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As society increasingly relies on digitally stored and accessed information, applications 
have increasingly higher requirements on supporting the availability, integrity, and 
confidentiality of this information. However, as the quantity and severity of cyber 
vulnerabilities and attacks continuously increase, traditional information security 
technologies are increasingly limited in satisfying the security requirements of 
applications due to their inability to survive successful attacks. As a result, Information 
Assurance (IA) technologies are introduced to not only prevent information from being 
disclosed, modified or destroyed, but also detect intrusions and operate through attacks in 
such a way that a certain level of information security can be ensured in the presence of 
attacks. In this article, we survey the natural evolution of information assurance 
technologies. Three generations of IA technologies are summarized, namely the 
technologies to prevent intrusions, the technologies to detect intrusions, and the 
technologies to operate through attacks, and the newest generation of IA technologies are 
discussed in detail. In particular, we survey intrusion masking technologies and defense-
in-depth technologies in the context of survivable information storage systems, intrusion 
masking distributed computing, attack resistant certification authority, survivable 
network systems, and survivable of database systems.  

INTRODUCTION 
As society increasingly relies on digitally stored and accessed information, traditional 
information security technologies, policies, management and practices are found more 
and more limited in satisfying the security and assurance needs of modern information 
systems and applications, for several reasons. In general, addressing only the protection 
of information against unauthorized disclosure, transfer, modification, or destruction, 
traditional information security cannot deliver the level of information assurance that 



 

modern applications require. In particular, first, as applications increasingly rely on 
digitally stored and accessed information, they increasingly rely on the availability of this 
information and the reliability of the corresponding information system. However, 
availability and reliability are largely neglected by traditional information security.  

      Second, although information confidentiality, privacy and integrity protection are 
certainly crucial in meeting the security needs of modern applications, not all attacks can 
be prevented and some attacks do succeed. (Readers can refer to Volume III of this 
handbook for a detailed discussion of the threats and vulnerabilities to modern 
information systems.) These attacks can cause substantial confidentiality and privacy loss 
(via unauthorized disclosure of information), substantial integrity loss (via unauthorized 
modification of information), substantial availability/reliability loss and serious denial-of-
service (via destruction of some critical components of the information system), and 
substantial non-repudiation loss (via destruction of evidence and audit data). When 
applications were lightly dependent upon digitally stored and accessed information, such 
information security losses might be able to be tolerated. But as applications increasingly 
rely on digitally stored and accessed information, such security losses can be disastrous 
and may no longer be able to be tolerated. Hence, another fundamental limitation of 
traditional information security is that how to address these successful attacks, or 
intrusions.        

      As a result, to meet the security and assurance needs of modern information systems 
and applications, a broader perspective is introduced, saying that, in addition to 
preventing information from being disclosed, modified or destroyed, intrusions should be 
detected; countermeasures (e.g., responses) to intrusions should be planned and deployed 
in advance; security and fault tolerance mechanisms should work together to ensure 
confidentiality, privacy, integrity, non-repudiation, authenticity, availability and 
reliability in the presence of attacks; and the damage caused on the information and the 
information system should be repaired and restored (or recovered). In this literature, this 
is referred to as information assurance. For example, from the military perspective, 
Information Assurance must address the delivery of authentic, accurate, secure, reliable, 
timely information, regardless of threat conditions, within the distributed and 
heterogeneous computing and communication environment. 

      The basic meaning of information assurance is well captured by the definition from 
National Information Systems Security Glossary, which is as follows:  

Information Assurance (IA): Information operations that protect and defend information and 
information systems by ensuring their availability, integrity, authentication, confidentiality, and 
non-repudiation. This includes providing for restoration of information systems by 
incorporating protection, detection, and reaction capabilities. [Definition from National 
Information Systems Security (INFOSEC) Glossary, NSTISSI No.4009, Aug. 1997] 

Compared with the concepts of Information Security and Information Systems 
Security, whose definitions are quoted below, it is not difficult to see that the concept of 
Information Assurance is much broader than that of Information Security. In particular, 
(a) the focus of Information Security is on protection or prevention, while the focus of 
information assurance is on integration of protection, detection and reaction; (b) intrusion 
detection and reaction are not a major concern of Information Security, but they are 
certainly crucial for Information Assurance; (c) attack recovery or restoration may be a 



 

topic out of the scope of Information Security, but it is certainly a critical component of 
Information Assurance; (d) the goal of Information Security technologies is to prevent 
attacks from happening, while the goal of Information Assurance is to ensure that even if 
some attacks intrude into an information system, certain levels of availability, integrity, 
authentication, confidentiality, or non-repudiation can still be guaranteed.             

Information security: The protection of information against unauthorized disclosure, 
transfer, modification, or destruction, whether accidental or intentional. 

Information systems security (INFOSEC): [The] protection of information systems against 
unauthorized access to or modification of information, whether in storage, processing or 
transit, and against the denial of service to authorized users, including those measures 
necessary to detect, document, and counter such threats.  

      It is no doubt that Information Assurance involves many disciplines and has a variety 
of aspects, such as the policy, legal, ethical, social, management, evaluation, and 
technical aspects of information assurance. Compared with traditional information 
security practices, Information Assurance not only involves the design and development 
of a variety of new security technologies, but also involves a variety of emerging policy, 
legal, ethical, social, economical, management, evaluation and assurance issues as 
Information Assurance evolves people’s practices of information security in an ever 
quicker pace. Nevertheless, to make this article more tangible, this article will primarily 
focus on the technical aspect of information assurance, though some relevant policy, 
management and evaluation issues will also be addressed. Readers can refer to Chapter 
Security Policy Guidelines and Chapter Security Policy Enforcement for detailed 
discussion on the policy aspect. Readers can refer to Chapter Managing a Network 
Environment for detailed discussion on the management aspect. Readers can refer to 
Chapter Common Criteria for detailed discussion on the evaluation aspect. Readers can 
refer to the Social and Legal Issues part of Volume II for detailed discussion on the 
social, ethical and legal aspects of IA.    

The rest of the article is organized as follows. In Section 2, an overview of IA 
technologies is given. Three generations of IA technologies are identified and 
summarized. And the 3rd generation IA technologies are classified into two categories: 
intrusion masking technologies and defense-in-depth technologies. In Section 3, we 
survey intrusion masking technologies. In Section 4, we survey defense-in-depth 
technologies. In Section 5, we conclude the paper. 

OVERVIEW OF IA TECHNOLOGIES 
In this section, we will give a comprehensive overview of information assurance 
technologies, with a focus on the emerging 3rd generation information assurance 
technologies and their relation with more established intrusion prevention and detection 
IA technologies.         

Three Generations of IA Technologies 
In general, existing IA technologies can be “clustered” into three generations as shown 
below. There is a natural evolution or maturing that has occurred in the IA community, 
and these generations offer evidence of the evolution.       



