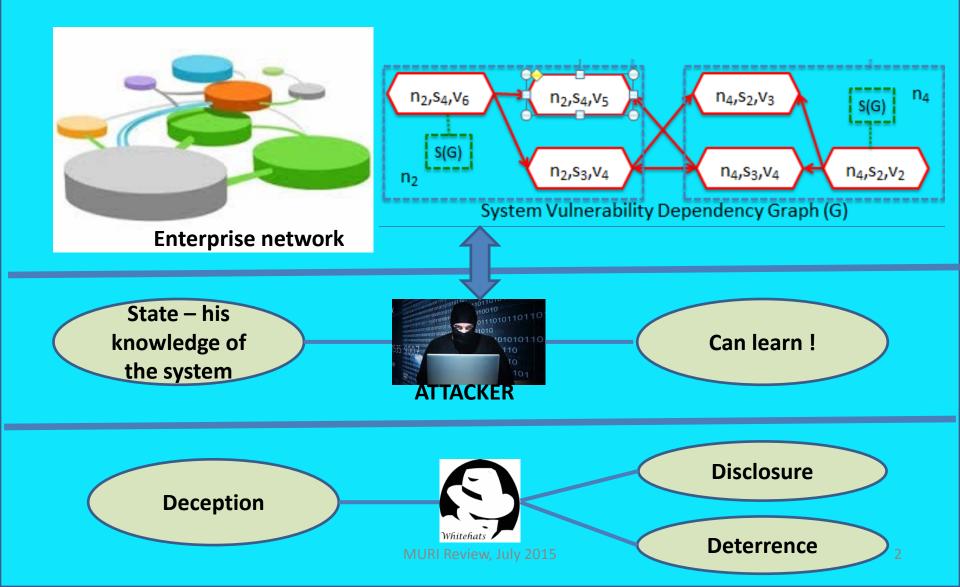




## D<sup>3</sup>: Deception, Deterrence, and Disclosure in Cybersecurity

V.S. Subrahmanian

vs@cs.umd.edu


@vssubrah

Joint work with Sushil Jajodia, Noseong Park, and Edoardo Serra





#### **Our D3 Framework**







# Software and Vulnerabilities

- **S** set of software
- V set of vulnerabilities
- mapping  $v:S \rightarrow 2^{v}$
- for each vulnerability v in V
  - *impact(v).* Impact on enterprise if the vulnerability is exploited.
  - *diff(v)*. *Difficulty of exploiting v*.

Such measures are available through multiple sources, e.g. NIST's NVD and CVSS, and MITRE's CWSS





#### **NIST National Vulnerability Database**

| Sponsored by<br>DHS National Cyber Security Division/US-CERT Network and Indusice                                                                                                                   |                                                                                                                                                                                                                                  |                                              |                                                                                                                                                                   |                                  |         |                 |            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------|-----------------|------------|--|
| National Vulnerability Database                                                                                                                                                                     |                                                                                                                                                                                                                                  |                                              |                                                                                                                                                                   |                                  |         |                 |            |  |
| /ulnerabilities                                                                                                                                                                                     | Checklists                                                                                                                                                                                                                       | 800-53/800-53A                               | Product Dictionary                                                                                                                                                | Impact Metrics                   |         | Data Feeds      | Statistics |  |
| fome SCAP                                                                                                                                                                                           | -                                                                                                                                                                                                                                | SCAP Validated Tools                         | SCAP Events                                                                                                                                                       | About                            | Contact | Vendor Comments |            |  |
| Mission and Overview                                                                                                                                                                                | National Cyber Awareness System                                                                                                                                                                                                  |                                              |                                                                                                                                                                   |                                  |         |                 |            |  |
| NVD is the U.S.<br>government repository<br>of standards based<br>vulnerability<br>management data. This<br>data enables automation<br>of vulnerability<br>management, security<br>measurement, and | Vulnerability Summary<br>Original release date: 03/0<br>Last revised: 03/08/2014<br>Source: US-CERT/NIST<br>Overview                                                                                                             |                                              |                                                                                                                                                                   |                                  |         |                 |            |  |
| compliance (e.g. FISMA).                                                                                                                                                                            | A). Buffer overflow in the socket.recvfrom_into function in Modules/socketmodule.c in Python 2.5 before 2.7.7, 3.x before 3.3.4, and 3.4.x before 3.4rc1 allows remote attackers to execute arbitrary code via a crafted string. |                                              |                                                                                                                                                                   |                                  |         |                 |            |  |
| Resource Status<br>NVD contains:<br>60865 CVE Vulnerabilities                                                                                                                                       | Impact                                                                                                                                                                                                                           |                                              |                                                                                                                                                                   |                                  |         |                 |            |  |
| 230 Checklists                                                                                                                                                                                      | Impact Subscore: 6.4<br>Exploitability Subscore: 10.0                                                                                                                                                                            |                                              |                                                                                                                                                                   |                                  |         |                 |            |  |
| 248 US-CERT Ale<br>2836 US-CERT Vuln VS<br>10286 QVAL Queries                                                                                                                                       |                                                                                                                                                                                                                                  |                                              |                                                                                                                                                                   |                                  |         |                 |            |  |
| 85585 CPE Names                                                                                                                                                                                     | Access Vector: Network exploitable                                                                                                                                                                                               |                                              |                                                                                                                                                                   |                                  |         |                 |            |  |
| Last updated: Mon Mar<br>10 10:36:42 EDT 2014                                                                                                                                                       | Access Complexity: Low                                                                                                                                                                                                           |                                              |                                                                                                                                                                   |                                  |         |                 |            |  |
| CVE Publication rate:                                                                                                                                                                               | Authentication: Not requir                                                                                                                                                                                                       | red to exploit                               |                                                                                                                                                                   |                                  |         |                 |            |  |
| 14.3<br>Email List                                                                                                                                                                                  | Impact Type: Allows unauthorized disclosure of information; Allows unauthorized modification; Allows disruption of service                                                                                                       |                                              |                                                                                                                                                                   |                                  |         |                 |            |  |
| NVD provides four                                                                                                                                                                                   | References to Advisories, Solutions, and Tools                                                                                                                                                                                   |                                              |                                                                                                                                                                   |                                  |         |                 |            |  |
| mailing lists to the<br>public. For information<br>and subscription<br>instructions please visit                                                                                                    | referenced, or not, from this                                                                                                                                                                                                    | s page. There may be other web sites that an | ovided these links to other web sites because they<br>e more appropriate for your purpose. NIST does n<br>. Please address comments about this page to <u>nvd</u> | ot necessarily endorse the views |         |                 |            |  |
| NVD Mailing Lists                                                                                                                                                                                   | External Source: CONFIRM                                                                                                                                                                                                         |                                              |                                                                                                                                                                   |                                  |         |                 |            |  |
| Workload Index                                                                                                                                                                                      | Name: http://bugs.python.                                                                                                                                                                                                        | .org/issue20246                              |                                                                                                                                                                   |                                  |         |                 |            |  |
| Vulnerability Workload                                                                                                                                                                              | Type: Patch Information                                                                                                                                                                                                          |                                              |                                                                                                                                                                   |                                  |         |                 |            |  |
| Index: 6.3<br>About Us                                                                                                                                                                              | Hyperlink: <u>http://bugs.pyth</u>                                                                                                                                                                                               | hon.org/issue20246                           |                                                                                                                                                                   |                                  |         |                 |            |  |
| NVD is a product of the                                                                                                                                                                             | External Source : MISC                                                                                                                                                                                                           |                                              |                                                                                                                                                                   |                                  |         |                 |            |  |
| NIST Computer Security                                                                                                                                                                              | Name: https://www.trusted                                                                                                                                                                                                        | dsec.com/february-2014/python-remote-code    | e-execution-socked-kelorthorR_axi/ew, July 2                                                                                                                      | 015                              |         |                 |            |  |
| <u>Division</u> and is<br>sponsored by the                                                                                                                                                          | Hyperlink: https://www.tru                                                                                                                                                                                                       | stedsec.com/february-2014/python-remote-     | code-execution-socket-recvfrom into/                                                                                                                              |                                  |         |                 |            |  |



