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Abstract

We consider recovery from malicious but committed transactions.
Traditional recovery mechanisms do not address this problem, except
for complete rollbacks, which undo the work of good transactions as well
as malicious ones, and compensating transactions, whose utility depends
on application semantics. We develop an algorithm that rewrites exe-
cution histories for the purpose of backing out malicious transactions.
Good transactions that are affected, directly or indirectly, by malicious
transactions complicate the process of backing out undesirable trans-
actions. We show that the prefix of a rewritten history produced by
the algorithm serializes exactly the set of unaffected good transactions.
The suffix of the rewritten history includes special state information to
describe affected good transactions as well as malicious transactions.
We describe techniques that can extract additional good transactions
from this latter part of a rewritten history. The latter processing saves
more good transactions than is possible with a dependency-graph based
approach to recovery.

*Liu, Ammann, Jajodia were partially supported by Rome Laboratory, Air Force Ma-
terial Command, USAF, under agreement number F30602-97-1-0139.



1 Introduction

Preventive measures sometimes fail. In the database context, some trans-
actions that shouldn’t commit do anyway. Undesirable committed transac-
tions can arise from malicious activity by a well-equipped attacker in many
circumstances, these transactions are referred as malicious transactions. In
tightly integrated networks, the damage caused by malicious transactions
can spread quickly from the initial source. In this paper, we focus on one
aspect of planning for and responding to such damage; specifically, we de-
velop a family of algorithms for rewriting execution histories that back out
a set of malicious (but committed) transactions while preserving the work of
good transactions, namely committed transactions that arise from legitimate
activity. Traditional recovery mechanisms do not address this problem, ex-
cept for complete rollbacks, which undo the work of malicious transactions
as well as good ones, and compensating transactions, whose utility depends
on application semantics. We show that our approach is strictly better at
saving good transactions than a dependency-graph based approach.

1.1 Information Warfare

Experience with traditional information systems security practices (INFOSEC)
has shown that it is very difficult to adequately anticipate the abuse and mis-
use to which an information system will be subjected in the field. The focus of
INFOSEC is prevention: security controls aim to prevent malicious activity
that interferes with either confidentiality, integrity, or availability. However,
outsiders (hackers) have proved many times that security controls can be
breached in imaginative and unanticipated ways. Further, insiders have sig-
nificant privileges by necessity, and so are in a position to inflict damage.
Finally, the dramatic increase in internetworking has led to a correspond-
ing increase in the opportunities for outsiders to masquerade as insiders.
Network-based attacks on many systems can now be carried out from any-
where in the world. Although mechanisms such as firewalls reduce the threat
of outside attack, in practice such mechanisms cannot eliminate the threat
without blocking legitimate use as well. In brief, strong prevention is clearly
necessary, but less and less sufficient, to protect information resources.

In response to problems with the INFOSEC approach, a complementary
approach with an emphasis on survivability has emerged. This ‘informa-
tion warfare’ (IW) perspective is that not only should vigorous INFOSEC
measures be taken to defend a system against attack, but that some attacks

*For a recent summary with an emphasis on the database context, see [AJMB97].



should be assumed to succeed, and that countermeasures to these successful
attacks should be planned in advance. The IW perspective emphasizes the
ability to live through and recover from attacks.

The timeline in an IW scenario includes traditional preventive measures
to harden a system against attack, intelligence gathering by the adversary to
detect weaknesses in the resulting system, attack by the adversary, and finally
countermeasures to the attack. Typical countermeasure phases are attack de-
tection, damage confinement and assessment, reconfiguration, damage repair,
and fault treatment to prevent future similar attacks. In this paper, we focus
on one specific countermeasure phase to an information attack, namely the
damage repair phase.

Although the IW adversary may find many weaknesses in the diverse com-
ponents of an information system, databases provide a particularly inviting
target. There are several reasons for this. First, databases are widely used,
so the scope for attack is large. Second, information in databases can often
be changed in subtle ways that are beyond the detection capabilities of the
typical database mechanisms such as range and integrity constraints. For
example, repricing merchandise is an important and desirable management
function, but it can easily be exploited for fraudulent purposes. Finally, un-
like most system components, many databases are explicitly optimized to
accommodate frequent updates. The interface provides the outside attacker
with built in functions to implement an attack; all that is necessary is to
acquire sufficient privileges, a goal experience has shown is readily achiev-
able. Advanced authorization services can reduce such a threat, but never
eliminate it, since insider attacks are always possible, and also since sys-
tem administrators are only human, and hence prove to making mistakes in
configuring and managing authorization services.

Integrity, availability, and (to a lesser degree) confidentiality have al-
ways been key database issues, and commercial databases include diverse set
of mechanisms towards these ends. For example, access controls, integrity
constraints, concurrency control, replication, active databases, and recovery
mechanisms deal well with many kinds of mistakes and errors. However, the
IW attacker can easily evade some of these mechanisms and exploit others
to further the attack. For example, access controls can be subverted by the
inside attacker or the outside attacker who has assumed an insider’s identity.
Integrity constraints are weak at prohibiting plausible but incorrect data;
classic examples are changes to dollar amounts in billing records or salary
figures. To a concurrency control mechanism, an attacker’s transaction is in-
distinguishable from any other transaction. Automatic replication facilities
and active database triggers can serve to spread the damage introduced by an
attacker at one site to many sites. Recovery mechanisms ensure that commit-



ted transactions appear in stable storage and provide means of rolling back
a database, but no attention is given to distinguishing legitimate activity
from malicious activity. In brief, by themselves, existing database mecha-
nisms for managing integrity, availability, and confidentiality are inadequate
for detecting, confining, and recovering from IW attacks.

1.2 Contribution

The specific problem we address in this paper is ‘how can one repair a
database, given that a set of malicious transactions has been identified.” The
identification of the set of malicious transactions is outside the scope of this
paper. In an IW context, such identification takes place in an earlier counter-
measure phase. For example, identification of an attacker may lead directly
to the identification of a set of malicious transactions.

Our contribution is to provide an algorithm that rewrites an execution
history so that malicious transactions are as near the end of the history as
possible, given the read-write dependencies between transactions. The prefix
of the rewritten history consists solely of good transactions; we show that
this prefix is equivalent to using a write-read dependency graph to unwind
malicious transactions and those good transactions that depend, directly or
indirectly, on the malicious transactions. We then show how to use the latter
part of the rewritten history to save additional good transactions.

Although we develop these algorithms to repair a database when some
malicious activity happens, our methods can be easily extended to other
applications where some committed transactions may also be identified un-
desirable, thus have to be backed out. For example

e In [JLM98], the use of isolation is proposed to protect systems from
the damage caused by authorized but malicious users, masqueraders,
and misfeasors, where the capacity of intrusion detection techniques
is limited. In the database context, the basic idea is when a user is
found suspicious, his transactions are redirected to an isolated database
version, and if the user turns out to be innocent later, the isolated
database version will be merged into the main database version. Since
these two versions may be inconsistent, some committed transactions
may have to be backed out to ensure the consistency of the database.

e During upgrades to existing systems, particularly upgrades to software.
Despite efforts for planning and testing of upgrades, upgrade disasters
occur with distressing regularity.’ If a system communicates with the

$For some more spectacular examples, see Peter Neumann’s RISKS digest in the news-



outside world, bringing the upgrade online with a hot standby running
the old software isn’t complete protection. Problems with an upgrade
by one organization can easily affect separate, but cooperating organi-
zations. Thus an incorrect upgrade at a given organization may result
in an erroneous set of transactions at one or more cooperating orga-
nizations. In many cases, it is not possible simply to defer activity,
and so during the period between the introduction of an upgrade and
the recognition of an upgrade problem, erroneous transactions at these
cooperating organizations commit. As a result, backing out these com-
mitted erroneous transactions is necessary.

e In partitioned distributed database systems, Davidson’s optimistic pro-
tocol [Dav84] allows transactions to be executed within each partitioned
group independently with communication failures existing between par-
titioned groups. As a result, serial history H; consisting of all trans-
actions executing within group F; is generated. When two partitioned
groups P; and P; are reconnected, H; and Hs may conflict with each
other. Therefore, some committed transactions may have to be backed
out to resolve the conflicts and ensure the consistency of the database.

e In [GHOS96], J. Gray et al. state that update anywhere-anytime-
anyway transactional replication has unstable behavior as the workload
scales up. To reduce this problem, a two-tier replication algorithm is
proposed that allows mobile applications to propose tentative update
transactions that are later applied to a master copy. The drawback of
the protocol is that every tentative transaction must be reexecuted on
the base node, thus some sensitive transactions may have given users
inaccurate information and the work of tentative transactions is lost.
In this situation, the strategy that when a mobile node is connected
to the base node merges the mobile copy into the master copy may
be better, however, in order to ensure the consistency of the master
copy after the mergence, some committed transactions may have to be
backed out.

1.3 Organization

The outline of the paper is as follows. In section 2 we give our model for
rewriting and repairing histories after first describing the dependencies rel-
evant to repair. In section 3 we give an algorithm to rewrite histories and
show that it is equivalent to using a dependency-graph based approach. We
turn to methods to save additional good transactions in section 4. In section

group news:comp.risks or the archive ftp://ftp.sri.com/risks.



