
Supporting XML Security Models using
Relational Databases: A Vision

Dongwon Lee, Wang-Chien Lee, and Peng Liu

Penn State University

dongwon@psu.edu, wlee@cse.psu.edu, pliu@ist.psu.edu

Abstract. As the secure distribution and sharing of information over
the World Wide Web becomes increasingly important, the needs for flex-
ible and efficient support of access control systems naturally arise. Since
the eXtensible Markup Language (XML) is emerging as the format of
the Internet era for storing and exchanging information, there have been,
recently, many proposals to extend the XML model to incorporate se-
curity aspects. To the lesser or greater extent, however, such proposals
neglect the fact that the data for XML documents will most likely reside
in relational databases, and consequently do not utilize various security
models proposed for and implemented in relational databases.
In this paper, we take a rather different approach. We explore how to
support security models for XML documents by leveraging on techniques
developed for relational databases. More specifically, in our approach, (1)
Users make XML queries against the given XML view/schema, (2) Access
controls for XML data are also specified in the XML model, but (3)
Data are stored in relational databases, and (4) Security check and query
evaluation are also done in relational databases. Instead of re-inventing
wheels, we take two representative methods in both XML security model
and XML to relational conversion problems, and show how to glue them
together in a seamless manner to efficiently support access controls for
the XML model using relational databases.

1 Introduction

Since the eXtensible Markup Language (XML) was invented for exchanging and
storing information over the World Wide Web (Web) [4], its usage has exploded
significantly. As more information is exchanged and processed over the Web,
the issues of security become increasingly important. Such issues are diverse,
spanning from data level security using cryptography to network transport level
security to high-level access controls. In this paper, our focus is on how to support
high-level access controls for XML documents.

Table 1 illustrates the current development of XML security models. First
row refers to (research-oriented) security models developed for XML and re-
lational models, respectively, while second row refers to database products for
each model. In general, not all features proposed by research in the first row are
implemented in the real implementations in the second row yet. For instance,



2 Dongwon Lee et al.

Table 1. The overview of XML and Relational security model supports.

XML Relational
XML Security Models

([6], [2], etc)
Relational Security Models

([13], etc)
Models

XML Databases
(Xindice, Tamino, etc)

Relational Databases
(Oracle, DB2, SQL Server, etc)

Products

most XML database products currently do not have any support for access con-
trols. Similarly, commercial relational products have implemented only minimal
features of access controls via authorizations such as GRANT and REVOKE.

Recently, many access control methods extending the XML model to incor-
porate security aspects have been proposed (e.g., XACML [11], [6], [2], [23]). To
the lesser or greater extent, however, such proposals neglect the fact that the
most data for XML documents still reside in relational databases behind the
scenes, and consequently do not utilize various security models that have been
proposed for and implemented in relational databases. We believe that current
XML security research (i.e., upper-left column of Table 1) is re-inventing wheels
without utilizing existing relational security models (i.e., upper-right column of
Table 1) or security features that are already implemented and being used in
relational products (i.e., lower-right column of Table 1).

Therefore, our goal in this research is to study how to support XML security
models by utilizing existing security support of relational security models or
relational products. More specifically, we assume that

– XML documents are converted into and stored in relational databases.
– Users are given an XML view/schema against which they issue XML queries.
– Access controls are specified by security administrators in the XML schema

and documents.
– Security check and query evaluation are done by relational databases (or

by a middleware on top of relational databases), and only valid answers are
returned to users in the XML format.

In this paper, as a preliminary work, we explore various research issues and a
few possible sketches of solutions to achieve the vision of supporting XML secu-
rity models using relational databases. Furthermore, we present an illustrative
example that shows a complete steps of the vision as a proof of concept. We
hope to draw more research interests and efforts onto the direction that we are
proposing in this paper.

2 Related Work

Since our research relates to two seemingly unrelated works, we first survey those
works in two separate categories, and then discuss a few works that are overall
similar/dissimilar to our proposal.



