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Abstract

We propose SigFree, a realtime, signature-free, out-of-
the-box, application layer blocker for preventing buffer
overflow attacks, one of the most serious cyber security
threats. SigFree can filter out code-injection buffer over-
flow attack messages targeting at various Internet ser-
vices such as web service. Motivated by the observation
that buffer overflow attacks typically contain executables
whereas legitimate client requests never contain executa-
bles in most Internet services, SigFree blocks attacks by
detecting the presence of code. SigFree first blindly dis-
sembles and extracts instruction sequences from a re-
quest. It then applies a novel technique calledcode ab-
straction, which uses data flow anomaly to prune useless
instructions in an instruction sequence. Finally it com-
pares the number of useful instructions to a threshold
to determine if this instruction sequence contains code.
SigFree is signature free, thus it can block new and un-
known buffer overflow attacks; SigFree is also immu-
nized from most attack-side code obfuscation methods.
Since SigFree is transparent to the servers being pro-
tected, it is good for economical Internet wide deploy-
ment with very low deployment and maintenance cost.
We implemented and tested SigFree; our experimental
study showed that SigFree could block all types of code-
injection attack packets (above 250) tested in our exper-
iments. Moreover, SigFree causes negligible throughput
degradation to normal client requests.

1 Introduction

Throughout the history of cyber security, buffer over-
flow is one of the most serious vulnerabilities in com-
puter systems. Buffer overflow vulnerability is a root
cause for most of the cyber attacks such as server
breaking-in, worms, zombies, and botnets. Buffer over-
flow attacks are the most popular choice in these at-
tacks, as they provide substantial control over a victim

host [37].
“A buffer overflow occurs during program execution

when a fixed-size buffer has had too much data copied
into it. This causes the data to overwrite into adjacent
memory locations, and, depending on what is stored
there, the behavior of the program itself might be af-
fected.” [34] (Note that the buffer could be in stack or
heap.) Although taking a broader viewpoint, buffer over-
flow attacks do not always carry code in their attacking
requests (or packets)1, code-injection buffer overflow at-
tacks such as stack smashing count for probably most of
the buffer overflow attacks that have happened in the real
world.

Although tons of research has been done to tackle
buffer overflow attacks, existing defenses are still quite
limited in meeting four highly-desired requirements:
(R1)simplicityin maintenance; (R2)transparencyto ex-
isting (legacy) server OS, application software, and hard-
ware; (R3)resiliency to obfuscation; (R4) economical
Internet wide deployment. As a result, although sev-
eral very secure solutions have been proposed, they are
not pervasively deployed, and a considerable number of
buffer overflow attacks continue to succeed on a daily
basis.

To see how existing defenses are limited in meeting
these four requirements, let us break down the existing
buffer overflow defenses into six classes which we will
review shortly in Section 2: (1A) Finding bugs in source
code. (1B) Compiler extensions. (1C) OS modifica-
tions. (1D) Hardware modifications. (1E) Defense-side
obfuscation [11,28]. (1F) Capturing code running symp-
toms of buffer overflow attacks [21, 37, 43, 55]. (Note
that the above list does not include binary code analysis
based defenses which we will address shortly.) We may
briefly summarize the limitations of these defenses in
terms of the four requirements as follows. (a) Class 1B,
1C, 1D, and 1E defenses may cause substantial changes
to existing (legacy) server OSes, application softwares,
and hardwares, thus they are not transparent. Moreover,



Class 1E defenses generally cause processes to be termi-
nated. As a result, many businesses do not view these
changes and the process termination overhead as eco-
nomical deployment. (b) Class 1F defenses can be very
secure, but they either suffer from significant runtime
overhead or need special auditing or diagnosis facilities
which are not commonly available in commercial ser-
vices. As a result, Class 1F defenses have limited trans-
parency and potential for economical deployment. (c)
Class 1A defenses need source code, but source code is
unavailable to many legacy applications.

Besides buffer overflow defenses, worm signatures
can be generated and used to block buffer overflow attack
packets [29, 42, 47]. Nevertheless, they are also limited
in meeting the four requirements, since they either rely
on signatures, which introduce maintenance overhead, or
are not very resilient to attack-side obfuscation.

To overcome the above limitations, in this paper
we propose SigFree, a realtime buffer overflow attack
blocker, to protect Internet services. The idea of SigFree
is motivated by an important observation that “the na-
ture of communication to and from network services is
predominantly or exclusively data and not executable
code.” [15]. In particular, as summarized in [15], (a)
on Windows platforms, most web servers (port 80) ac-
cept data only; remote access services (ports 111, 137,
138, 139) accept data only; Microsoft SQL Servers (port
1434) accept data only; workstation services (ports 139
and 445) accept data only. (b) On Linux platforms, most
Apache web servers (port 80) accept data only; BIND
(port 53) accepts data only; SNMP (port 161) accepts
data only; most Mail Transport (port 25) accepts data
only; Database servers (Oracle, MySQL, PostgreSQL)
at ports 1521, 3306 and 5432 accept data only.

Since remote exploits are typically executable code,
this observation indicates that if we can precisely dis-
tinguish (service requesting) messages that contain code
from those that do not contain any code, we can pro-
tect most Internet services (which accept data only) from
code-injection buffer overflow attacks by blocking the
messages that contain code.

Web ServerFirewall

Http
Requests Proxy-based SigFree

(Application layer)

Figure 1:SigFree is an application layer blocker between the
web server and the corresponding firewall.

Accordingly, SigFree (Figure 1) works as follows.
SigFree is an application layer blocker that typically
stays between a service and the corresponding firewall.

When a service requesting message arrives at SigFree,
SigFree first uses a newO(N) algorithm, where N is the
byte length of the message, to disassemble and distill all
possible instruction sequences from the message’s pay-
load, where every byte in the payload is considered as
a possible starting point of the code embedded (if any).
However, in this phase some data bytes may be mistak-
enly decoded as instructions. In phase 2, SigFree uses a
novel technique calledcode abstraction. Code abstrac-
tion first uses data flow anomaly to prune useless instruc-
tions in an instruction sequence, then compares the num-
ber of useful instructions to a threshold to determine if
this instruction sequence (distilled in phase 1) contains
code.

We have implemented a SigFree prototype as a proxy
to protect web servers. Our empirical study shows
that there exists clean-cut “boundaries” between code-
embedded payloads and data payloads when our code-
data separation criteria are applied. We have identified
the “boundaries” (or thresholds) and been able to de-
tect/block all 50 attack packets generated by Metasploit
framework [4], all 200 polymorphic shellcode packets
generated by two well-known polymorphic shellcode en-
gine ADMmutate [40] and CLET [23], and worm Slam-
mer, CodeRed and a CodeRed variation, when they are
well mixed with various types of data packets. Also, our
experiment results show that the throughput degradation
caused by SigFree is negligible.