5, we show how to prune a rewritten history so that a repaired history can
be generated. We examine the relationships among the possible rewriting al-
gorithms in section 6. In section 7, we show how to implement our rewriting
methods in a realistic transaction processing system which is based on the
Saga model[GMS87]. Section 8 describes related work, and we conclude in
section 9.

2 Model

2.1 Assumptions

We assume that the histories to be repaired are serializable histories gener-
ated by some mechanism that implements a classical transaction processing
model [BHG87]. We denote (committed) malicious or bad transactions in
a history by the set B = {B;1, B, ..., Bim }. We denote (committed) good
transactions in a history by the set G = {Gj1,Gj2,...,Gj,}. Since recovery
of uncommitted transactions is addressed by standard mechanisms, we con-
sider a history H over B U G. We define <y to be the usual partial order on
B U G for such a history H, namely, T; <g T} if <p orders operations of T;
before conflicting operations of T; [BHG87].

We assume that the concurrency control mechanism provides an explicit
serial history H?® of history H. For example, the order of first lock release
provides a serialization order for transactions scheduled by a strict two-phase
locking mechanism. We denote the total order on the transactions in a serial
history H® by <j.

We assume the availability of read information for transactions in H.
Only write information is kept in logs for traditional recovery purposes, but,
as later discussion makes clear, read information is also necessary to unwind
committed transactions. Read information can be captured in several ways,
these approaches are discussed in section 7.

We assume that transactions do not issue blind writes. That is, if a
transaction writes some data, the transaction is assumed to read the value
first. Although the approach in this paper can be adapted to blind writes,
doing so complicates the presentation. Also, we compare the results in this
paper to those obtained by a dependency-graph based approach to recovery
that also assumes no blind writes.



2.2 Syntactic Dependencies

One simple repair is to roll back a history H® until at least the first transaction
in B and then try to reexecute transactions in G that were undone during
the rollback. The drawback of this approach is that many good transactions
may be unnecessarily undone and reexecuted. Consider the history H; over
(Bl, Gg) where

By : r[z]w[z]
Gy : rlylwly]
H1 : B1 G2

It is clear that G9 need not be undone and reexecuted since it does not
conflict with B;. We formalize the notion that some - but not all - good
transactions need to be undone and reexecuted in the usual way:

Definition 1 Transaction T} is dependent upon transaction T; in a history
H if there exists a data item z such that:

1. T; reads z after T; has updated z; and

2. there are no transactions that update x between the time T; updates =
and T} reads z.

Every good transaction that is dependent upon some bad transaction
potentially needs to be undone and reexecuted. There are also other good
transactions that also need be undone and reexecuted. Consider the history
H2 over (Bl, GQ, Gg):

By : rlz|wlz]

Gy : rlz]r[ylwly]
Gs : rlylwly]
H2 : B1 G2 G3

(G5 is not dependent upon Bj, but it should be undone and reexecuted,
because the value of x which G5 reads from B; may affect the value of y
which G35 reads from G9. This relation between GG and By is captured by
the transitive closure of the dependent upon relation:

Definition 2 In a history, transaction T; affects transaction T if the ordered
pair (T}, T;) is in the transitive closure of the dependent upon relation.
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Figure 1: Dependency Graph for History Hj

It is convenient to define the dependency graph for a set of transactions
S in a history as DG(S) = (V, E) in which V is the union of S and the set
of transactions that are affected by S. There is an edge, T; — T}, in E if
T; € V,T; € (V—S), and Tj is dependent upon T;. Notice that there are no
edges that terminate at elements of S; such edges are specifically excluded by
the definition. As a result, every source node in DG(B) is a bad transaction,
and every non-source node in DG(B) is a good transaction that reads some
data, directly or indirectly, from at least one bad transaction. We refer to the
transactions associated with the non-source nodes in DG(B) as the affected
good transactions or, more briefly, as the affected transactions. We denote
the set of affected transactions as AG.

As an example, consider the history Hs over (B, G2, G3, G4, By, Gg):
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DG(B) is shown in Figure 1.

If a good transaction is not affected by any bad transaction (for example,
G4 in Hs), then the good transaction need not be undone and reexecuted. In
other words, only the transactions in DG(B) potentially need be undone, and
only transactions in AG potentially need to be reexecuted. From the recovery
perspective, the goal of a dependency-graph based approach to recovery is to
first get DG(B), then undo all these transactions.¥

INote to the referees: The dependency-graph based algorithm is part of a different
paper that is being considered for
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Figure 2: Zone of Repair

Figure 2 illustrates the dependency-graph based approach to backing out
bad and affected transactions. In particular, it illustrates the importance
of distinguishing between read-write and write-read dependencies during re-
covery. A read-write edge can leave the ‘zone of repair’ without causing the
zone to expand. On the other hand a write-read edge potentially expands
the zone. Note that due to the assumption of no blind writes, there are no
write-write edges in the graph.

In this example, a possible history Hy is
H, = By Gy AG3 Gy Bs G6 AG7 AGg Gg G10 AG1 Gio

the set AG = {AG3, AG7, AGg, AG11}, and the dependency-graph based
recovery algorithm restores the before values for all data items written by
transactions in the set B U AG. The result is a serializable history over
G- AG:

H,, = G2 G4y Gg Gy G1p G2

The approach of rewriting histories developed in this paper has the advantage
that it preserves ordering information for transactions in B U AG, thereby
providing a basis for saving additional transactions in AG.

publication. A description of the algorithm for recovery may be downloaded from the
URL http://wuw.isse.gmu.edu/faculty/pammann/papers/recovery.ps



2.3 Rewriting Histories

For a serial history H?, we augment H?® with explicit database states so that
the result is a sequence of interleaved transactions and database states. The
sequence begins and ends with a state. The state that immediately precedes
a transaction in H? is called the before state; the state that immediately
follows a transaction in H? is called the after state. For an example, consider
the augmented history

Hg = S0 B1 S1 G2 S92
where

By :if x>0 then y:=y+2z+3
Gy :x:=x—1

The states associated with HE are:

so={x=1;, y=7; z=2}
s1={x=1; y=12; z=2}
so={x=0; y=12; z=2}

In rewriting histories, the general goal is either to move bad transactions
towards the end of a history or to move good transactions towards the be-
ginning of a history. It turns out that the transformations do not necessarily
result in a serializable history which is conflict-equivalent or view-equivalent
to the original history[BHG87]. The lack of serializability is justified by the
observation that bad transactions ultimately must be backed out anyway
along with some or all of the affected transactions. Hence the serializability
of such transactions is not a requirement.

The example above helps to clarify this point. The serial history H¢ is
clearly not conflict-equivalent to the serial history G5By since there is a read-
write dependency from B; to G2. However, G2 is not affected by B, and
simply restoring y with the appropriate value from the log not only repairs
the damage caused by Bj, but preserves the effects of the good transaction
Gy.

However, It turns out that rewriting histories for recovery purposes re-
quires some care with respect to state-equivalence of histories. Two aug-
mented histories Hi and Hj are equivalent if they are over the same set of
transactions and the final states are identical.



To clarify this point, consider the above example again. After we make
the transformation of exchanging the order of G2 and B;, H{ is clearly not
equivalent to the serial history G5B since they result in different final states.
At this situation, if H{ has more transactions following B G, i.e., G3G4...Gp,
then this transformation changes the before state of G3. As a result, after
the transformation the rewritten history may not be consistent any longer
because the precondition of some G;, 3 < ¢ < m, may not be satisfied any
more. Even if the rewritten history is still consistent, the behaviors and effects
of G, Gy, ..., and G, may have changed a lot, thus the original execution
log may turn out to be useless. Moreover, the rewritten history usually can
not result in the same final state, and the new final state is usually very
difficult to get, thus semantics-based compensation is disabled. Therefore,
keeping the equivalence of rewritten histories during a rewrite is essential to
the success of the rewrite.

We approach this problem by decorating each transaction 7' in an aug-
mented history H?® with special values for read purposes by T'. The decoration
is facilitated by the notation fixz which is specified below.

Definition 3 A fiz for transaction T; in history H*, denoted Fj, is a set of
variables read by T given values as in the original position of 7" in H®. That
is, F; = {(z1,v1), ..., (Tn,vy,)}, and v; is what T; read for z; in the original
history.

The notation T;%¢ indicates that the values read by T; for variables in Fj
should not come from the before state of T;, but from Fj.

To reduce notational clutter, we show just the variable names in F; and
omit the associated values.

Consider the augmented history Hf = sog B s1 G2 s2 above. As discussed,
the history

H{ =59 G s3 By s3
with
s3={x=0; y=T7; z=2}
results in a different value of y in the final state, but the history

H?ZSU G2 S3 BIFI 59

10



ends in final state sy for F; = {x}. States s; and s3 differ in the value of z;
this discrepancy is captured by Fj, where z is associated with the value 1,
which is the value B; read for x in the original history Hf.

In what follows, each transaction 7; is assumed to have an associated fix
F;. For ordinary serializable execution histories, each such fix F; = (), the
empty fix. In the example above, the two histories

Hg = S0 B? S1 Gg S92
H? = S0 Gg S3 Bix} S2

are equivalent.

2.4 Repaired Histories

Definition 4 Given a history H® over BU G, H; is a repaired history of H®
if

1. H; is over some subset of G, and
2. There exists some history H over B U G such that

(a) Hf is a prefix of H and
(b) Hf and H* are equivalent.

