusion detection ap-
proach. IEEE Transactions on Software Engineering,
21(3):181–199, 1995.

[Ilg93] K. Ilgun. Ustat: A real-time intrusion detection sys-
tem for unix. In Proceedings of the IEEE Symposium
on Security and Privacy, Oakland, CA, May 1993.

[JL93] R. Jagannathan and T. Lunt. System design doc-
ument: Next generation intrusion detection expert
system (nides). Technical report, SRI International,
Menlo Park, California, 1993.

[JMA99] S. Jajodia, C. D. McCollum, and P. Ammann. Trusted
recovery. Communications of the ACM, 42(7):71–75,
July 1999.

[JSSB97] S. Jajodia, P. Samarati, V. S. Subrahmanian, and
E. Bertino. A unified framework for enforcing mul-
tiple access control policies. In Proceedings of ACM
SIGMOD International Conference on Management
of Data, pages 474–485, May 1997.

[JV91] H. S. Javitz and A. Valdes. The sri ides statistical
anomaly detector. In Proceedings IEEE Computer
Society Symposium on Security and Privacy, Oak-
land, CA, May 1991.

[JV94] H. S. Javitz and A. Valdes. The nides statistical com-
ponent description and justification. Technical Re-
port A010, SRI International, March 1994.

[LAJ00] P. Liu, P. Ammann, and S. Jajodia. Rewriting his-
tories: Recovery from malicious transactions. Dis-
tributed and Parallel Databases, 8(1):7–40, 2000.

[LB98] T. Lane and C.E. Brodley. Temporal sequence learn-
ing and data reduction for anomaly detection. In
Proc. 5th ACM Conference on Computer and Com-
munications Security, San Francisco, CA, Nov 1998.

[LJM] P. Liu, S. Jajodia, and C.D. McCollum. Intrusion con-
finement by isolation in information systems. Jour-
nal of Computer Security. To appear.

[LM98] Teresa Lunt and Catherine McCollum. Intrusion de-
tection and response research at DARPA. Technical
report, The MITRE Corporation, McLean, VA, 1998.

[LSM99] Wenke Lee, Sal Stolfo, and Kui Mok. A data mining
framework for building intrusion detection models.
In Proc. 1999 IEEE Symposium on Security and Pri-
vacy, Oakland, CA, May 1999.

[LTG+92] T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan,
C. Jalali, H. S. Javitz, A. Valdes, P. G. Neumann, and
T. D. Garvey. A real time intrusion detection expert
system (ides). Technical report, SRI International,
Menlo Park, California, 1992.

[Lun93] T.F. Lunt. A Survey of Intrusion Detection Tech-
niques. Computers & Security, 12(4):405–418, June
1993.

[MG96a] J. McDermott and D. Goldschlag. Storage jamming.
In D.L. Spooner, S.A. Demurjian, and J.E. Dobson,
editors, Database Security IX: Status and Prospects,
pages 365–381. Chapman & Hall, London, 1996.

[MG96b] J. McDermott and D. Goldschlag. Towards a model
of storage jamming. In Proceedings of the IEEE
Computer Security Foundations Workshop, pages
176–185, Kenmare, Ireland, June 1996.

[MHL94] B. Mukherjee, L. T. Heberlein, and K.N. Levitt. Net-
work intrusion detection. IEEE Network, pages 26–
41, June 1994.

[PG98] B. Panda and J. Giordano. Reconstructing the
database after electronic attacks. In Proceedings of
the 12th IFIP 11.3 Working Conference on Database
Security, Greece, Italy, July 1998.

[PK92] P.A. Porras and R.A. Kemmerer. Penetration state
transition analysis: A rule-based intrusion detection
approach. In Proceedings of the 8th Annual Com-
puter Security Applications Conference, San Anto-
nio, Texas, December 1992.

13

[RBKW94] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A
model of authorization for next-generation database
systems. ACM Transactions on Database Systems,
16(1):88–131, 1994.

[SC98] R. Sandhu and F. Chen. The multilevel relational
(mlr) data model. ACM Transactions on Information
and Systems Security, 1(1), 1998.

[SG97] S.-P. Shieh and V.D. Gligor. On a pattern-oriented
model for intrusion detection. IEEE Transactions
on Knowledge and Data Engineering, 9(4):661–667,
1997.

[SM97] D. Samfat and R. Molva. Idamn: An intrusion detec-
tion architecture for mibile networks. IEEE Journal
of Selected Areas in Communications, 15(7):1373–
1380, 1997.

[WSQ94] M. Winslett, K. Smith, and X. Qian. Formal query
languages for secure relational databases. ACM
Transactions on Database Systems, 19(4):626–662,
1994.

A TPC-C Databases and Transactions

The benchmark portrays a wholesale supplier with a
number of geographically distributed sales districts and as-
sociated warehouses. As the Company’s business expands,
new warehouse and associated sales districts are created.
Each regional warehouse covers 10 districts. Each district
serves 3000 customers. All warehouse maintain stocks for
the 100,000 items sold by the Company. Customers call the
Company to place a new order or request the status of an
existing order. Orders are composed of an average of 10
order items.

The database has nine tables whose structures are omit-
ted here(See [Gra93] for the structures of these tables).
The entity-relationship diagram of the database is shown
in Figure 4 where all numbers shown illustrate the minimal
database population requirements. The numbers in the en-
tity blocks represent the cardinality of the tables. The num-
bers next to the relationship arrows represent the cardinality
of the relationships.

