A Game Theoretic Approach for Attack Prediction *

Peng Liu Lunquan Li
Department of Information Systems, UMBC
Baltimore, MD 21250
{ pliu, lli2 }@Qumbec.edu

Abstract

The ability to predict attacks can dramatically enhance people’s ability to defend cyber attacks
since it has the potential to transform existing passive (or reactive) secure systems, where the
defender lags behind the attacker, into an active one. Attack prediction can be broken down
into two categories: trend prediction and action prediction. In this paper, we present a game
theoretic approach for attack prediction, which to our best knowledge is the first approach for
action prediction. Our approach models the computer system and the attacker(s) as two self-
interested players playing a multi-stage game where the system wants to maximize its security
through its defense operations while the attacker wants to maximize the security loss through his
or her attacks. The Nash equilibria of the game, which specify the expected-utility maximizing
best-response of one player to every other player, indicate valuable action predictions. In addition
to predicting attacks, the predictions generated by our approach can also give a good estimation
of the maximum possible security loss and tell how the defense should be built. We believe our
approach can be used to predict almost every known type of attacks. In particular, we have
presented a general game-theoretic attack prediction model for attacks on IDS-protected systems,
and a specific prediction model for credit card fraud, and the preliminary simulation results are
very encouraging.

Keywords: Attack Prediction, Game Theory, Computer Security

1 Introduction

The ability to predict attacks can dramatically enhance people’s capacity to defend cyber attacks
since it has the potential to evolve existing passive (or reactive) secure systems into active ones.
Either static or adaptive defense (where the system can adapt to system state and environment
changes, and the environment involves such factors as attacks and workloads) is passive. That is,
every defense activity, including dynamic adaptations, is triggered by the effect of attacks. As a result,
although when the trend and actions (or patterns) of attacks or workloads do not change or gradually
changes, the system can smoothly adapt its behavior to the new environment, when the trend and
actions dramatically oscillate, the system can perform very poorly during the adaptation process,
and substantial security loss can be caused. Active defense takes defensive actions simultaneously
with the attacker, so the system no long lags behind the attacker, and the system can adapt to
dramatically changed environments in a much smoother way. It is clear that effective active defense
needs accurate predictions of attacks. Note that the ability to predict attacks does not imply the
ability to prevent attacks.

However, due to the tremendous amount of uncertainty about the attacker’s behaviors (e.g.,
motivations, preferences, actions, the types of attacks), attack prediction is a very challenging task.

*This work is partially supported by the Defense Advanced Research Projects Agency (DARPA) and Air Force
Research Laboratory, Air Force Material Command, USAF, under agreement number F30602-00-2-0575.

Attack prediction has at least the following two aspects: (1) predicting when and where an attack
will happen. This aspect may also include such problems as predicting the total number of attacks
on a system during a period of time, and predicting the probability that the next system operation
is an attack. We call this aspect trend prediction. (2) Predicting the actions that the attacker will
probably take when an attack happens. We call this aspect action prediction. Trend prediction
has been studied to some extent in the context of trend analysis [BAMFO1]. In this paper, we will
focus on action prediction, and to our best knowledge, the proposed game-theoretic attack prediction
framework is the first approach to action prediction.

Our approach models the computer system and the attacker(s) as two self-interested players
playing a multi-stage game where the system wants to maximize its security through its defense
operations while the attacker wants to maximize the security loss through his or her attacks. The
Nash equilibria of the game, which specify the expected-utility maximizing best-response of one
player to every other player, indicate valuable action predictions. The predictions produced by our
framework can tell when an attack happens which actions the attacker will probably take, although
they cannot tell when the attack will probably happen. The predictions produced by our framework
can (1) tell the system which attacking actions can be expected; (2) tell the system which kinds of
security loss the system has to tolerate; (3) help the system to estimate the maximum possible amount
of security loss that could be caused; (4) tell the system how to configure its security mechanisms in
such a way that the total security loss can be minimized.

1.1 Why can game-theoretic attack prediction models be valuable?

We believe game-theoretic attack prediction models can generate valuable (and rational) predictions
about attacks for several reasons. First, noncooperative game theory is the primary tool to handle
strategic interdependence (in multiperson decision making and economics) [MCWGY5], and strategic
interdependence is the fundamental characteristics of the attack-defense relationship in computer
security, where each party (the attacker or the defender, namely the secure system) recognizes that
(a) the payoff he or she receives (in security gain or loss) depends not only on his or her actions but
also on the actions of other individuals, and (b) the actions that are best for him or her to take may
depend on actions that the other individuals have already taken, on those he or she expects them
to be taking at the same time, and even on future actions that they may take, or decide not not to
take, as a result of his/her current actions. The presence of strategic interaction in computer security
indicates the value of game theory in attack prediction.

Second, game-theoretic models are successfully used to predict rational behaviors (or actions) in
many applications such as auctions and their rationality notion is that each party plays an expected-
utility maximizing best-response to every other party. This rationality notion is consistent with the
goals of both the attacker (where the utility is measured by the amount of security loss) and the
system (where the utility is measured by the amount of security gain). So rational attacker actions
predicted by our game-theoretic prediction model can be good attack predictions.

Third, we believe game theoretical models, as reviewed in Appendix A, are a natural mathematical
model to analyze the battles between the attacker(s) and the system since: (1) the attacker(s) and
the system are “perfect” players of a game where the attacker’s strategy or action space is the
set of possible attacking actions, and the system’s strategy or action space is the set of possible
ways to configure its security mechanisms. (2) The payoff earned by an attacker during a game
play {aattackers Gsystem } indicates when the system’s security mechanisms are configured according
to Ggystem, to which extend the attacker’s action aqiqcker achieves the attacker’s hacking goal. (3)
The payoff earned by the system during a game play similarly indicates when the attacker chooses
Qgttacker 3 the attacking action, to which extend the system’s configuration asyssen achieves the
system’s security goal. (4) A multi-round battle between the attacker and the system can be easily

modeled by a multi-stage game.

Fourth, we believe the Nash equilibria of attack prediction games can lead to valuable action
predictions. In particular, in an attack prediction game, each Nash equilibrium of the game, namely
a pair of specific strategies {7, xer» Ssystem) (NOte that in multi-stage games a strategy could involve
multiple actions), indicates that the best attacking strategy for an rational attacker is s*,, ... when
the system chooses sg, ., as the defense strategy, and vice versa. Hence, if any one of the two
players chooses a Nash equilibrium strategy then for the other player no strategy is better than the
other Nash equilibrium strategy. So no player wants to deviate from his or her Nash equilibrium
strategy. Therefore, Nash equilibria can lead to rational predictions since if the predictions are not
a Nash equilibrium, then at least one player will have the incentive to deviate from the prediction
about his or her strategy.

However, it should be noticed that game-theoretic models cannot be used to predict any attacks.
Game-theoretic models assume that (a) the attacker’s strategy space is known to the system and
vice versa, and (b) the attacker’s utility function is known to the system and vice versa. Hence it is

clear that game-theoretic models cannot be used to predict unknown types of attacks.

1.2 Related Work

Game theory is the study of multiperson decision problems where the payoff of one person’s decision
is also dependent on the decisions of the other people [Nas50, Har73, HS88, Gib92]. Game theory has
revolutionalized almost all fields of economics - industrial, organization, international trade, labor
economics, and macroeconomics, to name only a few. In addition, game theory is also used in such
non-economic applications as high-speed networking [PSC98], ecosystem management [Vin94], and
politics (voting) [Pap94]. The proposed approach, to our best knowledge, is the first application of
game theory to attack prediction.