Our notion of a repaired history is that only good transactions remain
(condition 1) and further that there is some extension to the repair that
captures exactly the same transformation to the database state as the original
history (condition 2).

We note that the dependency-graph based approach satisfies the first
part of the definition of a repaired history where the subset of G is G — AG.
As an example, in figure 2 history Hj, is a repair of Hj since Hj, is over
{G2,G4,Gg, Gy, G, G12} which is a subset of G and the necessary history
Hj, exists:

Hj, = Gy G4 Gg Gy Gig Giz B{* AGS® BI® AGT" AGE® AGI!

for appropriate fixes FY, F3, F5, F7, Fg and Fyq1. Details of how to construct
fixes are discussed later in the paper.

Armed with a definition of repairs to histories, we are now ready to con-
sider algorithms to construct them.

11



3 Basic Algorithm to Rewrite a History

3.1 Can-Follow Relation

We denote the set of items read or written by a transaction T' as T.readset or
T.writeset, and the set of items read or written by a sequence of transactions
R =1T\T>...T,, as R.readset or R.writeset. Due to our assumption of no blind
writes, R.writeset C R.readset.

Definition 5 Transaction T' can follow a sequence of transactions R if

T.writeset N R.readset = ()

There are some properties of can follow:

1. If T;.writeset is not empty, then transaction 7; can not follow itself.

2. The fact that T; can follow transaction 7 and T} can follow transaction
T} does not imply that T; can follow Tj.

3. Read-only transactions can follow any transaction.

The can follow relation captures the notion that a transaction 7' can be
moved to the right past a sequence of transactions R if no transaction in R
reads from 7. The can follow relation ensures then the cumulative effects
of the transactions in R on the database state are identical both before and
after T is moved. The following lemma shows that the can follow relation
can be repeatedly used to rewrite a history.

Lemma 1 Transaction 7' can follow a sequence of transactions R iff T' can
follow every transaction in R.

Proof: if: For every transaction T; in R, T.writeset N T;.readset = ()
because T can follow T;. Therefore T.writeset N R.readset = (), so T' can
follow R.

only if: By contradiction, assume there is a transaction 7; in R such that
T cannot follow T;, then T.writesetNT;.readset # (). Therefore, T.writesetN
R.readset # (), which contradicts the assumption that T' can follow R. a

12



3.2 Can-Follow Rewriting

The can follow relation can be used to rewrite a history to move transactions
in G — AG to the beginning of the history, namely, move transactions in
B U AG backwards.

Algorithm 1 Can-Follow Rewriting
Input: the serial history H® to be rewritten and the set B of bad transactions.
Output: a rewritten history with transactions in G — AG preceding transactions in
BUAG.
Method: Scan forward from the first good transaction after B: until the end of H*, for
each transaction T’
case T € B skip it;
case T € G
if each transaction between B; and T (including B;) can follow T', then
move T to the position immediately preceding B;.

Algorithm 1 does not describe how to compute the fiz with any transac-
tion which has some transaction being moved to the left of it. The reason is
that repair can simply be accomplished by undo. However, if we want to save
some of the transactions in AG then we need to maintain the fiz information
for these transactions. Fixes are computed as follows:

Lemma 2 Suppose transaction 7' can follow sequence R in history Hj =
so TF' s; R sy. Then for fix

Fy, = Fy U (T.readset N R.writeset)

history H5 = sg R s3 T sq is equivalent to H 1. The values associated with
each data item in the fixes are those originally read by T'.

Proof: Consider some database item z € s9. 2 is not an element of both
R.writeset and T.writeset since otherwise the relation 1" can follow R would
not hold. If z is an element of R.writeset, then the value computed by R
for z is the same in both H{ and Hj since R does not read from T'. If z is
an element of T.writeset, then the value computed by T for x is the same in
both H{ and Hj since T' reads identical values for elements in T.readset in
both histories, courtesy of fixes F; and Fs, respectively. If z is not an element
of either T.writeset or R.writeset, then the order of 7" and R is irrelevant to
the value of . a

The correctness of Algorithm 1 is specified as follows.

13



Theorem 1 Given a history H?, Algorithm 1 produces a history H; with a
prefix H; such that:

1. All and only transactions in G — AG appear in Hf.

2. H} and H° order transactions in G — AG identically. And they order
transactions in B U AG identically.

3. The fix associated with each transaction in H, is empty.

4. H?® and H are equivalent. And H? is a repaired history of H*.

Proof: (1) We first show that when a transaction 7} € G — AG is scanned
every transaction between By and T} is in B U AG. Assume this is not the
situation and 7% is the first one between B; and T} which belongs to G — AG.
According to the algorithm when T» was scanned it should be moved to the
left of B, which is a contradiction. We second show that no transactions in
AG will be moved to the left of By at the end of the algorithm. Assume this
is not the situation and T5 is the first one in AG. According to the definition
of AG, when T5 is scanned there is at least one transaction between By and
Ty which can not follow T, which is a contradiction. We last show that no
transactions in B will be moved to the left of B; because they will never
be moved at all. Therefore, after the rewrite all and only transactions in
G — AG are moved to the left of Bj.

(2) Since Algorithm 1 moves transactions in G — AG to the left of B; ac-
cording to their orders in H?, so they are ordered by H,; and H?’ identically.
Since transactions in B U AG are never moved in Algorithm 1, so they are
ordered by H; and H® identically.

(3) Since there are no transactions which are moved to the left of any trans-
action in G — AG in Algorithm 1, transactions in G — AG will have empty
fixes.

(4) Follows from Lemma 2 and Definition 4. 0

In realistic applications, although Lemma 2 gives users a sound approach
to capture fixes in Algorithm 1, it is not efficient in many cases since whenever
a transaction T; is moved to the left of another transaction T}, F; may need
be augmented. A better way to compute fixes is as follows:

Lemma 3 For any history H®, assume rewriting H* using Algorithm 1 gen-
erates a history H¢ with a prefix H? (H{ typically looks like:

Gj1..Gjn BEY AGE}..BEim . AG}}. The subhistory before By is H} ),

14



and assume all the fixes are computed according to Lemma 2 during the
rewriting, then the history H?', generated by replacing each non-empty fix
F; in H{ with F] = T;.readset — T;.writeset, is equivalent to H.

Proof: According to Theorem 1, the fix associated with each transaction in
H; is empty. Given a transaction 7; in B U AG, for each item z in F] — F;,
showing that the value of z in the before state of T; in H; is the same as
that in H* gives the proof. Assume G, is the first transaction which was
moved to the left of T;, then before GG;j was moved, the before state of T;
in the rewritten history is the same as that in H® because at this point, ac-
cording to Lemma 2, the subhistory of the rewritten history which ends with
the transaction immediately preceding 7T; is equivalent to the corresponding
subhistory of H*. After G is moved to the left of 7}, the value of  would not
be changed since otherwise z must be in F;. Although G; might be further
pushed through some other transactions in B U AG to the beginning of the
history, the value of z in the before state of T; will not be changed. The
reason follows from Lemma 2. a

Lemma 3 enables us to separate computing fixed from transforming his-
tories. Fixes can be computed after all of the transformations. Based on
Lemma 3, the fix of transaction 7; can be captured in two ways: one is to
first get the read and write sets of T;, then compute T;.readset — T;.writeset;
the other is to let each transaction T; write the set T;.readset — T;.writeset
as a record to the database when it is executed, then when we rewrite H® all
of the fixes can be gotten directly from the database.

3.3 Significance of Algorithm 1

The major result of this section is an equivalence theorem between the effect
of a dependency-graph based algorithm and the history produced by Algo-
rithm 1. The dependency-graph based algorithm computes the set B.writesetU
AG.writeset and restores the values of all elements in this set. In particular,
the theorem shows that the optimizations in the following section are strict
improvements over the dependency-graph based algorithm.

Theorem 2 Given H?, let H; be the serial history produced by eliminating
all transactions in B U AG as in the dependency-graph based algorithm.
Given H?, let H] be the result of Algorithm 1. Then H is a prefix of H;.

Proof: Direct corollary of Theorem 1. O
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4 Saving Additional Good Transactions

In this section, we show how to integrate the notion of commutativity with
Algorithm 1 to save not only the transactions in G — AG, but potentially
transactions in AG as well.

4.1 Motivating Example

Consider the following history:

Hg : B1G5G3

By: if u > 10 then x := 2 4+ 100,y := y — 20
Gy u:=u—20

Gs: z:=2+10,z:= 2+ 30

According to Algorithm 1, which rewrites based on can follow, G35 needs to
be undone since it reads from B; and hence is an element of AG. The result
of Algorithm 1 is the history H; = GgBl{u}Gg. Note that G3 commutes

backward through Bl{u} for any value of ull, and so an equivalent history is

GgG’ng“}. Compensation for Bl{u} can be applied directly to this history,
but an undo approach requires more care. Suppose we decide to undo B
by restoring the before values for z and y from the log entries for B. After
B is undone the value of u is unchanged because only G; updates u. The
value of z is unchanged because only G3 updates z. The effect of G3 on
z is wiped out because both G3 and B update z, and after B is undone
z no longer reflects the effects of G3. However z can be repaired by re-
executing the corresponding part of G3’s code, that is, z = = + 10, and the
cumulative effect is that of history G2G3. We call this last step an undo-
repair action. Both the undo approach and the compensation approach to
repair are discussed in detail in section 5.