The merits of SigFree are summarized below. They
show that SigFree has taken a main step forward in meet-
ing the four requirements aforementioned.
⊙ SigFree is signature free, thus it can block new and
unknown buffer overflow attacks
⊙ Without relying on string-matching,SigFree is
immunized from most attack-side obfuscation methods.
⊙ SigFree uses generic code-data separation criteria
instead of limited rules.This feature separates SigFree
from [15], an independent work that tries to detect
code-embedded packets.
⊙ Transparency. SigFree is a out-of-the-box solution
that requires no server side changes.
⊙ SigFree has negligible throughput degradation.
⊙ SigFree is an economical deployment with very low
maintenance cost, which can be well justified by the
aforementioned features.

The rest of the paper is organized as follows. In Sec-
tion 2, we summarize the work related to ours. In Section
3, we give an overview of SigFree. In Sections 4 and 5,
we introduce the instruction sequence distiller compo-
nent and the instruction sequence analyzer component of
SigFree, respectively. In Section 6, we show our experi-
mental results. Finally, we discuss some research issues
in Section 7 and conclude the paper in Section 8.



2 Related Work

SigFree is mainly related to three bodies of work.
[Category 1:] prevention/detection techniques of buffer
overflows; [Category 2:] worm detection and signature
generation. [Category 3:] machine code analysis for
security purposes. In the following, we first briefly re-
view Category 1 and Category 2 which are less close to
SigFree. Then we will focus on comparing SigFree with
Category 3.

2.1 Prevention/Detection of Buffer Over-
flows

Existing prevention/detection techniques of buffer
overflows can be roughly broken down into six classes:

Class 1A: Finding bugs in source code.Buffer over-
flows are fundamentally due to programming bugs. Ac-
cordingly, various bug-finding tools [14, 24, 51] have
been developed. The bug-finding techniques used in
these tools, which in general belong to static analysis,
include but not limited to model checking and bugs-as-
deviant-behavior. Class 1A techniques are designed to
handle source code only, and they do not ensure com-
pleteness in bug finding. In contrast, SigFree handles
machine code embedded in a request (message).

Class 1B: Compiler extensions.“If the source code
is available, a developer can add buffer overflow de-
tection automatically to a program by using a modi-
fied compiler.” [34] Three such compilers are Stack-
Guard [22], ProPolice2, and Return Address Defender
(RAD) [18]. In addition, Smirnov and Chiueh proposed
compiler DIRA [49] can detect control hijacking attacks,
identify the malicious input and repair the compromised
program. Class 1B techniques require the availability of
source code. In contrast, SigFree does not need to know
any source code.

Class 1C: OS modifications.Modifying some as-
pects of the operating system may prevent buffer over-
flows such as Pax [9], LibSafe [10] and e-NeXsh [48].
Class 1C techniques need to modify the OS. In contrast,
SigFree does not need any modification of the OS.

Class 1D: Hardware modifications.A main idea of
hardware modification is to store all return addresses on
the processor [41]. In this way, no input can change any
return address.

Class 1E: Defense-side obfuscation.Address Space
Layout Randomization (ASLR) is a main component of
PaX [9]. Bhatkar and Sekar [13] proposed a compre-
hensive address space randomization scheme. Address-
space randomization, in its general form [13], can de-
tect exploitation of all memory errors. Instruction set
randomization [11, 28] can detect all code injection at-
tacks. Nevertheless, when these approaches detect an

attack, the victim process is typically terminated. “Re-
peated attacks will require repeated and expensive appli-
cation restarts, effectively rendering the service unavail-
able.” [37]

Class 1F: Capturing code running symptoms of buffer
overflow attacks.Fundamentally, buffer overflows are a
code running symptom. If such unique symptoms can be
precisely captured, all buffer overflows can be detected.
Class 1B, Class 1C and Class 1E techniques can capture
some - but not all - of the running symptoms of buffer
overflows. For example, accessing non-executable stack
segments can be captured by OS modifications; com-
piler modifications can detect return address rewriting;
and process crash is a symptom captured by defense-
side obfuscation. To achieve 100% coverage in capturing
buffer overflow symptoms, dynamic dataflow/taint anal-
ysis/program shepherding techniques were proposed in
Vigilante [21], TaintCheck [43], and [30]. They can de-
tect buffer overflows during runtime. However, it may
cause significant runtime overhead (e.g., 1,000%). To
reduce such overhead, another type of Class 1F tech-
niques, namely post-crash symptom diagnosis, has been
developed in Covers [37] and [55]. Post-crash symp-
tom diagnosis extracts the ‘signature’ after a buffer over-
flow attack is detected. Recently, Liang and Sekar pro-
posed ARBOR [36] which can automatically generate
vulnerability-oriented signatures by identifying charac-
teristic features of attacks and using program context.
Moreover, ARBOR automatically invokes the recovery
actions. Class 1F techniques can block both the attack
requests that contain code and the attack requests that
do not contain any code, but they need the signatures to
be firstly generated. Moreover, they either suffer from
significant runtime overhead or need special auditing or
diagnosis facilities which are not commonly available in
commercial services. In contrast, although SigFree could
not block the attack requests that do not contain any code,
SigFree is signature-free and does not need any changes
to real world services. We will investigate the integration
of SigFree with Class 1F techniques in our future work.

2.2 Worm Detection and Signature Gener-
ation

Because buffer overflows are a key target of worms
when they propagate from one host to another, SigFree is
related to worm detection. Based on the nature of worm
infection symptoms, worm detection techniques can be
broken down into three classes: [Class 2A] techniques
use such macro symptoms as Internet background ra-
diation (observed by network telescopes) to raise early
warnings of Internet wide worm infection [44]. [Class
2B] techniques use such local traffic symptoms as con-
tent invariance, content prevalence and address disper-



sion to generate worm signatures and/or block worms.
Some examples of Class 2B techniques are Earlybird
[47], Autograph [29], Polygraph [42], and TRW [27].
[Class 2C] techniques use worm code running symptoms
to detect worms. It is not surprising that Class 2C tech-
niques are exactly Class 1F techniques. Some exam-
ple Class 2C techniques are Shield [52], Vigilante [21],
COVERS [37]. [Class 2D] techniques use anomaly de-
tection on packet payload to detect worms and generate
signature. Wang and Stolfo [54] first proposed Class
2D techniques called PAYL. PAYL is first trained with
normal network flow traffic and then uses some byte-
level statistical measures to detect exploit code. Re-
cently, Wang et al. [53] proposed new features of PAYL
that based on ingress/egress anomalous payload corre-
lation to detect new worms and automatically generate
signatures. FLIPS [39] uses PAYL [54] to detect anoma-
lous inputs. If the anomaly is confirmed by a detector, a
content-based signature is generated.

Class 2A techniques are not relevant to SigFree. Class
2C techniques are already discussed. Class 2D tech-
niques could be evaded by statistically mimics normal
traffic [31]. Class 2B techniques rely on signatures,
while SigFree is signature-free. Class 2B techniques fo-
cus on identifying the unique bytes that a worm packet
must carry, while SigFree focuses on determining if a
packet contains code or not. Exploiting the content in-
variance property, Class 2B techniques are typically not
very resilient to obfuscation. In contrast, SigFree is im-
munized from most attack-side obfuscation methods.

