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Abstract host [37].

We pronose SiaFree. a realtime. sianature-free. out-of- “A buffer overflow occurs during program execution
Propose sig ' IME, Signature-ree, out-olg, . , 3 fixed-size buffer has had too much data copied
the-box, application layer blocker for preventing buffer .

. . into it. This causes the data to overwrite into adjacent
overflow attacks, one of the most serious cyber securit . . .

: , S emory locations, and, depending on what is stored
threats. SigFree can filter out code-injection buffer over- . . :
flow attack messages targeting at various Internet serthere’ the behavior of the program itself might be af-

9 geting ._fected.” [34] (Note that the buffer could be in stack or

that buffer overflow attacks typically contain executableslﬂeap') Although taking a broader viewpoint, buffer over-

" . ) flow attacks do not always carry code in their attacking
whereas legitimate client requests never contain executa-

. . : fequests (or packets)code-injection buffer overflow at-
bles in most Internet services, SigFree blocks attacks b q (or p s J

. : . . ¥acks such as stack smashing count for probably most of

detecting the presence of code. SigFree first blindly OIIS'the buffer overflow attacks that have happened in the real

sembles and extracts instruction sequences from a e orld
uest. It then applies a novel technigue catede ab- )

gtraction which Eges data flow anomgly to prune uselessb Although tons of research has been done to tackle

instructions in an instruction sequence. Finally it com- _uffer overflow attacks, existing defenses are still quite

pares the number of useful instructions to a threshol 'I;nllteq mrme_etmg _f(;ur hlgh.lyl-gzeswed requirements:
to determine if this instruction sequence contains code: )simplicityin maintenance; (R2jansparencyo ex-

SigFree is signature free, thus it can block new and unlsting (legacy) server OS, application software, and hard-

known buffer overflow attacks; SigFree is also immu- Vare: (R3)resiliencyto obfuscation; (R4) economical

nized from most attack-side code obfuscation methodsl.nternet wide deployment. As a result, although sev-

Since SigFree is transparent to the servers being proe-ral very secure solutions have been proposed, they are

tected, it is good for economical Internet wide deploy-nOt pervasively deployed, and a considerable number of
ment \;vith very low deployment and maintenance Costbuf“fer overflow attacks continue to succeed on a daily
We implemented and tested SigFree; our experiment asls. . . . .

study showed that SigFree could block all types of code- 10 S€€ how existing defenses are limited in meeting
injection attack packets (above 250) tested in our expertN€Se four requirements, let us break down the existing

iments. Moreover, SigFree causes negligible throughpupuffer overflow defenses into six classes which we will
degradation to normal client requests. review shortly in Section 2: (1A) Finding bugs in source

code. (1B) Compiler extensions. (1C) OS modifica-
tions. (1D) Hardware modifications. (1E) Defense-side
1 Introduction obfuscation [11,28]. (1F) Capturing code running symp-
toms of buffer overflow attacks [21, 37, 43, 55]. (Note
Throughout the history of cyber security, buffer over- that the above list does not include binary code analysis
flow is one of the most serious vulnerabilities in com- based defenses which we will address shortly.) We may
puter systems. Buffer overflow vulnerability is a root briefly summarize the limitations of these defenses in
cause for most of the cyber attacks such as serveterms of the four requirements as follows. (a) Class 1B,
breaking-in, worms, zombies, and botnets. Buffer over-1C, 1D, and 1E defenses may cause substantial changes
flow attacks are the most popular choice in these atto existing (legacy) server OSes, application softwares,
tacks, as they provide substantial control over a victimand hardwares, thus they are not transparent. Moreover,



Class 1E defenses generally cause processes to be teriiivhen a service requesting message arrives at SigFree,
nated. As a result, many businesses do not view thesBigFree first uses a ne@(N) algorithm, where N is the
changes and the process termination overhead as ecbyte length of the message, to disassemble and distill all
nomical deployment. (b) Class 1F defenses can be vergossible instruction sequences from the message’s pay-
secure, but they either suffer from significant runtimeload, where every byte in the payload is considered as
overhead or need special auditing or diagnosis facilities possible starting point of the code embedded (if any).
which are not commonly available in commercial ser-However, in this phase some data bytes may be mistak-
vices. As a result, Class 1F defenses have limited transenly decoded as instructions. In phase 2, SigFree uses a
parency and potential for economical deployment. (c)novel technique calledode abstraction Code abstrac-
Class 1A defenses need source code, but source codetien first uses data flow anomaly to prune useless instruc-
unavailable to many legacy applications. tions in an instruction sequence, then compares the num-

Besides buffer overflow defenses, worm signatureser of useful instructions to a threshold to determine if
can be generated and used to block buffer overflow attacthis instruction sequence (distilled in phase 1) contains
packets [29,42,47]. Nevertheless, they are also limitectode.
in meeting the four requirements, since they either rely \We have implemented a SigFree prototype as a proxy
on signatures, which introduce maintenance overhead, @ protect web servers. Our empirical study shows
are not very resilient to attack-side obfuscation. that there exists clean-cut “boundaries” between code-

To overcome the above limitations, in this paperembedded payloads and data payloads when our code-
we propose SigFree, a realtime buffer overflow attackdata separation criteria are applied. We have identified
blocker, to protect Internet services. The idea of SigFreehe “boundaries” (or thresholds) and been able to de-
is motivated by an important observation that “the na-tect/block all 50 attack packets generated by Metasploit
ture of communication to and from network services isframework [4], all 200 polymorphic shellcode packets
predominantly or exclusively data and not executablegenerated by two well-known polymorphic shellcode en-
code.” [15]. In particular, as summarized in [15], (a) gine ADMmutate [40] and CLET [23], and worm Slam-
on Windows platforms, most web servers (port 80) ac-mer, CodeRed and a CodeRed variation, when they are
cept data only; remote access services (ports 111, 13¥ell mixed with various types of data packets. Also, our
138, 139) accept data only; Microsoft SQL Servers (portexperiment results show that the throughput degradation
1434) accept data only; workstation services (ports 13%aused by SigFree is negligible.
and 445) accept data only. (b) On Linux platforms, most  The merits of SigFree are summarized below. They
Apache web servers (port 80) accept data only; BINDshow that SigFree has taken a main step forward in meet-
(port 53) accepts data only; SNMP (port 161) acceptsng the four requirements aforementioned.
data only; most Mail Transport (port 25) accepts data, sigFree is signature free, thus it can block new and
only; Database servers (Oracle, MySQL, PostgreSQL),nknown buffer overflow attacks
at ports 1521, 3306 and 5432 accept data only. ® Without relying on string-matching SigFree is

Since remote exploits are typically executable codejmmuynized from most attack-side obfuscation methods.
this observation indicates that if we can precisely dis-, SigFree uses generic code-data separation criteria
tinguish (service requesting) messages that contain cod@stead of limited rules This feature separates SigFree
from those that do not contain any code, we can profom [15], an independent work that tries to detect
tect most Internet services (which accept data only) fromyqde-embedded packets.
code-injection buffer_overﬂow attacks by blocking the Transparency. SigFree is a out-of-the-box solution
messages that contain code. that requires no server side changes.