The presence of fixes for transactions limits the extent to which commu-
tativity can be applied. We illustrate this point with an example, and then
define a more restrictive notion of commutativity called can precede that
takes fixes into account.

Hg: S0 T1 S1 T2 S92 T3 S3

I'We adapt the notation of commutativity from [LMWE94, Wei88]. Transaction T5
commutes backward through transaction T; if for any state s on which 717> is defined,
T>(T1(s)) = T (T>(s)); T1 and T» commute if each commutes backward through the other.
Note that one-sided commutativity (i.e., commutes backward through) is enough for our
purpose.
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Ty: if y > 200 then x := z 4 100 else z := x * 2
Ty: y:=y+100
T3: if y > 200 then z := z — 10 else z := x/2

T, can follow Ty with fix F} = {y} for T}. Although T3 commutes backward
through 77, T3 does not commute backward through TIF !, because the value
of z produced by TIF ! depends on the value of y in the fix F}. For example,
if the initial value of z is 100 and fix value of y is 150, then the final value
of z in history T2T1F1T3 is 190, but the final value of z in history T2T3T1F1 is
180.

The example shows that sometimes a fix can interfere with the commu-
tativity of transactions. This motivates our definition of can precede:

Definition 6 A transaction T can precede a transaction Tj for fix F' if for

any assignment of values to the variables in F' and for any state so € S on
which T[T, is defined,

1. T2T1F| is defined on sg, and

2. The same final state is produced by T{ T, and T>TY".

4.2 Can-Follow and Can-Precede Rewriting

We present a repair algorithm which integrates both can-follow and can-
precede.

Algorithm 2 Can-Follow and Can-Precede Rewriting
Input: the history H® to be repaired.
Output: the repaired history H;.
Method: Scan H® forward from the first good transaction after B; until the end of H?,
for each transaction T'
case T € B skip it;
case T € G
if for each transaction 7" between B; and T'(including B1), either T’ can follow
T or T can precede T', then move T to the position immediately preceding Bi.
As T is pushed through each such T’ between B; and T to the left of B;
if T' can follow T, then push T to the left of T’ and
modulate the fix of T” correspondingly according to Lemma 2;
else push T to the left of T".

The correctness of Algorithm 2 is specified as follows.
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Theorem 3 Given a history H?, Algorithm 2 produces a history H; with a
prefix H; such that:

1. Every transaction in G — AG appears in H;.

2. H} and H°® order transactions in H; identically. And they order trans-
actions in H; — H; identically.

3. The fix associated with each transaction in H, is empty.

4. H® and H} are equivalent. And H; is a repaired history of H®.

Proof: The proof of statements (1), (2), and (3) is similar to that of Theo-
rem 1.
(4) follows from Lemma 2, Definition 6 and Definition 4. O

In Algorithm 1, Lemma 3 provides an efficient way to compute fixes.
However, Lemma 3 may not hold for Algorithm 2 if the system does not have
the following property.

Property 1 Transaction 7 can precede transaction T; for a fix F; only if
(Tj.readset—T;.writeset—F;)NTj.writeset = () and (T}.readset—T}.writeset)N
T; . writeset = ().

It should be noticed that Property 1 is not a strict requirement, and it
usually holds for most of the transaction processing systems. The reason is: if
T; writes an item z in Tj.readset — T;.writeset — F;, then z can have different
values in the before states of T; in sequences TiFiTj and TjTiFi respectively.
Since z is not in Fj;, T; can read different values of z in the two sequences.
Since the value of z typically affects the values of some other items updated
by T;, the two sequences usually can not generate the same final state. For
similar reasons, if (T;.readset — T;.writeset) N Tj.writeset # (), then TiFiTj
and T]TlF ¢ usually can not generate the same final state.

Lemma 4 Lemma 3 holds for Algorithm 2 if the system has Property 1.

Proof: The proof is similar to that of Lemma 3 except the situation when
T; is moved to the left of T; based on the relation that T} can precede T;. At
this point, for each item z in F; — F;, since the system has Property 1, T
will not write z, so the value of z in F} is still the same as that in the before
state of T; after the rewrite. This completes the proof. a
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4.3 Invert and Cover

In this section, we introduce two semantic relationships between transactions,
namely, Invert and Cover, and show how they can be exploited to enhance
repair.

If transaction T5 inverts T, then any history of the form: sy... 77 T ... is
equivalent to the same history with 7775 omitted; if T5 covers Ti, then any
history of the form: sg... T} T5 ... is equivalent to the same history with T}
omitted. If Ty covers T7, then T covers TIF ! for any Fi, but this is not the
case for invert.

Definition 7 Let P and @) be two sequences of transactions. () inverts P if
for any state so such that history sy P @ is feasible, Q(P(s¢)) = so.

Definition 8 Let P and () be two sequences of transactions. @ covers P if
for any state sp such that history sop P @Q is feasible, Q(P(sg)) = Q(so)-

The rewriting algorithm which exploits these two relations is described
below.

Algorithm 3 Can-Follow, Can-Precede, Cover, and Invert Rewriting
Input: the history H® to be repaired.
Output: the repaired history H;..
Method: Scan H*® forward from the first good transaction after By until the end of H?,
for each transaction T'
case T € B skip it;
case T € G
if for each transaction T’ between B; and T (including By), either T
can follow T, or T can precede T”, or T inverts T', or T covers T",
then move T to the position immediately preceding Bi. As T is pushed through
each T’ between B; and T to the left of B;
if T covers T', then remove T’ from the history;
elseif T’ can follow T, then push T to the left of 7' and
modulate the fix of T” correspondingly according to Lemma 2;
elseif T can precede T, then push T to the left of T";
else remove both T and T’ from the history.

For similar reasons, Lemma 3 can also be exploited to capture fixes in
Algorithm 3 if the system has Property 1. The correctness of Algorithm 3 is
specified as follows. The proof is similar to Theorem 1 and Theorem 3, thus
omitted.

Theorem 4 Given a history H?®, Algorithm 3 produces a history H; with a
prefix H;} such that:
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1. H; and H* order transactions in H; identically. And they order trans-
actions in H; — H; identically.

2. The fix associated with each transaction in H, is empty.
3. Every transaction in H; is in H*.

4. The final states of H® and H; are identical. And H, is a repaired
history of H?.

5 Pruning Rewritten Histories

After a rewritten history H; with a prefix H} , which is the repaired history,
is generated from H®, we need to prune H} such that the effects of all the
transactions in H} — H} are removed. Pruning H} generates H:. If H is
produced by Algorithm 1, then the pruning can be easily done by undoing
each transaction in H? — H?. However, if H? is produced by Algorithm 2 or
Algorithm 3, undo does not give the pruning in most cases.

In this section, two pruning approaches are presented. The compensation
approach removes the effect of each transaction TlF “in H] — H} by executing
the fized compensating transaction of T;, however, compensating transac-
tions may not be specified in some systems. The undo approach prunes
H? by building and executing a specific undo-repair action for each affected
transaction in H;. It is a syntactic approach, but it imposes some restrictions
on transaction programs.

5.1 The Compensation Approach

We denote the compensating transaction of transaction 7; as T{l [GMS3,
GMS87, KLS90]. Ti_1 semantically undoes the effect of T;. It is reasonable
to assume that T[l.writeset C T;.writeset, and for simplicity we further
assume that every transaction 7; has a compensating transaction.

After Algorithm 2 or Algorithm 3, a typical rewritten history HS with

a prefix H; looks like (note that B;; could be covered or inverted, and Hf can
also end with a bad one): Gjj1...AGp1...Gjq.. AGui Bt AG, (") Biim LAG.
The subhistory before Bg“ is H}. Based on H}, compensation is a simple
way to get the repaired history H}. However, executing the compensating

transaction sequence AG;;...B;W%...AG,;(IICH) B;ll on the final state of H*®
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can not generates H. in most cases because the transactions we need to com-
pensate are usually associated with a non-empty fix. Fixes must be taken
into account for the compensation to be correct.

Definition 9 The fized compensating transaction of TiFi, denoted ﬂ(fl’Fi),

is the regular compensating transaction of 7; (denoted T{l) associated with
the same fix Fj.

The effects of TlF’ can be removed by executing Ti(_l’Fi), this is justified
by the following lemma.

Lemma 5 Transaction TlF “ can be fiz compensated, that is, for every con-
sistent state s; on which TlFZ is defined, ﬂ(_l’Fi)(TiFi(sl)) = s1, if F; N

T; . writeset = ().

Proof: Since F; N T;.writeset = (), T[l.writeset C T;.writeset, so F; N
Ti_l.writeset = (). Therefore, neither T; nor Ti_1 will update any item in
F;. Let sy = Tle(sl) For each item z in F; we replace the values of z in
states s1 and sy with the value of z in F', thus two new states are generated

(denoted s} and sb respectively). It is clear that T, '(sh) = s. Since the

differences between T} '(s) and Ti(_l’Fi)(sz) are only with the values of the

items in F; which are neither updated by Ti_l, nor updated by Ti(_l’Fi), SO

T.(_LFi)(

)

$9) = s1. This completes the proof. O

A rewritten history H} can be fix compensated if every transaction in Hj
can be fix compensated. Lemma 5 shows that every H? produced by Algo-
rithm 2 or Algorithm 3 can be fix compensated because for each transaction
T; in HS which is associated with a non-empty fix F;, F; N T;.writeset = ()
always holds. The pruning algorithm by compensation therefore is straight-
forward: based on the final state of H?®, executing the fixed compensating
transaction for each transaction in H; — H; in the reverse order as they are
in HS.