XML Security Support via RDBMS 3

2.1 XML and Relational Security Models

XML access control models. Several authorization-based XML access control
models are proposed. In [19], authorizations are specified on portions of a HTML
document, however, no semantic context similar to that provided by XML can
be supported. In [7], a specific authorization sheet is associated with each XML
document/DTD expressing the authorizations on the document. In [6], the model
proposed in [7] is extended by enriching the authorization types supported by
the model, providing a complete description of the specification and enforcement
mechanism. Among comparable proposals, in [2], an access control environment
for XML documents and some techniques to deal with authorization priorities
and conflict resolution issues are proposed. Finally, the use of authorization
priorities with propagation and overriding, which is an important aspect of XML
access control may recall approaches in the context of object-oriented databases,
like [9] and [18]. Although our proposal is based on existing XML authorization
models such as [6], we focus on how to use relational databases to help enforce
XML authorization models, and none of the above XML authorization models
address the interaction between XML and relational access controls.

Relational access control models. Relational access control models can be
classified into two categories: multilevel security models [15, 24, 20] and discre-
tionary security models. Multilevel security models assign each data object (e.g.,
a tuple) as well as each subject (e.g., a user) a security level (or class), and
enforce the following two specific access control rules: (1) a level Li subject can
never read a level Lj data object unless Li ≥ Lj ; (2) a level Li subject can
never write a level Lj data object unless Lj ≥ Li. Although multilevel secu-
rity models are widely used in military applications, they are seldom used in
commercial applications for their restrictive nature. By contrast, discretionary
security models allow the creator of a data object x to own all the privileges
associated with x and to grant some of the privileges to other users in such a
way that a variety of access control policies could be enforced. Discretionary
security models are dominant in commercial data management. Although sev-
eral more expressive and flexible discretionary security models are proposed [13,
14], most real world database systems implement a discretionary access control
model similar to the one implemented in System R [12], where (1) access control
is supported by the GRANT and REVOKE commands; (2) only table or column
level authorizations are directly supported; (3) views are used to indirectly sup-
port some data dependent access control. Nevertheless, role-based access control
[21] is not implemented in System R but implemented by most existing DBMSs
such as Oracle. It is clear that our XML-relational access control scheme cannot
be directly supported by table or column level authorizations, since each XML
path is usually stored in a set of tuples. Although views can be used to support
XPath-oriented access control, they are expensive and difficult to manage.



4 Dongwon Lee et al.

2.2 Conversion Methods between XML and Relational Models

Toward conversion between XML and relational models, an array of research has
addressed the particular issues lately. On the commercial side, database vendors
are busily extending their databases to adopt XML types. Typically, they can
handle XML data using BLOB/CLOB formats along with a limited keyword
searching or using some object-relational features [5, 1], but not many details
have been revealed. On the research side, various proposals have been made
recently. Here, we only survey two kinds of works related to XML-to-relational
conversion – structure-based and data-based conversions. The former generates a
target relational schema from the given XML schema as a source, while the latter
uses XML documents directly to generate relational tuples. Since the data-based
conversion methods do not require an XML schema as input, the methods work
for arbitrary XML schema. However, it cannot capture semantics that appear
in XML schema, but hidden in XML documents.

Structure-based conversions. Work done in STORED [8] is one of the first
significant and concrete attempts to this end and deals with non-valid XML doc-
uments. STORED uses a data mining technique to find a representative DTD
whose support exceeds the pre-defined threshold and convert XML documents
to relational format using the DTD. [3] discusses template language-based con-
version from DTD to relational schema which requires human experts to write
an XML-based conversion rule. [22] presents three inlining algorithms that focus
on the table level of the schema conversions. On the contrary, [16] proposes a
method where the hidden semantic constraints in DTD are systematically found
and translated into relational formats. Since the method is orthogonal to the
structure-oriented conversion methods, it can be used along with algorithms [8,
3, 22, 10] with little change. [17] proposes an algorithm for mapping a DTD to the
Entity-Relationship (ER) model (and thus the relational model) and examine
some of the issues in loading XML data into the generated model.

Data-based conversions. [10] studies different performance issues among
eight algorithms that focus on the attribute and value level of the schema. [25]
proposes a DTD-independent, path-based mapping algorithm. While ignoring
specific characteristics hidden in each DTD, [25] decomposes XML documents
into element, attribute, text and path tables, so that the changes of DTDs of
the XML documents do not necessarily result in invalid mapping as found in
examples [8, 22].