 

o 1st Generation: prevent intrusions. The goal is to prevent attacks from succeeding. 
The representative technologies are Trusted Computing Base, access control and 
physical security, multiple levels of security, and cryptography.  

o 2nd Generation: detect intrusions. Since not all attacks can be prevented, intrusions 
will occur. Hence, the goal of 2nd generation IA technologies is to detect intrusions. 
Some representative technologies are firewalls, intrusion detection systems, and 
boundary controllers.    

o 3rd Generation: operate through attacks (or survivability). Since some attacks will 
succeed, we need the 3rd generation IA technologies. The goal is to enable 
information systems to continue delivering essential services with security assurance 
in the presence of sustained attacks. Some representative technologies are real-time 
situation awareness & response, real-time tradeoff of performance, functionality and 
security, intrusion tolerance, and graceful degradation. It should be noticed that the 
3rd generation IA technologies are not simply focusing on the availability domain; 
their dimensions are much broader. In particular, without delivering such security 
assurance as confidentiality (privacy), integrity, authenticity and non-repudiation, 
essential services cannot be continuously delivered under sustained attacks. In 
general, survivability not only means availability under attacks, but also means 
confidentiality (privacy), integrity, authenticity and non-repudiation under attacks. 
Moreover, in many situations, survivability implies reliability.           

      It should be noticed that among the three generations of IA technologies, each 
generation is crucial in achieving the goals of Information Assurance, and no one can 
replace another. (The 2nd generation IA technologies do not subsume the 1st generation IA 
technologies, and the 3rd generation IA technologies do not subsume the 2nd generation 
IA technologies either.) In particular, first, the 1st generation IA technologies build the 
foundation for information assurance, since without strong protection of information 
confidentiality, privacy, integrity, authenticity and non-repudiation, there can be too 
many successful attacks for the information system to survive, which in fact makes 
survivability infeasible. Moreover, intrusion prevention, intrusion detection and intrusion 
tolerance (or survivability) actually share primarily the same goal, i.e., to ensure the 
information confidentiality, privacy, integrity, availability, authenticity and non-
repudiation in the face of attacks. A highly trusted and assured information system should 
be able to prevent as many attacks as possible from breaking into the system, detect the 
attacks that could not be prevented with accuracy and agility, and robustly operate 
through and recover from these successful attacks without losing availability, reliability, 
and accountability. Second, the 3rd generation IA technologies are largely dependent 
upon the 2nd generation IA technologies, since many 3rd generation IA technologies 
assume that the intrusions can be detected in a timely manner with good accuracy (e.g., 
low false positive rate and false negative rate).  

      Nevertheless, in this article we will focus on the 3rd generation IA technologies, since 
the 1st and 2nd generation IA technologies will be well covered by the other Chapters of 
this handbook. In particular, we will survey the technologies for developing survivable 
(networked) information systems. Readers can refer to chapters Secure Public Networks, 
IPsec, SSL/TLS, Secret Key Cryptography, Database Security, Medical Record Security, 
Access Control: Principles and Solutions, PGP (Pretty Good Privacy), P3P (Platform for 



 

Privacy Preferences Project), Anonymity and Identity in the Internet, Privacy Law, 
Privacy Issues in Wired and Wireless Networks, and Medical Record Security for detailed 
discussions on the 1st generation IA technologies. Readers can refer to chapters Intrusion 
Detection: Detection Technology and Techniques, Intrusion Detection Systems Basics, 
Host-Based Intrusion Detection Systems, and Network-Based Intrusion Detection Systems 
for detailed discussions on the 2nd generation IA technologies.  

Third Generation IA Technologies 
Related to the fault tolerance concept and drawing from that discipline is the area of 
intrusion tolerance or survivability. Intrusion tolerance is emerging as one of the most 
important R&D areas in Cyber Operations today since the systems and networks we 
depend upon must continue to operate through intrusions and keep operating, although in 
a degraded mode, in spite of a sequence of successful cyber attacks. 

Classification of Survivability Technologies 
We can classify existing survivability technologies into two categories: intrusion masking 
and defense-in-depth. Note that many well-known intrusion tolerance projects are 
MAFTIA [34] and OASIS [35] projects.  

Intrusion Masking From the design perspective, one system design can be inherently 
much more attack resilient than another. The goal of intrusion masking is to redesign a 
regular vulnerable computer system with enough redundancy so that the new survivable 
design can function correctly even part of the system is hacked. In this sense, we say the 
new survivable design can mask intrusions. Techniques in this category focus on how to 
enhance the inherent resilience of a secure system, and their effectiveness is typically 
much less sensitive to the agility and accuracy of intrusion detection than pragmatic, run-
time intrusion response techniques. General principles in developing attack-resistant 
designs include but not limited to (a) redundancy & replication; (b) diversity; (c) 
randomization; (d) fragmentation & threshold cryptography; and (e) increased layers of 
indirections. Techniques in this perspective include but not limited to Byzantine intrusion 
masking techniques [4,19,24,29] that follow the redundancy & replication principle, 
threshold-cryptography-based attack resilient systems [7,30,31] that follow the 
fragmentation principle, multi-path routing [27] that follow the redundancy principle, and 
resilient overlay networks [3] that follow the “increased layers of indirections” principle.  

Defense-in-Depth Instead of redesigning a system, the goal of defense-in-depth 
technologies is to arm the system with a set of attack & threat response facilities which, 
with the help of the intrusion detection, can respond to intrusions in such a way that the 
system can operate through attacks. Technologies in this category include (a) boundary 
controllers such as firewalls and access control; (b) intrusion detection; and (c) 
threat/attack/intrusion response. It is well known that boundary controllers cannot 
prevent every attack.   

      Intrusion detection [8,15,20,21,25,36] is a key part of many survivable systems, but 
existing intrusion detection technologies in general suffer the high false positive 
(negative) rate problem, especially when the detection is anomaly-based or specification-
based. Since intrusion detection techniques cannot guide us to respond to intrusions, 



 

existing Defense-in-Depth technologies focus on intrusion response, which can be 
classified into three categories: 

Type 1: Reactive response. Techniques in this category are activated only when an 
intrusion is identified and their effectiveness is highly dependent on the accuracy and 
latency of intrusion detection. For example, attack recovery techniques [2,14,28] belong 
to this category. If the detection is quick and accurate, then the contaminated part of the 
system can be quickly repaired without causing serious integrity degradation. However, if 
there are many false alarms, a lot of clean elements could be corrupted by wrong 
“repairs”. Some other Type 1 techniques include but not limited to reactive one-phase 
damage containment techniques, detection-based (firewall) reconfiguration techniques 
and patching techniques.  