One important application of game theory is mechanism design [MCWG95], which has been
widely applied in auctions, e-commerce, resource allocation, routing, and survivability. For exam-
ple, interactive combinational auctions are studied in [WWO00, PU00O]. A decentralized mechanism
design for routing in a multicast tree is proposed in [FPS01]. Decentralized task/resource allocation
with no centralized auctioneer is studied in [SL96, San00]. Bidding agents for online auctions are
studied in [HRWO00]. Multiagent cooperative search for portfolio selection is studied in [PHO1]. And
market-based network survivability (through optimal decentralized resource allocation after attacks)
is studied in [EJK*00]. The goal of mechanism design is to design the “rules of a game”, i.e., the
actions available to players and the method that is used to compute the outcome based on those ac-
tions, in such a way that the designed incentives will encourage player behavior that leads to optimal
system-wide solutions despite the self-interest of individual players. Mechanism design is, however,
orthogonal to our approach since in our model we assume the rules of a game are pre-determined.

Trend analysis: [BAMFO01] shows that the trend of the attacks reported by CERT can be modeled
by C =1+ S x VM where C is the cumulative count of reported attacks, M is the time since the
start of the attack cycle, and I and S are the regression coefficients determined by analysis of the
incident report data.

Intrusion detection (ID) has attracted many researchers [Lun93, MHL94|. The existing methodol-
ogy of ID can be roughly classed as anomaly detection [JV91, JV94, SM97, LX01, SBB01] or misuse
detection [GLI1, IKP95] which is based on known patterns of attacks, called signatures, and the
idea that an access that matches a signature is an intrusion. In [SFL97], an anomaly credit fraud
detection method is proposed and it fits in with our anomaly detection model.

1.3 Owur Contributions and Paper Organization

We believe that our game theoretic approach can predict almost every known type of attacks although
the predictions it produces for some attacks may not be very valuable. In particular, we have
presented a general game-theoretic attack prediction model for attacks on IDS-protected systems,
and a specific prediction model for credit card fraud, and the preliminary simulation results are very
encouraging. The rest of the paper is organized as follows. In Section 2, we introduce a motivating
example. Section 3 presents our game-theoretic attack prediction approach. In Section 4, we present
some preliminary game simulation results. Section 5 describes one possible optimization to our basic
attack prediction models. In Section 6, we discuss some enforcement issues. Section 7 concludes the

paper.

2 A Motivating Example

Using stolen credit cards or numbers is the primary way of credit card fraud, which can cause a
credit card company to lose millions of dollars a year. This problem is getting worse in the online
world since the Internet supplies perfect environment for thieves to steal credit card and customer
information, shop or trade with almost complete anonymity *. While cardholders are usually not
responsible for fraud charges above $50, it becomes urgent for merchants and credit card companies
to find shields and weapons to protect themselves.

How does a credit card transaction get authorized? First the merchant sends the card information
to its acquiring bank, the bank that provides the merchant with its credit card processing account.
Through a safe bank network run by some credit card association like Visa and Mastercard, this
information is routed to the issuing bank, which issues the card. Then the issuing bank performs
a number of checks to verify whether the card is valid, whether it is not over limit and has not
been reported lost or stolen. If all checks are passed it will send an ‘OK’ signal to the merchant’s
acquiring bank, which then issues an authorization to the merchant. The merchant may apply some
additional checks, such as signature checks and address verification (in online shopping), before the
final authorization of the transaction. During this process, some accounting will be done by these two
banks so the transaction money can be transferred from the issuing back’s account to the merchant’s
account (sooner or later).

Beyond these traditional authorization methods some credit card companies and merchants have
begun to use modern computer technologies like data mining and intrusion detection to find fraud-
ulent transactions. The most used method is to give every transaction a suspicion level according
to detection rules prescribed by security experts or “classifiers” [SFL97] generated from data mining
approaches (based on transaction history data) to tell if a transaction is suspicious or normal. The
assumption of this approach is that either the credit card thieves will commit crimes in a similar way
to other thieves whose characteristics have been logged, or that the spending activity of thieves will
deviate from the normal behavior of the real cardholder since thieves are typically not able to know
the cardholder’s shopping history or habit. If the suspicion level of a transaction is above a specific
pre-set threshold, the transaction can be rejected. The detection accuracy depends on these rules or
classifiers, which usually need to adapt to the latest transactions.

An IDS-integrated credit card authorization system can be as shown in Figure 1. The IDS
(Intrusion Detection System) is part of the issuing bank authorization system. For every incoming
transaction 7; on card ¢;, the IDS computes the suspicion level of T}, denoted si(7;), by measuring how
T;’s behavior deviates from the profile of c;, denoted P(c;), which summarizes the precious shopping
behavior associated with ¢;. If si(T;) is above a specific threshold T'H (c;), the authorization fails,
otherwise, the issuing bank sends an ‘OK’ message to the merchant’s acquiring bank. Note that

“http://antifraud.com/tips.htm

. Fraud
% % Acquiring]
—— | |~ —
Merchant Bank Er;aéectlon Account

I
|

I

. i I
Authorization Information |
I

Customer

Figure 1: IDS-integrated credit card authorization systems

different cards should have different thresholds. Note also that setting up TH(c;) faces a tradeoff:
if TH(cj) is too high, many frauds will succeed; if TH(c;) is too low, serious detail-of-service is
possible.

The ability to predict the actions of a fraud credit card transaction (e.g., how much money it
will spend) has several merits. First, the predictions can tell the issuing bank which kinds of frauds
can be expected. Second, the predictions can tell the issuing bank which kinds of loss the bank
has to tolerate. Third, the predictions can help the issuing bank to estimate the maximum fraud
loss that could be caused. Fourth, the predictions can tell the issuing bank how to configure the
authorization system in such a way that the total fraud loss can be minimized without causing serious
denial-of-service.

However, it should be noticed that the ability of our game models to predict frauds does not mean
that the predictions produced by our models can be used to prevent frauds or immunize the credit
card company from any loss caused by frauds, although the predictions can help reduce the amount
of fraud loss. First, action prediction is different from fraud detection and cannot replace detection.
Although we can predict what the attacker could do when a fraud happens, we do not know when
the fraud will happen. This is the thing that fraud detection tries to do. Second, the predictions
generated by our prediction models have the following property, that is, whether or not the attacker
will take the predicted action is also dependent on whether or not the fraud detection system will take
the predicted defense strategy or configuration (e.g., TH(c;)). This property indicates that in order
to make these predictions credible, the fraud detection system cannot deviate from the predicted
defense strategy and take a strategy that can defeat the predicted frauds.

3 Owur Approach

3.1 The Model

To make our presentation more tangible, we first outline a general formal prediction game model for
attacks on IDS-protected systems, then we use the credit card fraud example to show how a practical
prediction model can be built.

Definition 1 [Anomaly Detection Systems] An anomaly detection system (ADS) is a 7-tuple

< System,S,H, MU, P,SL, TH >, where

(1) System is the system that is being attacked,

(2) S ={s1,82,..., Sk, ..} 18 a set of subjects by which the operations on the system are organized,
(3) H is a mapping that maps each subject s; to a sequence of operations done by s;, called the
history of s;,

(4) MU is a mapping that maps each history H(s;) to a set of sub-sequences; each sub-sequence is
called a monitoring unit,

(5) P is a mapping that maps each subject s; to a profile, denoted P(s;),

(6) SL is a mapping that maps each monitoring unit of a subject s;, denote mu’’

;> as well as P(s;),

to a suspicion level which is either a numerical or linguistic number, and

(7) TH is a set of thresholds, denoted {th' th?,...,th™}, where each threshold th* is associated with
a specific alarm (level) and is a mapping that maps each subject s; to a special suspicion level, such
that if SL(muj’, P(s;)) > th®(s;), then the specific alarm associated with th* will be raised.