2.3 Supporting XML Security Models using Relational Databases

To our best knowledge, the only work that is directly related to our proposal
is [23]. [23] also proposes an idea of using RDBMS to handle access controls
for XML documents, in a rather limited setting. According to our taxonomy of
Table 8, [23] roughly uses the following methods: model-to-RDBMS conversion,
schema-level XML security model, structure-based data conversion, and external



XML Security Support via RDBMS 5

Fig. 1. The framework for supporting XML security models using relational databases.

and pre-pruning security check. In this research, however, we aim at conducting
a much more extensive and systematic research than [23].

3 Framework and Research Issues

In this section, we discuss various research issues that arise in supporting XML
security models using relational databases. Figure 1 illustrates an overall frame-
work for our vision. From the users’ perspective, they are accessing data in a
given set of XML documents defined by associated DTDs or XML schema. The
access controls of the data are governed by authorization rules specified in ac-
cordance with a given XML security model.

Behind the scene, the XML documents and the associated authorization rules
are actually preprocessed and converted into relational tables, metadata, and
authorization tables in relational databases. This process is illustrated by circle
(1) in the figure. To access the XML data, a user submits an XML query against
the known XML schema. Based on the authorization rules, a user’s query is first
pruned and rewritten into SQL. This process is illustrated by circle (2) in the
figure. Please note that, in our proposal, the pruning process here can be adapted
to generate various execution plans. Thus, access control can be enforced purely
based on security pruning, internal security mechanism of relational databases, or
a mixture of these two. Thus, when the SQL query is processed in the relational



6 Dongwon Lee et al.

databases, authorization table may be checked (as illustrated in (3)) before the
valid answers are returned to users in the XML format.

3.1 XML to Relational Conversion

As shown in Figure 1, two of the initial but critical tasks for secure storage and
access of XML data in relational databases are to (1) map XML authorization
rules into the existing access control mechanism in relational databases; and (2)
map XML documents into tables in relational databases. In the following, we
discuss some of the issues.

1. Theoretical study of XML and Relational security models. To fully
realize our vision, a thorough study on the expressive power of XML and
relational security models must be done. Since there is not a unified security
model for both models, nor a single standard agreed upon in community,
one must first understand the pros and cons of different security models
(e.g., security propagation, conflict resolution, etc) and their relationships
among others. Furthermore, a finding of theoretical mapping (i.e., complete
and sound algorithms) from the source XML security model to the target
relational security model would be challenging tasks.

2. Schema-level vs. Instance-level. When XML security authorizations are
specified based on XML schema, it is called a schema-level access control.
When an XML document element or attribute can carry additional tag,
specifying security information that can overwrite access control specified
in the XML schema, it is called as instance-level access control. Depending
on which scheme is used in the XML security model, how to convert such
authorization rules into relational format becomes challenging. This issue
also affects security evaluation strategy significantly.

3. Which XML-to-relational conversion method is appropriate to use?
Recently many conversion algorithms have been proposed (e.g., [8, 22, 10,
25]), each of which has different pros and cons for different applications.
When the schema-level access control is specified, for instance, we believe
the path-based conversion methods such as XRel [25] are good candidates.
This is because in XML model, using XPath to specify the scope of the
objects is quite natural. For instance, a statement “manager has read and
write accesses for //employees/salary” indicates that a subject (i.e., man-
ager) can read and write all objects (i.e., elements) as long as the objects
are salary under employee element. When path-based XML-to-relational
conversion methods are used, such XPath-based security scope can be eas-
ily captured into single authorization table in relational databases. If other
structure-oriented conversion methods such as hybrid inlining [22] are used
for conversion, then authorization information in the XML model would be
scattered into several table in relational databases, making difficult or inef-
ficient to do security evaluation. However, in general, a question of which
XML-to-relational conversion algorithms suits best for the given application
is non-trivial to answer.



XML Security Support via RDBMS 7

3.2 Security Evaluation

In this context, we explore three dimensions – where, how , and when to evaluate
and enforce security information.