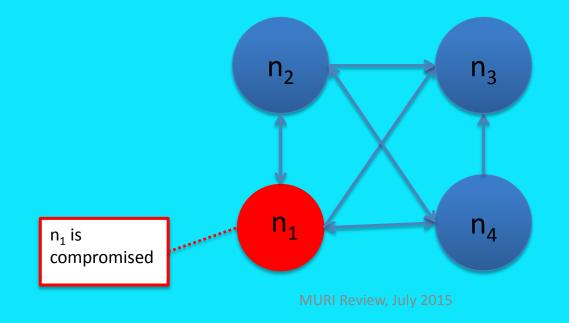


#### Defender

The defender can change the structure of:

- Enterprise network
  - Add new honey hosts
- System vulnerability dependency graphs
  - Add new honey vulnerability
  - Patching vulnerabilities, i.e. removing vulnerabilities
  - Deactivate software, i.e. remove all the vulnerabilities related to a specific software






#### **Enterprise Network**

**Definition 1** (Enterprise Network). An enterprise network EN is a 3-tuple EN = (N, E, compr) where:

- 1. N is a set of nodes;
- 2.  $E \subseteq N \times N$  is a set of edges;
- 3. compr  $\subseteq N$  is the set of compromised nodes.

We define an algebra of operations on enterprise networks.







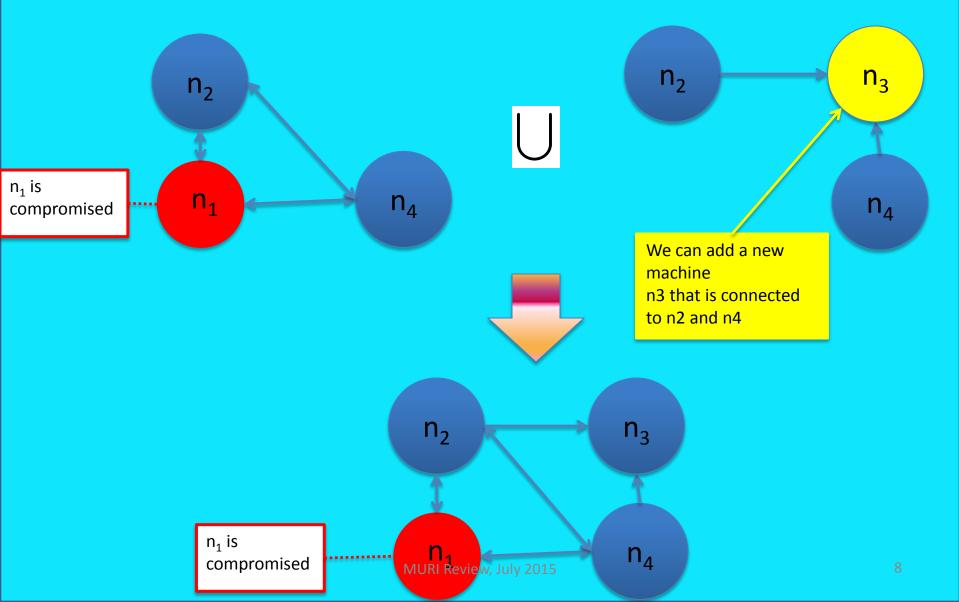
#### **Enterprise Networks: Union Operator**

**Definition 2** (Union of Enterprise Network). Given  $SEN = \{EN^1, \ldots, EN^h\}$ of enterprise networks, s.t.  $EN_i = (N^i, E^i, compr^i)$ , the resulting Enterprise Network obtained by the union operator is

$$\mathsf{EN} = (N, E, \mathsf{compr}) = \bigcup_{i=1}^{h} EN^{i}$$

where

• 
$$N = \bigcup_{i=1}^{h} V^i$$
;

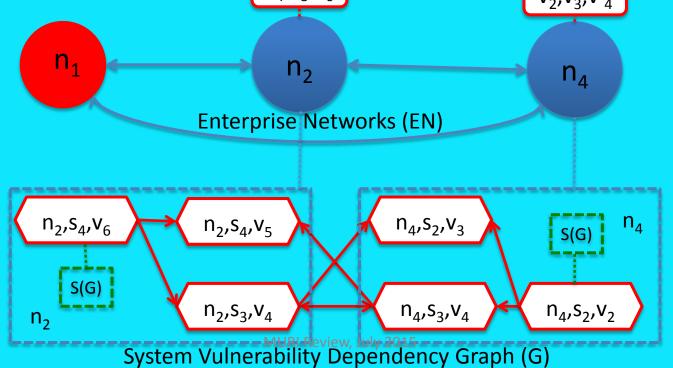

• 
$$E = \{(n_1, n_2) | n_1, n_2 \in N, (n_1, n_2) \in E^i, i \in \{1, \dots, h\}\};$$

• compr =  $\bigcup_{i=1}^{h} \operatorname{compr}^{i}$ .