5.2 The Undo Approach

As stated above, after Algorithm 2 or Algorithm 3, a typical rewritten his-
tory H? looks like: Gj1...AGh1...Gljg-. AGy B AG (!0 Bl AG)".
As shown in Hg, undoing transactions in H — H; can not generate H; in

most cases. However, building and executing the undo-repair actions for the
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affected transactions in H;, namely AGp,..., AGi, after these undo opera-
tions can generate H,. For example, in Hg, executing the undo-repair action,
z = x + 10, for G5 after B is undone can produce the effect of history G2Gs.

To build the undo-repair actions for AGpq, ..., AGpi, we need to do two
things:

1. Abstract the code for each undo-repair action from the source code of
the corresponding affected transaction.

2. Assign appropriate values for some specific data items accessed by these
undo-repair actions.

Our algorithm described below is based on the following assumptions about
transactions:

e a transaction is composed of a sequence of statements, each of which is
either:

— An operation;

— A conditional statement of the form: if ¢ then SS1 else SS2,
where SS1 and SS2 are sequences of statements, and c is a pred-
icate;

e each statement can update at most one data item:;

e each data item is updated only once in a transaction;

Algorithm 4 Build Undo-repair Actions
Input: an affected transaction AGy.
Output: the undo-repair action URAy, for AG.
Method:
1. Copy the codes of AGy to URA. Assign URA}, with the same input parameters and
the same values associated with them as AG.
2. Parse URA. For each statement to be scanned
case it is a read statement, keep it;
case it is an update statement of the form: = := f(x,y1,y2,...yn) where f
specifies the function of the statement, y1, ..., y, are the data items used
in the statement. Some input parameters may also be used in the statement,
but they are not explicitly stated here.
if x has not been updated by any other transaction in BU AG
Remove the statement from URAy;
elseif z has not been updated by any transaction in BU AG
which precedes AGy in H®
Replace the statement with: x := AGy.afterstate.x,
that is, get the value of = from the after state of AG} in H?;
else for each y; (including )
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if y; has not been updated by any preceding statement and has not been
updated by any transaction in B U AG which precedes AGy in H®
Bind y; with AGy,.beforestate.y;
3. Reparse URA,. Remove every read statement which reads some item never used in an
update statement of URA), or reads some item y used in one or more update statements
but y is bound with a value in these statements.

It should be noticed that when we execute an undo-repair action U RA,
for each update statement = = f(x,y1,y2,...yn) of URA, if y; is not bound
then we get the value of y; from the current database state, otherwise, the
bound value should be used.

The correctness of the undo approach is specified as follows.

Theorem 5 For any rewritten history H; generated by Algorithm 2 or Al-
gorithm 3, after all transactions in H; — H; are undone, executing the undo-
repair actions which are generated by Algorithm 4 for the affected transac-
tions in H;, in the same order as their corresponding affected transactions
are in H;, produces the same effect of H;.

Proof: Showing that each item z updated by an transaction in H is restored
to the value as generated by H; after the repair gives the proof.

If  has never been updated by any transaction in BUAG, then the value
of x will be correctly restored because an unaffected transaction G; can only
read items from other unaffected transactions thus G;’s updates will not be
affected by transactions in BU AG.

Otherwise, assume x has been updated by k transactions in BUAG, that
is, Ti1, .., Tik, Tip <3 Tig if p < q. Note that after x has been updated by
T;1,  will not then be updated by any unaffected transaction. If k = 1, that
is, there is only one such transaction. At this point, if T3 is in H} — H; then
after the undoes the value of x will be correctly restored; otherwise, T3 is in
H;. Since H; is equivalent to H?, so the value of z in the final state of H
is the same as that in the after state of T;; in H®. Hence in Algorithm 4 the
corresponding update statement is removed.

When £ > 1, if no such transaction is in H;} then after the undoes the value
of z will be correctly restored. Otherwise, assume 7} is in H}, then when
URAj; is executed, x := Tj.afterstate.x, according to Algorithm 4. This
restores the value of x to that generated by the subhistory of H} which ends
with T}, because in rewriting when T}, is moved into H;}, the subhistory H;
of H? which ends with T} is equivalent to the subhistory H» of the rewritten
history at that time which ends with the transaction immediately preceding
T;1 before the move, and T} is the last transaction in Hy that updates .
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Assume T}; (I > 1) is in H?, if there is another such transaction T}, in H;
such that 1 < m <[ and no other such transactions stay between T}, and
Tj;, then in the update statement x := f(z,y1,y2,...yn) of URAj;, the value
of z for read purpose should be got from the state after URAj,, is executed,;
otherwise, there is no such T}, thus transactions T}, ..., 71y will all be
undone, hence the value of z in the above statement should be got from the
state after T, is undone.

As for y; in the above update statement, if y; has been updated by a
preceding statement in URAj;, then the updated value should be used. Oth-
erwise, if y; has been updated by some transaction in BU AG which precedes
Tj; in H?®, then according to the above discussion, the value of y; should be
got from the state before URA;; is executed; Otherwise, the value of y; should
be got from the before state of T in H*. At this situation, getting the value
of y; from the state before URAj; is executed can not ensure the correctness
because it is possible that there is a transaction 7; such that T; updates y;,
T; follows Tj; in H®, T; is in BUAG and T; is in H;}. At this point, the value
of y; updated by T; will not be undone.

Since the values of x,y1,¥ys,...y, in the above statement are correctly
captured, so the above statement can correctly restore the value of x to that
generated by the subhistory of H; which ends with Tj;. By induction on [,
1 <[ <k, the above claim holds. O

6 Relationships between Rewriting Algorithms

Rewriting can save more good transactions than is possible with a dependency-
graph based approach to recovery. For a history H?® to be repaired, we will let
DGR(H?) and CFR(H?) represent the sets of saved transactions after H® is
repaired using a dependency-graph based approach and can-follow rewriting
(Algorithm 1), respectively. FPR(H?) and FPCI(H?) will be used to repre-
sent the sets of saved transactions after H? is repaired using can-follow and
can-precede rewriting (Algorithm 2) and can-follow, can-precede, cover and
invert rewriting (Algorithm 3), respectively.

Theorem 2 shows that for any history H*, DGR(H?®) = CFR(H?).

Theorem 6 For any history H*, CFR(H®) C FPR(H?®) C FPCI(H?®). The
converse is not, generally, true.

Proof: Follows from Algorithm 1, Algorithm 2, and Algorithm 3. ad
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Commutativity can be directly used to rewrite histories without being
integrated with can-follow rewriting. Let CR(H?®) and CBTR(H?®) represent
the sets of saved transactions after H® is repaired using the two rewriting
algorithms which are based on the commute relation and the commutes back-
ward through relation between transactions, respectively. These two algo-
rithms can be easily adapted from Algorithm 1 by checking the commute
and commutes-backward-through relation between transactions respectively,
instead of can-follow.

Theorem 7 For any history H®, CR(H®) C CBTR(H?®). The converse is
not, generally, true.

Proof: Follows from the definitions of commute and commutes backward
through. a

Theorem 8 3 H*, CFR(H®) N CBTR(H?) # 0 and each is not included in
the other; 3 H*, CFR(H?®) N CR(H?) # 0 and each is not included in the
other;

Proof: Consider the history

Hyp: so By s1 G2 s2 G3 s3

By: if y > 200 then z := 2 + 10
Go: if y > 200 then z := z + 30
Gs: y:=y+ 100

It is clear that CFR(H{;)= {G3}; CBTR(H;;)=CR(H{;)= {G2}. This com-
pletes the proof. O

Theorem 9 If the system has Property 1, then

1. V H*, CBTR(H®) C FPR(H?)
2. 3 H%, CBTR(H®) C FPR(H®)

Proof: Given a history H®, showing that 7; € FPR(H?®) holds for each
transaction T; € CBTR(H?®) gives the proof. We prove this by induction on
k where Ty, is the kst transaction moved into CBTR(H?).
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Induction base: (k = 1) We want to show that T} € FPR(H?®). If there
are no transactions between B; and T} which are in FPR(H?), then T} will
be moved into FPR(H?®) according to Algorithm 2 because T} can precede
every transaction T]@ between B; and T} owing to the fact that 77 com-
mutes backward through Tj;. Otherwise, there must be some transaction
T; with a non-empty fix F}; staying between B; and T; (including B;) in
the rewritten history when 77 is scanned in Algorithm 2. Here we assume
that Fj is captured by Lemma 2. At this point, assume T cannot precede

T]Fj, then F; N (Ty.readset — Ty.writeset) # () because otherwise T} can

precede Tij (The reason is: for every state sy on which TJ-Fj Ty is defined,
replacing sg with another state s; where the value of each item z in 5o N Fj
is replaced with z’s value in F;. Then T]@Tl is defined on s;. According

to Property 1, since Ty can precede TJ@ (Note that 77 commutes backward
through Tj), so (Tj.readset — Tj.writeset) N Th.writeset = (. Since Fj C
(Tj.readset —Tj.writeset) according to Lemma 2, so F;NT}.writeset = (). So
Ty will not read or update any item in F};. Therefore, T]Fj T1(s0) = TJQTl(sl),
and Tﬂfj (so) = TlTjg(sl). Since T; commutes backward through T}, so
T]QTl(sl) = T1T70(31)- Therefore, TJFjTl(so) = T1T7Fj(30), so Ty can precede

T]-Fj). Therefore, 3z, such that, x € Fj N (Th.readset — Ty.writeset). Since
x € Fj, so according to Algorithm 2 there must be a transaction T),, such
that T}, is now in FPR(H?), and = € Tj,.writeset. Otherwise, z will not be
put into F; by Lemma 2. Hence T),.writesetN (T} .readset —T'.writeset) # 0.
This conflicts with Property 1 since 77 commutes backward through T, thus

Ty can precede Tz?' So the assumption that T} cannot precede Tfj does not

hold. Therefore, 77 can precede Tfj . So T1 can precede every transaction
between By and 77 which has a non-empty fix. Since 77 commutes backward
through all the other transactions between B; and 77, so 17 will be moved
into FPR(H*).

