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Software and Vulnerabilities

e S set of software

e Vset of vulnerabilities

* mapping v:S =22V

e for each vulnerability vin V

e impact(v). Impact on enterprise if the vulnerability is
exploited.

e diff(v). Difficulty of exploiting v.

Such measures are available through multiple sources, e.g. NIST’s NVD and CVSS,

and MITRE’s CWSS
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Defender

The defender can change the structure of:

* Enterprise network
— Add new honey hosts

e System vulnerability dependency graphs
— Add new honey vulnerability

— Patching vulnerabilities, i.e. removing
vulnerabilities

— Deactivate software, i.e. remove all the
vulnerabilities related to a specific software
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Enterprise Network

Definition 1 (Enterprise Network). An enterprise network EN is a 3-tuple
EN = (N, E, compr) where:

e IS O g QT e, We define an algebra of operations on
2. EC N x N is a set of edges; enterprise networks.

3. compr C N 1is the set of compromised nodes.

ny is
compromised
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Enterprise Networks: Union Operator

Definition 2 (Union of Enterprise Network). Given SEN = {EN*' ... EN"}
of enterprise networks, s.t. EN; = (N, E*,compr’), the resulting Enterprise
Network obtained by the union operator is

h
EN = (N, E, compr) = U EN*
i=1

o E={(n1,n2)[n1,n2 € N, (n1,n2) € E*;i € {1,...,h}};

h B
e compr = | J,_; compr’.
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Enterprise Networks: Union Operator
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System Vulnerability Dependency

Graphs (SVDGs)

Definition 3 (System Vulnerability Dependency Graph). Given an enterprise
network EN = (N, E,compr), a vulnerability dependency graph (SVDG for
short) is a directed graph G = (SV, Ev) where SV C {(n,s,v)ln € N,s €
S,v € V} is the set of system vulnerabilities (vertices) and Ev C SV x SV is

the set of edges. Vy,Vs, Ve

Vy,V3,V 4

Enterprise Networks (EN)

i |
< N2,54/Ve N3,54/Vs 1< N4,5,/V3 rS(G), Ny

__F_J

' S(G) | .
————J
n, Ny,53,Vy > : : < Ny,S3,Vy Ny,52,V) >

System Vulnerability Dependency Graph (G)
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SVDG Algebra: Union and leference
Operators

Definition 4 (Union). Given a set SG = {G*,dots, G"} of vulnerability depen-
dency graphs s.t. G* = (SV', Ev') the resulting graphs obtained by the union
operator 18

G = (SV,Ev) = U?:l G" where

Defender can add “apparent” vulnerabilities.

o SV =], SV
o Fv= {(’Ul,’Ug)|’U1,UQ < SV, ('U1,U2) S E’Ui,’i < {17 . wh}};

Definition 5 (Difference). Given two vulnerability dependency graphs G, =
(Svl,Evl) and Gy = (8V2,E”U2), the difference result is G = (SV, Ev) =
G1 \ G2 s.t.

Defender can remove vulnerabilities, e.g. by

o SY =SY! \ SV2; uninstalling relevant software or by patching

o Ev={(v1,v2)|v1,v2 € SV, (v1,v2) € Ev'} \ E? ;




SVDG Algebra: Union Operator
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SVDG Algebra: Difference Operator
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Defender Strategy

Definition 12 (Add Enterprise Universe). The Add Enterprise Universe is
AB = {aby,...,aby} where ab; = (EN', G') is a pair composed by an enterprise
networks EN' and a vulnerability dependency graph G".

Definition 13 (Remove SVDG Universe). The Remove SVDG Universe is
RB = {b,...,by} where rb; = (G") is a system vulnerability dependency graph.

Definition 14 (Defender Strategy). The strategy of the defender § = (A, R) is
a pair of two sets A and R s.t. AC AB and R C RB.

Defender can add honey Defender can remove

nodes/vulnerabilities to vulnerabilities via

the network

Defender strategy: set of

. actions (add,remove)
atc nl'.'_!-:r-'m ] 2
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Cost of a Defender Strategy

Given a defender strategy 6 = (A, R) we define several measures about cost and
productivity

Definition 14 (Node Cost).