#### **Enterprise Networks: Union Operator**








## System Vulnerability Dependency Graphs (SVDGs)

**Definition 3** (System Vulnerability Dependency Graph). Given an enterprise network  $\mathsf{EN} = (N, E, \mathsf{compr})$ , a vulnerability dependency graph (SVDG for short) is a directed graph G = (SV, Ev) where  $SV \subseteq \{(n, s, v) | n \in N, s \in S, v \in V\}$  is the set of system vulnerabilities (vertices) and  $Ev \subseteq SV \times SV$  is the set of edges.  $v_4, v_5, v_6$   $v_2, v_3, v_4$ 







#### SVDG Algebra: Union and Difference Operators

**Definition 4** (Union). Given a set  $SG = \{G^1, dots, G^h\}$  of vulnerability dependency graphs s.t.  $G^i = (SV^i, Ev^i)$  the resulting graphs obtained by the union operator is

 $G = (\mathcal{SV}, Ev) = \bigcup_{i=1}^{h} G^{i}$  where

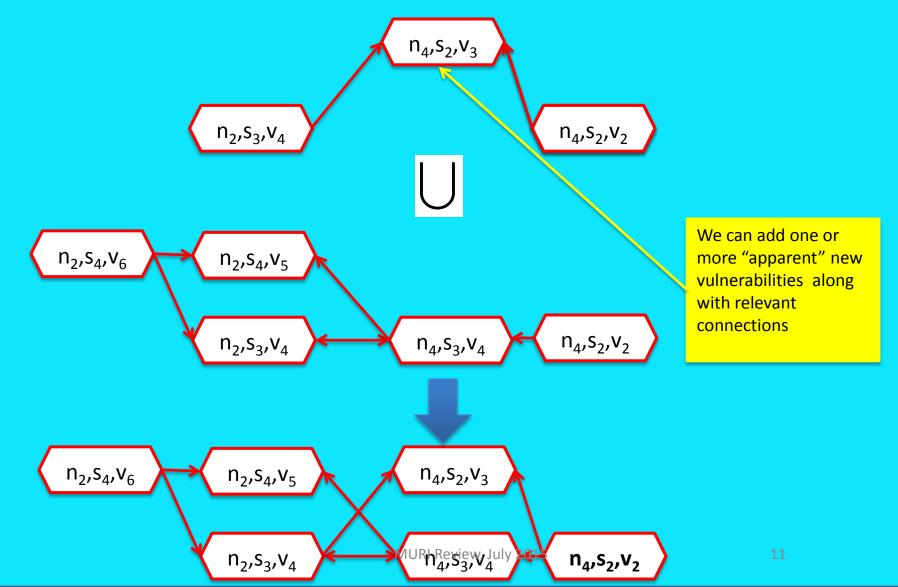
•  $\mathcal{SV} = \bigcup_{i=1}^{h} \mathcal{SV}^{i};$ 

Defender can add "apparent" vulnerabilities.

•  $Ev = \{(v_1, v_2) | v_1, v_2 \in \mathcal{SV}, (v_1, v_2) \in Ev^i, i \in \{1, \dots, h\}\};$ 

**Definition 5** (Difference). Given two vulnerability dependency graphs  $G_1 = (SV^1, Ev^1)$  and  $G_2 = (SV^2, Ev^2)$ , the difference result is  $G = (SV, Ev) = G_1 \setminus G_2$  s.t.

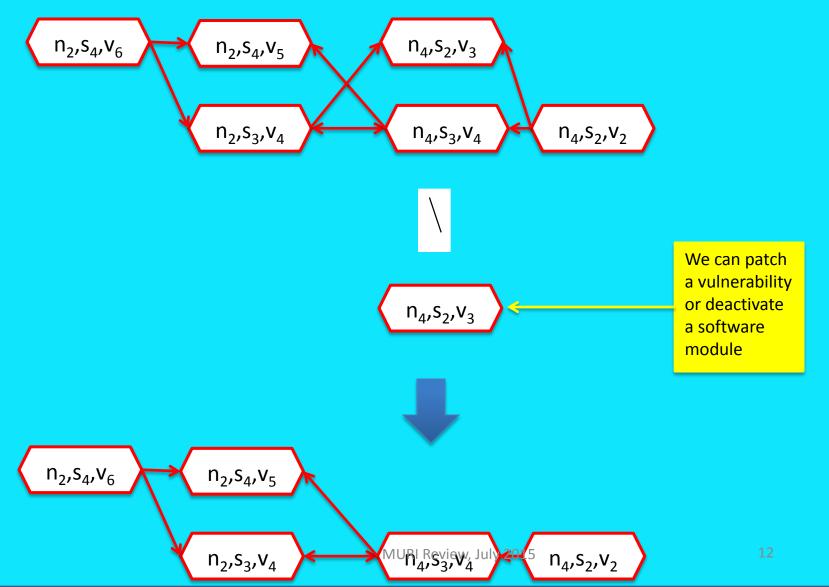
•  $\mathcal{SV} = \mathcal{SV}^1 \setminus \mathcal{SV}^2;$ 


Defender can remove vulnerabilities, e.g. by uninstalling relevant software or by patching

•  $Ev = \{(v_1, v_2) | v_1, v_2 \in SV, (v_1, v_2) \in Ev^1\} \setminus E^2$ ;






## SVDG Algebra: Union Operator







## **SVDG Algebra: Difference Operator**







# **Defender Strategy**

**Definition 12** (Add Enterprise Universe). The Add Enterprise Universe is  $AB = \{ab_1, \ldots, ab_h\}$  where  $ab_i = (\mathsf{EN}^i, G^i)$  is a pair composed by an enterprise networks  $\mathsf{EN}^i$  and a vulnerability dependency graph  $G^i$ .

**Definition 13** (Remove SVDG Universe). The Remove SVDG Universe is  $RB = \{b_1, \ldots, b_h\}$  where  $rb_i = (G^i)$  is a system vulnerability dependency graph.

**Definition 14** (Defender Strategy). The strategy of the defender  $\delta = (A, R)$  is a pair of two sets A and R s.t.  $A \subseteq AB$  and  $R \subseteq RB$ .