1. Where to evaluate? Incoming queries are in XML format such as XPath,
while query processing is done by relational databases. Therefore, at some
point, input queries must be rewritten to SQL format. One extreme to sup-
port security evaluation is to do all the necessary security check outside of
relational databases, while the other extreme is to push all security check
down to database engine, utilizing built-in features in relational databases.
Let us consider three strategies for instance. (1) In the external evaluation,
users’ XML query is compared against authorization rules from both XML
and relational models and pruned such that only query nodes that are valid
against the given authorization rules remain at the end. Since pruning stage
guarantees only valid data access, relational database can do normal SQL
query processing, without worrying about insecure access. (2) In the inter-
nal evaluation, authorization rules are first converted and stored in relational
databases via some conversion method, and security check is conducted in-
side relational databases. This approach explores features such as GRANT,
REVOKE or view implemented in relational databases. (3) For some cases,
it might be better to combine two extremes (i.e., external and internal secu-
rity evaluation approaches) to strike a balance, thus hybrid evaluation. It is
not clear how to split such a task – what part of security check is best done
externally, and what is best done inside of relational databases?

2. How to evaluate? Second dimension of security evaluation is how to en-
force the security. In the strict evaluation approach, no data protected by
authorization rules can be accessed or returned. However, in the relaxed eval-
uation approach, during query processing, any data can be accessed, but only
secure data must be returned to users. Interesting question is, then, when
would be such a relaxed evaluation useful? Some XML data might be tagged
as “accessible during query processing”, but not “returnable”. In such a sit-
uation, a question of if one can utilize such a relaxed evaluation for faster
and secure query processing is interesting.

3. When to evaluate? Last dimension of security evaluation is when to evalu-
ate. In the most primitive post-processing approach, XML query is processed
like a normal query, then at the end, a portion of answers that violate se-
curity check is pruned and the remains are returned to user. However, one
can think of other approaches such as pre-pruning (e.g., [6]) or interleaving .
Investigating when one approach is better than another and, if so, in what
situation would be a challenging task.

3.3 Authorization in Relational Databases

In representing authorizations in relational databases, the typical method is to
use the authorization table that essentially contains a tuples of subject/object



8 Dongwon Lee et al.

pairs and its allowed actions. Although varied, most authorization table schemes
restrict the granularity of access control for relational model to either table-level
or column-level. On the contrary, in XML security model, the finer access control
is possible (e.g., nodel-level). Therefore, due to this differences of granularities
of two models, problem occurs. Consider the following DTD, for instance:

<!ELEMENT A (B+, C, X)>
<!ELEMENT B (D, E)>
<!ELEMENT C (#PCDATA)>
<!ELEMENT D (#PCDATA)>
<!ELEMENT E (#PCDATA)>
<!ELEMENT X (#PCDATA)>

If one used the hybrid inlining method [22] for XML-to-relational conversion,
one essentially would have the following two tables generated, A(C,X), and
B(D,E,fk A), where fk A is the foreign key referencing the primary key of the
table A. Now, consider the following four authorization rules:

A1: (Admin, /A/B, read, +)
A2: (Admin, /A/C, read, +)
A3: (Admin, /A/B[./D>5], read, +)
A4: (Admin, /A/B[./D>5]/E, read, +)

For instance, the first rule A1 states that the subject (i.e., Admin) can read all
nodes B under A, and the fourth rule A4 states that the subject can read all nodes
E under B under A as long as B has a child node D whose value is greater than
5. Figure 2 illustrates pictorial representation of the scope of objects covered
by each authorization rule. For instance, the rule A1 covers all the nodes B of
XML document. According to the hybrid inlining conversion, all the information
related to the nodes B would be stored into the table B(D,E,fk A). Therefore, by
applying the table-level SQL GRANT statement shown below, one can achieve
the same security enforcement as dictated in the A1.

GRANT SELECT TO USER Admin ON B;

Similarly, the rule A2 can be enforced by column-level GRANT statement as
follows:

GRANT SELECT TO USER Admin ON A(C);

However, the rules A3 and A4 cannot be enforced using GRANT statement since
most relational databases do not have tuple-level or cell-level authorization yet.
One may support such an authorization by first creating a view and then issue
a GRANT statement to the created view. For instance, the following statements
enforce the rule A3.

CREATE VIEW tmp AS SELECT * FROM B WHERE D>5;
GRANT SELECT TO USER Admin ON tmp;



XML Security Support via RDBMS 9

Fig. 2. Granularity discrepancy. Dark area refers to the objects being covered by au-
thorization rules. (a) A1 covers the complete information of the table B, (b) A2 covers
the attribute C of the table A, (c) A3 covers all the attributes but only tuples satisfying
D>5, and (d) A4 covers the attribute E of the table B but only tuples satisfying D>5.

