
Private Browsing Mode Not Really That Private:
Dealing with Privacy Breaches
Caused by Browser Extensions

Bin Zhao, Peng Liu
College of Information Sciences and Technology

The Pennsylvania State University
University Park, Pennsylvania 16802
Email: {biz5027, pliu}@ist.psu.edu

Abstract—Private Browsing Mode (PBM) is widely supported
by all major commodity web browsers. However, browser exten-
sions can greatly undermine PBM. In this paper, we propose an
approach to comprehensively identify and stop privacy breaches
under PBM caused by browser extensions. Our approach is
primarily based on run-time behavior tracking. We combine
dynamic analysis and symbolic execution to represent exten-
sions’ behavior to identify privacy breaches in PBM caused by
extensions. Our analysis shows that many extensions have not
fulfilled PBM’s guidelines on handling private browsing data.
To the best of our knowledge, our approach also provides the
first work to stop privacy breaches through instrumentation. We
implemented a prototype SoPB on top of Firefox and evaluated
it with 1,912 extensions. The results show that our approach can
effectively identify and stop privacy breaches under PBM caused
by extensions, with almost negligible performance impact.

I. INTRODUCTION

Modern commodity web browsers provide a customizable
environment to run web apps, access personal information, and
manage login credentials, etc. Historically, web browsers store
information such as form entries, passwords (if authorized by
the user), cookies, web cache, etc. The stored information
is always a privacy concern. Recently, web browsers have
provided a feature denoted “Private Browsing Mode” (PBM)
to partially address this concern. Mozilla Firefox, Microsoft
IE, and Google Chrome all supports this mode, though they
denote it in different terms, i.e., “Private Browsing”, “InPrivate
Browsing” and “incognito mode”, respectively. Under PBM,
web browsers do not store some private browsing data in the
disk, including but not limited to browsing history, cookies,
cache web, form entries, and passwords [25]. Essentially, PBM
has two goals. First, no history should be stored on a user’s
computer during PBM [2]. For example, a family member
should not know the sites one visited under PBM using the
desktop shared by his/her family. Second, hide one’s identity
during PBM. This could have several benefits. For example, it
will be more difficult for a remote attacker to steal the user’s
personal credentials thus reducing the security threat. Another
surprising benefit is that users could save more money under
PBM. Many web sites learn a user’s interests by storing one’s
browsing session information. For example, through a user’s
search history, an airline may rise up the price next time he/she
searches it to persuade him/her to make the purchase now.
While under PBM, one might see a surprising lower price!

Hence, it is reported that a significant number of people (20%)
use PBM [12].

However, there is a major privacy issue with PBM. As
the most popular customization, browser extensions pose a
great threat to PBM. It is reported that 85% of Firefox users
have installed at least one extension, “with more than 2.5
billion downloads and 580 million extensions in use every
day in Firefox 4 alone” [22]. Nonetheless, all major browsers
do not control how extensions handle personal data, nor do
they provide sufficient support or mandatory development
kit for extensions under PBM. When the PBM window is
activated, the privacy protection is weak in the sense that
browser extensions may do something inappropriately. First,
some private browsing data generated under PBM are not
properly handled. Second, extension related data under PBM
are ignored by the browser. We will discuss details on the
privacy breaches caused by extensions later in Section II.

Prior Works. Prior works primarily focus on how to
identify violations of PBM. There are just few studies on it
[2], [19]. G. Aggarwal et al. proposed a tool ExtensionBlocker
to let users run extensions safely during PBM [2]. However,
this tool simply disables all unsafe extensions from running.
B. S. Lernera et al. proposed a static type system to verify
extensions’ compliance with PBM. This static analysis unfor-
tunately leaves some security holes that need to be filled. It
cannot ensure that all privacy breaches are identified and let
alone stop privacy breaches of browser extensions.

Key Insights and Our Approach. Motivated by the
limitations of existing works dealing with browser extensions,
we propose an approach to identify and stop privacy breaches
under PBM for browser extensions. Our approach is based
on the following three insights. (1), Commodity browsers
provide PBM guidelines for developers. The usual practice
is that browser programmers follow these PBM guidelines.
But many if not most extension developers forget or do not
care that much about the PBM programming guidelines (e.g.,
using PBM flag) [19]. This is the primary reason for privacy
breaches caused by extensions even when they are running in
PBM mode. (2), A privacy breach is technically caused by two
root causes: one is privacy-harming disk operations; second is
forgetting to wipe out the in-memory private data. (3), The
two root causes can be identified through a combination of
dynamic analysis and symbolic execution. In particular, System

1



Call Dependence Graphs (SCDGs) can be used to identify
the two root causes. But there are several challenges, such as
input space issue and system call traces differentiation between
browser and extensions.

Based on these insights, we proposed an approach to
identify and stop privacy breaches caused by browser exten-
sions. In a nutshell, our approach has two steps. Step 1, we
obtain extensions’ behavior via a combination of system level
tracking and symbolic execution. This step will result in some
privacy breach patterns for any extension that causes private
data leakage. Step 2, the extensions will then be instrumented
to stop privacy leakage using the identified patterns. In step
1, SCDGs are generated as a representation of behaviors for
extensions. SCDGs can clearly describe disk operations and
in-memory private data activities. State transition diagrams are
used to identify potential privacy breaches. In a combination
of state transition diagrams and SCDGs, we can generate the
privacy breach patterns caused by some extensions, which
are essentially sub-graphs of SCDGs. These privacy breach
patterns will then be employed in step 2 to instrument those
extensions so as to stop the corresponding privacy leakage.
Two alternatives are introduced for extension instrumentation:
disabling storing private browsing data under PBM and/or
clearing temporarily-stored private browsing data when the last
PBM window is to be closed. After instrumentation, extensions
can then be installed and used by users.

Main Use Cases of Our Approach. Our approach can be
used in two ways. First, extension repositories can use it to do
safety check of uncertified extensions submitted by third-party
developers. Second, a trustworthy web portal can be set up to
allow users to upload and check the safety of any extensions.

Contributions. Our approach is not to replace the current
private browsing module used by web browsers. Instead, we
aim to complement the module and enhance the privacy
protection against problematic browser extensions. Overall,
this work makes the following contributions:

• We identify two root causes of privacy breaches
caused by extensions: privacy-harming disk operations
and forgetting to wipe out the in-memory private data.

• We systematically employ system level behavior track-
ing on extensions. Their behavior are dynamically
represented by SCDGs, through which we can identify
privacy breach patterns caused by extensions.

• This is the first attempt to stop privacy breaches caused
by extensions under PBM through instrumentation.
Two alternatives are proposed to instrument extensions
which have caused privacy breaches.

• We implemented a prototype called SoPB. We evalu-
ated our prototype on top of the Firefox browser with
1,912 extensions. The experimental results show that
we can effectively identify and stop privacy breaches
caused by browser extensions, with no false negatives
and almost negligible performance impact.

The rest of the paper is organized as follows. Section II
presents the issues with extensions under PBM. In Section III,
we propose our approach to identify privacy breaches in PBM
caused by extensions. We briefly introduce the implementation
details in Section IV, followed by a comprehensive evaluation
of SoPB in Section V. We then discuss the scalability and

TABLE I: How private browsing data handled by PBM?
Information Internet Explorer Chrome Firefox Safari
Extension related data Disabled by default, can be

enabled individually
Enabled by default

Cookies Kept in memory in PBM, cleared when exits
Temp Internet files Stored on disk/memory in PBM, deleted when exits
Webpage history Not stored
Passwords Not stored
Download List entry Kept in memory in PBM, cleared when exits
DOM storage Kept in disk in PBM, cleared when exits
Form/search bar entry Not stored

some limitations of our approach in Section VI. Finally, we
summarize the related work and draw a conclusion in Section
VII and Section VIII, respectively.