Type 2: Proactive response. Techniques in this category are activated in a proactive 
manner based on suspicious activities (or signs) before an intrusion is confirmed. 
Although proactive response may consume more resources, it may immunize the system 
from the damage caused by many attacks. Moreover, many proactive response 
mechanisms are transparent to users. Type 2 techniques include but not limited to 
isolation [13], multi-phase damage containment [12], and sandboxing [18]. 

Type 3: Adaptive response. Feedback based adaptation is a nice feature of many 
survivable systems, where the defense posture (i.e., security mechanism configuration) of 
the system is dynamically adjusted based on the changing environment. Adaptive 
response addresses the reconfigurable computing and communication aspect of 
survivable information systems. Type 3 techniques include but not limited to the OASIS 
Willard project and adaptive ITDB [16].  

      Since intrusion detection makes the system attack-aware but not attack resilient, that 
is, intrusion detection itself cannot maintain confidentiality, integrity and availability of 
information in the face of attacks, intrusion response is crucial is building survivable 
systems. Moreover, since the fundamental sciences, principles and arts of survivable 
systems and networks are almost the same, we do not address systems and networks 
separately; instead, we focus on these common sciences, principles and arts. Finally, 
malicious code defense is an important aspect of IA, but this aspect will not be addressed 
in this article.   

Survivability vs. Fault Tolerance 
As a core concept of the 3rd generation IA technologies, survivability [32] builds on the 
top of several related fields of study (e.g., security, fault tolerance, safety, reliability) and 
introduces new concepts and principles. In particular, since many survivability 
technologies are motivated by fault tolerance technologies, people may wonder the 
differences between these two fields. In the following, we highlight three major 
differences between survivability and fault tolerance.  

First, in fault tolerance, failures randomly happen; but in security, attacks are 
typically intentional and do not randomly happen. Moreover, attacks are more intelligent 
and active (i.e., more intentional and better planned) than failures, so more proactive 
tolerance techniques are needed for survivability.  



 

      Second, intrusion detection is typically much more complicated than failure detection. 
This is why there are so many new research challenges in intrusion detection. 

Third, in the literature of fault tolerance, intrusions in many cases are modeled and 
tolerated as Byzantine faults, or arbitrary faults. Therefore, if a system is Byzantine fault 
tolerant, it is able to tolerate intrusions in some degree. BFT [4], a practical Byzantine 
fault tolerant system, can tolerate both faults and intrusions. However, it should be 
noticed that not all damages to the system are caused by faults and not all intrusions can 
be modeled as Byzantine faults. For example, successful intrusions at the application 
level (e.g., corrupted transactions of database systems), and data corruption usually do 
not appear as faults and cannot be handled by Byzantine fault tolerance. 

INTRUSION MASKING TECHNOLOGIES 
In this section, we will survey four representative intrusion masking technologies, namely 
survivable storage systems, intrusion masking distributed computing, attack resistant 
certification authority, and survivable network systems.  

Survivable Information Storage Systems 
As society increasingly relies on digitally stored and processed information, supporting 
the availability, integrity, and confidentiality of this information is crucial. We need 
systems in which users can securely store critical information, ensuring that it persists, is 
continuously accessible, cannot be destroyed, and is kept confidential. A survivable 
storage system would provide these guarantees over time and despite malicious 
compromises of storage node subnets.  

      In [5] and [31], how to build a survivable distributed information storage system (e.g., 
a distributed file storage system) has been investigated. Current distributed file systems 
are not survivable; whenever a node is hacked, the attacker can not only know the content 
of the files stored on that node but also modify or destroy them. In [5], a fragmentation-
based survivability design is proposed, where (a) every file is fragmented into a set of 
fragments before it is stored on a storage node; (b) fragments are replicated to yield more 
availability; (c) fragment replicas of a file are carefully scattered across the network of 
storage nodes in such a way that when a node is broken, the attacker can never get a 
complete set of the fragments for this file. Moreover, to prevent the attacker from getting 
partial information about the file from the fragments he captures after breaking into a 
node, each file is encrypted before fragmentation and the cipher-text fragments are made 
inter-dependent upon each other (using such technique as CBC mode encryption), and the 
ensemble order among the fragments for the file is kept confidential. In this way, when 
the attacker captures a set of encrypted fragments, even if he knows the key, he is still 
unable to decrypt these fragments (in most cases).  

      In [31], a different secret-sharing-based survivable design, called PASIS, is proposed, 
although the goal is also to develop a survivable information storage system. The PASIS 
architecture, shown in Figure 1, flexibly and efficiently combines decentralized storage 
systems, data redundancy and encoding, and dynamic self-maintenance to achieve 
survivable information storage. A PASIS system applies threshold cryptography schemes 
[37] to spread information across a decentralized collection of storage nodes. Client-side 
agents communicate with the collection of storage nodes to read and write information, 



 

hiding decentralization from the client system. Automated monitoring and repair agents 
on storage nodes provide self-maintenance features.  

      In particular, in PASIS a m-n secret sharing scheme is used to break a data object 
(e.g., a file) into n shares so that (a) every shareholder (i.e., a storage node) has one of the 
shares; (b) any m of the shareholders can reconstruct the object; (c) but a group of fewer 
than m shareholders cannot gain any information about the object. Note that a share in 
[31] and a fragment in [5] are very different. A (clear-text) fragment can tell the attacker 
partial information about the corresponding data object, but a share could tell the attacker 
nothing about the data object. This nice property of secret-sharing schemes allows PASIS 
to achieve the same amount of security as [5] without doing any encryption. 

       Correspondingly, the read and write operations need to be redesigned in PASIS. In 
particular, when a client reads a file, first, the client will look up, in the directory service, 
the names of the n shares that comprise the file. Second, the client sends read requests to 
at least m of the n storage nodes. Third, the client collects the responses. Fourth, the client 
reconstructs the file. On the other hand, when a client writes a file, the client needs to a 
set of operations similar to those involved in a read except that the write operation does 
not complete until at least n-m+1 (or m, whichever is greater) storage nodes have stored 
their shares. 
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Figure 1. The PASIS architecture. Client systems and storage nodes are attached to the 
network. Client applications interact with a PASIS storage system through a PASIS 
agent. Storage devices and repair agents that monitor system status comprise the storage 
nodes. 

      In summary, the PASIS architecture illustrates the following ideas in building 
survivable storage systems. First, use decentralized storage systems to partition 
information among nodes. “Using data distribution and redundancy schemes commonly 



 

associated with disk array systems such as RAID (Redundant Array of Independent 
Disks) ensures scalable performance and fault tolerance”[31]. “Elimination of single 
failure points provides a starting point for developing survivable storage systems”[31]. 