The rule A4 can be supported similarly. Although finer-grained access controls
of XML security models (e.g., tuple-level or cell-level) can be supported using
views in relational databases, this scheme shares the same limitations of handling
a large number of views – difficulty or inefficiency of maintenance and update.
Therefore, it is not entirely clear how to efficiently support such finer-grained
access controls in relational databases.

4 Illustrative Example

In this section, we will go over an example of XML document with authoriza-
tion rules and illustrate how that might be supported using one of the conversion
methods. Tables 2 and 3 are the DTD for AllDepts and an XML document con-
forming to the DTD. Furthermore, Table 4 contains several authorization rules
in the XML security model proposed by [6]. Note that the scope of the autho-
rization rules is specified by XPath expressions, and thus node-level fine-grained
access control is allowed in that model. In that table, sign “-” and “+” mean
the action is “prohibited” and “allowed”, respectively, and type “R” and “L”
mean the propagation of the rule is “recursive” and “local”, respectively. That
is, the recursive propagation implies the rule applies to nodes N specified by the
XPath expression as well as all the descendants of N . In the local propagation,
the authorization rule applies to only nodes specified by the XPath expression.
For instance, the rule R1 states that “No public read/write is allowed for the
attribute dname under the element AllDepts, as a child or descendant.” Also,
the rule R4 states that “Manager can read/write the Budget element under the
Proj element when the Proj has a private as a value for the attribute type.”

Now, suppose the XML document in Table 3 is converted and stored in
relational databases using XRel method [25] as shown in Table 5. Note that
what is shown in Table 5 is a simplified version of the original XRel algorithm
for simplicity. In XRel, all root-to-leaf paths of XML document, where leaf is
either attribute or element, are assigned a unique ID (i.e., pathID) and stored
in the path table (d). Then, each node (i.e., text string, attribute value, and
element) of the XML document is captured in the appropriate table separately
(i.e., text table (b), attribute table(a), and element table (c)).. For instance,



10 Dongwon Lee et al.

Table 2. XML side: A DTD for AllDepts.

<!DOCTYPE AllDepts [
<!ELEMENT Dept (Manager,Staff+,Proj*)>
<!ATTLIST Dept dname ID #REQUIRED>
<!ELEMENT Manager (Name,Addr,Salary)>
<!ATTLIST Manager eid ID #REQUIRED>
<!ELEMENT Staff (Name,Addr,Salary)>
<!ATTLIST Staff eid ID #REQUIRED>
<!ELEMENT Proj (Year,Budget)>
<!ATTLIST Proj pname ID #REQUIRED

type (public|private) #IMPLIED>
<!ELEMENT Year (#PCDATA)>
<!ELEMENT Budget (#PCDATA)>

]>

Table 3. XML side: An XML document for AllDepts. Note that [XX] in front of
elements, attributes, or text string below is not part of the XML document, but a node
ID number added for the discussion of this paper.

<[1]AllDepts>
<[2]Dept [3]dname=’CS’>

<[4]Manager [5]eid=’m10’>
<[6]Name>[7]Tom</Name> <[8]Addr>[9]110 Foster Ave.</Addr>
<[10]Salary>[11]70K</Salary>

</Manager>
<[12]Staff [13]eid=’e10’>

<[14]Name>[15]Jane</Name> <[16]Addr>[17]54 Union St.</Addr>
<[18]Salary>[19]45K</Salary>

</Staff>
<[20]Proj [21]pname=’XML’ [22]type=’public’>

<[23]Year>[24]2003</Year> <[25]Budget>[26]100K</Budget>
</Proj>
<[27]Proj [28]pname=’Stream’ [29]type=’private’>

<[30]Year>[31]2002</Year> <[32]Budget>[33]300K</Budget>
</Proj>

</Dept>...
</AllDepts>

Table 4. XML side: Authorization rules for AllDepts.