II. ISSUES WITH BROWSER EXTENSIONS UNDER PBM

A. Private Browsing Data

Before we discuss the possible privacy breaches of PBM
caused by browser extensions, let us first define what is private
browsing data. Based on the PBM guidelines [23], the meaning
of “private browsing” is informally defined through some data
not being stored on local disk or any local storage. Based
on this, we define Private Browsing Data as follows. During
a PBM browsing session, certain private data (Family I) is
not supposed to be generated. In addition, although the other
private data (Family II) can be generated during a PBM
session, such data should not be put onto the local disk. Putting
Family I and Family II together, we get the definition of
Private Browsing Data [31], [25], [8], [3]. Table I lists the
pre-specified private browsing data types [31], [25], [8], [3].
For example, cookies and browsing history are considered as
private browsing data. However, as stated in [23], [25], a file
downloaded from a remote server or a bookmark added during
a PBM session are not defined as private browsing data.

B. Privacy Breaches of PBM Caused by Browser Extensions

Since developers of the browser code will follow the PBM
guidelines, we focus on the private browsing data accessed
by the extensions (typically extensions conduct read and write
operations on these data; the data are typically not generated
by extensions). In the current PBM system model, the PBM
window and the public window execute the same piece of code.
A particular value returned by a global function tells whether
the current window is PBM or normal session. Let us take
Firefox as an example.

A module PrivateBrowsingUtils.jsm is
imported to handle private browsing data under PBM.
The function isWindowPrivate(window) (or
isContentWindowPrivate() in latest Firefox versions)
in this module is used to determine if a given DOM window
is private [24]. The following sample code shows how
a developer can use this function. The return value of the
function isWindowPrivate(arg) is then used to separate
private mode from public mode [24].

if (PrivateBrowsingUtils.isWindowPrivate(window))
{ ... }

else { ... }

PBM Guidelines. Overall, the browser code is carefully
implemented to support PBM. A basic PBM guideline is
quoted as follows: “It is not acceptable for an extension that
records things like URLs or domains visited to even offer the
option to opt out of private browsing mode” [23]. This can

2



be elaborated into two primary PBM guidelines. Guideline
I: Disk operations involving private data should be strictly
controlled. In addition, the generation of certain private data
should also be strictly controlled. Guideline II: Extensions
should check whether the current window is under PBM
(flag checking) whenever private browsing data is accessed.
However, neither of these two guidelines are fulfilled by many
existing extensions.

Privacy breaches we are and are not dealing with.
There are two primary types of privacy breaches associated
with extensions, (I) putting private browsing data onto local
disk/storage, and (II) transferring private browsing data to
a remote computer. Based on the two PBM guidelines, a
privacy breach concerned by PBM is actually type I only.
PBM guidelines do not explicitly require any protection of
type II. PBM is specifically designed to disable the storing of
some private browsing data “on the local computing device”
[8]. Therefore, in this paper we only focus on type I. Type II
is out of the scope of this work. Hence, we define a privacy
breach as follows.

Definition 1. Privacy Breach. Let p be a running extension.
Let D be the private browsing data accessed by p during
a PBM session. If ∃d ∈ D do not fulfill Guideline I and
Guideline II, we say that there is a Privacy Breach caused
by this extension p.

For example, when browsing inside a PBM window, the
browser code will disable putting any cookie on the disk. Even
if the window is closed, the cookie will not be put onto the
disk. During the whole PBM session, the disk is not supposed
to hold any cookie data. It is possible that in-memory cookie
data could be sent by a malicious extension to a remote server;
however, this is not a concern of PBM. Any unauthorized
transfer or retrieval of data from a computer or server over
the Internet or other network is regarded as data exfiltration,
not PBM related privacy leakage [6].

A primary reason that extensions cause privacy breaches is
that “PBM does not magically handle what your extension does
in saving browsing history data; that is the job of each exten-
sion” [11]. All major browsers do not control how extensions
handle private browsing data. From Table I, we can see that
most private browsing data are properly handled (deleted or not
stored) during PBM. However, extension related data are not
properly dealt with whether extension are disabled by default
or not. There are two major ways for an extension to violate
PBM guidelines. First, extensions do many disk harming
operations, e.g. storing cookies and passwords, generating new
files, etc. Second, extensions can maintain their own profiles
(store data and files an extension needs to run), which are not
properly handled when the PBM session is ended.

Another reason is that extension developers do not follow
the PBM guidelines. Some extension developers even do not
know changes are needed to comply with PBM guidelines [19].
Even if they know, do they know how to make changes to
extensions? An Add-on SDK maintained by Jetpack Project
for Firefox extension developers does offer some PBM related
APIs [26]. However, as shown in our evaluation (Section V),
only a small percentage of extensions use this SDK. Besides,
the results also show that even the SDK cannot ensure full
compliance with PBM, let alone without the SDK.

III. OUR APPROACH TO DEAL WITH PRIVACY BREACHES
CAUSED BY EXTENSIONS

Prior static analysis approaches leave some security holes
when checking whether PBM guidelines are fulfilled. Inspired
by this, can a combination of dynamic analysis and symbolic
execution fill these security holes? This can be elaborated
as follows. (1) Given an extension, can we find out the
potential privacy breaches of this extension? (2) If there is
a privacy breach caused by this extension, can we instrument
this extension based on what we learned from the analysis to
stop the privacy breaches?

A. Behavior Representation of Browser Extensions

As aforementioned, an extension’s behavior can be repre-
sented by using a particular graph called SCDG, specifically,
a set of disconnected SCDGs. Each SCDG is a graph in
which “system calls are denoted as vertices, and dependencies
between them are denoted as edges” [30]. A SCDG essentially
describes the interaction between a running program and the
operating system. This interaction is an essential behavior
characteristic of the program [30]. In this paper, SCDG is
defined as follows [30], [33].

Definition 2. System Call Dependence Graph. Let p be a
running extension. Let I be the input to p. f(p, I) is the
generated system call traces. f(p, I) can be represented by
a set of System Call Dependence Graphs (SCDGs)

⋃n
i=0Gi:

Gi = 〈N,E, F, α, β〉, where

• N is a set of vertices, n ∈ N is a system call
• E is a set of data dependence edges, E ⊆ N ×N
• F is the set of functions

⋃
f : x1, x2, ..., xn → y,

where each xi is a return value of system call, y is
the dependence derived by xi

• α assigns the function f to an argument ai ∈ A of a
system call

• β is a function assigning attributes to node value

B. Why Use System Calls and SCDGs?

We use lower-level system calls as a representation of
browser extensions’s behavior for three primary reasons. First,
system calls are the only interface between the operating
system and a running program, providing the only way for
a program to access the OS services [30]. Second, system
calls can clearly show the interactions with filesystem and
disk operations. Third, private browsing data are closely related
with specific files and folders. History, bookmarks, etc., are all
stored in specific files. When tracing private browsing data, it
is easier to track from source.

However, from a single system call trace, we know lit-
tle information about the overall behavior of an extension,
as system calls are low level reflection about the behavior
characteristics of a program. How can we map the low level
system call traces with application level behavior? We need an
intermediate representation to connect them together. This is
one of the primary reasons for using SCDGs, as SCDGs can
appropriately reflect the dependencies between system calls.
They are the abstraction of a sequential system call traces.
They can clearly describe the interactions among all the private
browsing data and disk operations.

3



SCDG 

Extractor

Pattern 

Generating
InstrumentingInput

Dynamic Tracer

Trace Generator

Trace Differentiator

Fig. 1: Overview of the approach, including 4 components.

C. Approach Overview

Our approach consists of four components: Dynamic
Tracer, SCDG Extractor, Pattern Generating and Instrument-
ing, as shown in Fig. 1.

Dynamic Tracer. The dynamic tracer is mainly composed
of a trace generator and a trace differentiator. The dynamic
tracer tracks the behaviors of extensions in the form of system
calls, using a symbolic execution based input resolver to
address the input space issue. The trace differentiator is a
component distinguishing the system call traces of extensions
from the host browser.

SCDG Extractor. The SCDG Extractor takes the trimmed
system call traces of each extension as the input, and aims to
generate SCDGs for each extension. It first explores the data
dependencies between system calls. Then, it identifies objects
(e.g., cookies, cache, etc.) and encodes them for the use of the
following component.

Pattern Generating. This component is to generate pri-
vacy breach patterns caused by extensions based on SCDGs
and the definition of privacy breaches. We narrow down the
files/folders that are constrained with browser extensions and
potential private data leakage. A state transition diagram is
created for each file/folder to identify privacy breaches. Privacy
breach patterns are generated from a combination of state
transition diagram and SCDGs.