Second, exploit data redundancy and encoding. Threshold or secret-sharing schemes 
provide both information confidentiality and availability. “These schemes encode, 
replicate, and divide information into multiple pieces (or shares) that can be stored at 
different storage nodes” [31]. The system can only construct the information when 
enough shares are available. Third, perform dynamic self-maintenance. “Over time, all 
systems need maintenance. Truly survivable systems automatically perform some self-
maintenance includes regular monitoring for potential problems, such as failed or 
compromised nodes, performance bottlenecks, and denial-of-service attacks” [31].    

Finally, accomplish good trade-offs among information confidentiality, information 
availability, and storage requirements.  Different threshold schemes will yield different 
confidentiality, availability, and storage requirements tradeoffs. For example, as n 
increases, information availability increases (it’s more probable that m shares are 
available), but the storage required for the information increases (more shares are stored) 
and confidentiality decreases (there are more shared to steal).   

Intrusion Masking Distributed Computing 
As businesses and applications are becoming more and more distributed (on the Internet), 
distributed computing and distributed software are more and more popular. To satisfying 
the IA needs of these distributed businesses and applications, survivable distributed 
computing is in urgent need. Nevertheless, distribution of computing can make 
information systems more vulnerable since the hacker will have more choices regarding 
where and when to enforce the attack; and any local breach may lead to serious global 
compromise through the interdependencies among distributed operations.            

      Distributed software is often structured in terms of clients and services. Each service 
comprises one or more servers and exports operations that clients invoke by making 
requests. Although using a single centralized server is the simplest way to implement a 
service, the resulted service can only be as secure and reliable as that server. If this level 
of fault and intrusion tolerance is unacceptable, then multiple servers that fail 
independently must be used. Usually, replicas of a single server are executed on separate 
processors of a distributed system, and protocols are used to coordinate client interactions 
with these replicas. Moreover, to make a replicated system more resilient to attacks, 
various diversifying technologies such as diverse operating systems can be used.  

      The state machine (replication) approach [24] is a general method for implementing 
an intrusion-masking service by replicating servers and coordinating client interactions 
with server replicas. In this approach, an intrusion-masking server (modeled as a state 
machine) is implemented by replicating that server (i.e., both services and data) and 
running a (server) replica on each of the nodes in a distributed system. In the state 
machine approach, given the same sequence of requests (from probably a set of clients) 
to each replica, a  group of non-faulty replicas which start consistent (i.e., having the 
same state) will remain consistent (after the sequence of  requests are processed). Hence, 
when a group of server replicas is serving a set of clients, if the requests of the clients can 
be delivered to the replicas in such a way that the same sequence of requests will always 



 

be received by each replica, then if the group has 2t+1 replicas, it can mask t intruded 
replicas, since each client can use majority voting to identify both the correct and the 
malicious responses. 

      Ensuring that the same sequence of requests (i.e., the same messages and the same 
order) will be delivered to each replica is, however, fairly difficult, due to the 
complexities of the networking environment and the fact that any node or 
(communication) link in a distributed system could be faulty or vulnerable. For one 
example, if we let a replica be the (designated) sender that transmits the clients' messages 
(or requests) to the other replicas, then if the sender is faulty, then the group of replicas 
can receive inconsistent requests. On the other hand, even if the sender is not faulty, 
communication failures can still cause replicas to receive inconsistent or differently-
ordered requests. For another example, if we let each client directly send its requests to 
each replica, then even if nothing is faulty, two replicas could receive two requests from 
two clients, respectively, in different orders, due to such reasons as delay and 
competition. According to [24], two requirements need to be satisfied to achieve this 
goal: (a) Consistency. Every non-faulty server replica receives every request. (b) Total 
Order. Every non-faulty replica processes the requests it receives in the same relative 
order. Developing the protocols that can satisfy these two requirements has raised a 
tremendous amount of interests, and fortunately as a result, a family of reliable totally 
ordered group communication services which can satisfy the two requirements are 
developed (e.g., [33]). And these protocols (or services) have naturally become a key 
component of a typical implementation of the state machine approach. Since the state 
machine approach can handle arbitrary Byzantine faults such as software bugs, operator 
mistakes and malicious attacks, the corresponding systems (services) built using this 
approach are also called Byzantine fault tolerant distributed systems (services). 
Nevertheless, to guarantee correctness and security, in general these reliable totally 
ordered group communication services require that less than 1/3 of replica group 
members be faulty. Therefore, a survivable distribute computing system built using the 
state machine approach actually uses 3k+1 or more server replicas to mask k intruded 
replicas.  

Although many solutions for state machine replication have been proposed, state 
machine replication has not been widely deployed in the real world primarily due to the 
fact that most of these solutions have significant performance overhead (another reason 
might be that once one replica is compromised, it is fairly easy to compromise the 
remaining replicas). To mitigate this problem, in [4] a new practical algorithm for state 
machine replication called BFT is proposed, which can be used to build highly-survivable 
systems that tolerate Byzantine faults. BFT shows how to build Byzantine-fault-tolerant 
systems that can be used in practice to implement real services because they do not rely 
on unrealistic assumptions and they perform well. Many existing solutions for state 
machine replication rely on synchrony assumption for correctness, i.e., rely on know 
bounds on message delays and process speeds, which is dangerous in the presence of 
malicious attacks. An attacker may compromise the safety of a service by delaying non-
faulty nodes or the communication between them until they are tagged as faulty and 
excluded from the replica group. Such a denial-of-service attack is generally easier than 
gaining control over a non-faulty node.  



 

In contrast, BFT works in asynchronous environments like the Internet, it 
incorporates mechanisms to defend against Byzantine-faulty replicas, and it recovers 
replicas proactively. The recovery mechanism allows the algorithm to tolerate any 
number of faults over the lifetime of the system provided less than 1/3 of the replicas 
become faulty within a small window of vulnerability. The window may increase under a 
denial-of-service attack but the algorithm can detect and respond to such attacks and it 
can also detect when the state of a replica is corrupted by an attacker. BFT has been 
implemented as a generic program library with a simple interface. The BFT library 
provides a complete solution to the problem of building real services that tolerate 
Byzantine faults. The library is used to implement the first Byzantine-fault-tolerant NFS 
file system, BFS. The BFT library and BFS perform well because the library incorporates 
several important optimizations. The most important optimization is the use of symmetric 
cryptography to authenticate messages. Public-key cryptography, which was the major 
bottleneck in previous systems, is used only to exchange the symmetric keys. The 
performance results show that BFS performs 2% faster to 24% slower than production 
implementations of the NFS protocol that are not replicated. Therefore, the BFT library is 
believed to be able to be used to build practical systems that tolerate Byzantine faults. 
Accordingly, in [29] BFT is extended to build practical Byzantine fault tolerant two-
phase commit protocols (BFT-2PC) to tolerate both malicious coordinator and malicious 
participants in distributed transaction processing.  