Anomaly detection is performed in terms of each subject, i.e., a user, a credit card, or a host.
One subject, identified by a subject ID such as a user account, a credit card number, or an IP
address, can be associated with many principals (e.g., a person that uses a credit card). Some of
them could be malicious. H(s;) indicates the behavior of s; so far. SL can be a very complicated
process to compute a synthesized suspicion level where a lot of metrics of operations can be taken
into account. Although multiple thresholds can be set to raise different levels of alarms, we assume
the cardinality of T'H is one for simplicity, we denote this single threshold as th, and we assume that
if SL(muj', P(s;)) > th(s;), then muj' is reported malicious, otherwise, it is believed legitimate.

To illustrate, consider the credit card fraud detection system shown in Figure 1. The attacker
attacks the credit card system by issuing fraudulent credit card transactions. S is the set of credit
cards. (Note that each customer can have several credit cards, and the shopping behaviors of the
same customer on different cards could be very different.) Each operation taken by a credit card
¢; is a transaction. And the sequence of transactions taken by a card is the history of the card.
Each monitoring unit of a card ¢; is a transaction by c¢;, denoted T]CZ Each credit card transaction
T;" can be characterized by a set of attributes, denoted {a{’, a3, ...,ayi}, for example, the amount of
transaction money, the merchant and its characteristics, when and where the transaction is issued,
the total number of items bought, the types of the items bought, etc.. The shopping characteristics
of the transactions by ¢; indicate the shopping habit of ¢; when there are no frauds. This shopping
habit is specified by the profile of ¢;, denoted P(c;). The rational of this fraud detection system is
that since the attacker usually does not know the shopping habit of ¢;, it is very possible that the
attacker uses ¢; in a very abnormal way. SL(Tj", P(c;)), the suspicion level of a transaction T},
indicate the extent to which the shopping behavior of chi deviates from the habit of ¢;. Note that
SL(T}") compares the difference between SL(T;") and P(c;) from many aspects. th(c;) indicates the
maximum possible amount of anomaly of a legitimate transaction by c¢;.

We take a game theoretic approach to predict what the attacker will do to attack a computer
system protected by an ADS. In this section, we assume the ADS can report the suspicion level of a
monitoring unit before the operations of the monitoring unit are done. (Although in many systems
the ADS raises alarms after monitoring units are done, and although predicting the attacks on such
systems is beyond the scope of this paper, we have found that the game models presented here
can be extended to predict the actions (or effects) of the successful attacks on such systems from
a survivability perspective.) In particular, we model the users (or subjects) and the system as two
players playing a game. Since the user could be either a good guy or a bad guy (i.e., attacker), we
use Bayesian games which can model multiple types of users to build our model. A simple review of
game theory is given in Appendix A.

Definition 2 [Attack Prediction Game] An attack prediction game APG is a specific 2-player finitely
repeated Bayesian game between the system (i.e., the ADS) and a subject. It is denoted by

APG = {Aadsa Asubject; Tads> Tsubject; Padss Psubjects Uads» usubject} where

(1) Aggs is the action space for the ADS, and Agypjec is the action space for the subject. Each action
of the subject is a monitoring unit. Each action of the ADS is an instance of
{th!(subject),th?(subject), ..., th™ (subject)}.

(2) The game has a finite number of plays (or stages) and each play includes a pair of simultaneous
actions (@supject Gads)-

(3) The type space for the ADS is Tp4s = {t*¥}, and the type space for the subject is Tsubject =
{15, 5, ..., 2).

subject
ti

(4) paas is player ADS’s belief. paps(|[t®d) describes ADS’s uncertainty about the subject’s
possible types, given ADS’s own type t*%. Similarly, psupject is determined by p4ps (3% |tf“b] °ct) (for
every type of the subject).

(5) wgqs is the payoff function of the ADS; ugypject is the payoff function of the subject. Each player’s
type, privately known by the player, determines the player’s payoff function. Here (in each game
play) we have n payoff functions for the subject, each one is denoted by u(aads, @subject; tf“by ty. And
we have one payoff function for the ADS, denoted by u(auds, @subject; tads),

Remarks. First, note that there could be multiple types of the subject. Here we assume that the
subject is associated with one good principal, i.e., t{, and possibly several bad principals. The good
principal indicates the legitimate representative of the subject. The bad principals indicate different
attackers. For example, a credit card can be fraudulently used by multiple bad guys during the same
period of time. Second, types determine payoff functions. It is clear that if the current principal is a
bad one, then the ADS want to reject the subject’s actions. If the principal is a good one, rejecting
the subject’s actions will cause denial-of-service.

Third, note that this game is with incomplete information, that is, during each play the ADS
is uncertain about the subject’s payoff function because the ADS is uncertain about the subject’s
type. If the ADS knows whether or not the current principal is good or bad, intrusion detec-
tion is not necessary. We model this uncertainty by probabilities. In particular, in each play,
Psubject (194 [£5°77°Y) = 1.0, and T, paps (£ [195) = 1. Here we assume pps(t5"27°“!|t295) (for
each 1) are pre-known.

Fourth, the game can have multiple stages and each stage involves a play. A later stage can repeat
a previous stage. And a later stage can be affected by the results of a previous stage. Fortunately,
according to Proposition 1 in Appendix A, we know that the Nash equilibria of the game in each play
compose the subgame-perfect outcome, or the overall outcome, of this multi-stage repeated attack
prediction game.

An example APG model for credit card fraud can be as follows. For simplicity, we assume the
ADS has only one threshold, i.e., th(c;). We assume each credit card transaction chi is characterized
by only one attribute, i.e., amount(TjCi). We assume that th(c;) is just a number, and correspond-
ingly we assume that profile P(c¢;) is also a number. We denote the credit limit of ¢; as CL(¢;). We
call [maz(0, P(c;) — th(c;)), min(CL(c;), P(c;) + th(c;))] the acceptance window of the ADS because
only the transactions within the window can be authorized. We denote the size of this window as
wsize = min(CL(c;), P(¢;) + th(c;)) — max(0, P(c;) — th(c;)).

[An APG for credit card fraud prediction]

(1) The game has two players: a subject ¢; and the ADS.

(2) Aggs is the set of possible values for threshold th(c;). These values can be either continuous or
discrete.

(3) A;, the set of possible credit card transactions, is specified by the values of amount(chi) for each
transaction T]CZ

(4) Typqs = {t*%}; Tsubject = {good, bad}. We assume at one point of time, there is only one fraud on
Cj.

5) We assume paps(good|t®®) =1 — 0, and paps(bad[t®®) = 6.