Instrumenting. If there is a privacy breach caused by an
extension, this extension will be instrumented to ensure the
privacy protection. A primary reason that a privacy breach
occurs is that extension developers forget or even ignore to
check whether the current window is under PBM. In fact,
whenever private browsing data is accessed, the extension
should be coded to determine if a given DOM window is
private. Instrumenting is done in two steps. Step 1, evaluating
the private browsing data causing privacy breaches by using
the private browsing module. Step 2, based on the generated
privacy breach patterns, instrument the code to properly handle
the private browsing data.

Challenges. Our approach faces several key challenges.
The first is the input space issue. We use an input resolver
to overcome this challenge. The second hurdle is the dif-
ferentiating of system call traces between the browser and
extensions. As the tracing is conducted per process, we need
our tracing to know whether a system call is invoked by a
specific extension or the browser. The trace differentiator is
employed to handle this. The third one is to narrow down and
define all the privacy breaches caused by extensions. We define
this based on privacy-harming disk operations and in-memory
private data.

D. System Level Behavior Tracking

System level behavior tracking is done by the dynamic
tracer. The dynamic tracer takes the browser and extensions

as the input, and eventually generates the trimmed system
call traces for each extension. Two primary components are
contained in the dynamic tracer: trace generator and trace
differentiator. There are two key challenges when perform
dynamic tracing.

Input Space Issue. Input space issue, also known as
execution path issue, is to trigger or elicit a program’s behavior
as much as possible. This is a key challenge when employing
dynamic tracing on extensions. An input used by a program
(value and event, e.g. data read from disk, a network packet,
keyboard input, etc.) cannot always be guaranteed to reoccur
during a re-execution [33]. As a result, an extension may
result in a set of execution paths with different inputs, while
these execution paths may be different. It is very likely that
certain actions can only be triggered under specific inputs
(i.e., conditional expressions are satisfied, or when a certain
command is received). If these specific inputs are not included
in the test input space, it is possible that these actions cannot
be triggered, reducing the coverage of an extension’s behavior.
As a result, this may reduce the extracted SCDGs and finally
cause some false negatives in the following privacy breach
pattern generating.

There, we need to automatically explore the input space
for client-side JavaScript extensions. Generally, the input space
of a JavaScript extension can be divided into two categories:
the event space and the value space [29]. Browser extensions
typically define many JavaScript event handlers, which may
execute in any order as a result of user actions such as clicking
buttons or submitting forms. The value range of an input
includes user data such as form field filled by a user, text
areas, and URLs [33].

We proposed an input resolver (IR) based on dynamic
symbolic execution in our paper. The IR is used to “hit” as
many inputs and finally execution paths as possible for an
extension. The IR tracks the symbolic variables instead of the
actual values. Values of other variables depending on symbolic
inputs are represented by symbolic formulas over the symbolic
inputs. When a symbolic value propagates to the condition of
a branch, it can use a constraint solver to generate inputs to
the program that would cause the branch to satisfy some new
paths [29], [33].

Let us first introduce how symbolic execution works.
Suppose that a list of symbols {ξ1, ξ2 ...} are supplied for a
new input value of a running program each time [17]. Symbolic
execution maintains a symbolic state, which maps variables
to symbolic expressions, a symbolic path constraint pc, and
a Boolean expression over the symbolic inputs {ξi} [33].
There is a counter pc accumulating constraints on the inputs
that trigger the execution to follow the associated path. For a
conditional expression if (e) S1 else S2, pc is updated
with assumptions on the inputs to choose between alternative
paths [7], [32]. If the new control branch is chosen to be
S1, pc is updated to pc ∧ µ(e) = 0; otherwise for S2, pc
is then updated to pc ∧ µ(e) 6= 0, where µ(e) denotes the
symbolic predicate obtained by evaluating e in symbolic state
µ. Hence, both branches can be taken under symbolic state,
resulting in two different execution paths. When pc is not
satisfied, symbolic execution is terminated. The satisfiability
is checked with a constraint solver. For each execution path,
every satisfying assignment to pc gives values to the input

4



variables that ensure the specific execution proceeds along this
path. If there are loops or recursion, a limit is given on the
iteration, i.e., a timeout or a limit on the number of paths [7],
[17], [32].

The IR works as follow. The IR includes a dynamic sym-
bolic interpreter performing symbolic execution of JavaScript,
a path constraint extractor building queries based on the results
of symbolic execution, a constraint solver finding satisfying
assignments to those queries, and an input feedback component
using the results from the constraint solver as new program
inputs [29], [33].

There is a unique challenge for extensions which is the
event space issue. To detect all events resulting in JavaScript
code execution, we propose the following approach. First,
a GUI explorer searches the space of all events using a
random exploration strategy. Second, browser functions are
instrumented to process HTML elements so as to record the
time of the creation and destroying of an event handler [29],
[33]. Ordering of user events registered by the web page is
randomly selected and automatically executed. Random seed
is used to replay the same ordering of events. The GUI explorer
can also generate random test strings to fill text fields when
handlers are invoked [29].

Differentiating System Calls between an Extension
and Browser. Differentiating of system call traces between
the browser and extensions poses a great challenge to our
approach. Different browsers have adopted various extension
system mechanisms. For Chrome, each extension maintains its
own process, which is also separated from Chrome browser
process. Hence, the differentiating problem does not exist for
Chrome. However, for Firefox, all extensions and the browser
itself are wrapped into a single process.This poses great
challenge to differentiate all the running extensions from the
browser: How can we differentiate system call traces between
the browser and extensions? Second, how can we differentiate
system call traces among various extensions?

A fine-grained system call tracing approach is introduced
to address this challenge. Let us first explore how exten-
sions interact with the Firefox browser. When an extension
is running, the extension and browser JavaScript are first
interpreted by JavaScript Engine. Then they are connected to
XPCOM through XPConnect. An key point in this process is
that extension JavaScript can access to the resources through
Firefox APIs. Therefore, one possible way of locating the real
caller of a system call is to track or intercept the functions.
Several previous approaches have been proposed to track those
API functions [4], [5]. From these functions, we can obtain
cues about when a function is entered and exited, and where
the function is called from. Based on this runtime call tree,
we can differentiate the system calls between web browser
and extensions.

During the implementation, Callgrind is used to imple-
ment this approach, which is based on Valgrind [14], [15].
Callgrind uses runtime instrumentation via the Valgrind
framework for its cache simulation and call-graph generation
[27]. Caller/callee relationships between functions are col-
lected by Callgrind. A subroutine is mapped to the compo-
nent library which the subroutine belongs to [33]. Hence, if a
subroutine in the execution stack is called from the component

access open read write

close

stat

Fig. 2: Example dependencies among syscalls of file operations.

library during the execution of an extension and the browser,
it will be marked [30]. Therefore, it can dynamically build
a call graph generated by the web browser and extensions.
We added a timestamp for each system call to increase the
accuracy of system call differentiation. The timestamp can help
quickly locate the system call traces of extensions and remove
unnecessary system call traces.

However, how can differentiate system call traces among
various extensions? To remove the interference, we run just
one extension while disabling all other irrelevant installed
extensions. This definitely reduces the possibility of parallel
processing. However, three reasons support this practice. First,
each system call trace occupies very little time. Running one
extension exclusively will not reduce much of the speed in our
approach. Second, it is not necessary to do parallel processing
for extensions, as usually the running extensions do not affect
each other’s behavior. Third, this practice will greatly improve
the accuracy of the system call trace differentiating, reducing
possible false positives and negatives.

Noise Filtering Rules. System call traces usually contain
a significant amount of noise that can clutter the trace and
influence analysis of system call dependencies. Removing the
noise from traces can improve the quality of the following
SCDG extraction. In this paper, we employed three basic fil-
tering rules. Filtering rule 1, system calls that do not represent
the behavior characteristics we want are ignored, e.g., system
calls related to page faults and hardware interrupts [9], [30].
Filtering rule 2, system calls with very similar functionality
are considered the same. For example, fstat(int fd, struct stat
*sb) system call is regarded as the same with stat(const char
*path, struct stat *sb). Filtering rule 3, we ignore failed system
calls, as they do not affect the dependencies and furthermore
the SCDGs[30].