Cost of adding
ncost(A) = Z costD(n) BT ALL 0

neN’)(va):m(ENi,)eA EN®
Definition 15 (Patch Cost).

pcost(R) = Z costD(G") Cost of patching
G'eR

Definition 16 (Productivity Cost).

: Cost of unhappiness
preost(R) = Z peost(G®) caused by deactivating
G'eR software
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Defender Strategy Configuration Result

Definition 15. Given a defender strategy § = (A, R), the resulting enterprise
network, system vulnerability dependency graph, and honey set are:

EN(A,R) = ENu( [|J ENY) (1)
(EN*,y €A
GAR) = (G\ JGu( U &) (2)
G;ER (LGHEA
honey = U SV (3)

(-(SV,.))eA
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The Attacker Side

 Two types of attack actions
— Exploiting vulnerabilities
— Scanning nodes

e Attacker actions change his state (e.g. his
knowledge about the enterprise network)

— State model

IH

— In theory, a “rational” attacker will maximize his utility.

— In practice and in our experiments, we allow sub-
rational actors.
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Attacker State Model

Definition 6 (Attacker Actions). Given an enterprise network EN = (N, E

,honey, compr) and a system vulnerability dependency graph G = (SV, Ev), the
set of all possible actions of an attacker is A(EN,G) = SC(EN) U EX P(G)
where

e SC(EN) = {scan(n)|n € N} is the set of all possible scan actions;

o EXP(G) = {exploit(v)|lv € V} is the set of all possible exploit actions.
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Attacker State Model
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Attacker State Model

Definition 9 (Transition State). Given an attacker state s; = (Acts;, (N,
E;,honey,, compr,), (SV;, Ev;)) and an action a € V A(s;), the transition state
tr(s;,a) is equal to s;11 = (Acts;+1,EN;y1,Gip11) where

e ifa = scan(n) then Acts;11 = Acts;U{scan(n)}, EN;1 1 = (N;, E;, compr,)
and Gip1 = (SVir1 = SV; U {(n,s,v)|(n,s,v) € SV}, {(v,v)|v,v" €
Svi—l—la (Uavl) < E})

o if a = exploit((n,s,v)) then Acts;y1 = Acts;U{exploit((n,s,v))}, Giy1 =
G; and

EN;, 1 = (N; U{n'|(n,n") € E}, E; U {{(n,n)|(n,n") € E}, compr,)
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.




Valid Attacker Strategy

Definition 10 (Valid Attacker Strategy). Given an enterprise network EN =

(N, E, honey, compr), a system vulnerability dependency graph G = (SV, Ev)

and threshold cost ¢, a sequence as =< a1, ..., Q. > 1S a valid attacker strategy

iof there exists an associated sequence of attacker state < sg,S1,...,8m > S.1.
e Vic{l,....m}: a;, € VA(s;_1)
o Vic{l,...,m}: s; =tr(si—1,a;)

m - Cost of attack (e.g. probability of

: tA(a;) <
® )iy costala;) < € detection) should be below a threshold
o Va € VA(sp,): costA(a) + > ;" costA(a;) > ¢

Adding another valid attack should cause
the threshold to be exceeded.
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Valid Attacker Strategy
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Utility Driven Method

Given an attacker strategy as =< aq,...,a,, >€ AS(EN,G,¢) and its state
sequence ss(as) =< sg, S1,---,Sm > the attacker strategy probability function

1S

P(as) = HPT(Si—lyai)

where Pr(s,a) is defined in the following way:

utilA(a, VA(s))

P —
r1($,) > ey ace) WA, VA(s))

Probability of a specific attacker strategy is based

on relative utility
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Utility Driven Method

Algorithm 1 Attacker Strategy Generator

1: procedure GETATTACKERSTRATEGY(EN = (NN, E, honey,compr), G =
(8V,G), ¢)
2: totalCost = 0;
3: S = So;
4: as =<>;
5 while (|[V A(s)| > 0 and totalCost < ¢ ) do
6: chose an action in a € V A(s) according tq P(a);
7: as = as U {a};
8: tc = totalCost + costA(a);
9: s =tr(s,a);
10: end while L
Non-deterministically generates attack sequences
11: return as ;

12: end procedure
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Vulnerability & Data Impact