© SigFree has negligible throughput degradation.
© SigFree is an economical deployment with very low

:{> :> :> maintenance costwhich can be well justified by the
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aforementioned features.

N
Web Server  The rest of the paper is organized as follows. In Sec-
tion 2, we summarize the work related to ours. In Section
3, we give an overview of SigFree. In Sections 4 and 5,
Figure 1:SigFree is an application layer blocker between thewe introduce the instruction sequence distiller compo-
web server and the corresponding firewall. nent and the instruction sequence analyzer component of
Accordingly, SigFree (Figure 1) works as follows. SigFree, respectively. In Section 6, we show our experi-
SigFree is an application layer blocker that typically mental results. Finally, we discuss some research issues
stays between a service and the corresponding firewalin Section 7 and conclude the paper in Section 8.



2 Related Work attack, the victim process is typically terminated. “Re-
peated attacks will require repeated and expensive appli-
SigFree is mainly related to three bodies of work. cation restarts, effectively rendering the service uravai
[Category 1:] prevention/detection techniques of bufferable.” [37]
overflows; [Category 2:] worm detection and signature Class 1F: Capturing code running symptoms of buffer
generation. [Category 3:] machine code analysis foroverflow attacks Fundamentally, buffer overflows are a
security purposes. In the following, we first briefly re- code running symptom. If such unique symptoms can be
view Category 1 and Category 2 which are less close tgrecisely captured, all buffer overflows can be detected.
SigFree. Then we will focus on comparing SigFree with Class 1B, Class 1C and Class 1E techniques can capture
Category 3. some - but not all - of the running symptoms of buffer
overflows. For example, accessing non-executable stack
2.1 Prevention/Detection of Buffer Over- segments can be captured by OS modifications; com-
flows piler modifications can detect return address rewriting;
and process crash is a symptom captured by defense-
Existing prevention/detection techniques of buffer side obfuscation. To achieve 100% coverage in capturing
overflows can be roughly broken down into six classes: buffer overflow symptoms, dynamic dataflow/taint anal-
Class 1A: Finding bugs in source codguffer over-  ysis/program shepherding techniques were proposed in
flows are fundamentally due to programming bugs. Ac-Vigilante [21], TaintCheck [43], and [30]. They can de-
cordingly, various bug-finding tools [14, 24, 51] have tect buffer overflows during runtime. However, it may
been developed. The bug-finding techniques used igause significant runtime overhead (e.g., 1,000%). To
these tools, which in general belong to static analysisreduce such overhead, another type of Class 1F tech-
include but not limited to model checking and bugs-as-niques, namely post-crash symptom diagnosis, has been
deviant-behavior. Class 1A techniques are designed tdeveloped in Covers [37] and [55]. Post-crash symp-
handle source code only, and they do not ensure contom diagnosis extracts the ‘signature’ after a buffer over-
pleteness in bug finding. In contrast, SigFree handleflow attack is detected. Recently, Liang and Sekar pro-
machine code embedded in a request (message). posed ARBOR [36] which can automatically generate
Class 1B: Compiler extensionslf the source code vulnerability-oriented signatures by identifying charac
is available, a developer can add buffer overflow de-teristic features of attacks and using program context.
tection automatically to a program by using a modi- Moreover, ARBOR automatically invokes the recovery
fied compiler.” [34] Three such compilers are Stack-actions. Class 1F techniques can block both the attack
Guard [22], ProPolicé, and Return Address Defender requests that contain code and the attack requests that
(RAD) [18]. In addition, Smirnov and Chiueh proposed do not contain any code, but they need the signatures to
compiler DIRA [49] can detect control hijacking attacks, be firstly generated. Moreover, they either suffer from
identify the malicious input and repair the compromisedsignificant runtime overhead or need special auditing or
program. Class 1B techniques require the availability ofdiagnosis facilities which are not commonly available in
source code. In contrast, SigFree does not need to knosommercial services. In contrast, although SigFree could
any source code. not block the attack requests that do not contain any code,
Class 1C: OS modifications.Modifying some as- SigFree is signature-free and does not need any changes
pects of the operating system may prevent buffer overto real world services. We will investigate the integration
flows such as Pax [9], LibSafe [10] and e-NeXsh [48]. of SigFree with Class 1F techniques in our future work.
Class 1C techniques need to modify the OS. In contrast,
SigFree does not need any modification of the OS. 2.2 Worm Detection and Signature Gener-
Class 1D: Hardware modificationsA main idea of ation
hardware modification is to store all return addresses on
the processor [41]. In this way, no input can change any Because buffer overflows are a key target of worms
return address. when they propagate from one host to another, SigFree is
Class 1E: Defense-side obfuscatioAddress Space related to worm detection. Based on the nature of worm
Layout Randomization (ASLR) is a main component of infection symptoms, worm detection techniques can be
PaX [9]. Bhatkar and Sekar [13] proposed a compre-broken down into three classes: [Class 2A] techniques
hensive address space randomization scheme. Addressse such macro symptoms as Internet background ra-
space randomization, in its general form [13], can de-diation (observed by network telescopes) to raise early
tect exploitation of all memory errors. Instruction set warnings of Internet wide worm infection [44]. [Class
randomization [11, 28] can detect all code injection at-2B] techniques use such local traffic symptoms as con-
tacks. Nevertheless, when these approaches detect &mt invariance, content prevalence and address disper-



sion to generate worm signatures and/or block wormscious intent.) Due to this reason, SigFree is immunized
Some examples of Class 2B techniques are Earlybirdrom most attack-side obfuscation methods. Neverthe-
[47], Autograph [29], Polygraph [42], and TRW [27]. less, both the techniques in [33] and SigFree disassem-
[Class 2C] techniques use worm code running symptomsle binary code, although their disassembly procedures
to detect worms. It is not surprising that Class 2C tech-are different. As will be seen, disassembly is not the ker-
nigues are exactly Class 1F techniques. Some exammel contribution of SigFree.

ple Class 2C techniques are Shield [52], Vigilante [21], Fnord [2], the preprocessor of Snort IDS, identifies ex-
COVERS [37]. [Class 2D] techniques use anomaly deploit code by detecting NOP sled. Toth and Kruegel [50]
tection on packet payload to detect worms and generatglso aim at detecting NOP sled. They employed binary
signature. Wang and Stolfo [54] first proposed Classdisassembly to find the sequence of execution instruc-
2D techniques called PAYL. PAYL is first trained with tions as an evidence of a NOP sled. However, Some at-
normal network flow traffic and then uses some byte-tacks such as worm CodeRed do not include NOP sled
level statistical measures to detect exploit code. Reand, as mentioned in [15], mere binary disassembly is
cently, Wang et al. [53] proposed new features of PAYL not adequate. Moreover, polymorphic shellcode [23, 40]
that based on ingress/egress anomalous payload corrgan bypass the detection for NOP instructions by using
lation to detect new worms and automatically generatgake NOP zone. SigFree does not rely on the detection
signatures. FLIPS [39] uses PAYL [54] to detect anoma-of NOP sled.

lous inputs. If the anomaly is confirmed by a detector, a Finally, being generally a P3 technique, SigFree is
content-based signature is generated. most relevant to two P3 works [15, 32]. Kruegel et