E. SCDG Extracting

A SCDG is essentially determined nodes which are system
calls and edges which are dependencies. In this section, we
primarily focus on how to derive dependencies between system
calls and how to do object encoding on nodes.

Dependencies between System Calls. A system call trace
consists of the system call name, some arguments, a return
value and time, etc. Usually arguments of a system call
are dependent on previous system calls. For example, the
file descriptor argument fd in one system call is usually
derived from previous system call. There are two types of
data dependencies between system calls. First, there will be
a data dependence if a system call’s argument is derived from
the return value(s) of previous system calls. Second, a system
call can also be dependent on the arguments of previous system
calls [18], [33]. Fig. 2 shows an example of some dependencies
among system calls of file management [13]. System call read
is dependent on open as the input argument of read is derived
from the return value of open - the file descriptor.

5



In the definition of SCDG, we mention that α assigns
function f to ai to a system call where f is a function to
derive dependencies between system calls. Specifically, for an
argument ai, fai is defined as fai : x1, x2, ..., xn → y, where
xi denotes the return value or arguments of a previous system
call , y represents the dependence between ai and these return
values. If ai of a system call depends on the return value or
arguments of previous system call, an edge is built between
these to system calls.

Objects Identifying and Encoding. Here we formalize
node derivation function β in the definition of SCDG for each
system call. A primary challenge for β is to identify related
objects. In this paper, objects include related OS resources
and services, browser resources, network related services, and
files, etc. In Linux, we divide those related objects into several
categories. First, files and folders related to browser extensions,
as shown in Table II, which we will discuss specifically in the
following subsection. Second, files and folders related to the
host browser. Most of them are stored under the browser profile
folder. Third, system and user libraries related to browser
and extensions in operating system. Fourth, local sockets for
browser and extensions. We represent each file/folder using
a natural number. For example, localstore.rdf can be
encoded with 1.4 meaning this file is coded in the fourth
position of the first category.

We identify the objects and assign each node with an object
code primarily for two reasons. First, each argument of a
system call trace usually contains a long string of characters.
Using object code, we can formalize and simplify each node.
Second, simplifying node value can improve the efficiency
when doing subgraph isomorphism analysis. Compared with
raw node values, checking each node with simple object code
will reduce the time consumption.

Fig. 3 shows several SCDGs from the extension Foxtab. For
simplicity, we just include a system call name and a sequence
number for each node, while excluding the code for each node.
These SCDGs are extracted when starting Foxtab extension.
Usually, each extension can get a large amount of system call
traces leading to many SCDGs. We show the statistics in the
evaluation section.

F. Generating Privacy Breach Pattern

Based on the extracted SCDGs, to identify if there is a
privacy breach caused by extensions, we generate the privacy
breach patterns from those SCDGs. Before generating the
patterns, we first narrow down and define all the privacy
breaches caused by extensions. Then we explore the SCDGs
to identify if they correspond to a privacy breach.

Privacy breaches caused by browser extensions are con-
strained with private data leakage. Privacy-harming disk oper-
ations are essentially related to operations on files and folders.
Hence, there are two things we need to clarify here. What
files and folders are privacy concerns? What operations done
to those files/folders can be privacy harming?

Files/folders Related to Extensions. In this paper, we
classify those files and folders into three categories. (C1) Files
and folders directly related to extensions. “Directly” means
that extensions usually need these files and folders to install,
remove, start or run normally. Another important feature of C1

TABLE II: Files/folders directly relate to Firefox extensions
File/Folder Name Description

Firefox profile folder Folder for most data
extensions Folder for all installed extensions code
extension profile folders Folders for corresponding installed extensions

addons.json Stores AddonRepository data
addons.sqlite Database storing AMO data for installed add-ons, e.g.

screenshots, ratings, homepage, etc.
extensions.ini Lists folders of installed extensions and themes
extensions.json Stores XPIProvider data for installed extensions
extensions.sqlite Installed extension information
localstore.rdf Toolbar and window size/position settings
permissions.sqlite Permission database for cookies, pop-up blocking, im-

age loading and add-ons installation

is that they are not handled by the existing Private Browsing
Module. Table II describes files and folders in C1, taking
Firefox as the platform. Most of these files and folders are
specifically designed for Firefox extensions, without which
extensions cannot run normally. Many extensions maintain
their own profile folders under Firefox profile folder. These
folders usually save some useful data required by extensions’
functionality, such as browsing history, and screenshots, etc.

(C2) Files and folders indirectly relate to Firefox ex-
tensions. “Indirectly” means that these files and folders
are not necessary for all extensions, but some exten-
sions may need them based on their functionality and im-
plementation. This category includes cookies.sqlite
(stores Cookies), formhistory.sqlite (stores form
data), places.sqlite (stores bookmarks, browsing his-
tory, favorite icons, etc.), pref.js (stores all preferences),
and key3.db/signons.sqlite (key database/encrypted
saved passwords), etc. A second feature of C2 is that most of
them will be handled by the existing Private Browsing Module
during PBM as shown in Fig. 1, except places.sqlite.
Hence, places.sqlite in C2 needs to be monitored.

(C3) Files/folders primarily relate to Firefox and do not
impact extensions’ running. It includes bookmarkbackups,
minidumps, cert8.db, compatibility.ini, and
healthreport.sqilte. Files and folders in C3 are not
necessary to monitor.

Privacy-harming Operations and In-memory Private
Data. After narrowing down private browsing data, a State
Transition Diagram is created for each file/folder to determine
whether operations on this file/folder could be privacy harming.
Fig. 4 describes the State Transition Diagram for files/folders.
There are three states for the files/folders, an initial state,
an active state, and a final state. Active state represents that
the monitored file/folder is present. Final state represents
that the monitored file/folder is dead or disappears from
the monitored directory. Second, we explore the operations
and transitions. We select 7 significant operations that can
trigger a state transition and can lead to privacy concern.
When a file/folder is moved to a directory or renamed, events
IN_MOVE or IN_MOVE_SELF may happen and trigger a
transition to the state active. When a file/folder is created,
events IN_CREATE can also trigger the transition to the state
“Active”. Self-transitions for state active can be triggered by
events IN_MODIFY when modifying a file or IN_CLOSE
when close a file (not) for writing. The final state can be
triggered by events IN_DELETE or IN_DELETE_SELF when
deleting a file/folder.

6



stat_2

access_1

openat_3

getdents_4 getdents_5

close_6

stat_8

access_7

openat_9

getdents_10 getdents_11

close_12

stat_13

stat_14

stat_15

stat_16

stat_18

access_17

openat_19

getdents_20 getdents_21

close_22

access_22

stat_23

openat_24

getdents_25 getdents_26

close_27

stat_28 stat_29

open_30

lseek_31 lseek_32 lseek_33

fstat_34

close_35

open_38

access_36 access_37

stat_39

read_40

close_41

access_42

open_43 stat_44

lseek_45 lseek_46

read_47

lseek_48 lseek_49

close_50

stat_55

mkdir_51

chmod_56

stat_57 lstat_58

openat_59

getdents_60 getdents_61

close_62

rmdir_63

stat_52

rename_54

stat_53

stat_64 utime_65

stat_66

access_67

stat_68

chmod_69

stat_70 lstat_71

unlink_72

openat_73

getdents_74 getdents_75 close_76

gedents_75 chmod_77

stat_78 lstat_79 rmdir_80

Fig. 3: Some SCDGs extracted from the extension FoxTab, showing the dependence graph of the system calls. Each node consists of two
parameters, system call name and the sequence for this system call.

Intial Final

Active

Create a file/directory

IN_CREATE

Moved to the directory/renamed

IN_MOVE IN_MOVE_SELF

File closed (not) for writing 

IN_CLOSE

Delete a file/directory

IN_DELETE 

IN_DELETE_SELF

Modify a file

IN_MODIFY

Fig. 4: State Transition Diagram for files/folders

How can we identify privacy breaches based on State
Transition Diagrams? If both the two prerequisites are satisfied,
we define it as a privacy breach for disk operations: (1) There
is a transition from the initial state to the active state triggered
by events IN_CREATE, IN_MOVE or IN_MOVE_SELF; and
(2) the file/folder is still in state “active” when PBM exits.