Definition 17 (Vulnerability impact). Given a function impact associating to
each system vulnerability in the system an impact value, we define the vulnera-
bility impact of an attacker strategy as in two ways:

vimpactDAl(as) = max impact(v)
exploit(v)Eas,v€honey

vimpactDA2(as) = Z impact(v)

exploit(v)Eas,vg€honey

Definition 18 (Data impact). Given a function data associating to each vul-
nerability the set of data disclosed, and a function tmpactData providing the

impact for each disclosed data, we define the data impact of an attacker strat-
egy as in two ways:

dimpactDAl(as) = max impactData(d)
dedata(v),exploit(v)€as,v€honey

dimpactDA2(as) = Z impactData(d)

dedata(v),caploit(v)Eas,v€honey
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Definition 19 (Expected Impact).

ElimpactDA,EN, G, ¢] =

Algorithm 1 Attacker Strategy Generator

Expected Impacts

2

as€ AS(EN,G,¢)

P(as) - impactDA(as)

1: procedure GETATTACKERSTRATEGY(EN =

(8V,G), ¢)
totalCost = 0;
§ = S0;
as =<>;

while (|[VA(s)| > 0 and totalCost < ¢ ) do

chose an action in a € V' A(s) according to P(a);

as = as U {a};

tc = totalCost + costA(a);
9: s =tr(s,a);

10: end while
11: return as ;
12: end procedure

(N, E, honey, compr), G =

Monte Carlo
T | Approximation
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Pareto Optimal Defender strategy

0" = (A", R*) € argmin {
ACAB,RCRB

ElvimpactDA1,EN(A, R), G(A, R), ¢,
ElvimpactDA2,EN(A, R), G(A, R), ¢,
E[dimpactDA1,EN(A, R), G(A, R), ¢],
EldimpactDA2,EN(A, R), G(A, R), ¢,

Compute Pareto Frontier ncost(A),

prcost(R)

Theorem. Finding optimal defender strategy is NP-hard.

Developed heuristic algorithm based on genetic algorithms with reinforcement
learning for the problem.
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Defender Stops Attacker Immediately

The defender instantaneously stops the attacker
each time he choses a honey vulnerability/node

— changing of the expected impact

Definition 20 (Stop Operator). Given an attacker strategy as < ai,...,am >,
the stop operator returns a sub subsequece stops(as) =< ay,...,ap > s.t. h =

Mg, —exploit(v)Eas,vEhoney -

Definition 21 ( Stop Expected Impact).

ElimpactDA,EN, G, ¢] = Z P(as) - impact D A(stops(as))
as€ AS(EN,G,é)
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Attackers that Learn

e If the defender instantaneously stops the attacker
when he visits a honey vulnerability, the attacker can
learn the defender strategy and improve his strategy.

e We use the UCT (Reinforcement Learning) algorithm
to simulate the attacker’s ability to learn.

e For each vulnerability exploited, the attacker receives
a reward equal to the impact of the vulnerability.

e If the attacker is stopped by the defender, the reward
of the strategy as a whole is becomes zero.

e After reinforcing learning, our algorithm returns an
optimal distribution (for the attacker) of the attacker
strategies

e Recompute expected impact with this distribution.
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Delayed Stops

 Defender wants to increase uncertainty for the
attacker.

 Defender wants to reduce attacker’s ability to
learn.

 The defender stops an attacker (after he uses a
honey vulnerability) only when he exploits a
sufficiently dangerous vulnerability (impact(v)
>Ths).
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Perturbation

e Utility values are likely to be wrong !

* For greater resilience and robustness of the
results, we perturbed the utility values and
obtained similar results.
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Algorithm and Complexity

Defender Strategy

e Decisional version is NP-hard (Containment result difficult to state
due to the expected values )

e We use a NSGA2 genetic algorithm to solve the multi-objective
optimization problem

— lterative algorithm that at each step evolves a population of
individuals (solutions representing Pareto Points)

— An individual is represented by a binary vector of size |AB|+|RB| (1 in
the i-position means that the element is contained, 0 otherwise)

— A population can be evolved by a random mutation of some
individuals and by a cross-over operation among two individuals.

— Non Dominating Sort Approach is usedto select the N individuals to
propagate at the new evolution step

— The last evolved population represents the approximated Pareto
Frontier.
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