2.3 Machine Code Analysis for Security
Purposes

Although source code analysis has been extensively
studied (see Class 1A), in many real world scenarios
source code is not available and the ability to analyze bi-
naries is desired. Machine code analysis has three main
security purposes: (P1) malware detection, (P2) to an-
alyze obfuscated binaries, and (P3) to identify and ana-
lyze the code contained in buffer overflow attack packets.
Along purpose P1, Chritodorescu and Jha [16] proposed
static analysis techniques to detect malicious patterns in
executables, and Chritodorescu et al. [17] exploited se-
mantic heuristics to detect obfuscated malware. Along
purpose P2, Lakhotia and Eric [35] used static analy-
sis techniques to detect obfuscated calls in binaries, and
Kruegel et al. [33] investigated disassembly of obfus-
cated binaries.

SigFree differs from P1 and P2 techniques in design
goals. The purpose of SigFree is to see if a message con-
tains code or not, instead of determining if a piece of
code has malicious intent or not. (Note that SigFree does
not check if the code contained in a message has mali-

cious intent.) Due to this reason, SigFree is immunized
from most attack-side obfuscation methods. Neverthe-
less, both the techniques in [33] and SigFree disassem-
ble binary code, although their disassembly procedures
are different. As will be seen, disassembly is not the ker-
nel contribution of SigFree.

Fnord [2], the preprocessor of Snort IDS, identifies ex-
ploit code by detecting NOP sled. Toth and Kruegel [50]
also aim at detecting NOP sled. They employed binary
disassembly to find the sequence of execution instruc-
tions as an evidence of a NOP sled. However, Some at-
tacks such as worm CodeRed do not include NOP sled
and, as mentioned in [15], mere binary disassembly is
not adequate. Moreover, polymorphic shellcode [23, 40]
can bypass the detection for NOP instructions by using
fake NOP zone. SigFree does not rely on the detection
of NOP sled.

Finally, being generally a P3 technique, SigFree is
most relevant to two P3 works [15, 32]. Kruegel et
al. [32] innovatively exploited control flow structures to
detect polymorphic worms. Unlike string-based signa-
ture matching, their techniques identify structural simi-
larities between different worm mutations and use these
similarities to detect more polymorphic worms. The
implementation of their approach is resilient to a num-
ber of code transformation techniques. Although their
techniques also handle binary code, they perform offline
analysis. In contrast, SigFree is an online attack blocker.
As such, their techniques and SigFree are complemen-
tary to each other with different purposes. Moreover, un-
like SigFree, their techniques [32] may not be suitable to
block the code contained ineveryattack packet, because
some buffer overflow code is so simple that very little
control flow information can be exploited.

Independent of our work, Chinchani and Berg [15]
proposed a rule-based scheme to achieve the same goal
of SigFree, that is, to detect exploit code in network
flows. However, there is a fundamental difference be-
tween SigFree and their scheme [15]. Their scheme is
rule-based, whereas SigFree is agenericapproach which
does not require any pre-known patterns. More specif-
ically, their scheme [15] first tries to find certain pre-
known instructions, instruction patterns or control flow
structures in a packet. Then, it uses the found patterns
and a data flow analysis technique called program slic-
ing to analyze the packet’s payload to see if the packet
really contains code. Four rules (or cases) are discussed
in their paper: Case 1 not only assumes the occurrence
of the call/jmp instructions, but also expects the push
instruction appears before the branch; Case 2 relies on
the interrupt instruction; Case 3 relies on instructionret;
Case 4 exploits hidden branch instructions. Besides, they
used a special rule to detect polymorphic exploit code
which contains a loop. Although they mentioned that the



above rules are initial sets and may require updating with
time, it is always possible for attackers to bypass those
pre-known rules. Moreover, more rules mean more over-
head and longer latency in filtering packets. In contrast,
SigFree exploits a different data flow analysis technique,
which is much harder for exploit code to evade.

3 SigFree Overview

3.1 Basic Definitions and Notations

This section provides the definitions that will be used
in the rest of the paper.

Definition 1 (instruction sequence) An instruction se-
quence is a sequence of CPU instructions which has one
and only one entry instruction and there exist at least one
execution path from the entry instruction to any other in-
struction in this sequence.

An instruction sequence is denoted assi, wherei is
the entry address of the instruction sequence. A frag-
ment of a program in machine language is an instruction
sequence, but an instruction sequence is not necessarily a
fragment of a program. In fact, we may distill instruction
sequences from any binary strings. This poses the fun-
damental challenge to our research goal. Figure 2 shows
four instruction sequences distilled from a substring of a
GIF file. These four instruction sequences are not frag-
ments of a real program, although they may also be ex-
ecuted in a specific CPU. Below we call themrandom
instruction sequences, whereas use the termbinary exe-
cutable codeto refer to a fragment of a real program in
machine language.

Definition 2 (instruction flow graph) An instruction flow
graph (IFG) is a directed graphG = (V, E) where each
nodev ∈ V corresponds to an instruction and each edge
e = (vi, vj) ∈ E corresponds to a possible transfer of
control from instructionvi to instructionvj .

Unlike traditional control flow graph (CFG), a node
of an IFG corresponds to a single instruction rather than
a basic block of instructions. To completely model the
control flow of an instruction sequence, we further ex-
tend the above definition.

Definition 3 (extended instruction flow graph) An ex-
tended instruction flow graph (EIFG) is a directed graph
G = (V, E) which satisfies the following properties:
each nodev ∈ V corresponds to an instruction, an
illegal instruction, or an external address; each edge
e = (vi, vj) ∈ E corresponds to a possible transfer of
control from instructionvi to instructionvj , to illegal in-
structionvj , or to an external addressvj .

Accordingly, we name the types of nodes in an EIFG
instruction node, illegal instruction node, andexternal
address node.

The reason that we define IFG and EIFG is to model
two special cases which CFG cannot model (the differ-
ence will be very evident in the following sections). First,
in an instruction sequence, control may be transferred
from an instruction node to an illegal instruction node.
For example, in instruction sequences08 in Figure 2, the
transfer of control is from instruction “lods [ds:esi]” to an
illegal instruction at address0F . Second, control may be
transferred from an instruction node to an external ad-
dress node. For example, instruction sequences00 in
Figure 2 has an instruction “jmp ADAAC3C2”, which
jumps to external address ADAAC3C2.

3.2 Attack Model

An attacker exploits a buffer overflow vulnerability of
a web server by sending a crafted request, which con-
tains a malicious payload. Figure 3 shows the format of
a HTTP request. There are several HTTP request meth-
ods among which GET and POST are most often used
by attackers. Although HTTP 1.1 does not allow GET
to have a request body, some web servers such as Mi-
crosoft IIS still dutifully read the request-body according
to the request-header’s instructions (the CodeRed worm
exploited this very problem).

The position of a malicious payload is determined by
the exploited vulnerability. A malicious payload may be
embedded in the Request-URI field as a query parame-
ter. However, as the maximum length of Request-URI
is limited, the size of a malicious payload, hence the be-
havior of such a buffer overflow attack, is constrained. It
is more common that a buffer overflow attack payload is
embedded in Request-Body of a POST method request.
Technically, a malicious payload may also be embedded
in Request-Header, although this kind of attacks have not
been observed yet. In this work, we assume an attacker
can use any request method and embed the malicious
code in any field.