Induction hypothesis: for each 1 < k < n, if T, € CBTR(H?), then T}, €
FPR(H?).

Induction Step: Let k = n+1, then when T}, is scanned in both algorithms,
every transaction 7, which is between B; and T}, in the rewritten history
generated by Algorithm 2 at that time, is between B; and T} in the rewritten
history generated by the commutes-backward-through rewriting algorithm.
Therefore, T}, commutes backward through every such Tj. For the same
reason as in the induction base step, we know that 7Tj will be moved into
FPR(H?).

Therefore, statement 1 holds. Consider history Hig, it is clear that
FPR(H{y)= {G2,Gs}; CBTR(Hj,) = {G2}. So statement 2 holds. O
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DGR--set of transactions saved by a
dependency-graph based approach

CFR--set of transactions saved by
can-follow rewriting

DGR CBTR CR--set of transactions saved by commute

CFR rewriting
CR CBTR--set of transactions saved by
FPR commutes-backward-through rewriting

FPCI FPR--set of transactions saved by
can-follow and can-precede rewriting

FPCI--set of transactions saved by can-follow,

All Transactionsin H . o
can-precede, cover and invert rewriting

Figure 3: Relationships among Repair Approaches

In summary, after a history H® is repaired, the relationships among
DGR(H?®), CFR(H?), FPR(H?), FPCI(H?®), CR(H®) and CBTR(H?) are
shown in Figure 3. Here we assume that the system has Property 1.

7 Implementing the Repair Model on Top of Sagas

In this section, we will evaluate the feasibility of our repair model by inte-
grating it with the Saga model [GMS87].

7.1 The Saga Model

The Saga Model is a practical transaction processing model addressing long
duration transactions which can be implemented on top of an existing DBMS
without modifying the DBMS internals at all. A saga consists of a collection
of saga transactions (or steps), each of which maintains database consistency.
However any partial execution of the saga is undesirable; either all the trans-
actions in a saga complete successfully or compensating transactions should
be run to amend for the partial execution of the saga. Thus corresponding
to every transaction in the saga, except the last one, a compensating trans-
action is specified. The compensating transaction semantically undoes the
effect of the corresponding transaction.

The Saga Model is suitable for our repair model to be implemented on
top of it because it supports compensation inherently. For example, a com-
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pensating transaction is specified for each transaction, except the last one,
in a saga; and when a saga transaction Tj; ends, the end-transaction call
will include the identification of the compensating transaction of T;; which
includes the name and entry point of the compensating program, plus any
parameters that the compensating transaction may need.

By viewing each normal duration transaction and each long duration
transaction which can not be specified as a multi-step saga, as a specific
saga that consists of only one saga transaction, we can get an unified view of
transactions in the systems where the saga model is implemented. By adding
the compensating transaction for the last step in each saga, we can get all
the necessary compensating transactions to do repair.

In addition, the saga model has the following two features which allow
for optimization in rewriting a history.

Consistency Property : the execution of each saga transaction (step) main-
tains database consistency.

Compensation Property : during the lifetime of a saga **, no matter how
the saga is interleaved with other sagas, any step in the saga which is
successfully executed, if having not been compensated, can be compen-
sated by executing the corresponding compensating transaction at the
end of the growing history.

7.2 Repair a History of Sagas

The Compensation Property implies that in a history to be repaired whenever
a saga is identified as a bad one, we can rewrite the history to move only the
last step, instead of every step, of the saga to the end of the history. In this
way, substantial rewriting and pruning work can be saved. The optimization
based on can-follow rewriting (Algorithm 1) is specified in the the following
algorithm.

Algorithm 5 Rewrite a history of sagas by can-follow rewriting
Input: the serial history H® to be rewritten and the set B of bad sagas.
Output: a rewritten history HS with a prefix H, which consists of only good saga
transactions.
Method: Scan forward from the first good saga transaction after Bi; until the end of
H?, for each step Tj; (of saga S;)

case S; € B skip it;

case S; € G

“*The lifetime of a saga begins when the saga is initiated, and ends when the saga
terminates (commits or aborts).
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if there is a step of S; which stays between B; and T3
Skip Tij;

elseif the final step T}, of every saga S, which stays between

B and T;; (including B;) can follow Tj;
Move T;; to the position which immediately precedes B:i. As Tj; is pushed
through each such T),,, augment F}, according to Lemma 2.

The integrated repair algorithm using Algorithm 5 to rewrite a history
and the compensation approach to prune the rewritten history is specified as
follows.

Algorithm 6 Repair a history of sagas by can-follow rewriting

Input: the serial history H® to be repaired

Output: a repaired history H; which consists of only good saga transactions.

Method:

1. Rewrite H® using Algorithm 5 ff.

2. Do compensation from the end to the beginning of H; until B; is compensated. When
the final step T}, of a saga S, is to be compensated

e First, execute T;;LF”") to compensate T;;{’". The codes and input parameters

of Tp(; LFm) are got from the identification of the compensating transaction of T,
included in the end-transaction call of Ty, . Note that F),, has already been computed
after H® was rewritten.

e Second, execute the sequence TIS(_nl_’ml)), ey Tlgq_l’@) to compensate all the other steps

of S, which are not in H,. The codes and input parameters of these compensating
. . (=1,Fpn)
transactions are got in the same way as of Tjp, .

The correctness of Algorithm 6 is specified as follows.

Theorem 10 Algorithm 6 is correct in the sense that H; is consistent after

step 1, and the repair results in the same state as generated by re-executing
H?.

Proof: It is clear that in Algorithm 5 a step Tj; will not be moved into H;
unless every step between T;; and T;; can be moved into H;. For a step T};,
if S; is a good saga, and each step between Tj; and Tj; (including T5;) can be
moved into H;}, then we say Tj; is an unaffected step, otherwise, we say Tj;
is an affected step.

We propose another approach to repair H® which is clearly correct. It
works as follows: Scan H?® backward from the end to the beginning:

1t is possible that in H? one part of a saga S; is in HS and the other part of S; is in
H: — H:.
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e If a bad final step B;, is met, execute the sequence Bl(; I’Fi"), BZ((;I_?)),
(71,0)

. By on the final state of the current history. This can remove
the effects of B; from the current history because at this point all the
steps to the right of B;, are unaffected steps. All the bad or affected
steps to the right of B;, have already been compensated. So B;, can
follow every step following it, thus B;, can be moved to the end of the
current history without changing the final state of the current history

if Fj, is computed according to Lemma, 2, therefore, according to the
(_170)

Compensation Property, after Bf;f" is compensated executing Bi(n_l),

- Bz(fl’@) can compensate the other steps.

e If an affected final step T}, is met, assume Tj, is the last unaffected step
in S;, execute the sequence Z“Z-(q;l’Fi”), T;&i’?;, s TZ.((;}F’? ).
reasons to the above case, this can remove the effects of all the affected

steps of S;.

For similar

It is clear that the above approach results in H}. So H/ is consistent. Since
the above approach executes the same set of fixed compensating transactions
on the final state of H® as Algorithm 6, and it executes these fixed compen-
sating transactions in the same order, so Algorithm 6 results in the same
state as generated by re-executing H;. O

Algorithm 2 and Algorithm 3 can also be adapted to rewrite a history
of sagas. The adapted algorithms are specified as follows. For brevity, and
to highlight the differences between these algorithms, we describe only the
modifications to Algorithm 2 and to Algorithm 3, respectively.

Algorithm 7 Rewrite a history of sagas by can-follow and can-precede rewriting
Method: Scan H? forward from the first good step after Bi; until the end of H®, for
each step Tj;
case S; € G
if there is a step of S; which stays between B; and Tj;
Skip Tij;
elseif the final step T}, of every saga S, which stays between B; and Tj;
(including By) can follow Tjj;, or T;; can precede Tpan"
Move T;; to the position which immediately precedes Bj.

Algorithm 8 Rewrite a history of sagas by can-follow, can-precede, cover and invert
rewriting
Method: Scan H? forward from the first good step after Bi; until the end of H®, for
each step Tj;
case S; € G
if there is a step of S; which stays between B; and Tj;
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Skip Tij;
elseif the final step T}, of every saga S, which stays between B; and Tj;
(including By) can follow Tj;, or T;; can precede Tpljf",
or T;; covers T;;{’ ™, or T;; inverts T;;{’ "

Move T;; to the position which immediately precedes B;.

