
D3: Deception, Deterrence, and 
Disclosure in Cybersecurity  

 
V.S. Subrahmanian 

vs@cs.umd.edu 
@vssubrah 

 
1 MURI Review, July 2015 

Joint work with Sushil Jajodia, Noseong Park, and Edoardo Serra 

mailto:vs@cs.umd.edu


Our D3 Framework 

 

 
 

2 

Enterprise network 

State – his 
knowledge of 

the system 
Can learn ! 

ATTACKER 

Deception  
Disclosure 

Deterrence MURI Review, July 2015 



Software and Vulnerabilities  

 

 
 

3 

• S set of software 
• V set of vulnerabilities 
• mapping v:S2V 
• for each vulnerability v in V 

• impact(v). Impact on enterprise if the vulnerability is 
exploited. 

• diff(v). Difficulty of exploiting v. 

 
 

Such measures are available through multiple sources, e.g. NIST’s NVD and CVSS, 
and MITRE’s CWSS 

MURI Review, July 2015 



NIST National Vulnerability Database 

 

 
 

4 MURI Review, July 2015 



Defender 

The defender can change the structure of: 
• Enterprise network 

– Add new honey hosts 
• System vulnerability dependency graphs 

– Add new honey vulnerability 
– Patching vulnerabilities, i.e. removing 

vulnerabilities 
– Deactivate software, i.e. remove all the 

vulnerabilities related to a specific software 
 
 
 

 

5 MURI Review, July 2015 



Enterprise Network 

 

 
 

n2 

  n1  n4 n1 is 
compromised  

n3 

We define an algebra of operations on  
enterprise networks. 

MURI Review, July 2015 6 



Enterprise Networks: Union Operator 

 

 
 

7 MURI Review, July 2015 



Enterprise Networks: Union Operator 

 

 
 

8 

n2 

  n1  n4 n1 is 
compromised  

n3 

n2 

  n1  n4 n1 is 
compromised  

 

n2 

n4 

n3 

We can add a new 
machine 
n3 that is connected 
to n2 and n4 

MURI Review, July 2015 



System Vulnerability Dependency 
Graphs (SVDGs) 

 

 
 

9 

n2   n1  n4 

v4,v5,v6 v2,v3,v 4 

n2,s4,v5 

n2,s3,v4 

n2,s4,v6 

n4,s3,v4 

n4,s2,v3 

n4,s2,v2 

n4 

n2 

System Vulnerability Dependency Graph (G) 

Enterprise Networks (EN) 

S(G) 

S(G) 

MURI Review, July 2015 



SVDG Algebra: Union and Difference 
Operators 

 

 
 

10 

Defender can add “apparent” vulnerabilities. 

Defender can remove vulnerabilities, e.g. by 
uninstalling relevant software or by patching 

MURI Review, July 2015 



SVDG Algebra: Union Operator 
 

 
 

11 11 

n2,s4,v5 

n2,s3,v4 

n2,s4,v6 

n4,s3,v4 

n4,s2,v3 

n4,s2,v2 

n2,s4,v5 

n2,s3,v4 

n2,s4,v6 

n4,s3,v4 

n2,s3,v4 

n4,s2,v3 

n4,s2,v2 n4,s2,v2 

We can add one or 
more “apparent” new 
vulnerabilities  along 
with relevant 
connections 

n4,s2,v2 

MURI Review, July 2015 



SVDG Algebra: Difference Operator 
 

 
 

12 

n2,s4,v5 

n2,s3,v4 

n2,s4,v6 

n4,s3,v4 

n4,s2,v3 

n4,s2,v2 

n2,s4,v5 

n2,s3,v4 

n2,s4,v6 

n4,s3,v4 n4,s2,v2 

n4,s2,v3 

We can patch 
a vulnerability 
or deactivate 
a software 
module 

MURI Review, July 2015 12 



Defender Strategy 

13 

Defender can add honey  
nodes/vulnerabilities to 
the network 

Defender can remove 
vulnerabilities via 
patching/deactivation 

Defender strategy: set of 
actions (add,remove) 

MURI Review, July 2015 



Cost of a Defender Strategy 

14 

Cost of adding 
honey nodes 

Cost of patching 

Cost of unhappiness 
caused by deactivating 
software 

MURI Review, July 2015 



Defender Strategy Configuration Result 

15 MURI Review, July 2015 



The Attacker Side 

• Two types of attack actions 
– Exploiting vulnerabilities 
– Scanning nodes 

• Attacker actions change his state (e.g. his 
knowledge about the enterprise network) 
– State model 
– In theory, a “rational” attacker will maximize his utility.  
– In practice and in our experiments, we allow sub-

rational actors. 
 