(
, 0 if |amount(T:) — P(c;)| < th(c
- : Ci. = J
(6) tsubject (th(ci), Tj"; good) { —DOS(T]-Ci) if |amount(T5") — P(c;)| > th(c;

. amount(T{) if |amount(T5") — P(c;)| < th(c;
: N e — j j
(7) USUbJeCt(th(cl)’T] bad) { 0 if |am0unt(chi — P(¢;)| > th(c

(8) ttads = (1 — O)ud5(th(cs), TEs 1995) + Gubld (¢h(c;), TF; 19%5), where

ads

UgOOd(th(Ci),chi;tads) _ { bawsize if |am0unt(chi) — P(¢;)| < th(c)

ads 0 if |amount(T;") — P(c;)| > th(ci)
bad N i sadsy) —amount(T[") if |amount(T;") — P(c;)| < th(c;)
tads (#h(cs), T35 °7) = 0 if |amount(T;") — P(c;)| > th(c:)

Remarks. First, note that the investigation cost associated with the credit card company either
when a good customer suffers from denial-of-service, or when a fraud is reported, is not taken into
consideration because (1) no matter a fraud transaction is detected or not, the investigation is
typically unavoidable; (2) if we do not consider the investigation for bad guys, then there is no need
to consider the investigation for good guys; (3) all the investigations are performed after the game is
over.

Second, note that here SL(T}", P(c;)) = |amount(T;") — P(c;)|. This is a reasonable mapping
when th(c;) is much smaller than C'L(c;). Some other SL mappings can also be valuable, for example,
uni-lateral matching where only if amount(7;*) > P(c;)+th(c;) will T} be reported malicious. Third,
usubject(th,chi; good) means that when the customer is good, if chi is authorized, he or she loses
nothing, otherwise, he or she will suffer some denial-of-service loss, which is measured by function
DoS (T]C’) DoS (T]C’) can be affected by many factors, which are out of the scope of this paper.

Fourth, usubject(th,Tfi; bad) means that for a bad guy, if chi is authorized, then he or she wins
amount(chi), otherwise, he loses nothing. Although there is some risk that he or she could be
captured by the police, since the risk should be a part of both of his or her payoffs no matter chi is
authorized or not, we remove the risk part from both payoffs for simplicity without losing soundness.

Fifth, ugqs indicates the expected payoff of the ADS. In particular, ugggd means that if the good
guy’s transaction can go through, the ADS wins some service availability, which is measured by
b.wsize where b is called the availability weight, and wsize is called the availability bandwidth. b.wsize
encourages the ADS to set up a larger acceptance window. uZ‘éfql means that if a transaction of the
bad guy is authorized, the IDS loses amount(chi), otherwise, losing nothing.

Sixth, the game can involve multiple plays, although only one play is specified. Although after
a game play, (a) the available balance of the card, namely CL(c;), will be reduced by amount(T),
and (b) the profile P(c;) may need be adjusted, the next play can be modeled in the same way. And
according to Proposition 1 in Appendix A, the Nash equilibrium of each play also should compose
the subgame-perfect outcome of the whole game.

3.2 A Naive Approach to Prediction

Assume that profile P(¢;) is known to both the good guy and the bad guy. For each play of the game,
if the play has a Nash equilibrium (th*(c;), Ay, Ay) where A7 and A} denote the Nash equilibrium
actions of the good guy and the bad guy, respectively, it much satisfy:

1)
2)
3)

It is clear that when b = 0, the play has the following pure-strategy Nash equilibrium: (0, P(c;), P(c;)),
that is, the ADS will choose 0 as the value of th(c;), and both the good guy and the bad guy will
choose P(c;) as the transaction amount. (0, P(c;), P(c;)) satisfies requirements (1), (2), and (3),
and maximizes the payoffs for each (type of) player given the actions taken by the other players.
(0, P(ci), P(ci)) is a reasonable prediction based on the assumption that P(c;) is known to the at-
tacker. Although the attacker will always win P(c;) according to the prediction, if the ADS does not
choose the predicted action, the attacker can win more and the ADS can lose more. On the other
hand, if the bad guy wants to win more and spends more than P(c¢;), then the bad buy’s transaction
will be rejected if the ADS chooses the predicted action.

|A; - P(Cl)| < th*(ci)
Ay = P(c;) +th*(c;)
th*(c;) solves max(c,) (1 — 0)b.wsize — 0.A;

~— S~~~

However, when b > 0 there is no pure-strategy Nash equilibrium since (1) (0, P(¢;), P(c;)) is not
a Nash equilibrium because when the attacker chooses P(¢;), the ADS wants to make th(c;) as large
as possible to gain more service availability, but when the ADS chooses th(c;) > 0, the attacker will
not stay with P(¢;) and will choose P(c;) + th(c;), and (2) every player wants to and can outguess
the other on matter which action is taken by the other player. In any game if each player would like
to outguess the other(s), there is no pure-strategy Nash equilibrium because the solution to such a
game necessarily involves uncertainty about what the other player(s) will do.

3.3 A Probabilistic Approach

The reason that the attacker will always win P(c;) in the naive approach is because the naive approach
assumes that the attacker knows P(c;). However, this assumption is not practical in general because
it is very difficult, if not impossible, for the attacker to exactly know the shopping habit of the good
guy.

To produce more practical predictions, in this section we assume that only a probabilistic dis-
tribution of P(c¢;) is known to the attacker. Based on the public statistics of customers’ shopping
behaviors, the attacker should be able to know the distribution. The distribution can be specified
by a density function f(x), where z is defined on [0, CL(c;)]. Value f(x) is the probability that the
value of P(¢;) is .

For each play of the game, if the play has a pure strategy Nash equilibrium (th*(c;), A;, Ay), then
first A7 will solve:

maxa, usubject(th* (Ci)a Ag; gOOd) (4)
It is easy to see that the result of (4) is

Ag={4g | |Ag = P(e)| < th*(ci)} (5)
Second, Aj will solve:

maxa, usubject(th*(ci), Ab; bad)
= max,, Ap.prob(|Ay — P(c;)| < th*(ci)) (6)

Since the probability that |A — P(c;)| < th*(¢) is equal to the probability that P(c;) is within
[max(0, Ay —th*(c;)), min(CL(c;), Ap+th*(c;))]. (We simply denote the window as [r1,72].) Formula
(6) is equivalent to

max, Ap. [1? f(z)dz (7)

We found that there usually exist first-order conditions in (7). Note that since the attacker does
not know P(c¢;), it can be the attacker’s best strategy to maximize the expected payoff based on a
distribution of P(¢;), as shown in (6) and (7). Finally, th*(¢;) will solve:

max(.,) (1 —0)bwsize —0.A;.h(A}, P(c;), th(c;)) (8)
where
1 if jlu—v|<w
ilu, v, w) = { 0 if ju—v|>w
When b = 0, to make (8) maximum, we can make h(A;, P(c;),th(c;))
th*(c;) < |Aj — P(c;)|, or the limitation of th*(c;) should be |A; — P(c;)].

small, to make (8) maximum, we should have

th*(ci) = |Aj — P(ci)| (9)

= 0, which implies that
When b # 0, if b is fairly

Based on (5), (9), and the first conditions of (7), we can get a Nash equilibrium (th*(c;), A3, A7).

10

3.4 Adding More Uncertainty

Every Nash equilibrium of the plays specified in the previous section says that when b is fairly small
th*(c;) =~ A; — P(c;), that is, when the ADS would like to sacrifice the service availability, every
fraud transaction of the attacker will be rejected except when A; = P(¢;) if the attacker follows the
predictions (Note that the probability that A; = P(c¢;) is almost zero). The main reason that makes
these predictions not very meaningful or practical is because the ADS has more knowledge than the
attacker. The ADS has no uncertainty about the attacker’s actions but the attacker has substantial
uncertainty about the ADS’s actions. In particular, the ADS knows P(c;) and f(z), and knows that
the bad guy chooses his or her actions based on f(z), however, the attacker does not know P(c¢;). As
a result, based on the prediction model, the ADS can compute both A; and th*(c;), but the attacker
can know neither of them (because P(c;) is necessary to compute A} and th*(c;)).

