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Our D3 Framework 
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Software and Vulnerabilities  
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• S set of software 
• V set of vulnerabilities 
• mapping v:S2V 
• for each vulnerability v in V 

• impact(v). Impact on enterprise if the vulnerability is 
exploited. 

• diff(v). Difficulty of exploiting v. 

 
 

Such measures are available through multiple sources, e.g. NIST’s NVD and CVSS, 
and MITRE’s CWSS 
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NIST National Vulnerability Database 
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Defender 

The defender can change the structure of: 
• Enterprise network 

– Add new honey hosts 
• System vulnerability dependency graphs 

– Add new honey vulnerability 
– Patching vulnerabilities, i.e. removing 

vulnerabilities 
– Deactivate software, i.e. remove all the 

vulnerabilities related to a specific software 
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Enterprise Network 
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We define an algebra of operations on  
enterprise networks. 
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Enterprise Networks: Union Operator 
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Enterprise Networks: Union Operator 
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System Vulnerability Dependency 
Graphs (SVDGs) 
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SVDG Algebra: Union and Difference 
Operators 
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Defender can add “apparent” vulnerabilities. 

Defender can remove vulnerabilities, e.g. by 
uninstalling relevant software or by patching 
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SVDG Algebra: Union Operator 
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SVDG Algebra: Difference Operator 
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Defender Strategy 
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Defender can add honey  
nodes/vulnerabilities to 
the network 

Defender can remove 
vulnerabilities via 
patching/deactivation 

Defender strategy: set of 
actions (add,remove) 
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Cost of a Defender Strategy 
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Cost of adding 
honey nodes 

Cost of patching 

Cost of unhappiness 
caused by deactivating 
software 
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Defender Strategy Configuration Result 
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The Attacker Side 

• Two types of attack actions 
– Exploiting vulnerabilities 
– Scanning nodes 

• Attacker actions change his state (e.g. his 
knowledge about the enterprise network) 
– State model 
– In theory, a “rational” attacker will maximize his utility.  
– In practice and in our experiments, we allow sub-

rational actors. 
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Attacker State Model  
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Attacker state  𝑨𝑨𝑨𝑨𝑨𝑨𝒔𝒔𝒊𝒊,𝑬𝑬𝑵𝑵𝒊𝒊,𝑮𝑮𝒊𝒊  consists of three things: 
 
• The history of actions the attacker took to get to this state 
• The enterprise network the attacker knows through these actions 
• The SVDG that the attacker knows through his actions 



Attacker State Model  
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Attacker State Model  
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Attacker State Model  
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Transition State  
exploit((n2,s3,v4)) 
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Transition State  
scan(n4) 
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Valid Attacker Strategy  

Cost  of attack (e.g. probability of 
detection) should be below a threshold 

Adding another valid attack should cause 
the threshold to be exceeded. 
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Valid Attacker Strategy 
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Utility Driven Method  

Probability of a specific attacker strategy is based 
on relative utility 
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Utility Driven Method  

Non-deterministically generates attack sequences 
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Vulnerability & Data Impact  

MURI Review, July 2015 27 



Expected Impacts  

Monte Carlo  
Approximation 

 

MURI Review, July 2015 28 



Pareto Optimal Defender strategy  

Compute Pareto Frontier 

Theorem. Finding optimal defender strategy is NP-hard. 
Developed heuristic algorithm based on genetic algorithms with reinforcement 
learning for the problem. MURI Review, July 2015 29 



– Show charts among different costs and different 
expected impacts 

–  in the case of Montecarlo simulation, no stop 
rules. 

When the defender incurs 
additional costs (and allows 
the attacker to continue 
even after detection, 
impact goes down) 

Experiment: Attacker continues  
after detection 
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Defender Stops Attacker Immediately 

The defender instantaneously stops the attacker 
each time he choses a honey vulnerability/node 
– changing of the expected impact 
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Experiment: Defender stops attacker 
when he visits a honey node/vuln. 

When the defender incurs 
additional costs (and stops 
the attacker immediately  
after detection), clearly we 
have better defense 
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When the defender incurs 
additional costs (and stops 
the attacker immediately  
after detection), clearly we 
have better defense 

Experiment: Defender Stops Attacker 
wben he visits honey vulnerability 
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Attackers that Learn 
• If the defender instantaneously stops the attacker 

when he visits a honey vulnerability, the attacker can 
learn the  defender strategy and improve his strategy. 