 

 

16 MURI Review, July 2015 



Attacker State Model  
 

 
 

17 MURI Review, July 2015 

Attacker state  𝑨𝑨𝑨𝑨𝑨𝑨𝒔𝒔𝒊𝒊,𝑬𝑬𝑵𝑵𝒊𝒊,𝑮𝑮𝒊𝒊  consists of three things: 
 
• The history of actions the attacker took to get to this state 
• The enterprise network the attacker knows through these actions 
• The SVDG that the attacker knows through his actions 



Attacker State Model  

 
 

18 

n2   n1  

v4,v5,v6 

n2,s4,v5 

n2,s3,v4 

n2,s4,v6 

n2 
S(G) 

n2   n1  n4 

v4,v5,v6 v3,v 4 

n2,s4,v5 

n2,s3,v4 

n2,s4,v6 

n4,s3,v4 

n4,s2,v3 

n4 

n2 
S(G) 

scan(n2) 
 

scan(n2), exploit((n2,s3,v4)), 
scan(n4)  

MURI Review, July 2015 



Attacker State Model  
 

 
 

19 

State obtained after  
scan(n2) 

State obtained after  
scan(n2), exploit((n2,s3,v4)), scan(n4)  

n2   n1  

v4,v5,v6 

n2,s4,v5 

n2,s3,v4 

n2,s4,v6 

n2 
S(G) 

n2   n1  n4 

v4,v5,v6 v3,v 4 

n2,s4,v5 

n2,s3,v4 

n2,s4,v6 

n4,s3,v4 

n4,s2,v3 

n4 

n2 
S(G) 

scan(n2) 
 

scan(n2), exploit((n2,s3,v4)), 
scan(n4)  

MURI Review, July 2015 



Attacker State Model  

MURI Review, July 2015 20 



Transition State  
exploit((n2,s3,v4)) 

 

 
 

21 

n2   n1  

v4,v5,v6 

n2,s4,v5 

n2,s3,v4 

n2,s4,v6 

n2 
S(G) 

n2   n1  n4 

v4,v5,v6 v3,v 4 

n2,s4,v5 

n2,s3,v4 

n2,s4,v6 

n2 
S(G) 

scan(n2) 
 

scan(n2), exploit((n2,s3,v4)) 

MURI Review, July 2015 



Transition State  
scan(n4) 

 

 
 

22 

n2   n1  n4 

v4,v5,v6 v3,v 4 

n2,s4,v5 

n2,s3,v4 

n2,s4,v6 

n4,s3,v4 

n4,s2,v3 

n4 

n2 
S(G) 

scan(n2), exploit((n2,s3,v4)) 
scan(n4) 

n2   n1  n4 

v4,v5,v6 v3,v 4 

n2,s4,v5 

n2,s3,v4 

n2,s4,v6 

n2 
S(G) 

scan(n2),  
exploit((n2,s3,v4)) 

MURI Review, July 2015 



Valid Attacker Strategy  

Cost  of attack (e.g. probability of 
detection) should be below a threshold 

Adding another valid attack should cause 
the threshold to be exceeded. 

MURI Review, July 2015 23 



Valid Attacker Strategy 
 

n2,s4,v5 n2,s3,v4 n2,s4,v6 

n4,s2,v3 

n4,s2,v3 

n4,s2,v2 n2,s4,v5 

n4,s2,v2 n2,s4,v5 n4,s3,v4 

1) 

2) 

3) 

24 

n2,s4,v5 

n2,s3,v4 

n2,s4,v6 

n4,s3,v4 

n4,s2,v3 

n4,s2,v2 

n4 

n2 

S(G) 

S(G) 

System Vulnerability Dependency Graph (G) 

MURI Review, July 2015 



Utility Driven Method  

Probability of a specific attacker strategy is based 
on relative utility 

MURI Review, July 2015 25 



Utility Driven Method  

Non-deterministically generates attack sequences 

MURI Review, July 2015 26 



Vulnerability & Data Impact  

MURI Review, July 2015 27 



Expected Impacts  

Monte Carlo  
Approximation 

 

MURI Review, July 2015 28 



Pareto Optimal Defender strategy  

Compute Pareto Frontier 

Theorem. Finding optimal defender strategy is NP-hard. 
Developed heuristic algorithm based on genetic algorithms with reinforcement 
learning for the problem. MURI Review, July 2015 29 



– Show charts among different costs and different 
expected impacts 

–  in the case of Montecarlo simulation, no stop 
rules. 

When the defender incurs 
additional costs (and allows 
the attacker to continue 
even after detection, 
impact goes down) 

Experiment: Attacker continues  
after detection 

MURI Review, July 2015 30 



– Show charts among different costs and different 
expected impacts 

–  in the case of Montecarlo simulation, no stop 
rules. 

When the defender incurs 
additional costs (and allows 
the attacker to continue 
even after detection, 
impact goes down) 

Experiment: Attack continues  
after detection 

MURI Review, July 2015 31 



Defender Stops Attacker Immediately 

The defender instantaneously stops the attacker 
each time he choses a honey vulnerability/node 
– changing of the expected impact 

MURI Review, July 2015 32 



 

Experiment: Defender stops attacker 
when he visits a honey node/vuln. 