The correctness of the repair based on Algorithm 7 or Algorithm 8 is
specified in the following theorem. The proof is similar to that of Theorem
10, thus omitted.

Theorem 11 The repair based on Algorithm 7 is correct in the sense that
Theorem 10 still holds even if the rewriting step (step 1) of Algorithm 6 is
done by Algorithm 7. The repair based on Algorithm 8 is correct in the sense
that Theorem 10 still holds after Algorithm 6 is modified as follows:

e The rewriting step (step 1) is done by Algorithm 8;

e Instep 2, when an affected step Tj;,,_1) of a saga S; is scanned 1 assume

T.(flrw)

Tjp is the last unaffected step in S;, execute the sequence in—1)> "

(7170)
Tipi)-

7.3 Detecting Can-Follow, Can-Precede, Cover and Invert
Relationships between Transactions

In Section 7.2, the repair based on Algorithm 5, Algorithm 7 and Algorithm 8
cannot be enforced without first capturing the can-follow, can-precede, cover,
and invert relationships between saga transactions.

Given a history of sagas, the can-follow relationships between the saga
transactions in the history depend on the readset-writeset relationships be-
tween these transactions. The write set of a transaction 7; can be got from
the traditional log where every write operation is recorded. However, the read
information of T; we can get from the logs for traditional recovery purposes
such as physical logs, physiological logs, and logical logs [GR93], is usually
not enough to generate the read set. Therefore, the efficient maintenance of
read information is a critical issue. In particular, there is a tradeoff between
the extra cost we need to pay besides that of traditional recovery facilities
and the guaranteed availability of read information. The read information
can be captured in several ways, for example

#This may happen because T}, may have already been covered or inverted.
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e Augment the write log to incorporate read information. There are
basically two ways: one is appending the read record [T}, z] to the log
every time when T; reads an item z. The other way is first keeping the
set of items read by 7T; in another place until the time when 7; is going
to commit. At this point, the read set of T; can be forced to the log as
one record.

Although keeping read information in the log will not cause more forced
I/0, it does consume more storage. Another problem with the approach
lies in the fact that almost all present database systems keep only up-
date(write) information in the log. Thus adding read records to the log
may cause the redesign of the current recovery mechanisms.

e Extract read sets from the profiles and input arguments of transac-
tions. Compared with the read log approach, when transaction profiles
(or codes) are available, each transaction just needs to store its input
parameters, which are often much smaller in size than the read set.
More important, instead of putting the input parameters in the log,
each transaction can store the parameters in a specific user database,
thus the repair module can be completely isolated from the traditional
recovery module. In this way, our repair model can be implemented on
top of the Saga model without modifying the internals of the DBMS
on which the Saga model is implemented.

This approach captures read information without the need to modify
DBMS internals. However, it usually can only achieve a complete re-
pair, but not an exact repair. That is, the effects of all bad transactions
will be removed, but the effects of some unaffected good transactions
may sometimes be removed also since in many situations the approach
can only get an approximate read set. Interested readers can refer to
[AJL98] for more details of this approach.

e Although traditional logging only keeps write information, more and
more read information can be extracted from the log, particularly
when more operation semantics are kept in the logs. Traditional physi-
cal(value) logging keeps the before and after images of physical database
objects(i.e., pages), so we only know that some page is read. In addi-
tion, a page is normally too large a unit to achieve a fine repair. Phys-
iological logging keeps only the update to a record(tuple) within one
and only one page, so we know that this record should be in the read
set, which is much finer than physical logging. Logical logging keeps
more operation semantics than the other two logging approaches. Con-
ceptually logical logs can keep track of all the read information of a
transaction, though this is not supported by current database systems.
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However, logical logging attracts substantial industrial and research in-
terests. In system R, SQL statements are put into the log as logical
records; In [LT98], logical logs can be a function, like x=sum(x,y), and
swap(x,y) etc.. In both situations, we get more read information than
other logging methods.

In long duration transaction models([GMS87], [WR91]), or in multilevel
transaction models ([WHBM90], [Lom92]), it is possible to extract the
read information of transaction (subtransaction) 7' from its compensa-
tion log records, where the action of T’s compensating transaction is
recorded.

The can-precede, cover, and invert relationships between transactions
are based on the semantics of transactions, and they can be captured in
a similar way to commutativity[LMWF94, Wei88, Kor83, SKPO88], and
recoverability[BK92]. In order to capture these relationships, the profile (or
code) and input arguments of each transaction must be available. In the
Saga model, several possible solutions to the problem of saving code reliably
are proposed[GMS87], therefore, these relationships can be reliably captured
in the Saga model.

For a canned system with limited number of transaction classes and fixed
code for each transaction class, the can-follow, can-precede, cover, and invert
relationships between saga transactions can be detected according to the
corresponding relationships between transaction classes. Although detecting
these relationships between two transaction classes usually needs more effort
than detecting these relationships between two transactions, after this is
done with all the transaction classes, detecting these relationships between
transactions of these classes can be much easier in many situations.

For example, in a bank a deposit transaction (denoted dep(a;,m)) which
deposits m amount of money into account a; can follow a withdraw transac-
tion (denoted wit(a;,n)) which withdraws n amount of money from account
a; only if they access different accounts, that is, a; # aj. Therefore, given the
can-follow relationship between the deposit transaction class and the with-
draw transaction class, the can-follow relationship between a deposit trans-
action and a withdraw transaction can be detected without the need to check
the readset-writeset relationship between the two transactions, checking their
input parameters is enough.
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7.4 Fix Information Maintenance

It is clear that Lemma 3 can be used in Algorithm 5, Algorithm 7 and Al-
gorithm 8, to capture fixes. For a transaction Tj, there are two methods
to get Tj.readset — T;.writeset: one is to first get the readset and writeset
of T; after an execution history is generated using the approaches proposed
in Section 7.3, then compute T;.readset — T;.writeset; the other is what we
have proposed in Section 3, that is, let each transaction T; write the set
T;.readset — T;.writeset as a record to the database when it is executed,
then when we rewrite H® all the fixes can be directly got from the database.

It should be noticed that in the situations where the read and write sets
of T; have to be firstly captured in order to detect the can-follow relationships
between T; and some other transactions, the first method is more efficient; In
contrast, when all the necessary can-follow relationships between T; and other
transactions can be detected without the need to check the readset-writeset
relationships between T; and these transactions, for example, when these
relationships can be directly got from the can-follow relationships between
the corresponding transaction classes, the second method is more efficient.

8 Related Work

Database recovery mechanisms are not designed to deal with the recovery
from undesirable but committed transactions. Traditional recovery mecha-
nisms [BHG87] based on physical or logical logs guarantee the ACID proper-
ties of transactions — Atomicity, Consistency, Isolation, and Durability — in
the face of process, transaction, system and media failures. In particular, the
last of these properties ensure that traditional recovery mechanisms never
undo committed transactions. However, the fact that a transaction commits
does not guarantee that its effects are desirable. Specifically, a committed
transaction may reflect inappropriate and/or malicious activity.

There are two common approaches to handling the problem of undoing
committed transactions: rollback and compensation. The rollback approach
is simply to roll back all activity — desirable as well as undesirable — to a point
believed to be free of damage. Such an approach may be used to recover from
inadvertent as well as malicious damage. For example, users typically restore
files with backup copies in the event of either a disk crash or a virus attack. In
the database context, checkpoints serve a similar function of providing stable,
consistent snapshots of the database. The rollback approach is effective, but
expensive, in that all of the desirable work between the time of the backup and
the time of recovery is lost. Keeping this window of vulnerability acceptably
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low incurs a substantial cost in maintaining frequent backups or checkpoints,
although there are algorithms for efficiently establishing snapshots on-the-fly
[AIM95, MPL92, Pu86].

The compensation approach [GM83, GMS87] seeks to undo either com-
mitted transactions or committed steps in long-duration or nested transac-
tions [KLS90]. There are two kinds of compensation: action-oriented and
effect-oriented [KLS90, Lom92, WHBM90, WS92]. Action-oriented compen-
sation for a transaction or step T; compensates only the actions of T;. Effect-
oriented compensation for a transaction or step 7; compensates not only
the actions of T;, but also the actions that are affected by 7;. For exam-
ple, consider a database system that deals with transactions that represent
purchasing of goods. The effects of a purchasing transaction 77 might have
triggered a dependent transaction 75 that issued an order to the supplier in
an attempt to replenish the inventory of the sold goods. In this situation, the
action-oriented compensating transaction for 77 will just cancel the purchas-
ing; but the effect-oriented compensating transaction for 77 will cancel the
order from the supplier as well. Although a variety of types of compensation
are possible, all of them require semantic knowledge of the application.

The notion of commutativity, either of operations [LMWF94, Wei88,
Kor83] or of transactions [SKPOS88], has been well exploited to enhance con-
currency in semantics-driven concurrency control. There are several types
of commutativity. In operation level, for example, two operations O; and
Oa commute forward [Wei88] if for any state s in which O and O, are both
defined, O3(01(s)) = 01(02(s)); O2 commutes backward through [LMWF94]
O if for any state s in which 0105 is defined, O2(01(s)) = O1(02(s)); O1
and Oy commute backward [LMWF94, Wei88] if each commutes backward
through the other. In transaction level, for example, two transactions com-
mute [SKPOB8S] if any interleaving of the actions of the two transactions for
which both transaction commit yields the same final state; Two transactions
failure commute[SKPOS88] if they commute, and if they can both succeed
then a unilateral abort by either transaction cannot cause the other to abort.
Our notation can precede is adapted from the commutes backward through
notation for the purpose of taking advantage of transaction level commuta-
tivity.