Class 2A techniques are not relevant to SigFree. Clasg|. [32] innovatively exploited control flow structures to
2C techniques are already discussed. Class 2D techfetect polymorphic worms. Unlike string-based signa-
niques could be evaded by statistically mimics normakyre matching, their techniques identify structural simi-
traffic [31]. Class 2B techniques rely on signatures,|arities between different worm mutations and use these
Wh||e SigFree iS Signature'free. C|aSS 2B techniqueS fOSim”arities to detect more po'ymorphic worms. The
cus on identifying the unique bytes that a worm packetmplementation of their approach is resilient to a num-
must carry, while SigFree focuses on determining if aper of code transformation techniques. Although their
packet contains code or not. Exploiting the content in-techniques also handle binary code, they perform offline
variance property, Class 2B techniques are typically nognalysis. In contrast, SigFree is an online attack blocker.
very resilient to obfuscation. In Contrast, SigFl‘ee is im'AS SUCh, their techniques and SigFree are Complemen_
munized from most attack-side obfuscation methods. tary to each other with different purposes. Moreover, un-

like SigFree, their techniques [32] may not be suitable to
2.3 Machine Code Analysis for Security block the code contained 'mv_eryatta_ck packet, becau_se
Purposes some buffer. overflow code is so smple that very little
control flow information can be exploited.

Although source code analysis has been extensively Independent of our work, Chinchani and Berg [15]
studied (see Class 1A), in many real world scenariogproposed a rule-based scheme to achieve the same goal
source code is not available and the ability to analyze biof SigFree, that is, to detect exploit code in network
naries is desired. Machine code analysis has three maiitows. However, there is a fundamental difference be-
security purposes: (P1) malware detection, (P2) to antween SigFree and their scheme [15]. Their scheme is
alyze obfuscated binaries, and (P3) to identify and anarule-based, whereas SigFree igemericapproach which
lyze the code contained in buffer overflow attack packetsdoes not require any pre-known patterns. More specif-
Along purpose P1, Chritodorescu and Jha [16] proposeétally, their scheme [15] first tries to find certain pre-
static analysis techniques to detect malicious patterns iknown instructions, instruction patterns or control flow
executables, and Chritodorescu et al. [17] exploited sestructures in a packet. Then, it uses the found patterns
mantic heuristics to detect obfuscated malware. Alongand a data flow analysis technique called program slic-
purpose P2, Lakhotia and Eric [35] used static analy-ing to analyze the packet's payload to see if the packet
sis techniques to detect obfuscated calls in binaries, angkally contains code. Four rules (or cases) are discussed
Kruegel et al. [33] investigated disassembly of obfus-in their paper: Case 1 not only assumes the occurrence
cated binaries. of the call/jmp instructions, but also expects the push

SigFree differs from P1 and P2 techniques in desigrinstruction appears before the branch; Case 2 relies on
goals. The purpose of SigFree is to see if a message cotheinterruptinstruction; Case 3 relies on instructiaet;
tains code or not, instead of determining if a piece ofCase 4 exploits hidden branch instructions. Besides, they
code has malicious intent or not. (Note that SigFree doessed a special rule to detect polymorphic exploit code
not check if the code contained in a message has maliwhich contains a loop. Although they mentioned that the



above rules are initial sets and may require updatingwith The reason that we define IFG and EIFG is to model
time, it is always possible for attackers to bypass thoseéwo special cases which CFG cannot model (the differ-
pre-known rules. Moreover, more rules mean more overence will be very evident in the following sections). First,
head and longer latency in filtering packets. In contrastjn an instruction sequence, control may be transferred
SigFree exploits a different data flow analysis techniquefrom an instruction node to an illegal instruction node.
which is much harder for exploit code to evade. For example, in instruction sequengg in Figure 2, the
transfer of control is from instruction “lods [ds:esi]" taa
illegal instruction at addre$d"". Second, control may be
transferred from an instruction node to an external ad-
dress node. For example, instruction sequesigein
Figure 2 has an instruction “jmp ADAAC3C2", which
This section provides the definitions that will be usedjumps to external address ADAAC3C2.
in the rest of the paper.

Definition 1 (instruction sequence) An instruction se- 3. 2  Attack Model

guence is a sequence of CPU instructions which has one

and only one entry instruction and there exist at leastone An attacker exploits a buffer overflow vulnerability of
execution path from the entry instruction to any other in-a Web server by sending a crafted request, which con-
struction in this sequence. tains a malicious payload. Figure 3 shows the format of
a HTTP request. There are several HTTP request meth-

An instruction sequence is denoted @swherei is q hich d ¢ q
the entry address of the instruction sequence. A fra99 s among which GET and POST are most often use

ment of a program in machine language is an instructiorpy attackers. Although HTTP 1.1 does not allow GET

sequence, but an instruction sequence is not necessaril g have a request body, some web servers such as Mi-
fragment of a program. In fact, we may distill instruction crosoft IIS still dutifully read the request-body accomglin

sequences from any binary strings. This poses the furfo the request-header’s instructions (the CodeRed worm

damental challenge to our research goal. Figure 2 shOV\EXPIOited thi_s very problgm). ) )
four instruction sequences distilled from a substring of a The position of a malicious payload is determined by

GIF file. These four instruction sequences are not frag:[he exploited vulnerability. A malicious payload may be

ments of a real program, although they may also be ex¢mPedded in the Request-URI field as a query parame-
ecuted in a specific CPU. Below we call theemdom ter. However, as the maximum length of Request-URI

instruction sequencewhereas use the terbinary exe- is limited, the size of a malicious payload, hence the be-
cutable codeo refer to a fragment of a real program in havior of such a buffer overflow attack, is constrained. It

machine language is more common that a buffer overflow attack payload is

Definition 2 (instrulctionflow graph) Aninstruction flow embedded in Request-Body of a POST method request.
. . Technically, lici load Isob bedded

graph (IFG) is a directed grapliy = (V, E) where each echnically, 8 MATCIoUs payload fay a'so be Smbedde

d v d ) . d hed in Request-Header, although this kind of attacks have not
hodev € V corrésponds to an mstructlon_ and each €dge,qq opserved yet. In this work, we assume an attacker
e = (v;,v;) € E corresponds to a possible transfer of

. . ) _ can use any request method and embed the malicious
control from instructiory; to instructionv; .

code in any field.
Unlike traditional control flow graph (CFG), a node
of an IFG corresponds to a single instruction rather than
a basic block of instructions. To completely model the
control flow of an instruction sequence, we further ex- ‘

3 SigFree Overview

3.1 Basic Definitions and Notations

Request -Method ‘ Request -URI ‘ ‘ HTTP-Version

Request - Header ‘

tend the above definition. * A blank line *
Definition 3 (extended instruction flow graph) An ex- Request -Body
tended instruction flow graph (EIFG) is a directed graph

G = (V,E) which satisfies the following properties:
each nodev € V corresponds to an instruction, an
illegal instruction, or an external address; each edge
e = (v;,v;) € E corresponds to a possible transfer of
control from instructiory; to instructionv;, to illegal in-
structionv;, or to an external address;.