Request - Request -URI HTTP-Version
Request - Header

Request -Body

* A blank line *

-Method - -
-

-

*

Figure 3: A HTTP Request. A malicious payload is nor-
mally embedded in Request-URI or Request-Body

3.3 Assumptions

In this paper, we focus on buffer overflow attacks
whose payloads contain executable code in machine lan-
guage, and we assume normal requests do not contain



00
D5
3F
00
AD
83
5F
87
C0
5F
E9
B3
43
AA
AD
8F

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F

instruction sequence S00(start from address 00)
instruction sequence S01(start from address 01)

instruction sequence S02(start from address 02)
address

string bytes

add ch,dl
aas

add [ebp+C0875F83],ch

pop edi

jmp ADAA43C2

aad 3f

add [ebp+C0875F83],ch

pop edi

aas

add [ebp+C0875F83],ch

pop edi

jmp ADAA43C2 jmp ADAA43C2

instruction sequence S
08(start from address 08)

00
D5
3F
00
AD
83
5F
87
C0
5F
E9
B3
43
AA
AD
8F

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F

addressstring bytes

rcr [edi-17],B3

inc ebi
stos [es:edi]
lods [ds:esi]
(illegal instruction)

Figure 2:Instruction sequences distilled from a substring of a GIF file. We assign an address to every byte of the string. Instruction
sequencess00, s01, s02 ands08 are distilled by disassembling the string from addresses00, 01, 02 and08, respectively.

executable machine code. A normal request may contain
any data, parameters, or even a SQL statement. Note that
although SQL statements are executable in the applica-
tion level, they cannot be executed directly by a CPU.
As such, SQL statements are not viewed as executable in
our model. Application level attacks such as data manip-
ulation and SQL injection are out of the scope.

Though SigFree is a generic technique which can be
applied to any instruction set, for concreteness we as-
sume the web server runs the Intel IA32 instruction set,
the most popular instruction set running inside a web
server today.

3.4 Architecture

Figure 4 depicts the architecture of SigFree and it is
comprised of the following modules:

Instruction
Sequences
Distiller

Instruction
Sequences
Analyzer

SigFree
HTTP

Requests
URI

Decoder
ASCII
Filter

Pass (Requests are printable ASCII)

         Pass
(Requests only
contains pure data)

Block
(Requests contain
executable codes)

Figure 4:The architecture of SigFree

URI decoder. The specification for URLs [12] limits
the allowed characters in a Request-URI to only a subset
of the ASCII character set. This means that the query
parameters of a request-URI beyond this subset should
be encoded [12]. Because a malicious payload may be
embedded in the request-URI as a request parameter, the
first step of SigFree is to decode the request-URI.

ASCII Filter. Malicious executable code are normally
binary strings. In order to guarantee the throughput and
response time of the protected web system, if the query
parameters of the request-URI and request-body of a re-
quest are both printable ASCII ranging from 20-7E in

hex, SigFree allows the request to pass (In Section 7.2,
we will discuss a special type of executable codes called
alphanumeric shellcodes [45] that actually use printable
ASCII) .

Instruction sequences distiller (ISD). This module dis-
tills all possible instruction sequences from the query pa-
rameters of Request-URI and Request-Body (if the re-
quest has one).

Instruction sequences analyzer (ISA). Using all the
instruction sequences distilled from the instruction se-
quences distiller as the inputs, this module analyzes these
instruction sequences to determine whether one of them
is (a fragment of) a program.

4 Instruction Sequence Distiller

This section first describes an effective algorithm to
distill instruction sequences from http requests, followed
by several excluding techniques to reduce the processing
overhead of instruction sequences analyzer.

4.1 Distilling Instruction Sequences

To distill an instruction sequence, we first assign an
address to every byte of a request. Then, we disassem-
ble the request from a certain address until the end of
the request is reached or an illegal instruction opcode is
encountered. There are two traditional disassembly al-
gorithms: linear sweepandrecursive traversal[38, 46].
The linear sweep algorithm begins disassembly at a cer-
tain address, and proceeds by decoding each encountered
instruction. The recursive traversal algorithm also begins
disassembly at a certain address, but it follows the con-
trol flow of instructions.

In this paper, we employ the recursive traversal algo-
rithm, because it can obtain the control flow information



during the disassembly process. Intuitively, to get all
possible instruction sequences from aN -byte request,
we simply execute the disassembly algorithmN times
and each time we start from a different address in the re-
quest. This gives us a set of instruction sequences. The
running time of this algorithm isO(N2).

One drawback of the above algorithm is that the same
instructions are decoded many times. For example, in-
struction “pop edi” in Figure 2 is decoded many times by
this algorithm. To reduce the running time, we design
a memorization algorithm [20] by using a data struc-
ture, which is an EIFG defined earlier, to represent the
instruction sequences. To distill all possible instruction
sequences from a request is simply to create the EIFG
for the request. An EIFG is used to represent all pos-
sible transfers of control among these instructions. In
addition, we use an instruction array to represent all pos-
sible instructions in a request. To traverse an instruction
sequence, we simply traverse the EIFG from the entry
instruction of the instruction sequence and fetch the cor-
responding instructions from the instruction array. Fig-
ure 5 shows the data structure for the request shown in
Figure 2. The details of the algorithm for creating the
data structure are described in Algorithm 1. Clearly, the
running time of this algorithm isO(N), which is optimal
as each address is traversed only once.

00

01

04

09

0c

0d

08

05

0e

0a

0b

07

03

06

02

0f

(a)

add ch,dl                
aad 3F                   
aas                      
add [ebp+C0875F83],ch  
lods [ds:esi]       
sbb [ds:edi-79],-40 
pop edi                  
xchg eax,eax             
rcr [ds:edi-17],B3   
pop edi                  
jmp ADAA43C2             
mov bl,43                
inc ebx                  
stos [es:edi]        
lods [ds:esi]       
illegal instruction 

 

00 

0F 

(b)

Figure 5:Data structure for the instruction sequences distilled
from the request in Figure 2. (a) Extended instruction flow
graph. Circles represent instruction nodes; triangles represent
external addresses; rectangles represent illegal instructions. (b)
The array of all possible instructions in the request.

4.2 Excluding Instruction Sequences

The previous step may output many instruction se-
quences at different entry points. Next we exclude some
of them based on several heuristics. Hereexcluding
an instruction sequence means that the entry of this se-
quence is not considered as the real entry for the embed-
ded code (if any).

Algorithm 1 Distill all instruction sequences from a re-
quest

initialize EISGG and instruction arrayA to empty
for each addressi of the requestdo

add instruction nodei to G

i← the start address of the request
while i <= the end address of the requestdo

inst← decode an instruction ati
if inst is illegal then

A[i]← illegal instructioninst

set type of nodei “illegal node” inG

else
A[i]← instructioninst

if inst is a control transfer instructionthen
for each possible target t ofinst do

if targett is an external addressthen
add external address nodet to G

add edge e(nodei, nodet) to G
else

add edge e(nodei, nodei + inst.length) to G
i← i + 1

The fundamental rule in excluding instruction se-
quences is not to affect the decision whether a request
contains code or not. This rule can be translated into the
following technical requirements: if a request contains
a fragment of a program, the fragment must be one of
the remaining instruction sequences or a subsequence of
a remaining instruction sequence, or it differs from a re-
maining sequence only by few instructions.