Finally, although BFT is quite efficient when the replica group is relatively small, 
BFT may not scale well for large groups. To improve scalability, a technology called 
Byzantine Quorum is proposed [17], where quorum replication techniques are applied to 
achieve Byzantine fault-tolerance in asynchronous systems. This technology may provide 
more scalability since each operation is processed by only a subset of replicas instead of 
every replica. Nevertheless, this approach to scalability is fairly expensive: it requires n > 
4f +1 to tolerate f faults; each replica needs a copy of the state; and the load of each 
replica decreases slowly with n (it is O(1/ n ). 

Attack Resistant Certification Authority 
In a public key infrastructure, a certificate specifies a binding between a name and a set 
of attributes especially the public key. Certificates are the core of PKI technologies. 
“Over time, public keys and attributes can change: a private key might be compromised, 
leading to selection of a new public key, for example. The old binding and any certificate 
that specifies that binding then become invalid”. A certification authority (CA) attests to 
the validity of bindings by issuing digitally signed certificates that certify these bindings 
and by providing a means for clients to check the validity of certificates. With an online 
CA, principals can check the validity of certificates just before using them” [30]. An 
online CA needs not only to be secure (the CA’s private key cannot be compromised) but 
also to be available and reliable, which is exactly the goal of survivable CA.  

COCA (Cornell certification authority) [30] is a fault-tolerant and secure online 
certification authority that has been built and deployed both in a local area network and 
on the Internet. Extremely weak assumptions characterize environments in which 
COCA’s protocols execute correctly: no assumption is made about execution speed and 
message delivery delays (i.e., COCA assumes asynchrony); channels are expected to 



 

exhibit only intermittent reliability; and with 3t+1 COCA servers up to t may be faulty or 
compromised. These extremely weak assumptions inversely make COCA extremely 
resilient to malicious attacks. COCA is the first system to integrate a Byzantine quorum 
system [17] (used to achieve availability and scalability) with threshold cryptography and 
proactive recovery (used to defend against mobile adversaries which attack, compromise, 
and control one replica for a limited period of time before moving on to another). In 
addition to tackling problems associated with combining fault-tolerance and security, 
COCA develops new proactive recovery protocols, and gives a quantitative evaluation on 
its cost and effectiveness. 

The idea of COCA has four major aspects. First, the CA service is supported by a set 
of replicated COCA servers, but the private key of the CA service (namely the signing 
key) is held by no COCA server. Instead, different shares of the key are stored on each of 
the servers, and threshold cryptography is used to construct signatures on responses and 
certificates. To sign a message from a client, each COCA server generates a partial 
signature from the message and that server’s share of the service private key, some 
COCA server combines these partial signatures and obtains the signed message. In this 
way, even when several COCA servers are compromised, the private key will still not be 
disclosed if the number of compromised servers is below the threshold of the scheme.  

Second, to be resilient to server failures and provide more availability, every client 
request is processed by multiple servers and every certificate is replicated on multiple 
servers. (Note that COCA supports two types of requests: a Query request retrieves a 
certificate, while an Update request creates, updates, or invalidates a certificate.) The 
replication is managed as a dissemination Byzantine quorum system [17], where servers 
are organized by COCA into sets, called quorums, and accordingly, each client request is 
processed by a quorum instead every replica server. However, since a client making a 
request cannot authenticate messages from a COCA server (because in COCA clients do 
not know server public keys) and, therefore, cannot determine whether a quorum of 
servers has processed that request. COCA let some servers to become delegates for each 
request. A delegate presides over the processing of a client request and assembles the 
needed partial signatures from other COCA servers. A client request is handled by t+1 
delegates to ensure that at least one of the delegates is correct.     

Figure 2 gives a high-level overview of how COCA operates by depicting one of the 
t+1 delegates and the quorum of servers working with that delegate to handle a client 
request. The figure shows a client making its request by sending a signed message to t+1 
COCA servers. Each server that receives this message assumes the role of delegate for 
the request. A delegate engages a quorum of servers to handle the request and constructs 
a response to the request based on the responses (i.e., partial signatures) received from 
that quorum. The delegate then assembles these responses into a signature signed by the 
CA service. After receiving this signature, the client checks that the response is correctly 
signed by the service and incorrectly signed responses will be discarded.  

Third, a mobile adversary might compromise t+1 servers over a period of time and, in 
doing so, collect the t+1 shares of the service private key. To counter this attack, COCA 
employs a proactive secret-sharing (PSS) protocol to refresh these shares, periodically 
generating a new set of shares for the service private key and deleting the old set. New 



 

shares cannot be combined with old shares to construct signatures. Fourth, to support the 
asynchrony assumption, COCA develops an asynchronous PSS protocol.  

COCA is motivated by an earlier work denoted Ω (“Omega”) [23]. Ω is a survivable 
key management service for open networks whose goal is to provide flexible and 
powerful interfaces to meet the demands of an ever widening range of applications. Ω 
provides the flexibility of an on-line server without incurring the fault-tolerance or 
security vulnerabilities usually associated with such servers. Ω is built on top of the 
Byzantine quorum technology, but it does not involve threshold cryptography. Finally, 
besides distributed survivable CA such as COCA and Ω, in [7] a centralized attack 
resilient CA called ARECA is proposed which is built on the top of threshold 
cryptography and a new two phase signature generation technique.  
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Figure 2. Overview of client request processing in COCA. 

Survivable Network Systems 
In [3] resilient overlay-network architectures are addressed. “A Resilient Overlay 
Network (RON) is an architecture that allows distributed Internet applications to detect 
and recover from path outages and periods of degraded performance within several 
seconds, improving over today’s wide-area routing protocols that take at least several 
minutes to recover” [3]. “A RON is an application-layer overlay on top of the existing 
Internet routing substrate. The RON nodes monitor the functioning and quality of the 
Internet paths among themselves, and use this information to decide whether to route 
packets directly over the Internet or by way of other RON nodes, optimizing application-
specific routing metrics” [3]. It is clear that a RON can mask such attacks as distributed 
denial-of-service attacks and attacks on routers and physical communication links. 

Results from two sets of measurements of a working RON deployed at sites scattered 
across the Internet demonstrate the benefits of the RON architecture. For instance, over a 
64-hour sampling period in March 2001 across a twelve-node RON, there were 32 
significant outages, each lasting over thirty minutes, over the 132 measured paths. RON’s 
routing mechanism was able to detect, recover, route around all of them, in less than 



 

twenty seconds on average, showing that its methods for fault (and intrusion) detection 
and recovery work well at discovering alternate paths in the Internet. Furthermore, RON 
was able to improve the loss rate, latency, or throughput perceived by data transfers; for 
example, about 5% of the transfers doubled their TCP throughput and 5% of transfers 
saw their loss probability reduced by 0.05. 