Accordingly, we name the types of nodes in an EIFG In this paper, we focus on buffer overflow attacks
instruction nodeillegal instruction node andexternal  whose payloads contain executable code in machine lan-
address node guage, and we assume normal requests do not contain

Figure 3: AHTTP Request. A malicious payload is nor-
mally embedded in Request-URI or Request-Body

3.3 Assumptions



instruction sequence S instruction sequence S, instruction sequence S, instruction sequence Sg
(start from address 00) (start from address 01) (start from address 02) (start from address 08)

string bytes string bytes
s

address addres
00 | 00 00 | 00
o1 | D5 add ch,dl - FET R 01 | D5
02 [ 3F aas aa aas 02 [ 3F
03 | 00 03 | 00
04 | AD 04 [ AD
05| 83 05| 83
06 " 3F add [ebp+C0875F83],ch add [ebp+C0875F83],ch ) add [ebp+C0875F83],ch 06 | s5F
07 | 87 07 | 87
08 | CO 08 | CO
09 | 5F pop edi pop edi pop edi 09 [ 5F
0A | E9 0A | E9 rer [edi-17],B3
0B | B3 0B | B3
0c | 43 jmp ADAA43C2 jmp ADAA43C2 jmp ADAA43C2 0C| 43 inc ebi
0D | AA 0D | AA stos [es:edi]
OE | AD OE | AD lods [ds:esi]
OF | 8F OF | 8F (illegal instruction)

Figure 2:Instruction sequences distilled from a substring of a GH fille assign an address to every byte of the string. Insbructi
sequencesgo, so1, so2 andsps are distilled by disassembling the string from addregse81, 02 and08, respectively.

executable machine code. A normal request may contaihex, SigFree allows the request to pass (In Section 7.2,

any data, parameters, or even a SQL statement. Note thate will discuss a special type of executable codes called

although SQL statements are executable in the applicaalphanumeric shellcodes [45] that actually use printable

tion level, they cannot be executed directly by a CPU.ASCII) .

As such, SQL statements are not viewed as executable in Instruction sequences distiller (ISDjhis module dis-

our model. Application level attacks such as data maniptills all possible instruction sequences from the query pa-

ulation and SQL injection are out of the scope. rameters of Request-URI and Request-Body (if the re-
Though SigFree is a generic technique which can bejuest has one).

applied to any instruction set, for concreteness we as- Instruction sequences analyzer (ISA)sing all the

sume the web server runs the Intel IA32 instruction setjnstruction sequences distilled from the instruction se-

the most popular instruction set running inside a webquences distiller as the inputs, this module analyzes these

server today. instruction sequences to determine whether one of them

is (a fragment of) a program.

3.4 Architecture

Figure 4 depicts the architecture of SigFree and it is?  Instruction Sequence Distiller

comprised of the following modules: ) ) ) ) ) ]
This section first describes an effective algorithm to

SigFree (Rm..l:afsomy distill instruction sequences from http requests, folldwe

HTTP Instruction | | Instruction | | 7 contains pure data) by several excluding techniques to reduce the processing
ts | |Decoder Filter

Sequences > Sequences . !
Distiller Analyzer | [\ Block overhead of instruction sequences analyzer.
(Requests contain
\ executable codes)
Pass (Requests are printable ASCIT)

Requests

4.1 Distilling Instruction Sequences

Figure 4:The architecture of SigFree . . . . .
To distill an instruction sequence, we first assign an

URI decoder The specification for URLs [12] limits address to every byte of a request. Then, we disassem-
the allowed characters in a Request-URI to only a subsetle the request from a certain address until the end of
of the ASCII character set. This means that the quenthe request is reached or an illegal instruction opcode is
parameters of a request-URI beyond this subset shouldncountered. There are two traditional disassembly al-
be encoded [12]. Because a malicious payload may bgorithms:linear sweepmndrecursive traversal38, 46].
embedded in the request-URI as a request parameter, tAde linear sweep algorithm begins disassembly at a cer-
first step of SigFree is to decode the request-URI. tain address, and proceeds by decoding each encountered

ASCII Filter. Malicious executable code are normally instruction. The recursive traversal algorithm also bggin
binary strings. In order to guarantee the throughput andlisassembly at a certain address, but it follows the con-
response time of the protected web system, if the quergrol flow of instructions.
parameters of the request-URI and request-body of a re- In this paper, we employ the recursive traversal algo-
guest are both printable ASCII ranging from 20-7E in rithm, because it can obtain the control flow information



during the disassembly process. Intuitively, to get allAlgorithm 1 Distill all instruction sequences from a re-
possible instruction sequences from\abyte request, quest
we simply execute the disassembly algorittvntimes initialize EISGG and instruction arrayl to empty
and each time we start from a different address in the re-  for each addressof the requestio
quest. This gives us a set of instruction sequences. The add instruction nodeéto G
running time of this algorithm i©(N?). i « the start address of the request

One drawback of the above algorithm is that the same ~ While 7 <= the end address of the requelst
instructions are decoded many times. For example, in- inst — decode an instruction at

L. e . . if inst is illegalthen

struction “pop edi” in Figure 2 is decoded many times by

. . . . . Ali] < illegal instructioninst
this algorithm. To reduce the running time, we design set type of nodé “illegal node” in G

a memorization algorithm [20] by using a data struc- else

ture, which is an EIFG defined earlier, to represent the Ali] — instructioninst

instruction sequences. To distill all possible instructio if inst is a control transfer instructiathen
sequences from a request is simply to create the EIFG for each possible target t of.st do

for the request. An EIFG is used to represent all pos- if targett is an external addresken

sible transfers of control among these instructions. In add external address notleo &
addition, we use an instruction array to represent all pos- add edge e(nodg nodet) to G

sible instructions in a request. To traverse an instruction else ) o

sequence, we simply traverse the EIFG from the entry . jdidffge e(nodg nodei + inst.length) to G

instruction of the instruction sequence and fetch the cor-
responding instructions from the instruction array. Fig-
ure 5 shows the data structure for the request shown in ) o )

Figure 2. The details of the algorithm for creating the 1he fundamental rule in excluding instruction se-

data structure are described in Algorithm 1. Clearly, theduences is not to affect the decision whether a request
running time of this algorithm i©(V), which is optimal contains code or not. This rule can be translated into the

as each address is traversed only once. following technical requirements: if a request contains
a fragment of a program, the fragment must be one of
oo [add chdi the remaining instruction sequences or a subsequence of
aad 3F a remaining instruction sequence, or it differs from a re-
aas « . . .
add [ebp+C0875F83].ch maining sequence only by few instructions.
<bb e 78140 Step 1If instruction sequence, is a subsequence of
bop edi instruction sequencs,, we excludes,,. The rationale for
Xchg eax,eax . . . . . . .
ror [dstedi-17],B3 excludings, is that if s, satisfies some characteristics
pop edi 2 L )
b ADAAGSC? 01_‘ programsss, also satisfies these characteristics with a
mov b1,43 high probability.
inc ebx . . .
+ | stos [estedi] This step helps exclude lots of instruction sequences
lods [ds:esi] _ since many distilled instruction sequences are subse-
oF | illegal instruction

quences of the other distilled instruction sequences. For
®) example, in Figure 5(a), instruction sequergg which
Figure 5:Data structure for the instruction sequences distilled!S & Subsequence of instruction sequesige can be ex-
from the request in Figure 2. (a) Extended instruction flow ¢luded. Note that here we only exclude instruction se-
graph. Circles represent instruction nodes; trianglesesemt ~ dU€NCesoy rather than remove nodey,. Similarly, in-
external addresses; rectangles represent illegal iftistnsc (b) ~ StUCtION SEQUENCES3,505, 07, 509,50a:50c,504 ANAS0e