Step 1If instruction sequencesa is a subsequence of
instruction sequencesb, we excludesa. The rationale for
excludingsa is that if sa satisfies some characteristics
of programs,sb also satisfies these characteristics with a
high probability.

This step helps exclude lots of instruction sequences
since many distilled instruction sequences are subse-
quences of the other distilled instruction sequences. For
example, in Figure 5(a), instruction sequences02, which
is a subsequence of instruction sequences00, can be ex-
cluded. Note that here we only exclude instruction se-
quences02 rather than remove nodev02. Similarly, in-
struction sequencess03,s05, s07, s09,s0a,s0c,s0d ands0e

can be excluded.
Step 2If instruction sequencesa merges to instruction

sequencesb after a few instructions (e.g., 4 in our exper-
iments) andsa is no longer thansb, we excludesa. It is
reasonable to expect thatsb will preservesa’s character-
istics.

Many distilled instruction sequences are observed to
merge to other instructions sequences after a few instruc-
tions. This property is called self-repairing [38] in Intel
IA-32 architecture. For example, in Figure 5(a) instruc-
tion sequences01 merges to instruction sequences00



only after one instruction. Therefore,s01 is excluded.
Similarly, instruction sequencess04, s06 ands0b can be
excluded.

Step 3For some instruction sequences, if we execute
them, whatever execution path being taken, an illegal in-
struction isinevitably reachable. We say an instruction is
inevitably reachable if two conditions holds. One is that
there are no cycles (loops) in the EIFG of the instruction
sequence; the other is that there are no external address
nodes in the EIFG of the instruction sequence.

We exclude the instruction sequences in which illegal
instructions are inevitably reachable, because causing the
server to execute an illegal instruction is not the purpose
of an buffer overflow attack (this assumption was also
made by others [15, 32], implicitly or explicitly). Note
that however the existence of illegal instruction nodes
cannot always be used as a criteria to exclude an instruc-
tion sequence unless they are inevitably reachable; oth-
erwise attackers may obfuscate their program by adding
non-reachableillegal instructions.

Based on this heuristic, we can exclude instruction se-
quences08 in Figure 5(a), since it will eventually execute
an illegal instructionv0f .

After these three steps, in Figure 5(a) only instruction
sequences00 is left for consideration in the next stage.

5 Instruction Sequences Analyzer

A distilled instruction sequence may be a sequence of
random instructions or a fragment of a program in ma-
chine language. In this section, we propose two schemes
to differentiate these two cases. Scheme 1 exploits the
operating system characteristics of a program; Scheme
2 exploits the data flow characteristics of a program.
Scheme 1 is slightly faster than Scheme 2, whereas
Scheme 2 is much more robust to obfuscation.

5.1 Scheme 1

A program in machine language is dedicated to a spe-
cific operating system; hence, a program has certain
characteristics implying the operating system on which
it is running, for example calls to operating system or
kernel library. A random instruction sequence does not
carry this kind of characteristics. By identifying the call
pattern in an instruction sequence, we can effectively dif-
ferentiate a real program from a random instruction se-
quence.

More specifically, instructions such as “call” and “int
0x2eh” in Windows and “int 0x80h” in Linux may in-
dicate system calls or function calls. However, since
the op-codes of these call instructions are only one byte,
even normal requests may contain plenty of these byte
values. Therefore, using the number of these instructions

as a criteria will cause a high false positive rate. To ad-
dress this issue, we use a pattern composed of several in-
structions rather than a single instruction. It is observed
that before these call instructions there are normally one
or several instructions used to transfer parameters. For
example, a “push” instruction is used to transfer param-
eters for a “call” instruction; some instructions that set
values to registers al, ah, ax, or eax are used to transfer
parameters for “int” instructions. These call patterns are
very common in a fragment of a real program. Our ex-
periments in Section 6 show that by selecting the appro-
priate parameters we can rather accurately tell whether
an instruction sequence is an executable code or not.

Scheme 1 is fast since it does not need to fully disas-
semble a request. For most instructions, we only need
to know their types. This saves lots of time in decoding
operands of instructions.

Note that although Scheme 1 is good at detecting most
of the known buffer overflow attacks, it is vulnerable
to obfuscation. One possible obfuscation is that attack-
ers may use other instructions to replace the “call” and
“push” instructions. Figure 5.1 shows an example of
obfuscation, where “call eax” instruction is substituted
by “push J4” and “jmp eax”. Although we cannot fully
solve this problem, by recording this kind of instruction
replacement patterns, we may still be able to detect this
type of obfuscation to some extent.

I1: push 10
I2: call eax

J1: push 10
J2: push J4
J3: jmp eax
J4: ...

Be obfuscated to

Figure 6: An obfuscation example. Instruction “call eax” is
substituted by “push J4” and “jmp eax”.

Another possible obfuscation is one which first en-
crypts the attack code and then decrypts it using a de-
cryption routine during execution time [40]. This de-
cryption routine does not include any calls, thus evading
the detection of Scheme 1.

5.2 Scheme 2

Next we propose Scheme 2 to detect the aforemen-
tioned obfuscated buffer overflow attacks. Scheme 2 ex-
ploits the data flow characteristics of a program. Nor-
mally, a random instruction sequence is full of data flow
anomalies, whereas a real program has few or no data
flow anomalies. However, the number of data flow
anomalies cannot be directly used to distinguish a pro-
gram from a random instruction sequence because an at-
tacker may obfuscate his program easily by introducing
enough data flow anomalies.

In this paper, we use the detection of data flow
anomaly in a different way calledcode abstraction. We



...

I1: mov eax,2

...

I2: mov eax,3

...


(a)

...

(ecx is undefined at

this point)

K1: mov eax,ecx

...


(b)

...

J1: mov eax,2

...

(ebx is undefined at

this point)

J2: mov eax,ebx

...


(c)

Figure 7: Data flow anomaly in execution paths. (a) define-
define anomaly. Register eax is defined at I1 and then defined
again at I2. (b) undefine-reference anomaly. Register ecx is
undefined before K1 and referenced at K1 (c) define-undefine
anomaly. Register eax is defined at J1 and then undefined at J2.

observe that when there are data flow anomalies in an
execution path of an instruction sequence, some instruc-
tions are useless, whereas in a real program at least one
execution path have a certain number of useful instruc-
tions. Therefore, if the number of useful instructions in
an execution path exceeds a threshold, we conclude the
instruction sequence is a segment of a program.

Data Flow Anomaly The term data flow anomaly was
originally used to analyze programs written in higher
level languages in the software reliability and testing
field [25, 26]. In this paper, we borrow this term and
several other terms to analyze instruction sequences.

During a program execution, an instruction may im-
pact a variable (register, memory location or stack) on
three different ways:define, reference, andundefine. A
variable is defined when it is set a value; it is referenced
when its value is referred to; it is undefined when its
value is not set or set by another undefined variable. Note
that here the definition of undefined is different from that
in a high level language. For example, in a C program,
a local variable of a block becomes undefined when con-
trol leaves the block.