Defender can add honey nodes/vulnerabilities to the network Defender can remove vulnerabilities via patching/deactivation

Defender strategy: set of actions (add,remove)





# Cost of a Defender Strategy

Given a defender strategy  $\delta = (A, R)$  we define several measures about cost and productivity

**Definition 14** (Node Cost).

$$ncost(A) = \sum_{n \in N', (N',) = \bigcap_{(\mathsf{EN}^i,) \in A} \mathsf{EN}^i} cost D(n)$$

Cost of adding honey nodes

**Definition 15** (Patch Cost).

$$pcost(R) = \sum_{G^i \in R} costD(G^i)$$

**Cost of patching** 

**Definition 16** (Productivity Cost).

$$prcost(R) = \sum_{G^i \in R} pcost(G^i)$$

Cost of unhappiness caused by deactivating software





#### **Defender Strategy Configuration Result**

**Definition 15.** Given a defender strategy  $\delta = (A, R)$ , the resulting enterprise network, system vulnerability dependency graph, and honey set are:

$$\mathsf{EN}(A,R) = \mathsf{EN} \cup \left(\bigcup_{(\mathsf{EN}^i, i) \in A} \mathsf{EN}^i\right) \tag{1}$$

$$G(A,R) = \left(G \setminus \bigcup_{G_i \in R} G_i\right) \cup \left(\bigcup_{(,G^i) \in A} G_i\right)$$
(2)

$$honey = \bigcup_{(-,(\mathcal{SV}_{,-}))\in A} \mathcal{SV}$$
(3)





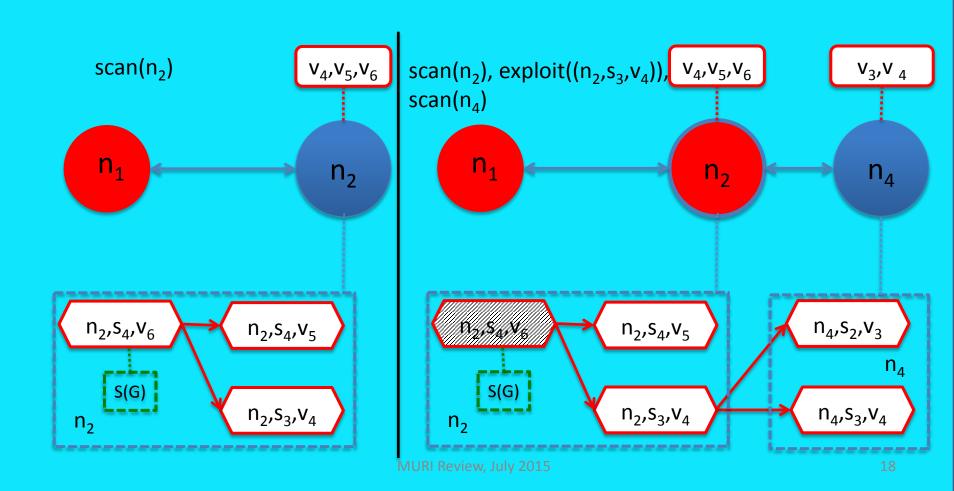
### The Attacker Side

- Two types of attack actions
  - Exploiting vulnerabilities
  - Scanning nodes
- Attacker actions change his state (e.g. his knowledge about the enterprise network)
  - State model
  - In theory, a "rational" attacker will maximize his utility.
  - In practice and in our experiments, we allow subrational actors.



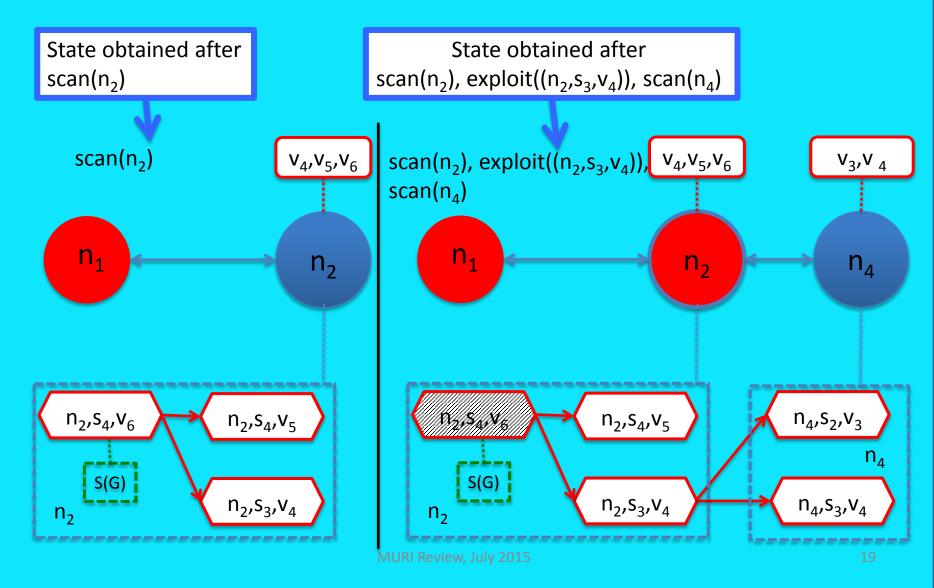


**Definition 6** (Attacker Actions). Given an enterprise network  $\mathsf{EN} = (N, E)$ , honey, compr) and a system vulnerability dependency graph G = (SV, Ev), the set of all possible actions of an attacker is  $A(\mathsf{EN}, G) = SC(\mathsf{EN}) \cup EXP(G)$  where


- $SC(EN) = \{scan(n) | n \in N\}$  is the set of all possible scan actions;
- $EXP(G) = \{exploit(v) | v \in V\}$  is the set of all possible exploit actions.

#### Attacker state $(Acts_i, EN_i, G_i)$ consists of three things:

- The history of actions the attacker took to get to this state
- The enterprise network the attacker knows through these actions
- The SVDG that the attacker knows through his actions











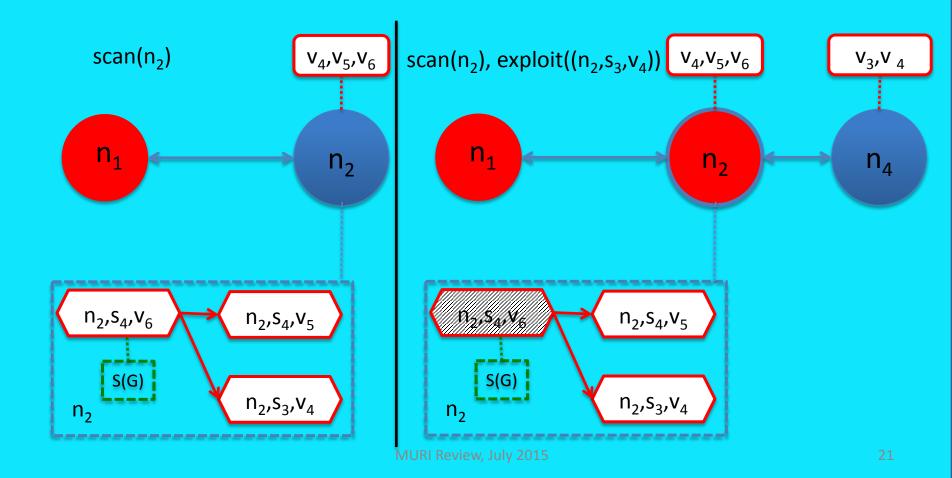







**Definition 9** (Transition State). Given an attacker state  $s_i = (Acts_i, (N_i, E_i, honey_i, compr_i), (SV_i, Ev_i))$  and an action  $a \in VA(s_i)$ , the transition state  $tr(s_i, a)$  is equal to  $s_{i+1} = (Acts_{i+1}, EN_{i+1}, G_{i+1})$  where