In this section, we want to make the attack prediction game more practical. In particular, we want
to increase the ADS’s uncertainty about the attacker’s actions. The rational is that if the attacker
knows that if he or she follow the predictions made in the previous section he or she may never
succeed (when b is small), the attacker will not take the predicted action and the attacker should
know that increasing the randomness of his or her actions can increase the number of successful
frauds.

In our model, we assume the attacker’s action (7'%) is randomly chosen from a continuous range
[y, y+ B], which is a part of [0, CL(c;)]. Here we call B the attack range. We assume the distribution
of amount(TjCi) over this range, denoted ¢(z), and B are known to both the ADS'. For example,
g(z) could be an uniform distribution. The attacker’s action is actually specified by y. Note that the
prediction model proposed in the previous section is a special case of this game, i.e., when B = 0.

If a play of this game has a Nash equilibrium (th*(c;), Ay, y"), first it must satisfy:

|Ag — P(c;)| < th*(c;) (10)
Second, y* will solve

max fnyrB(z.g(z).f:l2 f(z)dz)dz (11)

Note that here what the ADS wants to do is to maximize the expected payoff based on a distribution
of A,. Third, th*(c;) will solve

max(c;) (1 —0)b.wsize — nyy:JFB 2.9(2).h(z, P(c;), th(c;))dz (12)

As a result, both th*(¢;) and y* are a function of f(x), g(z), P(ci), CL(c;i), 6, b, and B. The
ADS knows all of them (so the ADS knows y*), but the attacker does not know P(c;). Nevertheless,
in this case, the attacker’s fraud transaction will not always be rejected if the attacker takes y*. To
illustrate, first, if B > CL(c;), then it is clear that y* = 0. So there exists a non-zero probability
that the attacker can succeed no matter what th(c;) is. For example, even if th(c;) = 0, there is a
non-zero probability that A, = P(c¢;).

Second, if B < C'L(c;), then it is possible that P(c;) is less than y* and not in [y*, y* + B]. In this
case, the attacker will win nothing for a set of th(c;). In particular, when b is very small, th*(c;) =~
y* — P(c;). However, when b is not very small, it may be worthy to trade vulnerability (or possible
fraud loss) for service availability. Then the acceptance window [maz (0, P(c;) —th*(¢;)), min(P(c;) +
th*(c;), CL(c;))] and the attack range [y*, y* + B] may still partially overlap. Third, if P(c;) is within
[v*,y* + B], then no matter what th(c;) is, there is a non-zero probability that the attacker can
succeed. In this case, when the ADS chooses a th(c;) smaller than th*(c;), the ADS may lose a lot
in service availability with a little gain in reducing the vulnerability, based on the way the ADS

"More uncertainty can be added by making B or g(z) uncertain to the ADS.

11

tradeoffs between availability and vulnerability, which is determined by the value of b. Fourth, when
P(¢;) > y* + B, the situation is similar to case two.

Finally, since taking y* can maximize the expected payoff of the attacker when the ADS takes
th*(c;), the attacker should be willing to take y* as his or her action. However, the attacker does
not know exactly what y* is because the attacker does not know P(c;) (Note that here we assume
that the attacker knows b). As a result, the attacker may only be able to get an estimation of y* and
earn less payoff. y* can be estimated in several ways. For example, based on the simulation results
(for every P(c;)) presented in Section 4 which the attacker is able to compute, the attacker can know
that when B = 20, b = 0.001, a value between $45 and $50 is a pretty good estimation of y* with
accuracy probability f2973 f(z)dx. However, it should be noticed that in many cases (e.g., when B = 40,
b = 0.06) y¥* may not be able to be accurately estimated because in these cases if y* could be accurately
estimated, then the attacker can use the estimated y* to accurately estimate P(c;), however, if
the attacker can accurately estimate P(c;), then the rationality assumption that the attacker will
maximize his or her expected utility will no longer be valid. Although the fact that ¥* may not be able
to be accurately estimated in some cases will decrease the accuracy of the predictions produced, we
believe that the decreased accuracy is, to a large extent, due to incomplete knowledge and information
asymmetries, which are the inherent characteristics of the attacker-defender relationship. This fact,
to some extent, tells why attack prediction is difficult.

3.5 Predicting Simultaneous Attacks from Multiple Attackers

Although till now the presentation focuses on how to predict the attacks by a single attacker, our
attack prediction games can be easily extended to predict simultaneous attacks by multiple attackers.
Taking credit card fraud as an example, there are two categories of simultaneous attacks: (1) there
are multiple credit cards and multiple frauds, however, for each card there are at most one owner
and at most one attacker. (2) There are multiple owners and multiple attackers on one card.

Our attack prediction games can be easily extended to cover these two categories. In particular,
for category 1 simultaneous attacks, one game can be associated with each card during the card’s
life cycle, and the games associated with multiple cards are independent of each other. Hence,
the prediction games we have proposed for a single card can be directly applied. For category 2
simultaneous attacks, type space Tsypject can be extended in such a way that each co-owner of the
card belongs to a separate type and each attacker belongs to a separate type. Then the attack
prediction games we have proposed, which handle multiple subject types by nature, can be applied
to predict simultaneous attacks. In summary, our attack prediction games are by nature multi-player
games that can predict simultaneous attack from multiple attackers.

4 Preliminary Results and Analysis

We have done intensive computer simulations on the game plays specified in the previous section.
And some preliminary results are shown in Figures 2-9, where CL(c¢;) = 100, # = 0.05 (We found
the value of # has no big impact on the results), f(z) is a (50,1) normal distribution, and g(z) is
an uniform distribution. We simulate the game plays with different value combinations of B, b, and
P(c;). Note that the results are associated with a single game stage, and for repeated games these
results are enough to represent the predictions made by the whole game.

In general, a preliminary analysis of the results shows that (1) there exist pure strategy Nash
equilibria, and there typically exists a single Nash equilibrium for each game play. For example, when
B = 20, P(c¢;) = 30, b = 0.001, the Nash equilibrium or the prediction is (y* = 48;th(c;)* ~ 18),
that is, the ADS should have an acceptance window with size 36, and can expect frauds with $48
transaction amount. (2) As the availability weight b increases, the predicted th(c;)* will increase,

12

and the predicted attack action yx will also increase. This indicates that the ADS would like to
sacrifice some fraud loss to increase service availability. (3) The attacker success rate, i.e., the ratio
of the fraud transactions that succeed to all the fraud transactions, is usually not zero (See Figures
6 and 7). In particular, as b increases, the attacker success rate will also increase for the same reason
as (2). (4) As b decreases, both the ADS’s payoff and the attacker’s payoff will decrease since the
ADS’s acceptance window will shrink and ADS’s service availability will decrease. (5) Increasing B,
or the ADS’s uncertainty about the attacker’s behavior, increases the values of the attacker’s Nash

Figure 2:
each P(¢;)

Figure 3: Nash equilibrium attacker strategies for
each P(c¢;) when B=20 and 0 = 0.05

Figure 4:
each P(¢;)

ADS thr eshol d

Nash equilibrium ADS strategies for
when B=20 and 6 = 0.05

40 60
User profile

ADS thr eshol d

Nash equilibrium ADS strategies

when B=40 and 6 = 0.05

20 60
User profile

Figure 6: Attacker success rates for

when B=20 and 8 = 0.05

20 6
Wser profile

Figure 7: Attacker success rates for

when B=40 and 6 = 0.05

oo ADS' s payof {
s Attacker's payof f

for

20 60
User profile

20, b = 0.1, and 6 = 0.05

s ADS's payoff
o—o Attacker’s payoff

~—o o o

20 60
User profile

13

each P(¢;)

each P(¢;)

Figure 8: Player payoffs for each P(c;) when B =

Figure 5: Nash equilibrium attacker strategies for Figure 9: Player payoffs for each P(c¢;) when B =
20, b=0.001, and 6 = 0.05

each P(¢;)

when B=40 and 6 = 0.05

14

equilibrium strategies.