When the defender incurs 
additional costs (and stops 
the attacker immediately  
after detection), clearly we 
have better defense 

MURI Review, July 2015 33 



 

When the defender incurs 
additional costs (and stops 
the attacker immediately  
after detection), clearly we 
have better defense 

Experiment: Defender Stops Attacker 
wben he visits honey vulnerability 

MURI Review, July 2015 34 



Attackers that Learn 
• If the defender instantaneously stops the attacker 

when he visits a honey vulnerability, the attacker can 
learn the  defender strategy and improve his strategy. 

• We use the UCT (Reinforcement Learning) algorithm 
to simulate the attacker’s ability to learn. 

• For each vulnerability exploited, the attacker receives 
a reward equal to the impact of the vulnerability. 

• If the attacker is stopped by the defender, the reward 
of the strategy as a whole is becomes zero. 

• After reinforcing learning, our algorithm returns an 
optimal distribution (for the attacker) of the attacker 
strategies 

• Recompute expected impact with this distribution.  
 
 
 

MURI Review, July 2015 35 



 

RL helps the attacker do 
better. 

Experiment: Attacker uses RL, 
Defender immediately stops attacks 

MURI Review, July 2015 36 



 

Experiment: Attacker uses RL, 
Defender immediately stops attacks 

RL helps the attacker doe 
better. 

MURI Review, July 2015 37 



Delayed Stops 

• Defender wants to increase uncertainty for the 
attacker. 

• Defender wants to reduce attacker’s ability to 
learn. 

• The defender stops an attacker (after he uses a 
honey vulnerability) only when he exploits a 
sufficiently dangerous vulnerability (impact(v) 
>Ths). 

 
 
 

MURI Review, July 2015 38 



Experiment 

 

In order to target smart 
adversaries, delayed stops 
are better than immediate 
stops. 

MURI Review, July 2015 39 



Experiment 

 

In order to target smart 
adversaries, delayed stops 
are better than immediate 
stops. 

MURI Review, July 2015 40 



Perturbation 
• Utility values are likely to be wrong ! 
• For greater resilience and robustness of the 

results, we perturbed the utility values and 
obtained similar results. 

MURI Review, July 2015 41 



Experiment 
– Show charts among different costs and different 

expected impacts 
–  in the case of Montecarlo simulation, no stop 

rules. 

In practice, perturbation of 
attacker strategy yields 
better defense (i.e. lower 
impact). 

MURI Review, July 2015 42 



Contact Information 

 
 

V.S. Subrahmanian 
Dept. of Computer Science & UMIACS 
University of Maryland 
College Park, MD 20742. 
Tel: 301-405-6724 
Email: vs@cs.umd.edu 
Web: www.cs.umd.edu/~vs/  

43 MURI Review, July 2015 

mailto:vs@cs.umd.edu
http://www.cs.umd.edu/%7Evs/


Algorithm and Complexity 
Defender Strategy  

• Decisional version is NP-hard (Containment result difficult to state 
due to the expected values ) 
 

• We use a NSGA2 genetic algorithm to solve the multi-objective 
optimization problem 
– Iterative algorithm that at each step evolves a population of 

individuals (solutions representing Pareto Points) 
– An individual is represented by a binary vector of size |AB|+|RB| (1 in 

the i-position means that the element is contained, 0 otherwise) 
– A population can be evolved by a random mutation of some 

individuals and by  a cross-over operation among two individuals. 
– Non Dominating Sort Approach is usedto select the N individuals to 

propagate at the new evolution step 
– The last evolved population represents the approximated Pareto 

Frontier.  
 

MURI Review, July 2015 44 


	D3: Deception, Deterrence, and Disclosure in Cybersecurity �
	Our D3 Framework
	Software and Vulnerabilities 
	NIST National Vulnerability Database
	Defender
	Enterprise Network
	Enterprise Networks: Union Operator
	Enterprise Networks: Union Operator
	System Vulnerability Dependency Graphs (SVDGs)
	SVDG Algebra: Union and Difference Operators
	SVDG Algebra: Union Operator
	SVDG Algebra: Difference Operator
	Defender Strategy
	Cost of a Defender Strategy
	Defender Strategy Configuration Result
	The Attacker Side
	Attacker State Model 
	Attacker State Model 
	Attacker State Model 
	Attacker State Model 
	Transition State �exploit((n2,s3,v4))
	Transition State �scan(n4)
	Valid Attacker Strategy 
	Valid Attacker Strategy
	Utility Driven Method 
	Utility Driven Method 
	Vulnerability & Data Impact 
	Expected Impacts 
	Pareto Optimal Defender strategy 
	Experiment: Attacker continues �after detection
	Experiment: Attack continues �after detection
	Defender Stops Attacker Immediately
	Experiment: Defender stops attacker when he visits a honey node/vuln.
	Experiment: Defender Stops Attacker wben he visits honey vulnerability
	Attackers that Learn
	Experiment: Attacker uses RL, Defender immediately stops attacks
	Experiment: Attacker uses RL, Defender immediately stops attacks
	Delayed Stops
	Experiment
	Experiment
	Perturbation
	Experiment
	Contact Information
	Algorithm and Complexity�Defender Strategy 