A data flow anomaly is caused by an improper se-
quence of actions performed on a variable. There are
three data flow anomalies:define-define, define-undefine,
andundefine-reference[26]. The define-define anomaly
means that a variable was defined and is defined again,
but it has never been referenced between these two ac-
tions. The undefine-reference anomaly indicates that a
variable that was undefined receives a reference action.
The define-undefine anomaly means that a variable was
defined, and before it is used it is undefined. Figure 7
shows an example.

Detection of Data Flow AnomaliesThere are static
[25] or dynamic [26] methods to detect data flow anoma-
lies in the software reliability and testing field. Static
methods are not suitable in our case due to its slow speed;
dynamic methods are not suitable either due to the need
for real execution of a program with some inputs. As
such, we propose a new method called code abstraction,
which does not require real execution of code. As a re-
sult of the code abstraction of an instruction, a variable
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Figure 8: State diagram of a variable. StateU : undefined,
stateD: defined but not referenced, stateR: defined and refer-
enced, stateDD : abnormal state define-define, stateUR: ab-
normal state undefine-reference and stateDU : abnormal state
define-undefine.

could be in one of the six possible states. The six possi-
ble states are stateU : undefined; stateD: defined but
not referenced; stateR: defined and referenced; state
DD : abnormal state define-define; stateUR: abnormal
state undefine-reference; and stateDU : abnormal state
define-undefine. Figure 8 depicts the state diagram of
these states. Each edge in this state diagram is associated
with d, r, or u, which represents “define”, “reference”,
and “undefine”, respectively.

We assume that a variable is in “undefined” state at
the beginning of an execution path. Now we start to tra-
verse this execution path. If the entry instruction of the
execution path defines this variable, it will enter the state
“defined”. Then, it will enter another state according to
the next instruction, as shown in Figure 8. Once the vari-
able enters an abnormal state, a data flow anomaly is de-
tected. We continue this traversal to the end of the exe-
cution path. This process enables us to find all the data
flow anomalies in this execution path.

Pruning Useless InstructionsNext we leverage the
detected data flow anomalies to remove useless instruc-
tions. A uselessinstruction of an execution path is an
instruction which does not affect the results of the exe-
cution path; otherwise, it is calledusefulinstructions. We
may find a useless instruction from a data flow anomaly.
When there is an undefine-reference anomaly in an exe-
cution path, the instruction which causes the “reference”
is a useless instruction. For instance, the instructionK1
in Figure 7, which causes undefine-reference anomaly, is
a useless instruction. When there is a define-define or
define-undefine anomaly, the instruction that caused the
former “define” is also considered as a useless instruc-
tion. For instance, the instructionsI1 andJ1 in Figure 7
are useless instructions because they caused the former
“define” in either the define-define or the define-undefine
anomaly.

After pruning the useless instructions from an execu-
tion path, we will get a set of useful instructions. If the



Algorithm 2 check if the number of useful instructions
in an execution path exceeds a threshold
Input: entry instruction of an instruction sequence, EISGG

total← 0; useless← 0 ; stack ← empty
initialize thestates of all variables to “undefined”
push the entryinstruction,states,total anduseless to
stack

while stack is not emptydo
pop the top item ofstack to i,states,total anduseless

if total − useless greater than a thresholdthen
return true

if i is visitedthen
continues

marki visited
total← total + 1
Abstractly execute instructioni (change thestates of
variables according to instructioni)
if there is a define-define or define-undefine anomaly
then

useless← useless + 1
if there is a undefine-reference anomalythen

useless← useless + 1
for each instructionj directly following i in theG do

pushj, states ,total anduseless to stack

return false

number of useful instructions in an execution path ex-
ceeds a threshold, we will conclude the instruction se-
quence is a segment of a program.

Algorithm 2 shows our algorithm to check if the num-
ber of useful instructions in an execution path exceeds a
threshold. The algorithm involves a search over an EISG
in which the nodes are visited in a specific order derived
from a depth first search. The algorithm assumes that
an EISGG and the entry instruction of the instruction
sequence are given, and a push down stack is available
for storage. During the search process, the visited node
(instruction) is abstractly executed to update the states
of variables, find data flow anomaly, and prune useless
instructions in an execution path.

Handling Special CasesNext we discuss several spe-
cial cases in the implementation of Scheme 2.

General purpose instructionThe instructions in the
IA32 instruction set can be roughly divided into four
groups: general purpose instructions, floating point unit
instructions, extension instructions, and system instruc-
tions. General purpose instructions perform basic data
movement, arithmetic, logic, program flow, and string
operation, which are commonly used by programmers to
write applications and system software that run on IA-32
processors [3]. General purpose instructions are also the
most often used instructions in malicious code. We be-
lieve that malicious codes must contain a certain number
of general purpose instructions to achieve the attacking

goals. Other types of instructions may be leveraged by
an attacker to obfuscate his real-purpose code, e.g., used
as garbage in garbage insertion. As such, we prune other
groups of instructions as well.

Initial state of registersIt is hard for attackers to know
the run-time values of registers before malicious code is
executed. That is, their values are unpredictable to at-
tackers. Therefore, it is reasonable to assume that the
initial states of all variables are “undefined” at the begin-
ning of an execution path. The register “esp”, however,
is an exception since it is used to hold the stack pointer.
Thus, we set register esp “defined” at the beginning of an
execution path.

Indirect addressAn indirect address is an address that
serves as a reference point instead of an address to the
direct memory location. For example, in the instruction
“move eax,[ebx+01e8]”, register “ebx” may contain the
actual address of the operand. However, it is difficult
to know the run-time value of register “ebx”. Thus, we
always treat a memory location to which an indirect ad-
dress points as state “defined” and hence no data flow
anomaly will be generated. Indeed, this treatment suc-
cessfully prevents an attacker from obfuscating his code
using indirect addresses.

We will defer the discussion on the capability of
Scheme 2 in defending against obfuscation until Sec-
tion 7.

6 Experiments

6.1 Parameter Tuning

Both Scheme 1 and Scheme 2 use a threshold value
to determine if a request contains code or not. Clearly,
it is critical to set the threshold values appropriately so
as to minimize both detection false positive rate and
false negative rate. To find out the appropriate thresh-
olds, we tested both schemes of SigFree against 50 un-
encrypted attack requests generated by Metasploit frame-
work, worm Slammer, CodeRed (CodeRed.a) and a
CodeRed variation (CodeRed.c), and 1500 binary HTTP
replies (52 encrypted data, 23 audio, 195 jpeg, 32 png,
1153 gif and 45 flash) intercepted on the network of Col-
lege of Information Science and Technology. Note that
we tested on HTTP replies rather than requests as nor-
mal data for parameter tuning, because HTTP replies in-
clude more diverse binaries (test over real traces of web
requests is reported in Section 6.3). Also note that al-
though worm Slammer attacks Microsoft SQL servers
rather than web servers, it also exploits buffer overflow
vulnerabilities.