The four major merits of our action prediction approach mentioned in Section 1 can be easily
justified by these preliminary results. In particular, the Nash equilibria indicate which kind of frauds
can be expected and how should the bank configure its ADS, and the corresponding payoffs of these
Nash equilibria indicate the maximum amount of fraud loss that the bank has to tolerate.

We have found some interesting implications of these results. First, the ADS should determine
the value of the availability weight (or b) based on the profile. From Figures 8 and 9, we can see that
when P(c¢;) is around $55, choosing a smaller b can significantly reduce the payoff of the attacker
without significantly reducing the ADS’s payoff. And when P(c;) is very small, choosing a larger b
can significantly increase the payoff of the ADS without significantly increasing the attacker’s payoff.
Note that this good feature is due to the fact that in our model the attacker’s uncertainty about the
ADS is more than the ADS’s uncertainty about the attacker. Decreasing the amount of information
asymmetries between the ADS and the attacker can reduce the advantages of the ADS.

Second, the results show that (a) the cost of availability is higher attacker success rates and
more security loss (i.e., attacker payoffs), and (b) the existence of Nash equilibria is due to the
fact that the ADS needs to tradeoff between the goal of minimum fraud loss and goal of maximum
service availability. The oscillations of the ADS’s Nash equilibrium strategies in Figure 2 give a
fine explanation of this tradeoff. In particular, when b = 0.3, the availability gain dominates the
ADS’s payoff, so the ADS thresholds always make the size of the acceptance window CL(¢;) (i.e., the
largest). When b = 0.001, the fraud loss dominates, so the thresholds try to minimize the attacker’s
success rate (as shown in Figures 6 and 7). Especially when P(¢;) is smaller than $45 or larger than
$65, the thresholds yield no overlap between the attack range and the acceptance window. When
b = 0.1, neither availability nor fraud loss dominates (for every P(c;)). In particular, (a) when
P(c;) is less than $15, the ADS can have substantial availability without causing a lot fraud loss,
so the thresholds are large; (b) when P(c;) is between $15 and $19, the thresholds sharply go down
because if not the corresponding availability gain cannot afford the corresponding extra fraud loss;
(c) when P(¢;) is between $20 and $30, the thresholds do not decrease because if they decrease the
corresponding fraud saving cannot afford the availability loss; (d) when P(¢;) is between $30 and
$45, the thresholds increase because in this way although y* will also increase, the overlop between
the attack range and the acceptance window will not change. Otherwise, if thresholds decrease or
do not change, the overlap will increase. Note that here the overlap is the main factor for the fraud
loss. (e) when P(c;) is larger than $45, the availability dominates.

Third, it should be noticed that the payoffs shown in Figures 8 and 9 are the expected payoffs
of the attacker (ADS) instead of his or her real payoffs. When b is very small and when P(¢;) is
very small or very large, the attacker’s expected payoff (as shown in Figure 9) is actually much
larger than his or her real payoff, which is actually around zero, although when P(¢;) is round the
medium the expected payoff and the real payoff of the attacker are pretty similar. The difference
between expected and real payoffs indicates the impact of incomplete knowledge and information
asymmetries.

Fourth, the predictions generated have interesting implications on the false alarm rate and the
detection rate. In particular, (a) the false alarm rate is dependent on the behavior of the good guy.
If the good guy always takes his or her Nash equilibrium strategies, the false alarm rate will be 0.
(b) The detection rate can be predicted using the Nash equilibia, as illustrated in Figures 6 and 7.
Note that here the detection rate actually is 1 — attacker_success_rate. However, (a) since there is
incomplete information for the attacker to compute his or her exact Nash equilibrium strategies, the
detection rate can only be approximately predicted; (b) since there could not be enough computation
or communication resources for the good guy to update his or her Nash equilibrium strategies in real
time (Note that each game play could be based on different values of C'L(c;) and P(¢;) which are
dynamically changed), the false alarm rate is usually not zero. Note that our attack prediction models

15

do not conflict with real world false alarm rate and detection rate measures since our predictions are
not closely followed in real world.

5 Optimization: Using Signaling Games to Predict Attacks

Till now, we assume each play of an APG is simultaneous and during each play no player knows the
actions of the other players, however, this assumption could be too weak in some attack prediction
scenarios. For example, in credit card authorization it is usually true that the ADS can observe the
action of the attacker before taking an action. This ability actually can give the ADS some advantage
to choose better actions (since the ADS now has more knowledge about the attacker), however, this
advantage is not taken by our previous prediction models.

In this section, we present a signaling-game model to exploit this ability to do better defense.
Signaling games have been used to analyze a variety of economic problems such as industrial organi-
zation [MR82], dividend policy [Bha79], management share ownership [LP77], job-market signaling
[SpeT73], corporate investment and capital structure [MM84], and monetary policy [Vic86]. In this
paper, we model the attack-defense process as a sequence of (repeated) signaling games between a
Customer and the ADS (on a credit card ¢;), and each signaling game is a dynamic two-stage game
with the following timing: (1) Nature draws a type t; for the Customer from a set of feasible types
Tsubject = {t1,15,...,t4} according to a probability distribution p(t;), where p(t;) > 0 for every i and
p(t]) + ... + p(t}) = 1. (2) The Customer observes ¢; and then chooses a credit card transaction T}
from a set of feasible transactions TR = {T1,...,Ts}. (3) The ADS observes T} (but not ¢;) and then
chooses an threshold from a set of feasible thresholds TH = {th',...,th®}. (4) The payoffs are given
by Uecystomer (ti, Tj, thk) and Uqgds (ti, Tj, thk).

This signaling game satisfies the following requirements:

[Signaling Requirement 1] After receiving any transaction 7; from TR, the ADS must have a
belief about which types could have sent 7). Denote this belief by the probability distribution p(t;|T5),
where p(t;|T;) > 0 for each t; in Tyypjecr, and ZtiETsubjectp(tiu}) =1.

[Signaling Requirement 2] For each T} in TR, the ADS’s action th*(T}) must maximize the ADS’s
expected utility, given the belief p(¢;|T;) about which types could have sent 7. That is, th*(T}) solves
maXypkerH ZtiETsubject (p(til Tj) wads (ti, Tj, th*)).

[Signaling Requirement 3] For each t; in Tyypject, the Customer’s transaction 7% (¢;) must maximize
the Customer’s utility, given the ADS’s strategy ¢th*(T;). That is, T*(t;) solves

mMaxT; eTR Ycustomer (ti, Tja th* (T]))

[Signaling Requirement 4] For each T} in TR, if there exists ¢; in T" such that T*(¢;) = T}, then the
ADS’s belief about which types could have sent T; must follow from Bayes’ rule and the Customer’s
equilibrium strategy: p(t;|T;) = p(ti)/ X4, erype; P(ti). Here Type; denotes the set of types that send
the transaction 7. That is, ¢; is a member of T'ype; if T*(t;) = Tj.

The predicted attack is the set of T*(t?) within the perfect Bayesian equilibrium of this game.
A pure-strategy perfect Bayesian equilibrium in a signaling game is a pair of strategies T*(t;) and
th*(Tj) and a belief p(t;|T};) satisfying Signaling Requirements (1) to (4).