No. Subject Object Action Sign Type

R1 Public /AllDepts/*/@dname read,write - L
R2 Public //Dept/*/Name read + L
R3 Manager //Dept/Staff read + R
R4 Manager //Dept/Proj[./@type=’private’]/Budget read,write + L
R5 Staff,Manager //Dept/Proj[./@type=’public’]/Budget read + L



XML Security Support via RDBMS 11

the node with nodeID=4 (i.e., Manager) is captured in the third tuple of the
element table (c) using the /AllDepts/Dept/Manager path. Similarly, the node
with nodeID=17 (i.e., 54 Union St.) is captured in the fifth tuple of the text
table (b) using the /AllDepts/Dept/Staff/Addr path.

Table 5. RDBMS side: Four (i.e., attribute, text, element, and path) tables generated
from the XML document of Table 3 by XRel.

(a) Attribute table (b) Text table

pathID value nodeID

3 CS 3
5 m10 5
10 e10 13
15 XML 21
16 public 22
15 Stream 28
16 private 29

pathID value nodeID

6 Tom 7
7 110 Foster Ave. 9
8 70K 11
11 Jane 15
12 54 Union St. 17
13 45K 19
17 2003 24
18 100K 26
17 2002 31
18 300K 33

(c) Element table (d) Path table

pathID index rindex nodeID

1 1 1 1
2 1 1 2
4 1 1 4
6 1 1 6
7 1 1 8
8 1 1 10
9 1 1 12
11 1 1 14
12 1 1 16
13 1 1 18
14 1 2 20
17 1 1 23
18 1 1 25
14 2 1 27
17 1 1 30
18 1 1 32

pathID pathExpr

1 /AllDepts

2 /AllDepts/Dept

3 /AllDepts/Dept/@dname

4 /AllDepts/Dept/Manager

5 /AllDepts/Dept/Manager/@eid

6 /AllDepts/Dept/Manager/Name

7 /AllDepts/Dept/Manager/Addr

8 /AllDepts/Dept/Manager/Salary

9 /AllDepts/Dept/Staff

10 /AllDepts/Dept/Staff/@eid

11 /AllDepts/Dept/Staff/Name

12 /AllDepts/Dept/Staff/Addr

13 /AllDepts/Dept/Staff/Salary

14 /AllDepts/Dept/Proj

15 /AllDepts/Dept/Proj/@pname

16 /AllDepts/Dept/Proj/@type

17 /AllDepts/Dept/Proj/Year

18 /AllDepts/Dept/Proj/Budget

Note that no authorization information of Table 4 is captured by the XRel
conversion. Therefore, to support access controls of XML model using XRel
method, one needs to somehow carry over the authorization rules of Table 4
into relational forms, too.



12 Dongwon Lee et al.

Among many possible approaches, one extreme is not to store any accessi-
bility information and instead directly use Table 4 in evaluating access controls.
That is, this process of security evaluation is entirely conducted outside of re-
lational databases (i.e., external security evaluation) and has to first evaluate
the XPath expressions of Table 4 to find out all XML nodes being enforced.
Another variation is to store a list of XML nodes for each authorization rule in
an auxiliary table. For instance, for the rule R2 of Table 4, the XPath expression
//Dept/*/Name is evaluated first. Then, two path expressions (i.e., pathID is 3
and 11) stored in the path table (d) of Table 5 are identified as matches and
stored instead in a table. An example auxiliary table is shown in Table 6.

Table 6. RDBMS side: A pathID-based auxiliary table for AllDepts of Table 4.

Subject pathID Action Sign Type

Public 3 SELECT,UPDATE - L
Public 6, 11 SELECT + L

Manager 9,10,11,12,13 SELECT + R

One limitation of this approach is that this cannot handle the so-called twig
query such as rules R4 and R5 of Table 4 that have the filtering condition. That
is, in the R4, the XPath expression //Dept/Proj[./@type=’private’]/Budget
is essentially a tree with two branches, //Dept/Proj/Budget and //Dept/Proj/
@type=’private’, with the node Budget being projected at the end. Since the
path table (d) of Table 5 has only root-to-leaf paths, it is not straightforward
to handle such a case. Therefore, to support such a twig case of authorization
rules, one can instead store node IDs in the auxiliary table as shown in Table 7,
where two rules R4 and R5 of Table 4 are captured with proper node IDs. This
approach is essentially similar to the materialization method (e.g., [26]) where
each user (or role) separately keeps a list of XML nodes that he/she is allowed to
access, according to access controls. This approach becomes problematic when
the number of rules in Table 4 is huge, although it can be alleviated using a space-
efficient method like CAM of [26]. The more serious problem of this approach is
that after the original XML data are stored in a relational database, the XML
nodes to materialze are scattered among tables, making it difficult to efficiently
keeping track of.