Privacy Breach Pattern Generating. A privacy breach
pattern is essentially a sub-graph of SCDG that corresponds
to the previously defined privacy breach. To find out the
pattern, we need to map the defined privacy breaches into
SCDGs. This can be done in two steps. Step 1 is to map the
operations to SCDGs. In SCDGs, operations are represented
as the arguments in system call traces. Step 2 is to map the
files/folders into SCDGs, which is represented as return value
and arguments (e.g. fd) in SCDG node. The state transitions
are mapped to the dependencies in SCDGs. If a defined privacy
breach is located in one SCDG, we say this (sub)SCDG is a
privacy breach pattern of this extension.

Each time when we get one privacy breach pattern, we use
subgraph isomorphism to compare SCDGs of other extensions
to check if this pattern appears in other extensions. Subgraph
isomorphism is defined as follows in our paper [30], [33].

Definition 3. Subgraph Isomorphism. Suppose there are two
SCDGs G = 〈N,E, F, α, β〉 and H = 〈N ′

, E
′
, F

′
, α

′
, β

′〉,
where dependence edge e ∈ E is derived from (F, α). A
subgraph isomorphism of G and H exists if and only if there
is a bijection between the vertex sets of G1 and H1 where
G1 ⊂ G and H1 ⊂ H: f : N → N

′
such that any two

vertices u and v of G1 are adjacent in G1 if and only if f(u)
and f(v) are adjacent in H1, which is represented as G ' H .
Specifically,
• ∀n ∈ N, β(n) = β(f(n)),
• ∀e = (u, v) ∈ E,∃e′ = (f(u), f(v)) ∈ E

′
, and on

the contrary,
• ∀e′ = (u

′
, v

′
) ∈ E′

,∃e = (f−1(u
′
), f−1(v

′
)) ∈ E

Subgraph isomorphism is employed in generating privacy
breach patterns for the following reasons. First, a privacy

breach pattern is actually a (sub)SCDG. Using subgraph iso-
morphism can greatly increase the time performance when
generating privacy breach patterns. Second, using subgraph
isomorphism can know what privacy breach patterns are most
popular. Third, subgraph isomorphism can also help reduce
the workload when doing instrumentation, as similar privacy
breach patterns usually use the same instrumentation methods.

G. Extension Instrumentation

Extension instrumenting is to instrument any extension that
has caused privacy breaches in our dynamic analysis. Before
instrumenting extensions, we first explore the essential reason
that cause the privacy breaches. As we mentioned in the
introduction, a primary reason that a privacy breach occurs
is that extension developers forget or even ignore to check
whether the current window is under PBM. However, whenever
private browsing data is accessed, the extension should be
coded to determine if a given DOM window is private.
Therefore, given that we already know what privacy breaches
occur on extensions, instrumentation is done in several steps.
Step 1, evaluating the privacy-harming disk operations and in-
memory private data that causing privacy breaches by using
the private browsing module. Step 2, based on the generated
privacy breach patterns, instrument the code to properly handle
the private browsing data. The private browsing data can be
dealt with in two ways. First, directly disable storing private
browsing data in PBM by default. Second, as some private
browsing data is permitted to be stored during a PBM session,
clear these temporarily-stored private browsing data when the
last PBM window is to be closed. Step 3, add code to ensure
that private browsing data is properly handled under PBM
session. Step 4, zip the code to the right format and the code
instrumentation is completed.

Disabling storing private browsing data in PBM. A
basic idea is that when the extension accesses the private
browsing data, such as browsing history and cache, it needs to
first check if the current session is under PBM.

Clearing any temporarily-stored private data. “As it
is permissable to store private browsing data in non-persistent
ways for the duration of a private browsing session” [24]. To be
notified when such a session ends (i.e., when the last PBM win-
dow is closed), observe the last-pb-context-exited
notification. After receiving this notification, the instrumented
code can then clear the specified temporarily-stored private
data like browsing station history and cookies.

A case study on instrumentation is conducted in Section
V-I showing some details in implementing these two methods.

7



IV. IMPLEMENTATION

We implemented a prototype called SoPB (Shepherd of
Private Browsing) for our approach. Corresponding to the
approach architecture, the prototype is divided into Dynamic
Tracer, SCDG Extractor and Pattern Generating and Extension
Instrumentation. Overall, the core code are approximately
2,040 lines (C++), with another about 1,100 lines of code
implementing the UI in JavaScript.

The trace generator is implemented based on strace [20].
It can track the system calls and filter off the unnecessary
system calls. Our input resolver is primarily based on Kudzu
[29]. We modified it to employ it on the web browser and gen-
erate inputs for the trace generator. Our trace differentiator em-
ploys Callgrind under Valgrind. We also implemented
the SCDG extractor under Valgrind. The SCDG extractor
constructs SCDGs based on the following functionality. When
a system call of an extension is invoked, it can construct a
new node and dependencies between system calls. The SCDG
extractor then formalizes the node by identifying the objects
and encoding them [30].

A primary implementation of the pattern generating is
to find out privacy breaches based on state transition dia-
grams. We use inotify to monitor filesystem and events,
as identified in Section III-F. We then determine privacy
breaches based on all generated state transition diagrams and
the privacy breaches. The privacy breach patterns (sub-SCDGs)
are generated based on a comparison among privacy breaches
and SCDGs. We implemented the subgraph isomorphism based
on V F2 algorithm of NetworkX [28].

For instrumentation, we obtain the private browsing data
generated by an extension based on the privacy breach patterns.
If the private browsing data is used to maintain the function-
ality of this extension, these data are permitted to be retained
during the PBM session, but will be cleared when the last PBM
window is to be closed. Otherwise, we disable the storing of
private browsing data under PBM.

V. EVALUATION

We propose 8 primary evaluation goals to SoPB. (G1)
Evaluation on the input space issue. (G2) Do extensions
comply with PBM guidelines? (G3) How many times does an
extension violate PBM guidelines? (G4) What privacy breach
patterns are generated? (G5) How many patterns are shared
by extensions? (G6) Can instrumentation effectively stop the
privacy breaches? (G7) Performance evaluation. (G8) A case
study on extension instrumentation.

A. Evaluation Environment

Our experiments were performed on a workstation with a
2.40 GHz Quad-core Intel(R) Xeon(R) CPU and 4GB memory,
under Ubuntu 12.04.4 LTS with Linux 3.8.0-35-generic. We
use Firefox 26.0 as the host browser, which uses per window
PBM. We examined 1912 extensions in total based on two
criteria. (1) Popularity, top 2100 extensions based on aver-
age daily users. 1903 extensions are actually chosen, while
others are either incompatible with Linux or Firefox 26.0.
(2) Recommendations, also known as featured extensions in
AMO. 9 additional extensions are added to our extension pool
contributing to the final number of 1912.

TABLE III: Comparison on Input Space with and without IR
# of ext. # of SCDGs w/o IR # of SCDGs w/ IR # of outliers

87 3014 4601 10

TABLE IV: Results on privacy-harming disk operations. Note: PB
means privacy breaches, PF means profile folder.

Total #
of ext.

# of ext.
have PF

# of ext. cause
PB in PF

# of ext. cause
PB other than PF

Total # on privacy-
harming disk operations

1912 472 285 26 311

B. Evaluation on Input Space Issue

The input space issue is evaluated by comparing SCDGs as
they can reflect execution paths and the input to a large degree.
Specifically, two metrics are evaluated on our IR, increase and
outliers of SCDGs after employing the IR.

87 extensions are randomly chosen in this evaluation
based on their categories in the extension repositories. The
experimental results are shown in Table III without and with
applying the IR on the browser. There is a significant 52.7%
increase in the total number of SCDGs after using the IR. On
the other hand, an outlier occurs if a SCDG before using the
IR is not included in the set of SCDGs after using the IR.
On average, there is only a very small percentage (0.3%) of
previous SCDGs are outliers. Outliers are most likely caused
by the different parameters of graphs. Our IR can increase
the total number of SCDGs substantially, but also control the
outliers in a very small range [33].

C. Do Extensions Comply with PBM Guidelines?

Based on the PBM guidelines in Section II-B, three primary
criteria are evaluated: privacy-harming disk operations, in-
memory private data handling, and flag checking.