In order to understand signaling attack prediction games in a more intuitive way, we exploit the
extensive-from representation of games. This representation is a powerful analysis tool that can be
used to formalize every attack prediction game proposed in this paper. Using this tool, we can clearly
identify the inherent relationships among the variety types of attack prediction games presented.

The extensive-from representation of games can be visualized by a game tree. Each game tree
begins with a decision node for player 1, where player 1 chooses an action. After player 1 chooses
an action a;, a decision node for player 2 is reached where player 2 can choose an action. These
two decision nodes are connected by an arc marked by action a;. To illustrate, let’s consider a very
simple attack prediction game. Assume Tyypjec = {good,bad}, TR = {T1,T>} for both types, and

16

good

1.3 .’>thl. T2 Customer T1 C thi 21
4,0 th2 o th2 00

0.5

ADS Nature

thl . . thl
bad
1@ Ty o @ 12

Customer

Figure 10: A Simple Signaling Attack Prediction Game

TH = {th',th?}. Assume that p(good) = 0.5, then p(bad) = 0.5. Then the game tree of this signaling
game can be shown in Figure 10. Note that the corresponding payoffs are also marked on the game
tree. In each payoff pair (z,y), = indicates the payoff for the Customer and y indicates the payoff for
the ADS.

Note that here decision nodes C' and D are connected by a dashed line since when a play of the
game reaches a node in the set {C, D}, the ADS has the move (i.e., can choose an action) but does
not know which node in the set has (or has not) been reached (since the ADS does not know the
type of the Customer). We call such a set an information set for the ADS. An information set with
a single element is called a singleton information set. Note that the extensive-form representation
of a game not only specifies the players, the strategies, and the payoffs, but also specifies (1) when
each player has the move, and (2) what each player knows at each of his or her opportunities to
move. Note also that the extensive-form representation of a game can easily specify simultaneous
plays using the concept of information sets.

Compared with the static Bayesian attack prediction game proposed in Section 3, the ADS’s
belief is more accurate. In particular, in static Bayesian prediction games the ADS believes that
every customer type could submit every kind of transactions, that is, the ADS believes that P(t;|T})
is always equal to P(t;). However, in dynamic signaling games, after the ADS observes the action of
the Customer and gains more knowledge, the ADS’s belief can be made more accurate. For example,
let’s reconsider the game shown in Figure 10, it is not very difficult to figure out that in the Nash
equilibrium of this game the good guy will choose T7 and the bad guy will choose T5. This indicates
that if the ADS observes that the action of the Customer is T7, then the ADS’s belief should be
P(good|T1) = 1.0 instead of P(good) which is 0.5 because according to the Nash equilibrium the
attacker will never choose T'. As a result, more accurate beliefs will certainly improve the prediction
accuracy.

6 Enforcement Issues

A concern about game-theoretic attack prediction models is how to put these models into practice
use. In this session, we address several enforcement issues.

Prediction accuracy issues. The prediction accuracy of our approach is dependent on several
assumptions. (1) The rationality notion of an expected-utility maximizer should be accepted by both
the attacker and the system. That is, both the attacker and the system will take rational actions.
(2) When there are multiple Nash equilibria for a single game (play), the attacker and the system
should be able to select the same Nash equilibrium. (3) Although both the attacker and the system
usually have incomplete knowledge about the other player, their beliefs should be consistent with
the real world situation. It is not difficult to see that these assumptions can be satisfied in a variety
of real world attack prediction applications. Moreover, the discussions in Section 3 indicate that the
prediction accuracy is also dependent on whether or not the predictions produced can be known to

17

(or accurately estimated by) the attacker and the system.

Computational issues. Game-theoretic attack prediction models usually involve computation
intensive combinational problems. When the game is simple, e.g., the game that we have simulated,
computing the Nash equilibrium strategies takes reasonable amount of resources. However, real world
games are usually complicated. For example, to make a credit card fraud prediction game practical,
we may need to handle more complicated ADS thresholds, profiles, and attacking actions, which
can cover much more aspects (or attributes) of credit card transactions than transaction amounts.
Practical games usually involve very large multi-dimension action spaces, so solving practical games
can be extremely resource consuming, and practical game-theoretic reasoning usually needs parallel
computing, relaxation, and approximations [PU00, EJKT00]. Fortunately, this problem is not the
unique problem for attack prediction games but a common problem for almost every game theory
application. The fact that game-theoretic models have been successfully used in e-commerce (e.g.,
online auctions) (through a variety of economical computation methods such as iterative computation,
distributed computation, approximations, and bounded rationality) shows that the computation
problem could be solved for practical game theoretic attack prediction. Practical computational
game theoretic attack prediction is out of the scope of this paper.

7 Conclusion and Future Work

The ability to predict attacks can dramatically enhance people’s capacity to defend cyber attacks.
This paper - the first of a series - presents a novel game-theoretic attack prediction framework where
the Nash equilibria of attack prediction games can generate valuable attack predictions, give a good
estimation of the maximum security loss, and tell how the defense should be built. Our preliminary
results on credit card fraud prediction are very encouraging. As part of the future work, we are
investigating the enforcement issues in depth, and extending our APG model to incorporate the
signaling game optimization and to predict other types of cyber attacks such as DDoS attacks.

References

[BAMFO01] H. Browne, W. A. Arbaugh, J. McHugh, and W. L. Fithen. A trend analysis of exploitations. In
Proc. 2001 IEEE Symposium on Security and Privacy, pages 214-229, May 2001.

[Bha79] S. Bhattacharya. Inperfect information, divident policy, and the ’bird in the hand’ fallacy. Bell
Journal of Economics, 10:259-270, 1979.

[EJK*00] J. E. Eggleston, S. Jamin, T. P. Kelly, J. K. MacKie-Mason, W. E. Walsh, and M. P. Well-
man. Survivability through market-based adaptivity: The marx project. In Proc. 2000 DARPA
Information Survivability Conference (DISCEX), June 2000.

[FPS01] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker. Sharing the cost of multicast transmissions.
Journal of Computer and System Sciences, 63(1):21-41, 2001.

[Gib92] R. Gibbons. Game Theory for Applied Economics. Priceton University Press, 1992.

[GL91] T.D. Garvey and T.F. Lunt. Model-based intrusion detection. In Proceedings of the 14th National
Computer Security Conference, Baltimore, MD, October 1991.

[Har73] J. Harsanyi. Games with randomly disturbed payoffs: A new rational for mixed strategy equilib-
rium points. International Journal of Game Theory, 2, 1973.

[HRWO00] J. Hu, D. Reeves, and H. Wong. Personalized bidding agents for online auctions. In Proc. 5th
International Conference on Practical Application of Intelligent Agents and Multi-Agents, May
2000.

[HS88] J. C. Harsanyi and S. Selten. A General Theory of Equilibrium Selection in Games. MIT Press,
1988.

[IKP95]
[Ng93]
[IV91]
[TV94]
[LP77]
[Lun93]
[LX01]
[MCWG95]
[MHL94]
[MM84]
[MRS2]
[Nas50]

[Pap94]

[PHO1]

[PSCY8]

[PUOO]
[San00]

[SBBO1]

[SFL97]

[SL96]

[SM97]

18

K. Ilgun, R.A. Kemmerer, and P.A. Porras. State transition analysis: A rule-based intrusion
detection approach. IEEE Transactions on Software Engineering, 21(3):181-199, 1995.