- $if a = scan(n) then Acts_{i+1} = Acts_i \cup \{scan(n)\}, \mathsf{EN}_{i+1} = (N_i, E_i, \mathsf{compr}_i)$ and  $G_{i+1} = (S\mathcal{V}_{i+1} = S\mathcal{V}_i \cup \{(n, s, v) | (n, s, v) \in S\mathcal{V}\}, \{(v, v') | v, v' \in S\mathcal{V}_{i+1}, (v, v') \in E\})$
- if a = exploit((n, s, v)) then  $Acts_{i+1} = Acts_i \cup \{exploit((n, s, v))\}, G_{i+1} = G_i$  and

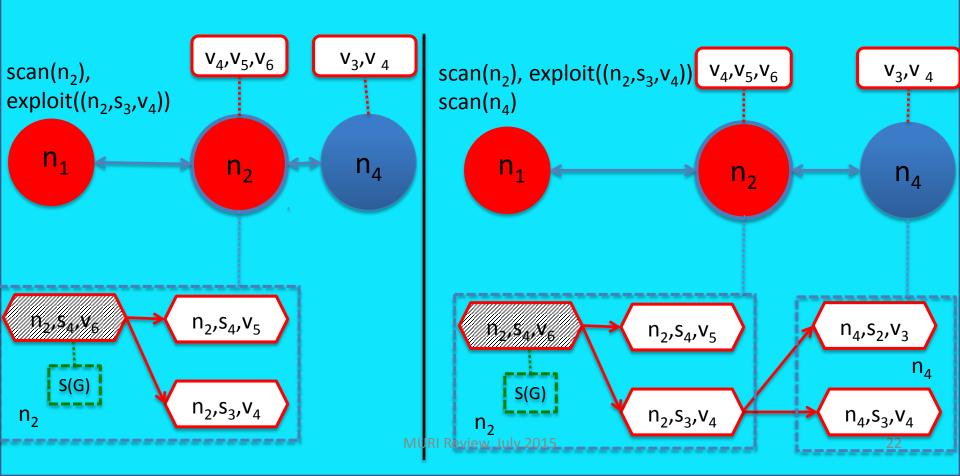

 $\mathsf{EN}_{i+1} = (N_i \cup \{n' | (n, n') \in E\}, E_i \cup \{\{(n, n') | (n, n') \in E\}, \mathsf{compr}_i)$ 





NIVERSITY OF MARYLAND INSTITUTE FOR ADVANCED COMPUTER STUDIES

# Transition State exploit((n<sub>2</sub>,s<sub>3</sub>,v<sub>4</sub>))








ERSITY OF MARYLAND INSTITUTE FOR ADVANCED COMPUTER STUDIES

# Transition State scan(n<sub>4</sub>)







#### Valid Attacker Strategy

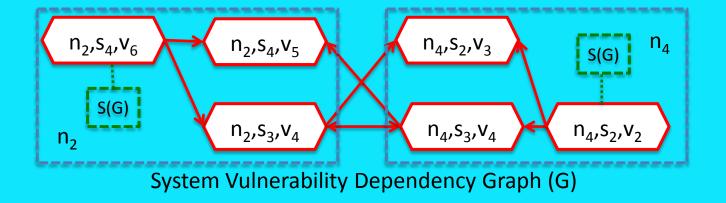
**Definition 10** (Valid Attacker Strategy). Given an enterprise network  $\mathsf{EN} = (N, E, \mathsf{honey}, \mathsf{compr})$ , a system vulnerability dependency graph  $G = (\mathcal{SV}, Ev)$  and threshold cost  $\hat{c}$ , a sequence as  $= \langle a_1, \ldots, a_m \rangle$  is a valid attacker strategy if there exists an associated sequence of attacker state  $\langle s_0, s_1, \ldots, s_m \rangle$  s.t.

• 
$$\forall i \in \{1, \ldots, m\}$$
 :  $a_i \in VA(s_{i-1})$ 

• 
$$\forall i \in \{1, \dots, m\}$$
 :  $s_i = tr(s_{i-1}, a_i)$ 

•  $\sum_{i=1}^{m} costA(a_i) \le \hat{c}$ 

Cost of attack (e.g. probability of detection) should be below a threshold


•  $\forall a \in VA(s_m) : costA(a) + \sum_{i=1}^m costA(a_i) > \hat{c}$ 

Adding another valid attack should cause the threshold to be exceeded.





#### Valid Attacker Strategy



1) 
$$n_2, s_4, v_6$$
  $n_2, s_3, v_4$   $n_2, s_4, v_5$   $n_4, s_2, v_3$   
2)  $n_4, s_2, v_2$   $n_4, s_2, v_3$   $n_2, s_4, v_5$   
3)  $n_4, s_2, v_2$   $n_2, s_4, v_5$   $n_4, s_3, v_4$ 

MURI Review, July 2015





#### **Utility Driven Method**

Given an attacker strategy  $as = \langle a_1, \ldots, a_m \rangle \in AS(\mathsf{EN}, G, \hat{c})$  and its state sequence  $ss(as) = \langle s_0, s_1, \ldots, s_m \rangle$  the attacker strategy probability function is

$$P(as) = \prod_{i=1}^{m} Pr(s_{i-1}, a_i)$$

where Pr(s, a) is defined in the following way:

$$Pr_1(s,a) = \frac{utilA(a, VA(s))}{\sum_{a' \in VA(s)} utilA(a', VA(s))}$$

Probability of a specific attacker strategy is based on relative utility

ALIRI Review, July 2015





# **Utility Driven Method**

Algorithm 1 Attacker Strategy Generator

- 1: procedure GETATTACKERSTRATEGY(EN =  $(N, E, \text{honey}, \text{compr}), G = (SV, G), \hat{c}$ )
- 2: totalCost = 0;
- 3:  $s = s_0;$
- 4: as = <>;
- 5: while  $(|VA(s)| > 0 \text{ and } totalCost < \hat{c})$  do
- 6: chose an action in  $a \in VA(s)$  according to P(a);
- 7:  $as = as \cup \{a\};$