B Read and Write Set Templates of TPC-C
Transactions

In TPC-C, the term database transaction as used in the
specification refers to a unit of work on the database with
full ACID properties. A business transaction is composed
of one or more database transactions. In TPC-C a total of
five types of business transactions are used to model the
processing of an order (See [Gra93] for the source codes
of these transactions). The read and write Set templates of
these transaction types are as follows.

Warehouse

W

History

W*30k

District

W*10

Customer

W*30k
New-Order

W*9k

Order-Line

W*30k W*30k

Order

100k

Item

Stock

W*100k

10

3k

1

1

0-1

5-15

3W

100k

Figure 4. Entity-Relationship Diagram of the
TPC-C Database

� The New-Order transaction consists of entering a
complete order through a single database transaction.
The template for this type of transaction is (‘+’ denotes
string concatenation):

Input= warehouse number(w id), district number(d id),
customer number(c id); a set of items(ol i id),
supplying warehouses(ol supply w id), and
quantities(ol quantity)

Read Set= f Warehouse.w id.W TAX;
District.(w id+d id).(D TAX, D NEXT O ID);
Customer.(w id+d id+c id).(C DISCOUNT,
C LAST, C CREDIT); Item.ol i id.(I PRICE,
I NAME, I DATA); Stock.(ol supply w id+
ol i id).(S QUANTITY, S DIST xx, S DATA,
S YTD, S ORDER CNT, S REMOTE CNT) g

Write Set= f x=District.(w id+d id).D NEXT O ID;
New-Order.(w id+d id+x);
Order.(w id+d id+x);
R1= f ol i id g;
Order-Line.(w id+d id+x+R1) g

� The Payment transaction updates the customer’s bal-
ance, and the payment is reflected in the district’s
and warehouse’s sales statistics, all within a single
database transaction. The templates for this type of
transaction are:

Input= warehouse number(w id), district number(d id),
customer number(c w id, c d id, c id) or customer
last name(c last), and payment amount(h amount)

Read Set= f Warehouse.w id.(W NAME, W STREET 1,
W STREET 2, W STATE, W YTD);
District.(w id+d id).(D NAME, D STREET 1,
D STREET 2, D CITY, D STATE, D ZIP, D YTD);
[Case 1, the input is customer number:
Customer.(c w id+c d id+c id).(C FIRST,

14

C LAST,C STREET 1, C STREET 2,
C CITY, C STATE, C ZIP, C PHONE,
C SINCE, C CREDIT, C CREDIT LIM,
C DISCOUNT, C BALANCE,
C YTD PAYMENT,
C PAYMENT CNT, C DATA);

Case 2, the input is customer last name:
Customer.(c w id+c d id+c last).(C FIRST,

C LAST,C STREET 1, C STREET 2,
C CITY, C STATE, C ZIP, C PHONE,
C SINCE, C CREDIT, C CREDIT LIM,
C DISCOUNT, C BALANCE,
C YTD PAYMENT,
C PAYMENT CNT, C DATA)] g

Write Set= f Warehouse.w id.W YTD;
District.(w id+d id).D YTD;
[Case 1, the input is customer number:
f Customer.(c w id+c d id+c id).(C BALANCE,
C YTD PAYMENT, C PAYMENT CNT);
History.(c id+c d id+c w id+d id+w id).* g
Case 2, the input is customer last name:
f Customer.(c w id+c d id+c last).(C BALANCE,
C YTD PAYMENT, C PAYMENT CNT);
History.(c d id+c w id+d id+w id).* g] g

� The Order-Status transaction queries the status of a
customer’s most recent order within a single database
transaction. The templates for this type of transaction
are:

Input= customer number(w id+d id+c id) or
customer last name(w id+d id+c last)

Read Set= f [Case 1, the input is customer number:
Customer.(w id+d id+c id).(C BALANCE,

C FIRST, C LAST, C MIDDLE);
Case 2, the input is customer last name:
Customer.(w id+d id+c last).(C BALANCE,

C FIRST, C LAST, C MIDDLE)] ;
x=Order.(w id+d id+c id).O ID;
Order.(w id+d id+c id).(O ENTRY D,

O CARRIER ID);
Order-line.(w id+d id+x).(OL I ID,

OL SUPPLY W ID, OL QUANTITY,
OL AMOUNT, OL DELIVERY D) g

Write Set= f g

� The Delivery transaction processes ten new (not yet
delivered) orders within one or more database transac-
tions. The templates for this type of transaction are:

Input= warehouse number(w id), district number(d id),
and carrier number(o carrier id)

Read Set= f R1 = New-Order.(w id+d id).NO O ID;
R2 = Order.(w id+d id+R1).O C ID;

Order.(w id+d id+R1).(O CARRIER ID,
OL DELIVERTY D, OL AMOUNT);

Customer.(w id+d id+R2).(C BALANCE,
C DELIVERY CNT) g

Write Set= fR1 = New-Order.(w id+d id).NO O ID;
R2 = Order.(w id+d id+x).O C ID;
Order.(w id+d id+R1).O CARRIER ID;
Customer.(w id+d id+R2).(C BALANCE,

C DELIVERY CNT);
New-Order.(w id+d id+R1);
Order-Line.(w id+d id+R1).OL DELIVERY D g

� The Stock-Level transaction retrieves the stock level
of the last 20 orders of a district. The templates for
this type of transaction are:

Input= warehouse number(w id), district number(d id),
Read Set = f x = District.(w id+d id).D NEXT O ID;

R1 = fx� 1; :::; x� 19; x� 20g;
R2 = Order-Line.(w id+d id+R1+

OL NUMBER).OL I ID;
Stock.(w id+R2).S QUANTITY g

Write Set= f g

15