Threshold of Push-calls for Scheme 1Figure 9(a)
shows that all instruction sequences distilled from a nor-
mal request contain at most one push-call code pattern.
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Figure 9:The number of push-calls in a request. (a) Normal requests. It shows that any instruction sequences of a normal request
contain at most one push-call code pattern. (b) Attack requests. It shows that an attack request contains more than two external
push-calls in one of its instruction sequences.
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Figure 10: The number of useful instructions in a request. (a) Normal requests. It shows that no normal requests contain an
instruction sequence which has over 14 useful instructions. (b) Attack requests. It shows that there exists an instruction sequence
of an attack request which contain more than 18 useful instructions.

Figure 9(b) shows that for all the 53 buffer overflow at-
tacks we tested, every attack request contains more than
two push-calls in one of its instruction sequences. There-
fore, by setting the threshold number of push-calls to 2,
Scheme 1 can detect all the attacks used in our experi-
ment.

Threshold of Useful Instructions for Scheme 2Fig-
ure 10(a) shows that no normal requests contain an in-
struction sequence that has more than 14 useful instruc-
tions. Figure 10(b) shows that an attack request contains
over 18 useful instructions in one of its instruction se-
quences. Therefore, by setting the threshold to a number
between 15 and 17, Scheme 2 can detect all the attacks
used in our test. The three attacks, which have the largest
numbers of instructions (92, 407 and 517), are worm
Slammer, CodeRed.a and CodeRed.c, respectively. This
motivates us to investigate in our future work whether an
exceptional large number of useful instructions indicates
the occurrence of a worm.

6.2 Detection of Polymorphic Shellcode

We also tested SigFree on two well-known polymor-
phic engine, ADMmutate v0.84 [40] and CLET v1.0
[23]. Basically, ADMmutate obfuscates the shellcode of

buffer overflow attacks in two steps. First, it encrypts the
shellcode. Second, it obfuscates the decryption routine
by substituting instructions and inserting junk instruc-
tions. In addition, ADMmutate replaces the No OPera-
tions(NOP) instructions with other one-byte junk instruc-
tions to evade the detection of an IDS. This is because
most buffer overflow attacks contain many NOP instruc-
tions to help locate shellcode, making them suspicious to
an IDS.

CLET is a more powerful polymorphic engine com-
pared with ADMmutate. It disguises its NOPs zone with
2,3 bytes instructions (not implemented yet in CLET
v1.0), referred to as fake-NOPs, and generates a deci-
pher routine with different operations at each time, which
makes classical IDS pattern matching ineffective. More-
over, It uses spectrum analysis to defeat data mining
methods.

Because there is no push-call pattern in the code,
Scheme 1 cannot detect this type of attacks. However,
Scheme 2 is still very robust to these obfuscation tech-
niques. This is because although the original shellcode
contains more useful instructions than the decryption
routine has and it is also encrypted, Scheme 2 may still
find enough number of useful instructions in the decryp-
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Figure 11:The number of useful instructions in all 200 poly-
morphic shellcodes. It shows that the least number of useful
instructions in ADMmutate and CLET polymorphic shellcodes
is 17.

tion routines.
We used each of ADMmutate and CLET to generate

100 polymorphic shellcodes, respectively. Then, we used
Scheme 2 to detect the useful instructions in the code.
Figure 11 shows the (sorted) numbers of useful instruc-
tions in 200 polymorphic shellcodes. We observed that
the least number of useful instructions in these ADM-
mutate polymorphic shellcodes is 17, whereas the max-
imum number is 39; the least number of useful instruc-
tions in the CLET polymorphic shellcodes is 18, whereas
the maximum number is 25. Therefore, using the same
threshold value as before (i.e., between 15 and 17), we
can detect all the 200 polymorphic shellcodes generated
by ADMmutate and CLET.

6.3 Testing on Real Traces

We also tested SigFree over real traces. Due to privacy
concerns, we were unable to deploy SigFree in a public
web server to examine realtime web requests. To make
our test as realistic as possible, we deployed a client-side
proxy underneath a web browser. The proxy recorded
a normal user’s http requests during his/her daily Inter-
net surfing. During a one-week period, more than ten
of our lab members installed the proxy and helped col-
lect totally 18,569 HTTP requests. The requests include
manually typed urls, clicks through various web sites,
searchings from search engines such as Google and Ya-
hoo, secure logins to email servers and bank servers, and
HTTPs requests. In this way, we believe our data set is
diverse enough, not worse than that we might have got
if we install SigFree in a single web server that provides
only limited Internet services.

Our test based on the above real traces did not yield an
alarm. This output is of no surprise because our normal
web requests do not contain code.

6.4 Performance Evaluation

To evaluate the performance of SigFree, we imple-
mented a proxy-based SigFree prototype using the C pro-
gramming language in Win32 environment. SigFree was
compiled with Borland C++ version 5.5.1 at optimiza-
tion level O2. The prototype implementation was hosted
in a Windows 2003 server with Intel Pentium 4, 3.2GHz
CPU and 1G MB memory.

The proxy-based SigFree prototype accepts and ana-
lyzes all incoming requests from clients. The client test-
ing traffics were generated by Jef Poskanzer’s httpload
program3 from a Linux desktop PC with Intel Pentium 4
2.5GHz CPU connected to the Windows server via a 100
Mbps LAN switch. We modified the original httpload
program so that clients can send code-injected data re-
quests.

For the requests which SigFree identifies as normal,
SigFree forwards them to the web server, Apache HTTP
Server 2.0.54, hosted in a Linux server with dual Intel
Xeon 1.8G CPUs. Clients send requests from a pre-
defined URL list. The documents referred in the URL
list are stored in the web server. In addition, the proto-
type implementation uses a time-to-live based cache to
reduce redundant HTTP connections and data transfers.

Rather than testing the absolute performance over-
head of SigFree, we consider it more meaningful mea-
suring the impact of SigFree on the normal web ser-
vices. Hence, we measured theaverage response la-
tency(which is also an indication ofthroughputalthough
we did not directly measure throughput) of the connec-
tions by running httpload for 1000 fetches. Figure 12(a)
shows that when there are no buffer overflow attacks, the
average response time in the system with SigFree is only
slightly higher than the system without SigFree. This in-
dicates that, despite the connection and ASCII checking
overheads, the proxy-based implementation does not af-
fect the overall latency significantly.

Figure 12(b) shows the average latency of connections
as a function of the percentage of attacking traffics. We
used CodeRed as the attacking data. Only successful
connections were used to calculate the average latency;
that is, the latencies of attacking connections were not
counted. This is because what we care is the impact of
attack requests on normal requests. We observe that the
average latency increases slightly worse than linear when
the percentage of malicious attacks increases. Generally,
Scheme 1 is about 20% faster than Scheme 2.

Overall, our experimental results from the prototype
implementation show that SigFree has reasonably low
performance overhead. Especially when the fraction of
attack messages is small (say< 10%), the additional la-
tency caused by SigFree is almost negligible.
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Figure 12:Performance impact of SigFree on Apache HTTP Server

7 Discussions

7.1 Robustness to Obfuscation

Most malware detection schemes include two-stage
analysis. The first stage is disassembling binary code
and the second stage is analyzing the disassembly re-
sults. There are obfuscation techniques to attack each
stage [19, 38] and attackers may use them to evade de-
tection. Table 1 shows that SigFree is robust to most of
these obfuscation techniques.