RON node is sufficient to overcome faults or intrusions and improve performance in 
most cases. These improvements, particularly in the area of fault detection and recovery, 
demonstrate the benefits of moving some of the control over routing into the hands of 
end-systems. 

DEFENSE-IN-DEPTH TECHNOLOGIES 
Compared with intrusion masking technologies, where many attacks may be masked 
without causing any system security (e.g., integrity and availability) degradation, 
defense-in-depth technologies usually would introduce certain level of system security 
degradation. On the other hand, the advantage of defense-in-depth technologies is that (a) 
they do not require the system be redesigned and can be directly applied to legacy 
systems, and (b) their overhead is typically smaller than intrusion masking technologies.  

      The key issues and problems in developing defense-in-depth technologies are: 

o How to quickly contain/isolate the intrusions so that their infection will not be too 
serious to operate through? 

o How to quickly distinguish the damaged part for the undamaged part of the 
system? 

o How to quickly repair the contaminated part of the system without bringing it 
offline? 

o How to handle the impact of false alarms, undetected intrusions, and the detection 
latency? 

o How to make the intrusion response facilities adaptive and proactive? 
o How to validate the cost-effectiveness of defense-in-depth technologies? 

In the rest of this section, we will break the possible defense-in-depth technologies 
into phases of in-depth defense in the first sub-section. In the second sub-section, we use 
an intrusion tolerant database system to illustrate some important techniques of defense-
in-depth.    

Phases of Defense-in-Depth 
In the literature, defense-in-depth is usually referred to as Information Warfare Defense. 
Information warfare defense does everything possible to prevent attacks from succeeding, 
but it also assumes that not all attacks will be averted at the outset. This places increased 
emphasis on the ability to live through and recover from successful attacks. Information 
warfare defense must consider all phases of the attack and recovery process. These 
phases, and the activities that occur in each, are proposed in [1] and quoted as follows.  

o Prevention. The defender puts protective measures in place. 

o Intelligence gathering. The attacker observes the system to determine its 
vulnerabilities and find the most critical functions or data to target. 



 

o Attack. The attacker carries out the resulting attack plan. 

o Detection. The defender observes symptoms of a problem and determines that an 
attack may have taken place or be in progress. 

o Containment. The defender takes immediate action to eliminate the attacker’s 
access to the system and to isolate or contain the problem, preventing it from 
spreading further. 

o Damage assessment. The defender determines the extent of the problem, 
including failed functions and corrupted data. 

o Reconfiguration. The defender may reconfigure to allow continued operation in a 
degraded mode while recovery proceeds. 

o Repair. The defender recovers corrupted or lost data and repairs or reinstalls 
failed system functions to reestablish normal operations. 

o Fault treatment. To the greatest extent possible, the defender identifies 
weaknesses exploited in the attack and takes steps to prevent a recurrence. 

Some phases - such as prevention, intelligence gathering, detection, containment, 
reconfiguration, and repair - lend themselves to automated mechanisms and support 
within the system being attacked. Others, such as fault treatment and some aspects of 
damage assessment, typically require human intervention. 

It should be noticed that the above phases are motivated by the life cycle of fault 
tolerance. Fault tolerance is a natural approach for dealing with information attacks 
because it is designed to address system loss, compromise, and damage during operation. 
Traditional fault-tolerance-approach phases include detection, containment, adaptation, 
and recovery. Fault semantics for information attacks differ from the traditional fault-
tolerance model because in such cases faults are intentionally introduced and malicious, 
and some attacks may be disguised to appear like normal operations. Therefore, 
semantics for countermeasures must differ correspondingly, as we mentioned in Section 
2.  

The information warfare defender’s goal is to keep the system operating to support as 
much critical processing as possible, even if the system is contaminated (or infected) by 
an attack. One way to ensure continued service is to explicitly address integrity losses 
caused to the systems in the presence of information warfare attacks. To some degree, 
real systems lack integrity most of the time. These integrity losses do not always prevent 
the systems from achieving their critical objectives. The challenge in information warfare 
is to anticipate acceptable integrity losses and design systems to operate in these 
degraded modes. 

Survivable Database Systems 
Existing survivable database technologies can be roughly broken into two categories: 
transaction-based database survivability [2,9,38], which enables a database to operate 
through attacks via identifying and “rolling back” malicious and affected transactions, 
and data-object-based database survivability [39], which enables a database to operate 
through attacks via identifying and repairing each corrupted data object. In this section, 



 

we use ITDB (Intrusion Tolerant Data Base), a transaction-based survivable database 
framework, to illustrate the design principles of survivable database systems.    

      ITDB [2,9,11,13,14] is a transaction-level self-healing database framework. Since 
preventing malicious transaction from being executed is in general not a realistic 
solution, ITDB focuses on how to enable a database to heal itself under sustained 
malicious-transaction attacks in such a way that the database can continue delivering (to a 
large extent valid) transaction-processing services in the face of such attacks. 

   ITDB focuses on the intrusions enforced by authorized but malicious transactions. 
ITDB views a database as a set of data objects. At a moment, the state of the database is 
determined by the values of these objects. The database is accessed by transactions for 
the ACID properties. A transaction is a partial order of read and write operations that 
either commits or aborts. The execution of a transaction usually transforms the database 
for one state to another. Moreover, ITDB models the (usually concurrent) execution of a 
set of transactions by a structure called a history. 

       ITDB focuses on the damage caused by malicious, committed transactions. Since an 
active, malicious transaction will not cause any damage before it commits (due to the 
atomicity property), it is theoretically true that if we can detect every malicious 
transaction before it commits, then we can roll back the transaction before it causes any 
damage. However, this “perfect” solution is not practical for two reasons. First, 
transaction execution is, in general, much quicker than detection, and slowing down 
transaction execution can cause very serious denial-of-service. For example, Microsoft 
SQL Server can execute over 1000 (TPC-C) transactions within one second, while the 
average anomaly detection latency is typically in the scale of minutes or seconds (due to 
the difficulty of anomaly detection).  

       Hence ITDB is motivated by the following practical goal: “After the database is 
damaged, locate the damaged part and repair it as soon as possible, so that the database 
can continue being useful in the face of attacks.” In other words, ITDB wants to provide 
sustained levels of data integrity and availability to applications in the face of attacks. 
The major components of ITDB are shown in Figure 3. Note that all operations of ITDB 
are on-the-fly without blocking the execution of (most) normal user transactions. The job 
of the Intrusion Detector is to identify malicious transactions. In the rest of this section, 
we give an overview of the jobs that the other ITDB components do. 