The array of all possible instructions in the request. can be excluded.
Step 2If instruction sequence, merges to instruction

sequence,;, after a few instructions (e.qg., 4 in our exper-
iments) ands, is no longer thar;,, we excludes,. Itis
reasonable to expect thatwill preserves,’s character-
The previous step may output many instruction se-stics.
guences at different entry points. Next we exclude some Many distilled instruction sequences are observed to
of them based on several heuristics. Heseluding merge to other instructions sequences after a few instruc-
an instruction sequence means that the entry of this setions. This property is called self-repairing [38] in Intel
guence is not considered as the real entry for the embedA-32 architecture. For example, in Figure 5(a) instruc-
ded code (if any) tion sequencesy; merges to instruction sequeneg

4.2 Excluding Instruction Sequences



only after one instruction. Thereforey; is excluded. as a criteria will cause a high false positive rate. To ad-
Similarly, instruction sequencesg,, sos andsg, can be  dress this issue, we use a pattern composed of several in-
excluded. structions rather than a single instruction. It is observed
Step 3For some instruction sequences, if we executehat before these call instructions there are normally one
them, whatever execution path being taken, an illegal in-or several instructions used to transfer parameters. For
struction isinevitably reachableWe say an instructionis example, a “push” instruction is used to transfer param-
inevitably reachable if two conditions holds. One is thateters for a “call” instruction; some instructions that set
there are no cycles (loops) in the EIFG of the instructionvalues to registers al, ah, ax, or eax are used to transfer
sequence; the other is that there are no external addreparameters for “int” instructions. These call patterns are
nodes in the EIFG of the instruction sequence. very common in a fragment of a real program. Our ex-
We exclude the instruction sequences in which illegalperiments in Section 6 show that by selecting the appro-
instructions are inevitably reachable, because causing ttpriate parameters we can rather accurately tell whether
server to execute an illegal instruction is not the purposean instruction sequence is an executable code or not.
of an buffer overflow attack (this assumption was also Scheme 1 is fast since it does not need to fully disas-
made by others [15, 32], implicitly or explicitly). Note semble a request. For most instructions, we only need
that however the existence of illegal instruction nodesto know their types. This saves lots of time in decoding
cannot always be used as a criteria to exclude an instru@perands of instructions.
tion sequence unless they are inevitably reachable; oth- Note that although Scheme 1 is good at detecting most
erwise attackers may obfuscate their program by addingf the known buffer overflow attacks, it is vulnerable
non-reachabldlegal instructions. to obfuscation. One possible obfuscation is that attack-
Based on this heuristic, we can exclude instruction seers may use other instructions to replace the “call” and
guencesys in Figure 5(a), since it will eventually execute “push” instructions. Figure 5.1 shows an example of
an illegal instructior . obfuscation, where “call eax” instruction is substituted
After these three steps, in Figure 5(a) only instructionby “push J4” and “jmp eax”. Although we cannot fully
sequencey is left for consideration in the next stage. solve this problem, by recording this kind of instruction
replacement patterns, we may still be able to detect this

5 Instruction Sequences Analyzer type of obfuscation to some extent.

.. . . - J1: push 10
A distilled instruction sequence may be a sequence of I: push 10 _Be obfuscated to 5 74
random instructions or a fragment of a program in ma- [2: call eax J3: jmp eax

chine language. In this section, we propose two schemes A

to differentiate these two cases. Scheme 1 exploits th&igure 6: An obfuscation example. Instruction “call eax” is
operating system characteristics of a program; Schemsubstituted by “push J4” and “jmp eax”.

2 exploits the data flow characteristics of a program.

Scheme 1 is slightly faster than Scheme 2, whereas Another possible obfuscation is one which first en-

Scheme 2 is much more robust to obfuscation. crypts the attack code and then decrypts it using a de-
cryption routine during execution time [40]. This de-

cryption routine does not include any calls, thus evading
5.1 Scheme 1 the detection of Scheme 1.

A program in machine language is dedicated to a spe-
cific oper_ati_ng _syste_m; hence, a program has cer‘_[airS'Z Scheme 2
characteristics implying the operating system on which
it is running, for example calls to operating system or Next we propose Scheme 2 to detect the aforemen-
kernel library. A random instruction sequence does notioned obfuscated buffer overflow attacks. Scheme 2 ex-
carry this kind of characteristics. By identifying the call ploits the data flow characteristics of a program. Nor-
pattern in an instruction sequence, we can effectively dif-mally, a random instruction sequence is full of data flow
ferentiate a real program from a random instruction seanomalies, whereas a real program has few or no data
qguence. flow anomalies. However, the number of data flow
More specifically, instructions such as “call” and “int anomalies cannot be directly used to distinguish a pro-
0x2eh” in Windows and “int 0x80h” in Linux may in- gram from a random instruction sequence because an at-
dicate system calls or function calls. However, sincetacker may obfuscate his program easily by introducing
the op-codes of these call instructions are only one byteenough data flow anomalies.
even normal requests may contain plenty of these byte In this paper, we use the detection of data flow
values. Therefore, using the number of these instructionanomaly in a different way callecode abstractionWe



J1: mov eax,2

I1: mov eax,2 (ecx is undefined at  (ebx is undefined at

this point) this point)
12: mov eax,3 K1: mov eax,ecx J2: mov eax,ebx

@ (b) ©

Figure 7: Data flow anomaly in execution paths. (a) define-

define anomaly. Register eax is defined at I1 and then defined
again at 12. (b) undefine-reference anomaly. Register ecx is
undefined before K1 and referenced at K1 (c) define-undefine

anomaly. Register eax is defined at J1 and then undefined at Jzigure 8: State diagram of a variable. State undefined,
stateD: defined but not referenced, stdte defined and refer-

observe that when there are data flow anomalies in aBnced, stat® D : abnormal state define-define, stat&: ab-
execution path of an instruction sequence, some instruaiormal state undefine-reference and sfaté: abnormal state
tions are useless, whereas in a real program at least onrefine-undefine.

execution path have a certain number of useful instruc-

tions. Therefore, if the number of useful instructions in could be in one of the six possible states. The six possi-
an execution path exceeds a threshold, we conclude tHele states are staté: undefined; stateD: defined but
instruction sequence is a segment of a program. not referenced; stat&: defined and referenced; state