Note that neither of two presented schemes can be implemented in the basic
relational security features, since these require value-based or content-based secu-
rity constraint. Therefore, it would be challenging to investigate how to support
such schemes using table-level or column-level relational security constraint.

Suppose a manager “Tom” wants to retrieve department names as follows:

/AllDepts/Dept//Name

Since the Name element is accessible to public, no security check is needed and
the input XPath is translated to the following SQL according to XRel algorithm:



XML Security Support via RDBMS 13

Table 7. RDBMS side: A nodeID-based auxiliary table for AllDepts of Table 4.

Subject nodeID Action Sign Type

Manager 33 SELECT,UPDATE + L
Staff,Manager 26 SELECT + L

Table 8. Main issues and choices used in the example throughout Section 4. Choices

made are boxed .

Issue Choice

Target model model-to-model vs. model-to-RDBMS

XML security model schema-level vs. instance-level vs. both

XML-to-Relational conversion structure-based vs. data-based

Security check location external vs. internal vs. hybrid

Security check time post-pruning vs. pre-pruning vs. intermixed

SELECT e.nodeID
FROM Element e, Path p
WHERE p.pathExpr LIKE ’/AllDepts/Dept%/Name’ AND

e.pathID = p.pathID

Secondly, suppose a regular user “Jane” wants to retrieve salary information of
staffs as follows:

/AllDepts/Dept/Staff/Salary

When an auxiliary table such as Table 6 is given, then, this XPath could be re-
written to the following SQL query, where the last WHERE condition “a.pathID
= p.pathID” ensures valid access control.

SELECT e.nodeID
FROM Element e, Path p, Auxilary a
WHERE p.pathExpr LIKE ’/AllDepts/Dept/Staff/Salary’ AND

e.pathID = p.pathID AND a.pathID = p.pathID

The presented example so far and its choices made from the main issues
discussed in Section 3 can be summarized as shown in Table 8. As illustrated,
choices that we pick in this example is only one of many possible approaches,
and more study is needed to understand detailed pros/cons and behaviors of
them.

5 Conclusion

In this paper, we explore the research issues on how to support access controls of
XML data by leveraging existing techniques in relational databases. We envisage
an XML data management system in which (1) users make XML queries against



14 Dongwon Lee et al.

a given XML schema; (2) access controls for XML data are also specified in a
XML security model; and (3) Data are stored in relational databases. In such a
system, while users view and access data based on an XML data model, the fact
that the data is stored and processed in a relational database system is made
transparent to the users. We present a framework for processing XML queries in
the above system and examine various research issues appeared in the framework.
In this paper, we discuss several important problems in terms of converting XML
data to relational representation and storage, converting XML security models
to relational access control mechanisms and metadata, and security evaluations.
We sketch how to resolve the above problems and glue various components in
our framework to efficiently support access controls for the XML model using
relational databases. We also use examples to illustrate the various issues we
discussed in the paper. While this paper, as a preliminary work, points out a
vitally important research direction, we believe that more in-depth studies are
needed to realize our vision.

References

1. S. Banerjee, V. Krishnamurthy, M. Krishnaprasad, and R. Murthy. “Oracle8i -
The XML Enabled Data Management System.”. In IEEE ICDE, San Diego, CA,
Feb. 2000.

2. E. Bertino and E. Ferrari. “Secure and Selective Dissemination of XML Docu-
ments”. IEEE Trans. on Information and System Security (TISSEC), 5(3):290–
331, Aug. 2002.

3. R. Bourret. “XML and Databases”. Web page, Sep. 1999.
http://www.rpbourret.com/xml/XMLAndDatabases.htm.

4. T. Bray, J. Paoli, and C. M. Sperberg-McQueen (Eds). “Extensible Markup
Language (XML) 1.0 (2nd Edition)”. W3C Recommendation, Oct. 2000.
http://www.w3.org/TR/2000/REC-xml-20001006.