In [BK92], semantics of operations on abstract data types are used to
define recoverability, which is a weaker notion than commutativity. recover-
ability is a more general notion than can follow in capturing the semantics
between two operations or transactions, but can follow is more suitable for
rewriting histories. recoverability is applied to operations on abstract data
types but can follow is applied to transactions. recoverability is defined based
on the return value of operations, and thus a purely semantic notion; but can
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follow is defined based on the intersections of read and write sets between
two transactions.

Korth, Levy, and Silberschatz [KLS90] address the recovery from unde-
sirable but committed transaction. The authors build a formal specification
model for compensating transactions which they show can be effectively used
for recovery. In their model, a variety of types of correct compensation can
be defined. A compensating transaction, whose type ranging from traditional
undo, at one extreme, to application-dependent, special-purpose compensat-
ing transactions, at the other extreme, is specified by some constraints which
every compensating transaction must adhere. Different types of compensa-
tion are identified by the notion of compensation soundness. A history X
consisting of T, the compensating-for transaction; C'T', the compensating
transaction; and dep(T'), a set of transactions dependent upon T, is sound if
it is equivalent to some history of only the transactions in dep(T).

Though a compensating transaction in our model can be specified by
their model, our notion of a repaired history is more suitable for rewriting
histories than the notion of sound history, since the constraint that compen-
sating transactions can only be applied to the final state of a history greatly
decreases the possibility of finding a sound history, even if commutativity is
fully exploited. We can get a feasible history by rewriting the original his-
tory based on can follow, can precede, invert and cover. The resulting history
augmented with the corresponding undo-repair actions or fixed compensating
transactions yields the desired repair.

9 Discussion and Conclusion

9.1 Discussion
9.1.1 Relevant Security Contexts

Our repair model can be applied to many kinds of secure database systems
to enhance their survivability. However, the main factors on which the ap-
plicability of our model to a secure database system is dependent, such as
(1) the characteristics of the database, i.e., whether it is single-version or
multiversion, (2) the concurrency control protocol and the characteristics of
the histories produced by it, and (3) the recovery protocol and the charac-
teristics of the logs produced by it, are closely relevant to the security model
and architecture of the system.

For a single-level secure database system where every subject (trans-
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action) and object (data item) are within the same security class, tradi-
tional concurrency control protocols such as two-phase locking (2PL), and
recovery protocols such as write-ahead logging (WAL), can be directly used
without causing any security policy violations, no matter which kind of se-
curity model (i.e., access-matrix model[Lam74], role-based access control
model[SCFY96], type-based access control model[San92], or flexible access-
control model[JSS97]) is enforced. Since serializable histories are generated
by most of the current single-level systems, so our repair model can be di-
rectly applied to single-level systems in most cases. However, there are some
systems where each data item has multiple versions, and one-copy serializable
histories are generated instead. Since an one-copy serializable history is view
equivalent to a serial single-version history[BHG87], our model can be used
to repair the one-copy serializable history by rewriting the equivalent serial
history. However, it should be noticed that pruning a rewritten history in
multiversion databases is usually more complicated because during pruning
we need to decide for a (dirty) data item which version should be read, which
version should be updated, and which version should be discarded (i.e., the
versions created by bad transactions can just be discarded). Detailed pruning
algorithms are out of the scope of the paper.

For a multilevel secure (MLS) database system, traditional concurrency
control and recovery protocols, however, are usually not enough to satisfy
security requirements[AJB97], especially, they can cause signaling channels
from high level processes to low level processes. Therefore, secure transaction
processing is required. Most of the recent research and development in secure
concurrency control can be categorized into two different areas: one based on
kernelized architecture and the other based on replicated architecture. These
two are among the number of architectures proposed by the Woods Hole
study group[oMDMSBCS83] to build multilevel secure DBMSs with existing
DBMS technology instead of building a trusted DBMS from scratch.

For kernelized architecture, several kinds of secure concurrency control
protocols are proposed: (1) In [MJ93, JMR97], several secure lock-based pro-
tocols are proposed. Although they do not always produce serializable sched-
ules, our repair model can be directly applied to every serializable history gen-
erated by them. Extending our model to repair those non-serializable sched-
ules is out of the scope of the paper. (2) In [AJ92], two secure timestamp-
based protocols are proposed. Although they produce only serializable histo-
ries to which our model can be directly applied, they are prone to starvation.
In [JA92], a single-level timestamp-based scheduler is proposed which is se-
cure and free of starvation. Although it produces one-copy serializable histo-
ries, our model can still be directly used to rewrite these histories (the reason
is mentioned above). (3) In [AJB96, JA92, AJB97], three weaker notions of
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correctness, namely, levelwise serializability, one-item read serializability, and
pairwise serializability, are proposed to be used as alternative for one-copy
serializability such that the nature of integrity constraints in MLS databases
can be exploited to improve the amount of concurrency. Extending our model
to repair levelwise, one-item read, and/or pairwise serializable histories is out
of the scope of the paper.

For replicated architecture, several secure concurrency control protocols
are proposed in [JK90, MJS91, Cos92, CM92]. Since they all produce one-
copy serializable histories, so our model can be directly applied to rewrite
these histories.

In [KT90], a scheduler is proposed which is secure and produces one-copy
serializable histories to which our model can be applied. However, it uses
a multilevel scheduler which, therefore, has to be trusted, thus it is only
suitable for the trusted subject architecture.

Since in our repair model serial orders among transactions are captured
from the log, so the applicability of our model is affected by logging protocols.
In [PKP97], a multilevel secure log manager is proposed to eliminate such
covert channels as insert channels and flush channels which are caused by tra-
ditional logging protocols. Although Logical Log Sequence Numbers (LLSN)
instead of physical Log Sequence Numbers (LSN) are provided in [PKP97]
to eliminate insert channels, we can still extract serial orders from the log
because records of transactions within different security classes are still kept
in the same log, and LLSNs can be translated to physical LSNs internally
by the log manager. Moreover, since the mechanisms proposed to eliminate
flush channels will not change the structure of the log, so our model can be
directly applied to a system with such a log manager.

9.1.2 Other Issues

One criticism of the applicability of the method may be that if a bad transac-
tion B; is detected too late, that is, if the latency time of B; is too long, then
there can be too many affected good transactions to deal with, especially
when they have caused further effects to the real world. For example, some
real world decisions could be based on these affected transactions. At this
situation, ‘manual’ recovery actions may be necessary.

We counter this augment by noting that the latency time of B; is usually
related to the amount of transactions affected by B;. The more transactions
affected by B;, the more proofs of B;’s malicious actions can be collected by
the intrusion detector, hence the shorter the latency time of B;. Therefore,
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even if the latency time of B; is very long, the amount of transactions affected
by B; may not be too large in many circumstances. At this situation, the
algorithm may need more time since it needs to scan a long history, but the
pruning may still be a short process if most of the transactions in the history
are unaffected. Although the compensation approach may not be practical
when the history is very long and the codes for compensating transactions
have to be kept in the log, it can be used in almost all canned systems, which
are very general in real world where the codes for transactions and compen-
sating transactions are fixed for each transaction class. As the techniques
of intrusion detection are advanced, the latency time of a bad transaction
should become shorter, so our repair model will apply to more situations.

As to the criticism that manual recovery actions can be necessary, note
that when damage has been caused, the effects of these affected transactions
to the real world are already there. No matter whether the history is repaired
or not, some action to compensate these undesirable effects is required. In the
real world, such manual recovery actions are basically unavoidable. There-
fore, repairing the database such that a consistent database state where no
effects of bad transactions are there could be generated can be viewed as a
separate issue from manual recovery. In addition, our rewriting methods can
help users to assess the degree of damages because BU AG can be identified.
Therefore, the security administrator can know on which transactions (or on
which customers) such manual recovery actions should be enforced.

9.2 Conclusion

In an IW scenario it is necessary to undo committed malicious transactions
for the purpose of damage repair. Traditional recovery methods have the
disadvantage of wiping out much good work along with the bad, and com-
pensation methods are heavily dependent on application semantics.

In this paper we developed the notion of rewriting execution histories for
the purpose of removing the effects of a set of bad transactions and the af-
fected good transactions that depend on the bad transactions. The fact that
the transactions being moved during the rewriting are subsequently unwound
greatly increases the flexibility of the rewriting methods. We developed a ba-
sic rewriting method that can unwind exactly the set B U AG, and then de-
veloped additional rewrites incorporating commutativity, inverses, and covers
to save further transactions in AG. It is shown that our approach is strictly
better at saving good transactions than a dependency-graph based approach.
And in most situations, our approach is strictly better at saving good transac-
tions than an approach which is based on commutativity only. It is also shown
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that besides recovery from malicious transactions, our approach can also be
extended to may other applications such as malicious user isolation, system
upgrades, optimistic replication protocols, and replicated mobile databases.
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