Data Flow Anomaly The term data flow anomaly was DD : abnor_mal state define-define; staté&: abnormal
originally used to analyze programs written in higherstate undefine-reference; and stat&’: abnormal state

level languages in the software reliability and testingdefine-undefine. Figure 8 depicts the state diagram of
field [25, 26]. In this paper, we borrow this term and these states. Each edge in this state diagram is associated
several other terms to analyze instruction sequences. With d,r, or u, which represents “define”, “reference”,
During a program execution, an instruction may im- and “undefine”, respectively.
pact a variable (register, memory location or stack) on We assume that a variable is in “undefined” state at
three different waysdefing reference andundefine A the beginning of an execution path. Now we start to tra-
variable is defined when it is set a value; it is referencedverse this execution path. If the entry instruction of the
when its value is referred to; it is undefined when its execution path defines this variable, it will enter the state
value is not set or set by another undefined variable. Notédefined”. Then, it will enter another state according to
that here the definition of undefined is different from thatthe next instruction, as shown in Figure 8. Once the vari-
in a high level language. For example, in a C programable enters an abnormal state, a data flow anomaly is de-
a local variable of a block becomes undefined when contected. We continue this traversal to the end of the exe-
trol leaves the block. cution path. This process enables us to find all the data
A data flow anomaly is caused by an improper se-flow anomalies in this execution path.
guence of actions performed on a variable. There are Pruning Useless InstructionsNext we leverage the
three data flow anomaliedefine-definglefine-undefine  detected data flow anomalies to remove useless instruc-
andundefine-referenci26]. The define-define anomaly tions. A uselesdnstruction of an execution path is an
means that a variable was defined and is defined agaiimstruction which does not affect the results of the exe-
but it has never been referenced between these two acution path; otherwise, it is calledsefulinstructions. We
tions. The undefine-reference anomaly indicates that aay find a useless instruction from a data flow anomaly.
variable that was undefined receives a reference actioiVhen there is an undefine-reference anomaly in an exe-
The define-undefine anomaly means that a variable wasution path, the instruction which causes the “reference”
defined, and before it is used it is undefined. Figure 7is a useless instruction. For instance, the instruckidn
shows an example. in Figure 7, which causes undefine-reference anomaly, is
Detection of Data Flow AnomaliesThere are static a useless instruction. When there is a define-define or
[25] or dynamic [26] methods to detect data flow anoma-define-undefine anomaly, the instruction that caused the
lies in the software reliability and testing field. Static former “define” is also considered as a useless instruc-
methods are not suitable in our case due to its slow speedion. For instance, the instructiodi$ and.J1 in Figure 7
dynamic methods are not suitable either due to the needre useless instructions because they caused the former
for real execution of a program with some inputs. As"“define” in either the define-define or the define-undefine
such, we propose a new method called code abstractioanomaly.
which does not require real execution of code. As a re- After pruning the useless instructions from an execu-
sult of the code abstraction of an instruction, a variabletion path, we will get a set of useful instructions. If the




Algorithm 2 check if the number of useful instructions goals. Other types of instructions may be leveraged by
in an execution path exceeds a threshold an attacker to obfuscate his real-purpose code, e.g., used
Input: entry instruction of an instruction sequence, EI&G as garbage in garbage insertion. As such, we prune other
groups of instructions as well.

total « 0; useless «— 0 ; stack «— empty

initialize the states of all variables to “undefined” Initial state of registerdt is hard for attackers to know
push the entryinstruction,states,total anduseless to  the run-time values of registers before malicious code is
stack executed. That is, their values are unpredictable to at-
while stack is not emptydo tackers. Therefore, it is reasonable to assume that the
pop the top item oktack toi,states,total anduseless initial states of all variables are “undefined” at the begin-
if total — useless greater than a thresholthen ning of an execution path. The register “esp”, however,
return true is an exception since it is used to hold the stack pointer.

if 7 is visitedthen

. Thus, we set register esp “defined” at the beginning of an
continues

marki visited execution path.
total « total + 1 Indirect addressAn indirect address is an address that
Abstractly execute instruction (change thestates of ~ SE€Ives as a reference point instead of an address to the

variables according to instructiai direct memory location. For example, in the instruction

if there is a define-define or define-undefine anomaly‘move eax,[ebx+01e8]", register “ebx” may contain the

then actual address of the operand. However, it is difficult
useless «— useless + 1 to know the run-time value of register “ebx”. Thus, we

if there is a undefine-reference anomiign always treat a memory location to which an indirect ad-
useless — useless 41 dress points as state “defined” and hence no data flow

for each instructiory directly following i in the G do
pushyj, states ,total anduseless to stack
return false

anomaly will be generated. Indeed, this treatment suc-
cessfully prevents an attacker from obfuscating his code
using indirect addresses.

We will defer the discussion on the capability of

) ) _ ) Scheme 2 in defending against obfuscation until Sec-
number of useful instructions in an execution path ex+jon 7.

ceeds a threshold, we will conclude the instruction se-
guence is a segment of a program.

Algorithm 2 shows our algorithm to check if the num-
ber of useful instructions in an execution path exceeds a .
threshold. The algorithm involves a search over an EIs®-1 ~ Parameter Tuning
in which the nodes are visited in a specific order derived g, Scheme 1 and Scheme 2 use a threshold value

from a depth first search. The algorithm assumes thaf getermine if a request contains code or not. Clearly,
an EISGG and the entry instruction of the instruction j; is critical to set the threshold values appropriately so
sequence are given, and a push down stack is availablgs 1o minimize both detection false positive rate and
for storage. During the search process, the visited nodgse negative rate. To find out the appropriate thresh-
(mstrqctlon) is abstractly executed to update the stateads' we tested both schemes of SigFree against 50 un-
of variables, find data flow anomaly, and prune uselesgn rynted attack requests generated by Metasploit frame-
instructions in an execution path. work, worm Slammer, CodeRed (CodeRed.a) and a
Handling Special CasedNext we discuss several spe- CodeRed variation (CodeRed.c), and 1500 binary HTTP
cial cases in the implementation of Scheme 2. replies (52 encrypted data, 23 audio, 195 jpeg, 32 png,
General purpose instructioifhe instructions in the 1153 gif and 45 flash) intercepted on the network of Col-
IA32 instruction set can be roughly divided into four lege of Information Science and Technology. Note that
groups: general purpose instructions, floating point unitve tested on HTTP replies rather than requests as nor-
instructions, extension instructions, and system instrucmal data for parameter tuning, because HTTP replies in-
tions. General purpose instructions perform basic data&lude more diverse binaries (test over real traces of web
movement, arithmetic, logic, program flow, and string requests is reported in Section 6.3). Also note that al-
operation, which are commonly used by programmers tdhough worm Slammer attacks Microsoft SQL servers
write applications and system software that run on IA-32rather than web servers, it also exploits buffer overflow
processors [3]. General purpose instructions are also theulnerabilities.
most often used instructions in malicious code. We be- Threshold of Push-calls for Scheme Figure 9(a)
lieve that malicious codes must contain a certain numbeshows that all instruction sequences distilled from a nor-
of general purpose instructions to achieve the attackingnal request contain at most one push-call code pattern.

6 Experiments
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Figure 9:The number of push-calls in a request. (a) Normal requesibolvs that any instruction sequences of a normal request
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Figure 10: The number of useful instructions in a request. (a) Normglests. It shows that no normal requests contain an
instruction sequence which has over 14 useful instructi@imsAttack requests. It shows that there exists an instmcequence
of an attack request which contain more than 18 useful iostms.