5. J. M. Cheng and J. Xu. “XML and DB2”. In IEEE ICDE, San Diego, CA, Feb.
2000.

6. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. “A
Fine-Grained Access Control System for XML Documents”. IEEE Trans. on In-
formation and System Security (TISSEC), 5(2):169–202, May 2002.

7. E. Damiani, S. De Capitani Di Vimercati, S. Paraboschi, and P. Samarati. “De-
sign and Implementation of an Access Control Processor for XML Documents”.
Computer Networks, 33(6):59–75, 2000.

8. A. Deutsch, M. F. Fernandez, and D. Suciu. “Storing Semistructured Data with
STORED”. In ACM SIGMOD, Philadephia, PA, Jun. 1998.

9. E. Fernandez, E. Gudes, and H. Song. “A Model of Evaluation and Administration
of Security in Object-Oriented Databases”. IEEE Trans. on Knowledge and Data
Engineering (TKDE), 6(2):275–292, 1994.

10. D. Florescu and D. Kossmann. “Storing and Querying XML Data Using an
RDBMS”. IEEE Data Eng. Bulletin, 22(3):27–34, Sep. 1999.

11. S. Godik and T. Moses (Eds). “eXtensible Access Control Markup Language
(XACML) Version 1.0”. OASIS Specification Set, Feb. 2003. http://www.oasis-
open.org/committees/xacml/repository/.



XML Security Support via RDBMS 15

12. P. P. Griffiths and B. W. Wade. “An Authorization Mechanism for a Relational
Database System”. ACM Trans. on Database Systems (TODS), 1(3):242–255, Sep.
1976.

13. S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. “Flexible Support
for Multiple Access Control Policies”. ACM Trans. on Database Systems (TODS),
26(2):214–260, Jun. 2001.

14. S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. “A Unified Frame-
work for Enforcing Multiple Access Control Policies”. In ACM SIGMOD, pages
474–485, May 1997.

15. S. Jajodia and R. Sandhu. “Toward a Multilevel Secure Relational Data Model”.
In ACM SIGMOD, May 1990.

16. D. Lee and W. W. Chu. “Constraints-preserving Transformation from XML Doc-
ument Type Definition to Relational Schema”. In Int’l Conf. on Conceptual Mod-
eling (ER), pages 323–338, Salt Lake City, UT, Oct. 2000.

17. W.-C. Lee, G. Mitchell, and X. Zhang. “Integrating XML Data with Relational
Databases”. In IEEE Int’l Workshop on Knowledge Discovery and Data Mining
in World Wide Web, Taipei, Taiwan, Apr. 2000.

18. F. Rabitti, E. Bertino, and G. Ahn. “A Model of Authorization for Next-Generation
Database Systems”. ACM Trans. on Database Systems (TODS), 16(1):89–131,
1991.

19. P. Samarati, E. Bertino, and S. Jajodia. “An Authorization Model for a Distributed
Hypertext System”. IEEE Trans. on Knowledge and Data Engineering (TKDE),
8(4):555–562, 1996.

20. R. Sandhu and F. Chen. “The Multilevel Relational (MLR) Data Model”. IEEE
Trans. on Information and System Security (TISSEC), 1(1), 1998.

21. R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. “Role-Based Access Control
Models”. IEEE Computer, 29(2), 1996.

22. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton.
“Relational Databases for Querying XML Documents: Limitations and Opportu-
nities”. In VLDB, Edinburgh, Scotland, Sep. 1999.

23. K.-L. Tan, M. L. Lee, and Y. Wang. “Access Control of XML Documents in
Relational Database Systems”. In Int’l Conf. on Internet Computing (IC), Las
Vegas, NV, Jun. 2001.

24. M. Winslett, K. Smith, and X. Qian. “Formal Query Languages for Secure Re-
lational Databases”. ACM Trans. on Database Systems (TODS), 19(4):626–662,
1994.

25. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. “XRel: A Path-Based Ap-
proach to Storage and Retrieval of XML Documents using Relational Databases”.
ACM Trans. on Internet Technology (TOIT), 1(2):110–141, Nov. 2001.

26. T. Yu, D. Srivastava, L. V.S. Lakshmanan, and H. V. Jagadish. “Compressed
Accessibility Map: Efficient Access Control for XML”. In VLDB, Hong Kong,
China, 2002.