8: 
$$tc = totalCost + costA(a);$$

9: 
$$s = tr(s, a);$$

- 10: end while
- 11: return as;

12: end procedure

Non-deterministically generates attack sequences





# Vulnerability & Data Impact

**Definition 17** (Vulnerability impact). Given a function impact associating to each system vulnerability in the system an impact value, we define the vulnerability impact of an attacker strategy as in two ways:

 $vimpactDA1(as) = \max_{exploit(v) \in as, v \notin honey} impact(v)$  $vimpactDA2(as) = \sum_{exploit(v) \in as, v \notin honey} impact(v)$ 

**Definition 18** (Data impact). Given a function data associating to each vulnerability the set of data disclosed, and a function impactData providing the impact for each disclosed data, we define the data impact of an attacker strategy as in two ways:

 $dimpactDA1(as) = \max_{d \in data(v), exploit(v) \in as, v \notin honey} impactData(d)$  $dimpactDA2(as) = \sum_{d \in data(v), exploit(v) \in as, v \notin honey} impactData(d)$ 

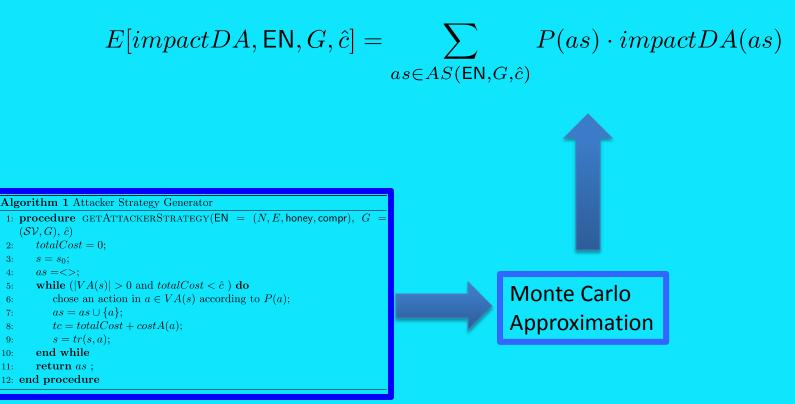


2: 3:

4: 5:

6: 7:

8: 9:


10:

11:



#### **Expected Impacts**

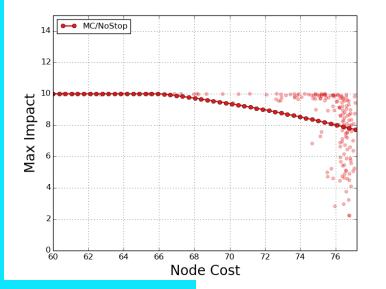
#### **Definition 19** (Expected Impact).

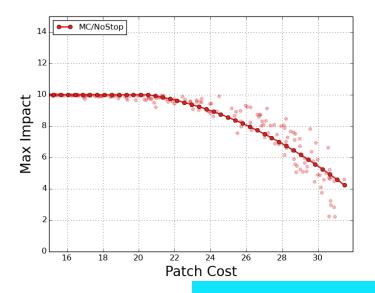


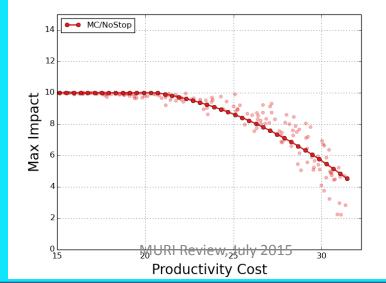




#### Pareto Optimal Defender strategy

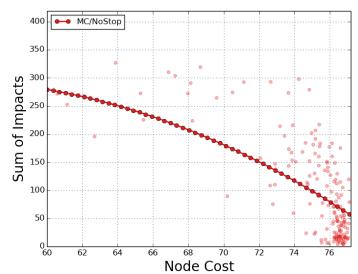

 $\delta^* = (A^*, R^*) \in \operatorname*{arg\,min}_{A \subseteq AB, R \subseteq RB}$ 

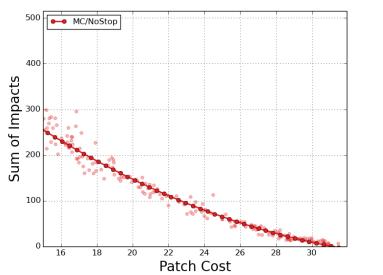

**Compute Pareto Frontier** 

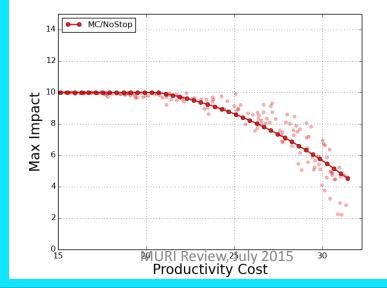

$$\begin{split} &E[vimpactDA1, \mathsf{EN}(A, R), G(A, R), \hat{c}], \\ &E[vimpactDA2, \mathsf{EN}(A, R), G(A, R), \hat{c}], \\ &E[dimpactDA1, \mathsf{EN}(A, R), G(A, R), \hat{c}], \\ &E[dimpactDA2, \mathsf{EN}(A, R), G(A, R), \hat{c}], \\ &ncost(A), \\ &pcost(R), \\ &prcost(R) \end{split}$$

Theorem. Finding optimal defender strategy is NP-hard. Developed heuristic algorithm based on genetic algorithms with reinforcement learning for the problem.