Figure 9(b) shows that for all the 53 buffer overflow at- buffer overflow attacks in two steps. First, it encrypts the
tacks we tested, every attack request contains more thahellcode. Second, it obfuscates the decryption routine
two push-calls in one of its instruction sequences. Thereby substituting instructions and inserting junk instruc-
fore, by setting the threshold number of push-calls to 2tions. In addition, ADMmutate replaces the No OPera-
Scheme 1 can detect all the attacks used in our expertions(NOP) instructions with other one-byte junkinstruc-
ment. tions to evade the detection of an IDS. This is because
Threshold of Useful Instructions for Scheme ZFig-  most buffer overflow attacks contain many NOP instruc-
ure 10(a) shows that no normal requests contain an intions to help locate shellcode, making them suspicious to
struction sequence that has more than 14 useful instru@n IDS.
tions. Figure 10(b) shows that an attack request contains
over 18 useful instructions in one of its instruction se-
guences. Therefore, by setting the threshold to a numb
between 15 and 17, Scheme 2 can detect all the attack 0), referred to as fake-NOPs, and generates a deci-

ﬁzfndl;grgu(: ftﬁigtlizéir:e;zttazg? \;V:(;Cg?;l ve;:wee \ll‘?/l(r)?rerﬂwer routine with different operations at each time, which
g| CodeRed ((1C’d Red ), ivel Thmakes classical IDS pattern matching ineffective. More-

ammer, Lodered.a and »odeRed.c, FeSpectively. 1Nig,q; 1t yses spectrum analysis to defeat data mining
motivates us to investigate in our future work whether an . othods

exceptional large number of useful instructions indicates
the occurrence of a worm. Because there is no push-call pattern in the code,

Scheme 1 cannot detect this type of attacks. However,
Scheme 2 is still very robust to these obfuscation tech-
niques. This is because although the original shellcode

We also tested SigFree on two well-known polymor- contains more useful instructions than the decryption
phic engine, ADMmutate v0.84 [40] and CLET v1.0 routine has and it is also encrypted, Scheme 2 may still
[23]. Basically, ADMmutate obfuscates the shellcode offind enough number of useful instructions in the decryp-

CLET is a more powerful polymorphic engine com-
ared with ADMmutate. It disguises its NOPs zone with
,3 bytes instructions (not implemented yet in CLET

6.2 Detection of Polymorphic Shellcode
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6.4 Performance Evaluation
35 —o— ADMmutate f

- CLET A To evaluate the performance of SigFree, we imple-
mented a proxy-based SigFree prototype using the C pro-
gramming language in Win32 environment. SigFree was
compiled with Borland C++ version 5.5.1 at optimiza-
tion level O2. The prototype implementation was hosted
in a Windows 2003 server with Intel Pentium 4, 3.2GHz
CPU and 1G MB memory.

The proxy-based SigFree prototype accepts and ana-
o 10 220 2 4 S e 7 & 90 100 lyzes all incoming requests from clients. The client test-
Pobmorph shelcode ing traffics were generated by Jef Poskanzer's_tuul
progrant from a Linux desktop PC with Intel Pentium 4
.5GHz CPU connected to the Windows server via a 100
bps LAN switch. We modified the original httipad
program so that clients can send code-injected data re-
guests.

For the requests which SigFree identifies as normal,

tion routines. SigFree forwards them to the web server, Apache HTTP
We used each of ADMmutate and CLET to generateseryer 2.0.54, hosted in a Linux server with dual Intel

100 polymorphic shellcodes, respectively. Then, we use§aon 1.8G CPUs. Clients send requests from a pre-
Scheme 2 to detect the useful instructions in the codeyefined URL list. The documents referred in the URL

Figure 11 shows the (sorted) numbers of useful instrucyist are stored in the web server. In addition, the proto-
tions in 200 polymorphic shellcodes. We observed tha‘type implementation uses a time-to-live based cache to

the least number of useful instructions in these ADM-reqyce redundant HTTP connections and data transfers.
mutate polymorphic shellcodes is 17, whereas the max- _
Rather than testing the absolute performance over-

imum number is 39; the least number of useful instruc-h d of SiaF der it inaful
tions in the CLET polymorphic shellcodes is 18, whereas €ad ot sigrree, we consider it more meaningiu’ mea-

the maximum number is 25. Therefore, using the saméu"'n9 the impact of SigFree on the normal web ser-

threshold value as before (i.e., between 15 and 17), wﬁéces' Hence, we measured theerage response la-

can detect all the 200 polymorphic shellcodes generate nCY(Wh'Ch IS also an indication dhroughputalthough
by ADMmutate and CLET. we did not directly measure throughput) of the connec-

tions by running httdoad for 1000 fetches. Figure 12(a)
shows that when there are no buffer overflow attacks, the
6.3 Testing on Real Traces average response time in the system with SigFree is only
slightly higher than the system without SigFree. This in-

: ; “Yicates that, despite the connection and ASCII checking
concerns, we were unable to deploy SigFree in a public

) : overheads, the proxy-based implementation does not af-

web server to examine realtime web requests. To mak?ect the overall latency sianificantl
our test as realistic as possible, we deployed a client-side” y sl Y- )
proxy underneath a web browser. The proxy recorded Figure 12(b) shows the average latency of connections
a normal user’s http requests during his/her daily Inter-2s a function of the percentage of attacking traffics. We
net surfing. During a one-week period, more than tert!Sed CodeRed as the attacking data. Only successful
of our lab members installed the proxy and helped col-connections were used to calculate the average latency;
lect totally 18,569 HTTP requests. The requests includdhat is, the latencies of attacking connections were not
manually typed urls, clicks through various web sites,counted. This is because what we care is the impact of
searchings from search engines such as Google and vattack requests on normal requests. We observe that the
hoo, secure logins to email servers and bank servers, arRyerage latency increases slightly worse than linear when
HTTPs requests. In this way, we believe our data set i¢he percentage of malicious attacks increases. Generally,
diverse enough, not worse than that we might have gobcheme 1 is about 20% faster than Scheme 2.
if we install SigFree in a single web server that provides Overall, our experimental results from the prototype
only limited Internet services. implementation show that SigFree has reasonably low

Our test based on the above real traces did not yield aperformance overhead. Especially when the fraction of
alarm. This output is of no surprise because our normahttack messages is small (sayl0%), the additional la-
web requests do not contain code. tency caused by SigFree is almost negligible.

30

N
o

Useful instructions

N
S

N
a

10

Figure 11:The number of useful instructions in all 200 poly-
morphic shellcodes. It shows that the least number of usefu
instructions in ADMmutate and CLET polymorphic shellcodes
is 17.
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Figure 12:Performance impact of SigFree on Apache HTTP Server
7 Discussions Disassembly Obfuscation SigFree
stage Junk byte insertion Yes
7.1 Robustness to Obfuscation Opaque predict Yes
Branch function partial
Most malware detection schemes include two-stage | Analysis | Obfuscation Scheme 1 Scheme 2
analysis. The first stage is disassembling binary code | stage Instruction reordering Yes Yes
and the second stage is analyzing the disassembly re- Register renaming Yes Yes
sults. There are obfuscation techniques to attack each Farbag?'”serf"’“ Les ::95
truct t
stage [19, 38] and attackers may use them to evade de-| ES ',“;'Onrl ;ep::t‘?or:ept NOO Y:S
. . . uivale un onall S
tection. Table 1 shows that SigFree is robust to most of d Y
Reordered memory accessg¥es Yes

these obfuscation techniques.