Obfuscation in The First StageJunk byte insertion
is one of the simplest obfuscation against disassembly.
Here junk bytes are inserted at locations that are not
reachable at run-time. This insertion however can mis-
lead a linear sweep algorithm, but can not mislead a
recursive traversal algorithm [33], which our algorithm
bases on.

Opaque predicatesare used to transform uncondi-
tional jumps into conditional branches. Opaque predi-
cates are predicates that are always evaluated to either
true or false regardless of the inputs. This allows an ob-
fuscator to insert junk bytes either at the jump target or
in the place of the fall-through instruction. We note that
opaque predicates may make SigFree mistakenly inter-
pret junk byte as executable codes. However, this mis-
take will not cause SigFree to miss any real malicious
instructions. Therefore, SigFree is also immune to ob-
fuscation based on opaque predicates.

Obfuscation in The Second StageMost of the
second-stage obfuscation techniques obfuscate the be-
haviors of a program; however, the obfuscated programs
still bear characteristics of programs. Since the pur-
pose of SigFree is to differentiate executable codes and
random binaries rather than benign and malicious exe-
cutable codes, most of these obfuscation techniques are
ineffective to SigFree. Obfuscation techniques such as
instruction reordering, register renaming, garbage inser-
tion and reordered memory accesses do not affect the
number of calls or useful instructions which our schemes

Obfuscation SigFree 

Junk byte insertion Yes 

Opaque predict Yes 

Disassembly 

stage 

Branch function partial 

Obfuscation Scheme 1 Scheme 2 

Instruction reordering Yes Yes 

Register renaming Yes Yes 

Garbage insertion Yes Yes 

Instruction replacement No Yes 

Equivalent funcationality No Yes 

Analysis 

stage 

Reordered memory accesses Yes Yes 

 
Table 1:SigFree is robust to most obfuscation

are based on. By exploiting instruction replacement and
equivalent functionality, attacks may evade the detection
of Scheme 1, but cannot evade the detection of Scheme
2.

7.2 Limitations

SigFree also has several limitations. First, SigFree
cannot fully handle the branch-function based obfusca-
tion, as indicated in Table 1. Branch function is a func-
tion f(x) that, whenever called fromx, causes control
to be transferred to the corresponding locationf(x). By
replacing unconditional branches in a program with calls
to the branch function, attackers can obscure the flow of
control in the program. We note that there are no gen-
eral solutions for handling branch function at the present
state of the art.

With respect to SigFree, due to the obscurity of the
flow of control, branch function may cause SigFree to
break the executable codes into multiple instruction se-
quences. Nevertheless, it is still possible for SigFree
to find this type of buffer overflow attacks as long as
SigFree can still find enough push-calls or useful instruc-
tions in one of the distilled instruction sequences.

Second, the executable shellcodes could be written in
alphanumeric form [45]. Such shellcodes will be treated
as printable ASCII data and thus bypass our analyzer.



By turning off the ASCII filter, Scheme 2 can success-
fully detect alphanumeric shellcodes; however, it will in-
crease unnecessary computational overhead. It therefore
requires a slight tradeoff between tight security and sys-
tem performance.

Finally, the current implementation of SigFree cannot
detect malicious code which consists of fewer useful in-
structions than current threshold 15. Figure 13 shows a
possible evasion which has only 7 useful instructions for
a decryption routine. One solution to catch this evasion
is to use a comprehensive score rather than the absolute
number of useful instructions as the threshold. For ex-
ample, we may give larger weights to instructions that
are within a loop because most decryption routines con-
tain loops. This approach, however, may introduce some
false positives, which we will report in our future work.

   00000000: push 0x47

   00000002: pop ecx

   00000003: call 0x08

   00000008: pop esi

   00000009: xor [dword ds:esi+0x0d], 0xc2122b7a

   00000010: sub esi, -0x04

   00000013: loopd short 0x09

Figure 13: A decryption routine with 7 useful instructions.
The first two instructions are used to set the initial value for
loop counter ecx. The next two instructions are used to acquire
the value of EIP (instruction pointer register). The last three
instructions form the decryption loop.

7.3 Application-Specific Encryption Han-
dling

The proxy-based SigFree could not handle encrypted
or encoded data directly. A particular example is SSL-
enabled web server. Enhancing security between web
clients and web servers by encrypting HTTP messages,
SSL also causes the difficulty for out-of-box malicious
code detectors.

To support SSL functionality, an SSL proxy such as
Stunnel [6] (Figure 14) may be deployed to securely
tunnel the traffic between clients and web servers. In
this case, we may simply install SigFree in the machine
where the SSL proxy is located. It handles the web re-
quests in cleartext that have been decrypted by the SSL
proxy. On the other hand, in some web server appli-
cations, SSL is implemented as a server module (e.g.,
mod ssl in Apache). In this case, SigFree will need to
be implemented as a server module (though not shown
in Figure 14), located between the SSL module and the

WWW server. We notice that most popular web servers
allow us to write a server module to process requests and
specify the order of server modules. Detailed study will
be reported in our future work.

Firewall

Internet
Proxy-based
Sigfree

Web Server

WWW

SSL
proxy

Port 80

Port 443
Port 80

Figure 14:SigFree with a SSL proxy

7.4 Applicability

So far we only discussed using SigFree to protect web
servers. It is worth mentioning that our tool is also
widely applicable to many programs that are vulnera-
ble to buffer overflow attacks. For example, the proxy-
based SigFree may be used to protect all internet services
which do not permit executable binaries to be carried in
requests, e.g., database servers, email servers, name ser-
vices, and so on. We will investigate the deployment is-
sue in our future work.

In addition to protecting severs, SigFree can also pro-
vide file system real-time protection. Buffer overflow
vulnerabilities have been found in some famous applica-
tions such as Adobe Acrobat and Adobe Reader [5], Mi-
crosoft JPEG Processing (GDI+) [1], and WinAmp [8].
This means that attackers may embed their malicious
code in PDF, JPEG, or mp3-list files to launch buffer
overflow attacks. In fact, a virus called Hesive [7] was
disguised as a Microsoft Access file to exploit buffer
overflow vulnerability of Microsoft’s Jet Database En-
gine. Once opened in Access, infected .mdb files take
advantage of the buffer overflow vulnerability to seize
control of vulnerable machines. If mass-mailing worms
exploit these kinds of vulnerabilities, they will become
more fraudulent than before, because they may appear as
pure data-file attachments. SigFree can be used alleviate
these problems by checking those files and email attach-
ments which should not include any code.

If the buffer being overflowed is inside a JPEG or GIF
system, ASN.1 or base64 encoder, SigFree cannot be di-
rectly applied. Although SigFree can decode the pro-
tected file according to the protocols or applications it
protects, more details need to be studied in the future.

8 Conclusion

We proposed SigFree, a realtime, signature free, out-
of-the-box blocker that can filter code-injection buffer
overflow attack messages, one of the most serious cy-
ber security threats, to various Internet services. SigFree
does not require any signatures, thus it can block new,
unknown attacks. SigFree is immunized from most



attack-side code obfuscation methods, good for econom-
ical Internet wide deployment with little maintenance
cost and negligible throughput degradation, and can also
handle encrypted SSL messages.
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