# Experiment: Attacker continues after detection




When the defender incurs additional costs (and allows the attacker to continue even after detection, impact goes down)

# Experiment: Attack continues after detection



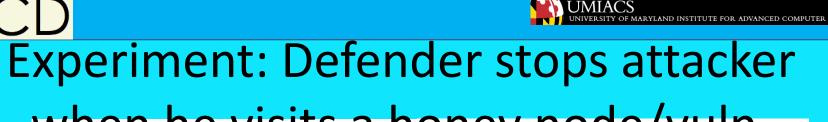


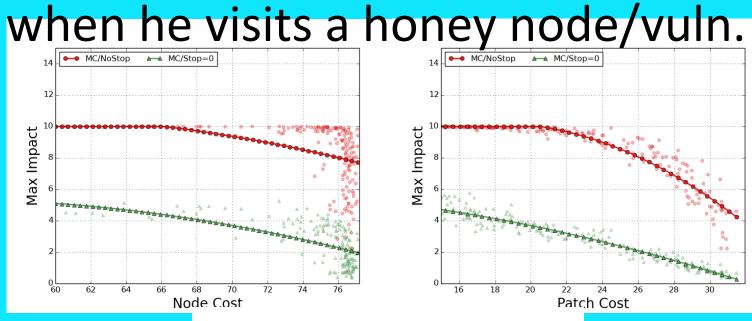


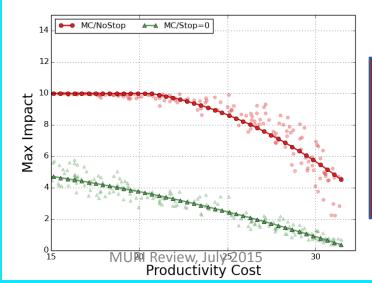
When the defender incurs additional costs (and allows the attacker to continue even after detection, impact goes down)






#### **Defender Stops Attacker Immediately**

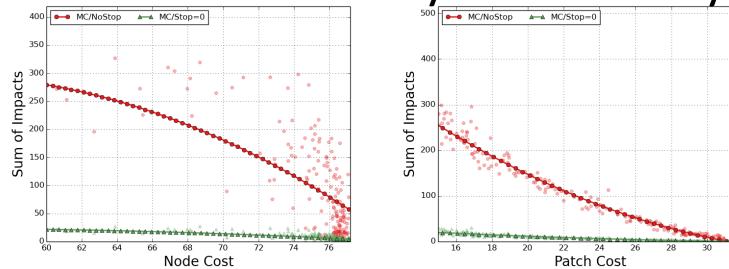

The defender instantaneously stops the attacker each time he choses a honey vulnerability/node – changing of the expected impact

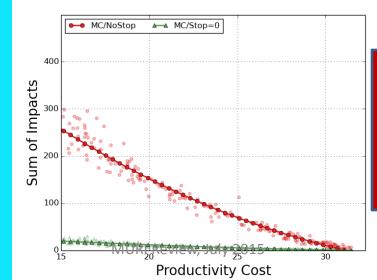

**Definition 20** (Stop Operator). Given an attacker strategy  $as < a_1, \ldots, a_m >$ , the stop operator returns a sub subsequece  $stops(as) = < a_1, \ldots, a_h > s.t.$   $h = \min_{a_i = exploit(v) \in as, v \in honey} i.$ 

**Definition 21** (Stop Expected Impact).

 $E[impactDA, \mathsf{EN}, G, \hat{c}] = \sum_{as \in AS(\mathsf{EN}, G, \hat{c})} P(as) \cdot impactDA(stops(as))$ 






When the defender incurs additional costs (and stops the attacker immediately after detection), clearly we have better defense



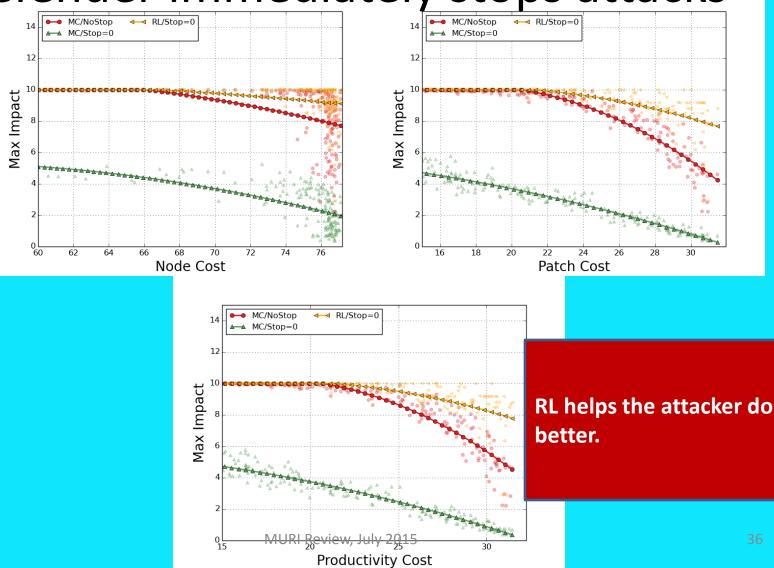
#### Experiment: Defender Stops Attacker wben he visits honey vulnerability





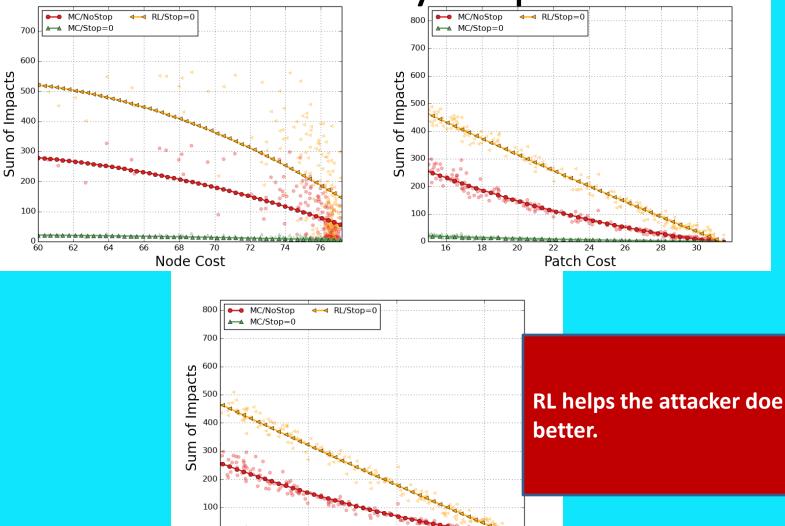
When the defender incurs additional costs (and stops the attacker immediately after detection), clearly we have better defense






#### Attackers that Learn

- If the defender instantaneously stops the attacker when he visits a honey vulnerability, the attacker can learn the defender strategy and improve his strategy.
- We use the UCT (Reinforcement Learning) algorithm to simulate the attacker's ability to learn.
- For each vulnerability exploited, the attacker receives a reward equal to the impact of the vulnerability.
- If the attacker is stopped by the defender, the reward of the strategy as a whole is becomes zero.
- After reinforcing learning, our algorithm returns an optimal distribution (for the attacker) of the attacker strategies
- Recompute expected impact with this distribution.