Privacy-harming Disk Operations. Table IV shows that
many extensions create their own profile folders under the
Firefox profile folder (472/1912). Our prototype recursively
monitors these extension profile folders and finds that many of
them violate PBM guidelines. For example, in the profile folder
of Foxtab extension, there are several folders including data,
thumbs, thumbsRCT, and ThumbsTS. Screenshots and
browsing sites under PBM will be stored in these folders even
when the last PBM window exits. This is regarded as a privacy
breach. Overall, we find that 472 of 1912 tested extensions
(24.7%) maintain their profile folders. 285 of them have caused
privacy breaches. On the other hand, some extensions (26)
create files other than in profile folders and do not remove them
even when the last PBM window is closed. This is a privacy
breach that apparently violates PBM guidelines. As shown in
Table IV, 26 extensions have such kind of privacy breach. In
total, there are 311 (16.3%) extensions have privacy-harming
disk operations.

In-memory Private Data Handling. We mainly evaluate
whether in-memory private data of extensions are removed
when the last PBM window is to be closed. To check memory
content, we implemented an extension to periodically obtain
and update the memory cache list, including the key value
of the cache and the last modified date. As described in
Section III-G, we observe the last-pb-context-exited
notification to get notified when the last PBM window is
closed. Then we compare the memory cache to check if there is
any private data related to extensions that are not removed. Our

8



TABLE V: Experimental results on the times of extensions’ privacy
breaches. Note: PBP means privacy breach patterns, and PB means
privacy breaches.

Total #
of ext.

Avg. # of
SCDGs

Total # of
Uniq PBP

Avg. testing
time (sec)

Avg. #
of PBP

Avg. times of
a PB

32 48 28 155.2 4.2 6.2

experimental results show that extensions (actually browser)
are doing better in handling in-memory private data than
disk operations. There are only 9 extensions that have caused
privacy breaches in this category, meaning that the in-memory
private data generated by these 9 extensions under PBM are
retained when the last PBM window is closed. This result is
not surprising as usually memory management is done by the
host browser. After an investigation of these 9 extensions,

Flag Checking. Only 19.0% (363/1912) of the tested
extensions have checked the flag when private browsing data
is accessed. Of those extensions which do flag checking,
31.9% (116 extensions) use Jetpack Add-on SDK to handle
extensions’ behavior during PBM, compared with the other
68.1% (247) extensions’ PBM handling is still done by
developers’s own implementation. Overall, given that only less
than a quarter of tested extensions do flag checking and an even
smaller amount of 6.1% use Add-on SDK, we consider that
Firefox’s requirements on extensions under PBM are poorly
responded by extension developers. The results demonstrate
that most extension developers have not followed Firefox’s
guidelines which requires extensions to respect PBM [1].

D. How Many Times Does an Extension Violate PBM?

In this section, we discuss how many times an exten-
sion may violate PBM guidelines. Actually, the times of an
extension’s violation of PBM guidelines are dependent on
two factors: the length of an extension’s running time and
the frequency of this extension’s violation. Therefore, given
a privacy breach found in an extension, can we know how
many times this privacy breach happens in this extension?
Overall, there are 320 extensions causing privacy breaches.
We randomly chose 32 extensions (10%) to conduct this
evaluation. Table V shows the experimental results on these
extensions. On average, there are around 4 unique privacy
breach patterns for each extension in the testing set. During the
testing time (the average is 155.2 seconds), the average times
of a privacy breach happening in one extension is 6.2, while
the median times is 6. The number of times varies much for
each privacy breach. There are 4 privacy breaches happening
only once during the testing time. In comparison, the greatest
times a privacy breaches happening in an extension is 14.

E. What Privacy Breach Patterns are Generated?

Based on the privacy breaches found above, we can gener-
ate the privacy breach patterns. As mentioned in the above
subsection, 311 extensions (out of 947) are found to have
privacy-harming disk operations. 9 extensions forget to remove
the in-memory private data when the last PBM window is to
be closed. Table VI shows the statistical result for the tested
extensions. For an extension that violates the PBM guidelines,
on average there are 4.3 privacy breach patterns (denoted as
PBP in the Table VI). Through subgraph isomorphism, 219
unique privacy breach patterns (sub-SCDGs) are generated for
all the 320 extensions that have caused privacy breaches.

TABLE VI: Experimental statistics for tested extensions.
Total # of
ext.

Avg. # of
SCDGs

# of ext. violate PBM
guidelines

Avg. # of PBP for
each ext.

Unique
PBP #

1912 46 320 4.3 219

TABLE VII: Number of extensions fall in each privacy breach
category.

# of ext. have privacy
breaches

Ext. in C1 Ext. in C2 Ext. in C3 Ext. in C4 Ext. in C5

320 272 10 26 17 9

To simplify, we summarize these unique privacy breach
patterns into the following categories.
• C1, Creates and finally stores files in the extension’s

profile folder,
• C2, Moves and finally stores files into the extension’s

profile folder,
• C3, Creates and finally stores files in other places,
• C4, Renames newly generated files/ in extension’s

profile folder,
• C5, Generates and finally stores the in-memory data.

Table VII shows the number of extensions that fall into
each privacy breach category. All 9 extensions having privacy
breaches related to in-memory data fall into C5. Most exten-
sions causing privacy breaches belong to C1. This is reasonable
as many extensions maintain a profile folder, so it is very likely
that some could forget or ignore to remove the files generated
under PBM. The total number in the four categories are greater
than 320 because there are a few extensions that belong to
more than one category.

We have all the statistics so far for the privacy breach
pattern. How do the privacy breach patterns look like? Fig. 5
shows two privacy breach patterns from the Foxtab extension,
which are actually two sub-SCDGs drawn from Fig. 3. The left
figure is a privacy breach pattern named “trash folder creating
and checking”. Foxtab creates a trash folder; however it will
not remove this folder when the PBM session ends. The right
figure shows a privacy breach pattern named “renaming a file”.
Foxtab renames a file during a PBM session without removing
the new renamed file when the PBM session ends.

F. How Many Patterns Are Shared by Extensions?

In this section, we want to know how many privacy breach
patterns are shared by a specific number of extensions (e.g.,
2, 3, 4,...). There are two questions: which privacy breach

close_62

getdents_61

openat_59

getdents_60

lstat_58 stat_57

chmod_56

stat_55mkdir_51

utime_65

rename_54

stat_64

stat_52 stat_53

access_22

Renaming an file

Trash folder creating 

and checking

Fig. 5: Two privacy breach patterns from Foxtab.

9



 

17

13

6

1

3

1
2

0
1 1

0

4

8

12

16

20

2 3 4 5 6 7 8 9 10 11

#
 o

f 
p
ri

v
ac

y
 b

re
ac

h
 p

at
te

rn
s 

# of extensions shared same privacy breach patterns

Fig. 6: Number of extensions sharing same privacy breach patterns

pattern is shared by most extensions? and which privacy breach
patterns are not shared by other extensions (a.k.a, only one
extension has this privacy breach pattern)? Fig. 6 shows the
number of privacy breach patterns are shared by 2 and more
extensions. All the remaining 174 privacy breach patterns are
only found in one extension, not shared by others. In total,
there are 45 privacy breach patterns are shared by 2 and more
extensions. Most of the these privacy breach patterns (36 out of
45) are shared by 2, 3 and 4 extensions. The greatest number of
extensions sharing the same privacy breach pattern is 11. This
privacy breach pattern belongs to category C1. These results
are reasonable as extensions usually will generate different
SCDGs.

G. Does Instrumenting Effectively Stop Privacy Breaches?

We instrumented 15 extensions (out of the 320 extensions
causing privacy breaches) to evaluate the effectiveness of
stopping privacy breaches. Based on Section III-G, there are
two methods to instrument these 15 extensions: M1, disabling
storing private browsing data in PBM, and M2, clearing
temporarily-stored private browsing data when the last PBM
window is to be closed. If an extension needs to temporarily
store some private browsing data to maintain its functionality,
M2 will be used to instrument this extension. It is also possible
that an extension may store some private browsing data which
are not necessary for this extension. In this case, M1 is used
to instrument this extension. A few extensions can use both
M1 and M2 to do the instrumentation. Table VIII shows the
results for the 15 instrumented extensions. Let us take Foxtab
extension as the example. Foxtab’s privacy breach patterns
belong to three categories: C1, C2, and C4. We use M1 to
disable the storing of browsing sites. M2 is used to clear other
temporarily-stored data such as screenshots.