      The complexity of ITDB is mainly caused by a phenomenon called damage 
spreading. In a database, the results of one transaction can affect the execution of some 
other transactions. Informally, when a transaction Ti reads an object x updated by another 
transaction Tj, Ti is directly affected by Tj. If a third transaction Tk is affected by Ti, but 
not directly affected by Tj, Tk is indirectly affected by Tj. It is easy to see that when a 
(relatively old) transaction Bi that updates x is identified malicious, the damage on x can 
spread to every object updated by a good transaction that is affected by Bi, directly or 
indirectly. The job of the Damage Assessor is to identify every affected good transaction. 
The job of the Damage Repairer is to recover the database from the damage caused on 
the objects updated by malicious transactions as well as affected good transactions. In 
particular, when an affected transaction is located, the Damage Repairer builds a specific 
cleaning transaction to clean each object updated by the transaction (and not cleaned yet). 



 

Cleaning an object is simply done by restoring the value of the object to its latest 
undamaged version. This job gets even more difficult as the execution of new 
transactions continues because the damage can spread to new transactions and cleaned 
objects can be re-damaged. Therefore, the main objective of ITDB is to guarantee that 
damage spreading is (dynamically) controlled in such a way that the database will not be 
damaged to a degree that is useless. 

      The developers of ITDB believe the single most challenging problem in developing 
practical, cost-effective self-healing database systems (e.g., ITDB) is that during the 
detection latency, a tremendous amount of damage spreading can be caused. This is 
because of the fact that intrusion detection is in general much slower than transaction 
processing. So when a malicious transaction is detected, a lot of affected transactions 
may have already been committed. Therefore, a practical, cost-effective self-healing 
database system must be able to live with substantially longer detection latency relative 
to transaction processing.  
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Figure 3. The ITDB Architecture 

       A unique technical contribution of ITDB is that it can live with long detection 
latency without suffering serious damage spreading. Allowing long detection latency not 
only lowers ITDB's requirement on detection agility, but also indirectly lowers ITDB's 
requirements on detection rate and false alarm rate, because in many cases, longer 
detection latency can lead to higher detection rate and lower false alarm rate.  

      However, living with long detection latency is not an easy task. In ITDB, the impact 
of detection latency is three folds: (1) during the detection latency, the damage can  
spread to many objects; (2) a significant assessment latency can be caused, and during the 
assessment latency the damage can further spread to many more objects; (3) significant 
assessment latency can cause ineffective - to some degree at least - damage containment. 
These three aspects of impact can cause the database to be too damaged to be useful. The 
job of the Isolation Manager and the Damage Container is to mitigate this impact. 



 

       It is easy to see that if every malicious transaction Bi can be identified just after it 
commits, very little damage can spread, and damage assessment can be done quickly. 
However, with significant detection latency, when Bi is identified, in the history there can 
already be many good transactions following Bi and many of them may have already 
been affected by Bi. Damage assessment at this situation can cause substantial delay, 
since as shown in [2] damage assessment can spend substantial computation time to scan 
a long sub-history log for identifying the affected transactions.  

      Significant assessment latency could cause ineffective damage confinement. At the 
first glance, it seems that to prevent damage spreading during repair, containing the 
damage that is located by the Damage Assessor is a good idea. However, in this approach 
damage will not be contained until an object is identified by the Damage Assessor as 
damaged. Hence damage containment depends on damage assessment. As a result, when 
there is a significant latency in locating a damaged object x, during the latency many new 
transactions may read x and spread the damage on x to the objects updated by them. As a 
result, when x is confined many other objects may have already been damaged, and the 
situation can feed upon itself and become worse because as the damage spreads the 
assessment latency could become even longer. This clearly contradicts with our original 
motivation of damage containment.  

      ITDB tackles the three challenges through two novel techniques: attack isolation and 
multiphase damage containment. Although working towards the same goal, the Isolation 
Manager and the Damage Container take two very different approaches. And these two 
approaches compensate each other. In particular, Damage Container takes a novel multi-
phase damage containment approach which first instantly contains the damage that might 
have been caused by an intrusion as soon as the intrusion is identified, then tries to 
uncontain the objects that are previously contained by mistake. Multi-phase damage 
containment can ensure that no damage will spread during the assessment latency, 
although with some availability lost. However, Damage Container can do nothing to 
reduce the damage caused during the detection latency. In contrast, the Isolate Manager 
can reduce the damage caused during the detection latency (thus it indirectly reduces the 
damage caused during the assessment latency) by isolating the execution of a suspicious 
transaction that is very likely to cause damage later on. Isolation immunizes the database 
from the damage caused by the set of suspicious transactions without sacrificing 
substantial availability, since if an isolated user turns out to be innocent, most - if not all - 
of his or her updates can be merged back to the real database. 

      Finally, the job of the Self-Stabilization Manager (SSM) is to dynamically 
reconfigure the other ITDB components based on (a) the current attacks, (b) the current 
workload, (c) the current system state, and (d) the current defense behavior of ITDB, in 
such a way that stabilized levels of data integrity and availability can be provided to 
applications in a cost-effective way. Factors (a), (b), and (c) are called the environment of 
ITDB. And the jobs of the Policy Enforcement Manager (PEM) are to proxy user 
transactions and enforce system-wide intrusion tolerance policies. For example, a policy 
may require the PEM to reject every new transaction submitted by a user as soon as the 
Intrusion Detector finds that a malicious transaction is executed by the user. Intrusion 
response policies and security manager interfaces are certainly a crucial aspect of ITDB.   



 

In summary, ITDB develops a family of novel defense-in-depth techniques, such as 
on-the-fly attack recovery, multiphase damage containment, attack isolation, and rule-
based adaptive intrusion-tolerance.  

From the self-healing perspective, ITDB considers recovery from malicious but 
committed transactions. Traditional recovery mechanisms do not address this problem, 
except for complete rollbacks to a previous checkpoint, which undo the work of good 
transactions as well as malicious ones, and compensating transactions, whose utility 
depends on application semantics. ITDB develops two attack recovery mechanisms: on-
the-fly repair and history rewriting. For on-the-fly repair, instead of rolling back the 
database to the latest checkpoint, the write-read dependency between transactions are 
analyzed on-the-fly to determine which good transactions are affected by a bad 
transaction, directly or indirectly. Then a specific cleaning transaction is composed to 
clean the infection caused by each malicious or affected transaction, and the concurrency 
control algorithm is adapted in such a way that new user transactions can be executed 
simultaneously together with cleaning transactions without affecting the correctness of 
repair. Finally, when an on-the-fly repair terminates with all the damage repaired, ITDB 
can detect the termination in a timely manner.  

For history rewriting, ITDB rewrites execution histories for the purpose of backing 
out malicious transactions [14]. Good transactions that are a directly or indirectly, by 
malicious transactions complicate the process of backing out undesirable transactions. 
The prefix of a rewritten history produced by the algorithm serializes exactly the set of 
unaffected good transactions.  The suffix of the rewritten history includes special state 
information to describe a good transactions as well as malicious transactions.  ITDB can 
extract additional good transactions from this latter part of a rewritten history. The latter 
processing saves more good transactions than is possible with a dependency-graph based 
approach to recovery.   