• We use the UCT (Reinforcement Learning) algorithm 
to simulate the attacker’s ability to learn. 

• For each vulnerability exploited, the attacker receives 
a reward equal to the impact of the vulnerability. 

• If the attacker is stopped by the defender, the reward 
of the strategy as a whole is becomes zero. 

• After reinforcing learning, our algorithm returns an 
optimal distribution (for the attacker) of the attacker 
strategies 

• Recompute expected impact with this distribution.  
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RL helps the attacker do 
better. 

Experiment: Attacker uses RL, 
Defender immediately stops attacks 
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Experiment: Attacker uses RL, 
Defender immediately stops attacks 

RL helps the attacker doe 
better. 
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Delayed Stops 

• Defender wants to increase uncertainty for the 
attacker. 

• Defender wants to reduce attacker’s ability to 
learn. 

• The defender stops an attacker (after he uses a 
honey vulnerability) only when he exploits a 
sufficiently dangerous vulnerability (impact(v) 
>Ths). 
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Experiment 

 

In order to target smart 
adversaries, delayed stops 
are better than immediate 
stops. 
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Experiment 
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stops. 

MURI Review, July 2015 40 



Perturbation 
• Utility values are likely to be wrong ! 
• For greater resilience and robustness of the 

results, we perturbed the utility values and 
obtained similar results. 
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Experiment 
– Show charts among different costs and different 

expected impacts 
–  in the case of Montecarlo simulation, no stop 

rules. 

In practice, perturbation of 
attacker strategy yields 
better defense (i.e. lower 
impact). 
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Contact Information 

 
 

V.S. Subrahmanian 
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University of Maryland 
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Algorithm and Complexity 
Defender Strategy  

• Decisional version is NP-hard (Containment result difficult to state 
due to the expected values ) 
 

• We use a NSGA2 genetic algorithm to solve the multi-objective 
optimization problem 
– Iterative algorithm that at each step evolves a population of 

individuals (solutions representing Pareto Points) 
– An individual is represented by a binary vector of size |AB|+|RB| (1 in 

the i-position means that the element is contained, 0 otherwise) 
– A population can be evolved by a random mutation of some 

individuals and by  a cross-over operation among two individuals. 
– Non Dominating Sort Approach is usedto select the N individuals to 

propagate at the new evolution step 
– The last evolved population represents the approximated Pareto 

Frontier.  
 

MURI Review, July 2015 44 


	D3: Deception, Deterrence, and Disclosure in Cybersecurity �
	Our D3 Framework
	Software and Vulnerabilities 
	NIST National Vulnerability Database
	Defender
	Enterprise Network
	Enterprise Networks: Union Operator
	Enterprise Networks: Union Operator
	System Vulnerability Dependency Graphs (SVDGs)
	SVDG Algebra: Union and Difference Operators
	SVDG Algebra: Union Operator
	SVDG Algebra: Difference Operator
	Defender Strategy
	Cost of a Defender Strategy
	Defender Strategy Configuration Result
	The Attacker Side
	Attacker State Model 
	Attacker State Model 
	Attacker State Model 
	Attacker State Model 
	Transition State �exploit((n2,s3,v4))
	Transition State �scan(n4)
	Valid Attacker Strategy 
	Valid Attacker Strategy
	Utility Driven Method 
	Utility Driven Method 
	Vulnerability & Data Impact 
	Expected Impacts 
	Pareto Optimal Defender strategy 
	Experiment: Attacker continues �after detection
	Experiment: Attack continues �after detection
	Defender Stops Attacker Immediately
	Experiment: Defender stops attacker when he visits a honey node/vuln.
	Experiment: Defender Stops Attacker wben he visits honey vulnerability
	Attackers that Learn
	Experiment: Attacker uses RL, Defender immediately stops attacks
	Experiment: Attacker uses RL, Defender immediately stops attacks
	Delayed Stops
	Experiment
	Experiment
	Perturbation
	Experiment
	Contact Information
	Algorithm and Complexity�Defender Strategy 