Effects of Instrumentation Analysis. All these instru-
mented extensions are wrapped and then installed on Firefox.
We then evaluate these extensions again using SoPB to check
if there is still a privacy breach. Using dynamic tracer, SCDG
extractor and privacy breach pattern generating, no privacy
breach is found for these 15 instrumented extensions. This
demonstrates that the instrumentation can effectively stop the
privacy breaches caused by browser extensions.

H. Performance Evaluation

We tend to provide a cost-effective service to enhance the
privacy protection for browser extensions. Hence, we discuss
the performance of SoPB in two metrics: memory usage and
startup time. We made a Firefox extension for SoPB. The
reason we made it an extension is that this can better reflect
SoPB’s impact on Firefox and their relations.

TABLE VIII: Results of 15 instrumented extensions.
Instrumented Ex-
tensions

Version SCDGs PBP cate-
gories

Instrumenting method

Foxtab 1.4.9 46 C1,C2,C4 M1:disable storing data,
M2:clear temp data

Fire.pm 1.4.15 39 C1 M1:disable storing data
The Camelizer 2.4.9 51 C1 M2:clear temp data
DownloadHelper 4.9.24 53 C3 M2:clear temp data
Youtube
Downloader

2.1.1 39 C3 M2:clear temp data

Firebug 1.12.8 32 C1 M1:disable storing data
FlashGot 1.5.6.8 48 C1,C3 M1:disable storing data,

M2:clear temp data
Adblock Plus 2.6.6 43 C1,C4 M2:clear temp data
DownThemAll! 2.0.17 36 C3 M2:clear temp data
WOT N/A 31 C1 M2:clear temp data
Blur
(DoNotTrackMe)

4.5.1334 47 C1 M1:disable storing data,
M2:clear temp data

Youtube MP3
Podcaster

3.5.0 40 C3 M2:clear temp data

Super Start 2.0.2 61 C1 M2:clear temp data
Ant Video Down-
loader

2.4.7.26 55 C1,C3 M2:clear temp data

ScrapBook 1.5.11 49 C1 M2:clear temp data

TABLE IX: Average startup time for Firefox w/ and w/o SoPB in
milliseconds

main start selectProfile afterProfileLocked

Avg. time w/o SoPB 16.20 3.00 91.27 98.56
Avg. time w SoPB 16.50 3.06 90.75 98.42

Memory Usage. We use Firefox’s about:memory to
measure the memory usage of Firefox. 10 tests are done to
measure the usage of SoPB extension. The average memory
usage for SoPB is 3.4% of Firefox’s total memory usage. This
memory usage can be considered very small. The memory
usage of SoPB on Firefox can almost be neglected. CPU usage
measurement is not performed, as the CPU usage for Firefox
varies much depends on what actions a user conduct.

Startup Time. We use an extension About Startup
0.1.12 to test the startup time for Firefox with and without
our SoPB [21], each with 10 tests. We calculate the average
startup time based on these tests. Table IX describes four
metrics when start Firefox. “main” means the Gecko main
function is entered. “start” means when it starts to load
Firefox. “selectProfile” means Firefox start to choose a profile.
“afterProfileLocked” means when Firefox is done with profile
selection. The former 3 metrics should not be affected by
SoPB. The last one may be affected because SoPB is stored in
the profile. The results show that there is almost no difference
between two rows in terms of average startup time, considering
that they are in milliseconds.

Overall, our evaluation on memory usage and startup time
demonstrate that SoPB has very little impact on Firefox’s
performance. The overhead brought by SoPB should not be
a concern for users, developers, and webstores.

I. A Case Study on Extension Instrumentation

We use an extension “Fire.fm” to demonstrate how we
did our instrumentation. Fire.fm lets you have direct access
on the extensive music library on Last.fm. There are two key
challenges in instrumentation. First, locate the privacy breaches
in fire.fm. Based on the structure of Firefox extensions, han-
dling privacy browsing data is usually done under “resources”
or “components”. For fire.fm, this is done under “resources”.
Second, determine how to handle the private browsing data as

10



mentioned in Section III-G. To demonstrate the two methods,
we instrumented fire.fm in both of these two ways.

Disabling Storing Private Browsing Data in PBM.
The following code shows how to instrument Fire.fm to
disable storing the private browsing history (the radio sta-
tion history). In the function of storing recent station his-
tory, if(!FireFM.Private.isPrivate) is added to
check if the current session is under PBM. When the cur-
rent session is under PBM, the evaluation in the if state-
ment is false, so storing station history is disabled. On
the other hand, only if the current session is in normal
mode (not PBM), should the station history be stored using
this._stationHistory.unshift(aStation).
_storeRecentStation : function(aStation) {

//Check if under PBM session
if (!FireFM.Private.isPrivate) {
... // Do some initialization and checking
// Add the station at the top of the list.
this._stationHistory.unshift(aStation);
}

},

It is considered good practice for the extension to enable
respecting PBM based on a preference (choice) specific to that
extension, and set that preference to true by default [23].
For example, a preference _historyPref called “disabling
station history” can be added into Fire.fm. So the above if
statement can be revised as follows:
if(this._historyPref.value&&!FireFM.Private.isPrivate)

Clearing any temporarily-stored private data. The fol-
lowing function clerRecentHistory in the code snippet
shows one example in clearing the temporarily-stored private
data when the last PBM window is closed.
function pbObsvr() {/* clear private data */}
var os=Components.classes["@mozilla.org/observer

-service;1"].getService
(Components.interfaces.nsIObserverService);

os.addObserver(pbObsvr,"last-pb-context-exited",false);

//Clears the recent station history.
clearRecentHistory : function() {
this._logger.debug("clearRecentHistory");
// clear the list.
this._stationHistory.splice(0,

this._stationHistory.length);
...
},

We then wrap these code, zip the extension, and install it
on Firefox. Our testing shows that both of these two methods
can stop the privacy breaches.

VI. DISCUSSION AND LIMITATIONS

We first discuss the scalability of our approach. Although
we use Firefox during implementation and evaluation, our
approach can be easily scaled to other browsers. Let us take
Chrome as an example. It is much easier for system call
tracking in Chrome as each Chrome extension maintains its
own process. We do not need the trace differentiator for
Chrome extensions, greatly increasing the accuracy. On the
other hand, our approach can also be transplanted to Windows
platform. Most extensions usually constrain their system calls
under 50 common ones. Besides, there is also a “strace for
Windows” called drstrace to track all system calls executed
by a target application [10].

An extension can also control or incorporate another exten-
sion to manipulate the behaviors. For example, an extension
can include the download manager to display the downloading
entries, etc. This is easier to address as each extension has a
unique ID. We also track all the child process(es) forked by
the parent extension. SCDGs can describe their interactions
and dependencies.

Our approach may have two limitations. First, although we
have a fine-grained technique to differentiate system call traces
between the browser and running extensions, it is still possible
that we mix system call traces between them. Let us take a
clear look at the two possible mistakes. The first possibility
is that system call traces of the browser may be treated as
the running extension. However, when extracting SCDGs for
this extension, most of the mistaken ones will be excluded.
Therefore, this possibility affects little on SCDG extraction.
The other possibility is that system call traces of the running
extension may be treated as the browser’s. This may eliminate
some system call traces or even SCDGs for this extension. As
a result, it is possible that this could lead to false negatives,
although the possibility is very small.

Second, for some extensions, it is hard to decide whether
the data retained by the extension is used to maintain the
functionality of extensions in PBM or not. Hence, when
doing instrumentation, if some private browsing data belong to
category, we use M2 (allowing extensions retain private data
during PBM while clearing them when the last PBM window
is closed) to deal with them to avoid an extension functioning
abnormally or even crashing.

VII. RELATED WORK

Although PBM has been in commodity use for just a few
years, still there is some work in this area, and a larger area
of extension security.