K. Tlgun. Ustat: A real-time intrusion detection system for unix. In Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, CA, May 1993.

H. S. Javitz and A. Valdes. The sri ides statistical anomaly detector. In Proceedings IEEE
Computer Society Symposium on Security and Privacy, Oakland, CA, May 1991.

H. S. Javitz and A. Valdes. The nides statistical component description and justification. Technical
Report A010, SRI International, March 1994.

H. Leland and D. Pyle. Informational asymmetrics, financial stucture, and financial intermedia-
tion. Journal of Finance, 32:371-387, 1977.

T.F. Lunt. A Survey of Intrusion Detection Techniques. Computers & Security, 12(4):405-418,
June 1993.

W. Lee and D. Xiang. Information-theoretic measures for anomaly detection. In Proc. 2001 IEEE
Symposium on Security and Privacy, Oakland, CA, May 2001.

A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic Theory. Oxford University
Press, 1 edition, 1995.

B. Mukherjee, L. T. Heberlein, and K.N. Levitt. Network intrusion detection. IEFE Network,
pages 26-41, June 1994.

S. Myers and N. Majluf. Corporate financing and investment decisions when firms have informa-
tion that investors do not have. Journal of Financial Economics, 13:187-221, 1984.

P. Milgrom and J. Roberts. Limit pricing and entry under incomplete information. Fconometrica,
40:443-459, 1982.

J. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences,
36, 1950.

L. Papayanopoulos. Preventing minority disenfranchisement through dynamic bayesian reappor-
tionment of legislative voting power. In T. Basar and A. Haurie, editors, Advances in Dynamic
Games and Applications, pages 386—394. Birkhauser Boston, 1994.

D. C. Parkes and B. A. Huberman. Multiagent cooperative search for portfolio selection. Games
and Economic Behavior, 35:124-165, 2001.

K. Park, M. Sitharam, and S. Chen. Quality of service provision in noncooperative networks:
heterogeneous preferences, multi-dimensional qos vectors, and burstiness. In Proc. International
Conference on Information and Computation Economics, 1998.

D. C. Parkes and L. H. Ungar. Iterative combinatorial auctions: Theory and practice. In Proc.
17th National Conference on Artifical Intelligence, pages 74-81, 2000.

T. W. Sandholm. Issues in computational vickrey auctions. International Journal of Electronic
Commerce, 4:107-129, 2000.

S. Sekar, M. Bendre, and P. Bollineni. A fast automaton-based method for detecting anomalous
program behaviors. In Proc. 2001 IEEE Symposium on Security and Privacy, Oakland, CA, May
2001.

S. Stolfo, D. Fan, and W. Lee. Credit card fraud detection using meta-learning: Issues and initial
results. In Proc. AAAI Workshop on AI Approaches to Fraud Detection and Risk Management,
1997.

T. W. Sandholm and V. R. Lesser. Advantages of a leveled commitment contracting protocol. In
Proc. 13th National Conference on Artificial Intelligence, pages 126—133, 1996.

D. Samfat and R. Molva. Idamn: An intrusion detection architecture for mibile networks. IEEE
Journal of Selected Areas in Communications, 15(7):1373-1380, 1997.

19

[Spe73] A. M. Spence. Job market signaling. Quarterly Journal of Economics, 87:355-374, 1973.

[Vic86] J. Vickers. Signaling in a model of monetary policy with incomplete information. Ozford Economic
Papers, 38:443-455, 1986.

[Vin94] T. L. Vincent. An evolutionary game theory for differential equation models with reference to
ecosystem management. In T. Basar and A. Haurie, editors, Advances in Dynamic Games and
Applications, pages 356-374. Birkhauser Boston, 1994.

[WWO00] P. R. Wurman and M. P. Wellman. Akba: A progressive, anonymous-price combinatorial auction.
In Proc. 2nd ACM Conference on Electronic Commerce, pages 21-29, 2000.

A A Simple Review of Game Theory

Definition 3 [Normal-Form Representation of Game] The normal-form representation of an n-player
game specifies the players’ strategy spaces Si, ..., Sy and their payoff functions uq, ..., u,. We denote
this game by G = {S1, ..., Sp; U1, ...yt }.

Definition 4 [Nash Equilibrium] In the n-player normal-form game G = {Si, ..., Sp;u1, ..., u, }, the
strategies (s7,...,sy) are a Nash equilibrium if, for each player 4, s} is (at least tied for) player i’s
best response to the strategies specified for the n-1 other players, (s7,...,s7_,s7.,...,s;). That is,
57 solves maxXy, s, Ui(5T, oy ST_1, Siy S5y qsees Sp)-

A pure strategy for player i is an element of set S;. Suppose S; = {s;1,..., Sit}, then a mized
strategy for player i is a probability distribution p; = (pi1, ..., pix), where 0o < pj < lfor k=1,.., K
and p;1 + ... + pir = 1.

Although many games have one or more pure strategy Nash equilibria, a game could have no
pure strategy Nash equilibrium. Nevertheless, it is proved that when mixed strategies are allowed,
every game has at least one Nash equilibrium.

Theorem 1 (Nash 1950): In the n-player normal-form game G = {Si, ..., Sp;u1, ..., u, }, if n is finite
and S; is finite for every ¢ then there exists at least one Nash equilibrium, possibly involving mixed
strategies.

Definition 5 [Static Bayesian Game] The normal-form representation of an n-player static Bayesian
game specified the players’ action spaces Ay, ..., A,, their type spaces T1, ..., T, their beliefs py, ..., py,
and their payoff functions w1, ...,u,. Player i’s type, t;, is privately known by player 7, determines
player i’s payoff function, u;(aq, ..., a,;t;), and is a member of the set of possible types, T;. Player
i’s belief p;(t_;|t;) describes i’s uncertainty about the n — 1 other players’ possible types, ¢_;, given
i’s own type, t;. We denote this game by G = {A1,...; Ap; Th, oo, Ty D1y vvs Prj Uy oeey Un b

Definition 6 [Bayesian Nash Equilibrium] In the static Bayesian game

G={A1, .., An;T1,....;Tn;D1y ey Pny UL, -, Up }, the strategies (s, ..., s;) are a (pure-strategy) Bayesian
Nash equilibrium if for each player ¢ and for each ¢’s type ¢; in Tj, s (t;) solves

maxa;ed; p_ e, WilST(t1), o 7oy (tie1), @iy si41 (Bi1)s ooy 85, (E0); £)pi (Ei[).

Definition 7 [Finitely Repeated Game| Given a stage game G, let G(T') denote the finitely repeated
game in which G is played T times, with the outcomes of all preceding plays observed before the
next play begins. The payoffs for G(T') are simply the sum of the payoffs from the T' stage games.

Proposition 1 If the stage game G has a unique Nash equilibrium then, for any finite T, the
repeated game G(7T') has a unique subgame-perfect outcome: the Nash equilibrium of G is played in
every stage.

20

Definition 8 [Multi-Stage Strategy] In the finitely repeated game G(T'), a player’s strategy specifies
the action the player will take in each stage, for each possible history of play through the previous
stage.

Definition 9 [Subgame] In the finitely repeated game G(T'), a subgame beginning at stage ¢ + 1 is
the repeated game in which G is played T — ¢ times, denoted G(T — t). There are many subgames
that begin at stage ¢ + 1, one for each of the possible histories of play through stage ?.

Definition 10 [Subgame-Perfect Nash Equilibrium] A Nash equilibrium is subgame-perfect if the
player’s strategies constitute a Nash equilibrium in every subgame.