Obfuscation in The First StageJunk byte insertion Table 1:SigFree is robust to most obfuscation

is one of the simplest obfuscation against disassembly.re based on. By exploiting instruction renlacement and
Here junk bytes are inserted at locations that are nof. - BY €Xp 9 P

reachable at run-time. This insertion however can miS_equlvalent functionality, attacks may evade the detection

. ; ; of Scheme 1, but cannot evade the detection of Scheme
lead a linear sweep algorithm, but can not mislead
recursive traversal algorithm [33], which our algorithm
bases on.

Opaque predicatesire used to transform uncondi- 7.2 Limitations
tional jumps into conditional branches. Opaque predi-
cates are predicates that are always evaluated to either SigFree also has several limitations. First, SigFree
true or false regardless of the inputs. This allows an obcannot fully handle the branch-function based obfusca-
fuscator to insert junk bytes either at the jump target ortion, as indicated in Table 1. Branch function is a func-
in the place of the fall-through instruction. We note thattion f(x) that, whenever called fror, causes control
opaque predicates may make SigFree mistakenly intetto be transferred to the corresponding locatfgm). By
pret junk byte as executable codes. However, this misreplacing unconditional branches in a program with calls
take will not cause SigFree to miss any real maliciousto the branch function, attackers can obscure the flow of
instructions. Therefore, SigFree is also immune to obcontrol in the program. We note that there are no gen-
fuscation based on opaque predicates. eral solutions for handling branch function at the present
Obfuscation in The Second StageMost of the  state of the art.

second-stage obfuscation techniques obfuscate the be-With respect to SigFree, due to the obscurity of the
haviors of a program; however, the obfuscated program#ow of control, branch function may cause SigFree to
still bear characteristics of programs. Since the purbreak the executable codes into multiple instruction se-
pose of SigFree is to differentiate executable codes anduences. Nevertheless, it is still possible for SigFree
random binaries rather than benign and malicious exeto find this type of buffer overflow attacks as long as
cutable codes, most of these obfuscation techniques a®igFree can still find enough push-calls or useful instruc-
ineffective to SigFree. Obfuscation techniques such agions in one of the distilled instruction sequences.
instruction reordering, register renaming, garbage inser Second, the executable shellcodes could be written in
tion and reordered memory accesses do not affect thalphanumeric form [45]. Such shellcodes will be treated
number of calls or useful instructions which our schemesas printable ASCII data and thus bypass our analyzer.



By turning off the ASCII filter, Scheme 2 can success-WWW server. We notice that most popular web servers
fully detect alphanumeric shellcodes; however, it will in- allow us to write a server module to process requests and
crease unnecessary computational overhead. It therefospecify the order of server modules. Detailed study will
requires a slight tradeoff between tight security and sysbe reported in our future work.

tem performance.

Finally, the current implementation of SigFree cannot
detect malicious code which consists of fewer useful in-
structions than current threshold 15. Figure 13 shows a
possible evasion which has only 7 useful instructions for
a decryption routine. One solution to catch this evasion
is to use a comprehensive score rather than the absolute
number of useful instructions as the threshold_. For ex~ 4 Applicability
ample, we may give larger weights to instructions that
are within a loop because most decryption routines con- So far we only discussed using SigFree to protect web
tain loops. This approach, however, may introduce somservers. It is worth mentioning that our tool is also
false positives, which we will report in our future work. widely applicable to many programs that are vulnera-

ble to buffer overflow attacks. For example, the proxy-

Proxy-based
Sigfree

WWW

Firewall Web Server

Figure 14:SigFree with a SSL proxy

[ 00000000: push 0x47 ] based SigFree may be used to protect all internet services
| ooooooo;pop = which do not permit executable binarie_s to be carried in
1 requests, e.g., database servers, email servers, name ser-
[ 00000003: call 0x08 | vices, and so on. We will investigate the deployment is-
v sue in our future work.
| 000000083’0'3 esi | In addition to protecting severs, SigFree can also pro-

vide file system real-time protection. Buffer overflow
vulnerabilities have been found in some famous applica-
tions such as Adobe Acrobat and Adobe Reader [5], Mi-
crosoft JPEG Processing (GDI+) [1], and WinAmp [8].
This means that attackers may embed their malicious
Figure 13: A decryption routine with 7 useful instructions. code in PDF, JPEG, or mp3_-|ist files to Iau_nch buffer
The first two instructions are used to set the initial value fo Overflow attacks. In fact, a virus called Hesive [7] was
loop counter ecx. The next two instructions are used to aequi diSguised as a Microsoft Access file to exploit buffer
the value of EIP (instruction pointer register). The lasetn  Overflow vulnerability of Microsoft's Jet Database En-
instructions form the decryption loop. gine. Once opened in Access, infected .mdb files take
advantage of the buffer overflow vulnerability to seize
P i : _control of vulnerable machines. If mass-mailing worms
7.3 Application-Specific Encryption Han exploit these kinds of vulnerabilities, they will become

dling more fraudulent than before, because they may appear as
The proxy-based SigFree could not handle encrypte@ure data-file attachments. SigFree can be used alleviate
or encoded data directly. A particular example is SSL-these problems by checking those files and email attach-
enabled web server. Enhancing security between weB1€nts which should notinclude any code.
clients and web servers by encrypting HTTP messages, If the buffer being overflowed is |nS|_de a JPEG or GIF _
SSL also causes the difficulty for out-of-box malicious SyStem, ASN.1 or base64 encoder, SigFree cannot be di-
code detectors. rectly applied. Although SigFree can decode the pro-
To support SSL functionality, an SSL proxy such astected file according to the protocols_or gpplications it
Stunnel [6] (Figure 14) may be deployed to Secure|yprotects, more details need to be studied in the future.
tunnel the traffic between clients and web servers. In
this case, we may simply install SigFree in the machine8 Conclusion
where the SSL proxy is located. It handles the web re-
guests in cleartext that have been decrypted by the SSL We proposed SigFree, a realtime, signature free, out-
proxy. On the other hand, in some web server appli-of-the-box blocker that can filter code-injection buffer
cations, SSL is implemented as a server module (e.ggverflow attack messages, one of the most serious cy-
modssl in Apache). In this case, SigFree will need to ber security threats, to various Internet services. SigFre
be implemented as a server module (though not showdoes not require any signatures, thus it can block new,
in Figure 14), located between the SSL module and theinknown attacks. SigFree is immunized from most

00000009: xor [dword ds:esi+0x0d], 0xc2122b7a

v

00000010: sub esi, -0x04 |

v

| 00000013: loopd short 0x09




attack-side code obfuscation methods, good for econonfi9]
ical Internet wide deployment with little maintenance
cost and negligible throughput degradation, and can aIsPZO]
handle encrypted SSL messages.
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