#### Experiment: Attacker uses RL, Defender immediately stops attacks





#### Experiment: Attacker uses RL, Defender immediately stops attacks

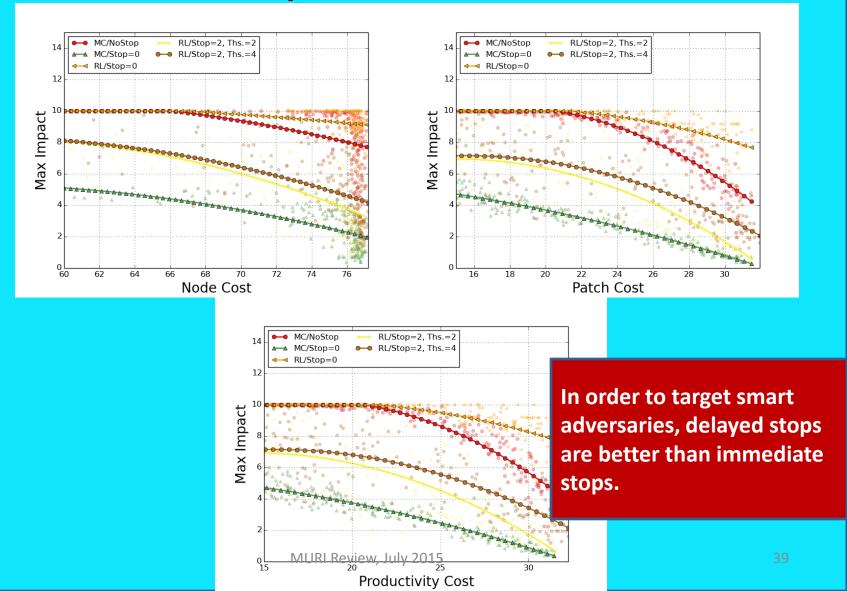


Productivity Cost

30



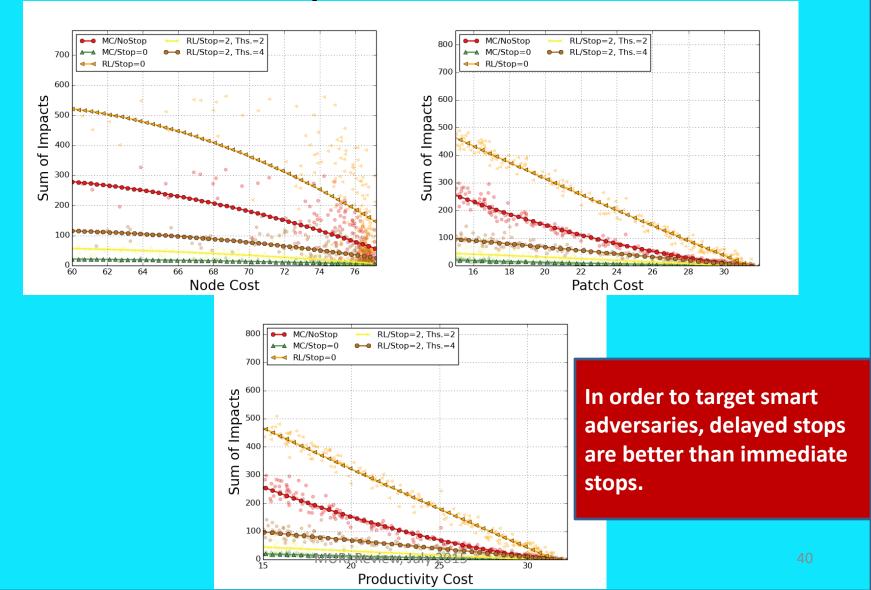



#### **Delayed Stops**

- Defender wants to increase uncertainty for the attacker.
- Defender wants to reduce attacker's ability to learn.
- The defender stops an attacker (after he uses a honey vulnerability) only when he exploits a sufficiently dangerous vulnerability (*impact(v)* >Ths).






#### Experiment





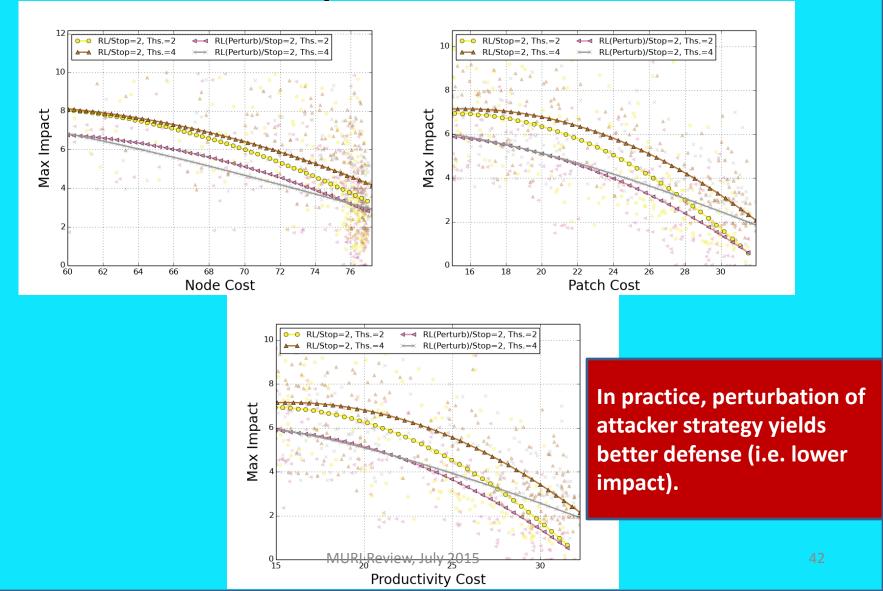


#### Experiment








#### Perturbation

- Utility values are likely to be wrong !
- For greater resilience and robustness of the results, we perturbed the utility values and obtained similar results.





#### Experiment







#### **Contact Information**

V.S. Subrahmanian Dept. of Computer Science & UMIACS University of Maryland College Park, MD 20742. Tel: 301-405-6724 Email: <u>vs@cs.umd.edu</u> Web: www.cs.umd.edu/~vs/





# Algorithm and Complexity Defender Strategy

- Decisional version is **NP**-hard (Containment result difficult to state due to the expected values )
- We use a NSGA2 genetic algorithm to solve the multi-objective optimization problem
  - Iterative algorithm that at each step evolves a population of individuals (solutions representing Pareto Points)
  - An individual is represented by a binary vector of size |AB|+|RB| (1 in the i-position means that the element is contained, 0 otherwise)
  - A population can be evolved by a random mutation of some individuals and by a cross-over operation among two individuals.
  - Non Dominating Sort Approach is used to select the N individuals to propagate at the new evolution step
  - The last evolved population represents the approximated Pareto Frontier.