Finally, in [28], a self-healing workflow system is proposed. Compared with ITDB, 
[28] considers more types of dependency relations and introduces a set of theorems to 
trace damage spreading, construct repairing tasks, and create execution orders between 
recovery and normal tasks in such a way that correct, on-the-fly workflow attack 
recovery can be achieved.   

CONCLUSION 
As society increasingly relies on digitally stored and accessed information, applications 
have increasingly higher requirements on supporting the availability, integrity, and 
confidentiality of this information, and traditional information security technologies are 
increasingly limited in satisfying the security requirements of applications due to their 
inability to survive successful attacks. As a result, Information Assurance technologies 
are introduced to not only prevent information from being disclosed, modified or 
destroyed, but also detect intrusions and operate through attacks in such a way that a 
certain level of information security can be ensured in the presence of attacks. In this 
article, we survey the natural evolution of information assurance technologies. Three 
generations of IA technologies are summarized, and the newest generation of IA 
technologies is discussed in detail. In summary, this article takes the first steps to give a 
comprehensive overview of the scope of IA technologies, the relation between the 



 

emerging survivability technologies and the more established IA technologies such as 
information security and intrusion detection technologies, the characteristics of 
survivability technologies, and the representative ideas, principles and techniques of 
survivable systems development.     

       Although a variety of emerging IA technologies have been developed recently to 
ensure a certain level of information security in the presence of attacks for applications, 
existing IA technologies are still at their earlier stage and limited in many aspects, and 
advanced IA technologies have not been widely deployed in the real world so far. Hence, 
a lot of existing new IA technologies and practices are yet to come. Here we would like 
to mention several new research and development directions in IA technologies, which 
are illustrated as follows.  

o The threat aspect of survivability. Without a tangible and accurate threat model, a 
highly assured information system cannot be developed. To build a good threat 
model, both the system’s vulnerabilities and the attacks’ characteristics (e.g., intent) 
are crucial. Some preliminary research has been done in analyzing the attacker’s 
intent and strategies (e.g., [10]), but more research is certainly needed. Risk analysis 
is a relevant topic and readers can refer to Chapter Risk Assessment and Risk 
Management for information on this topic.      

o Survivability requirements analysis. Without a clear specification of the users’ 
survivability requirements, a survivable system may either over-react to attacks (and 
threats) or be not proactive enough, and the effectiveness of survivability mechanisms 
could not be well evaluated. Survivability requirements analysis is a challenging 
problem, especially when quantitative requirement specifications are expected.        

o Survivability metrics and measurements. Information Assurance metrics are scarce 
and qualitative. Given the need to determine the information assurance posture for a 
given organization under given conditions, users in the field require a means to 
determine the relative degree of assurance associated with the information assets 
under their control. Likewise, developers of survivable systems require metrics to 
measure the degree to which they are employing engineering practices during the 
system development process. The use of IA metrics would permit establishing trust in 
a system built from untrusted components, determining sufficient levels of security 
for the specific tactical situation and condition, and assessing system vulnerabilities. 
IA metrics enable quantitative tradeoffs between security and performance 
(degradation).      

o Service survivability. Existing IA technologies largely focus on system survivability, 
but in many cases system survivability does not imply service survivability, and 
additional service survivability facilities and controls are needed. Service 
survivability are application oriented and at a higher level than system survivability.      

o Wireless Information Assurance. A key piece of the large-scale information 
enterprise is the wireless information assurance segment. Wireless networks must 
exhibit the same functional and IA attributes as wired networks. They must be 
protected; attacks against these networks must be detected; specifics of successful 
attacks must be assessed and finally appropriate responses must be carried out. As we 
move to more and more wireless components becoming a part of the larger network 
and as wireless networks proliferate, we need to be aware that these networks, if 
improperly understood and configured, could provide a “back-door” into our 



 

protected wired enterprise. Intrusion detection for wireless networks must be 
addressed as well as recovery of wireless services after adversary disruption/denial 
destruction of friendly networks.  

o Using intrusion tolerant middleware [6,22,26] to facilitate the development of 
intrusion tolerant applications. In this way, developers may be relieved from 
substantial IA design and development issues.  
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Glossary 
Availability (a) The ability to access a specific resource within a specific time frame as 
defined within the IT product specification. (b) The ability to use or access objects and 
resources as required. The property relates to the concern that information objects and 
other system resources are accessible when needed and without undue delay. (c) The 
prevention of the unauthorized withholding of information or resources. 

Assurance (a) The degree of confidence that a target of evaluation adequately fulfills the 
security requirements. (b) A measure of confidence that the security features and 
architecture of an automated information system accurately mediate and enforce the 
security policy. Note: The two main aspects of assurance are effectiveness and 
correctness or development and evaluation assurance. 

Authenticity The ability (a) to establish the validity of a claimed identity; (b) to provide 
protection against fraudulent transactions by establishing the validity of a message, 
station, individual, or originator. 

Byzantine Fault Tolerance A Byzantine fault is one in which a component of some 
system not only behaves erroneously, but also fails to behave consistently when 
interacting with other components. Correctly functioning components of a Byzantine 
fault tolerant system will be able to reach the same group decisions regardless of 
Byzantine faulty components.  

Certificate A certificate is a document that attests to the truth or ownership of something. 
A digital certificate is a digital document that serves the same purpose. Most specifically, 
it attests to the truth that you are who you say you are, and that you own the particular 
public key specified in the certificate.  

Certification Authority (CA) A trusted third party who confirms the identity of an 
organization or individual (an entity). 

Confidentiality Assurance that information is not disclosed to inappropriate entities or 
processes. 

Fault Tolerance The ability of a system or component to continue normal operation 
despite the presence of hardware or software faults. 

Integrity (a) Correctness and appropriateness of the content and/or source of a piece of 
information. (b) The prevention of the unauthorized modification of information. (c) 
Sound, unimpaired, or perfect condition.  



 

Intrusion Detection A security service that monitors and analyzes system events to find 
and provide real-time or near real-time attempt warnings to access system resources in an 
unauthorized manner. This is the detection of break-ins or break-in attempts, by 
reviewing logs or other information available on a network. 

Non-repudiation An attribute of communications that seeks to prevent future false 
denial of involvement by either party. Non-repudiation with proof of origin provides the 
recipient of data with evidence that proves the origin of the data. 

Survivability The ability of a network computing system to provide essential services in 
the presence of attacks and failures, and recover full services in a timely manner. 

Vulnerability A hardware, firmware, communication, or software flaw that leaves a 
computer processing system open for potential exploitation, either externally or 
internally, thereby resulting in risk for the owner, user, or manager of the system.  
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