Static Analysis. G. Aggarwal et al. did a preliminary yet
important study on PBM in modern browsers [2]. They defined
some goals of PBM in different browsers. A preliminary study
was carried out to test whether the current implementations
of PBM could defend against the defined threat model [2].
Then they did a manual review on some popular extensions
to find out if they violated PBM. This work gives some
fundamental study on extensions under PBM. However, what
they proposed is to disable all unsafe extensions under PBM,
which is not practical. Besides, no effective measures are
proposed to enhance privacy for browsers.

B. S. Lerner et al. used static analysis to analyze JavaScript
extensions for PBM [19]. They built a static type system to
verify whether an extension violated PBM policies or not. In
evaluation, they retrofitted type annotations to Firefox’s API
and to some extensions [19]. This work identifies possible
violations of PBM for extensions. However, the type system is
not an automated process, only a small number of samples have
been studied. This work does not propose effective methods
to prevent privacy breaches under PBM for extensions. It also
does not handle bookmarks and downloaded files under PBM.

Dynamic Analysis. B. Zhao and P. Liu proposed an
approach to dynamically analyze browser extensions’ behavior
[33]. They used an aspect-level behavior clustering to detect

11



suspicious extensions. SCDGs are used to represent exten-
sions’ behavior. Although we also use system level behavior
tracking, our approach is different from theirs in the following
perspectives. First, our approach is not intended to detect
malicious or suspicious extensions. Our approach is to address
the privacy issues associated with browser extensions. Second,
their work groups different extensions based on aspect-level
clustering, while our approach analyzes extensions only based
on itself. Third, we also proposed an approach to stop the
privacy breaches via instrumentation.

We used symbolic execution to address the input space
issue. Recently, A. Kapravelos et al. proposed a system called
Hulk to “monitor extension actions and create a dynamic
environment that adapts to extension needs in order to trigger
the intended behavior of extensions” [16]. Hulk employed
a fuzzer to drive the event handlers that modern extensions
heavily rely upon. Hulk indeed elicited tons of behaviors even
many malicious behaviors. However, Hulk is heavily relying
on Chrome. Besides, Hulk is claimed to have limitations on
observed behavior that depends on specific targets [16]. There-
fore, though Hulk is effective in eliciting extension behaviors,
symbolic execution is still employed in our approach.

VIII. CONCLUSION

We have proposed an approach to identify and stop pri-
vacy breaches under PBM caused by browser extensions.
Dynamic analysis and symbolic execution are combined to
identify the privacy breach patterns. Based on the privacy
breach patterns and state transition diagrams, extensions are
instrumented to ensure the privacy protection. Our prototype
SoPB based on the approach demonstrates good effectiveness
and acceptable performance impact in identifying and stopping
privacy breaches caused by extensions.

ACKNOWLEDGMENT

This work was supported by ARO W911NF-09-1-0525
(MURI), NSF CNS-1223710, NSF CNS-1422594, NSF SBE-
1422215, and ARO W911NF-13-1-0421 (MURI). We would
like to thank our shepherd Dr. Gilles Muller for his insightful
comments.

REFERENCES

[1] Add-ons Blog. Private browsing support to be required for
add-ons, Feb 2010. https://blog.mozilla.org/addons/2010/02/23/
private-browsing-support-required-for-add-ons/.

[2] Gaurav Aggrawal, Elie Bursztein, Collin Jackson, and Dan Boneh. An
analysis of private browsing modes in modern browsers. In Proceedings
of 19th Usenix Security Symposium, 2010.

[3] Apple Support. Safari 5.1 (os x lion): Browse privately. http://support.
apple.com/kb/ph5000.

[4] Aurelian Melinte. Monitoring function calls, June 2008. http://
linuxgazette.net/151/melinte.html.

[5] Sruthi Bandhakavi, Samuel T. King, P. Madhusudan, and M. Winslett.
Vex: Vetting browser extensions for security vulnerabilities. In Pro-
ceedings of 19th USENIX Security Symposium, pages 339–354, 2010.

[6] Kenton Born. Browser-based covert data exfiltration. arXiv preprint
arXiv:1004.4357, 2010.

[7] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Pasare-
anu, Koushik Sen, N. Tillmann, and W. Visser. Symbolic execution for
software testing in practice: preliminary assessment. In International
Conference on Software Engineering, pages 1066–1071, 2011.

[8] Chrome Help. Incognito mode (browse in private). https://support.
google.com/chrome/answer/95464?hl=en.

[9] Mario Couture, R. Charpentier, M. Dagenais, A. Hamou-Lhadj, and
A. Gherbi. Self-defence of information systems in cyber-space – A
critical overview. In NATO IST-091 Symposium, April 2010.

[10] Dr. Memory. System call tracer (“strace”) for windows. http://www.
drmemory.org/strace for windows.html.

[11] Ehsan Akhgari. Prepare your add-on for PBM, 2008. http://
ehsanakhgari.org/blog/2008-11-08/prepare-your-add-private-browsing.

[12] Elie Bursztein. 19% of users use their PBM, 2012. http://www.elie.net/
blog/privacy/19-of-users-use-their-browser-private-mode.

[13] Waseem Fadel. Techniques for the abstraction of system call traces
to facilitate the understanding of the behavioural aspects of the Linux
kernel. Master’s thesis, Concordia University, Nov 2010.

[14] J. Seward and N. Nethercote and T. Hughes. Valgrind documentation,
August 2012. http://valgrind.org/docs/manual/index.html.

[15] J. Weidendorfer. Kcachegrind, September 2005. http://kcachegrind.
sourceforge.net/cgi-bin/show.cgi/KcacheGrindIndex.

[16] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher
Kruegel, Giovanni Vigna, and Vern Paxson. Hulk: Eliciting malicious
behavior in browser extensions. In Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, August 20-22, 2014.

[17] James C. King. Symbolic execution and program testing. Communica-
tions of the ACM, 19(7):385–394, July 1976.

[18] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel,
Engin Kirda, Xiaoyong Zhou, and XiaoFeng Wang. Effective and
efficient malware detection at the end host. In Proceedings of 18th
USENIX Security Symposium, pages 351–366, 2009.

[19] Benjamin S. Lerner, Liam Elberty, Neal Poole, and Shriram Krishna-
murthi. Verifying web browser extensions’ compliance with private-
browsing mode. In European Symposium on Research in Computer
Security, pages 57–74, 2013.

[20] Linux Man Page. strace. http://linux.die.net/man/1/strace.
[21] Mike Hommey. About startup 0.1.12, Jun 2013. https://addons.mozilla.

org/en-US/firefox/addon/about-startup/.
[22] Mozilla. How many Firefox users have add-ons installed? 85%. http:

//blog.mozilla.com/addons/2011/06/21/firefox-4-add-on-users/.
[23] Mozilla Developer Network. Supporting PBM, 2013. https://developer.

mozilla.org/en-US/docs/Supporting private browsing mode.
[24] Mozilla Developer Network. Supporting per-window PBM,

2013. https://developer.mozilla.org/EN/docs/Supporting per-window
private browsing.

[25] Mozilla Support. Private browsing - browse the web without saving
information about the sites you visit. https://support.mozilla.org/en-US/
kb/private-browsing-browse-web-without-saving-info.

[26] Mozilla Wiki. Jetpack. https://wiki.mozilla.org/Labs/Jetpack.
[27] Nicholas Nethercote and Julian Seward. Valgrind: a framework for

heavyweight dynamic binary instrumentation. In Proceedings of Pro-
gramming Language Design and Implementation, pages 89–100, 2007.

[28] NetworkX. Advanced interface to VF2 algorithm. http://networkx.lanl.
gov/preview/reference/algorithms.isomorphism.html.

[29] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen
McCamant, and Dawn Song. A symbolic execution framework for
JavaScript. In IEEE Symposium on Security and Privacy, 2010.

[30] Xinran Wang, Y.-C. Jhi, S. Zhu, and P. Liu. Behavior based software
theft detection. In Proceedings of the 16th ACM Conference on
Computer and Communications Security, New York, NY, USA, 2009.

[31] Windows 7 Support. What is inprivate browsing? http:
//windows.microsoft.com/en-us/windows/what-is-inprivate-browsing#
1TC=windows-7.

[32] Ru-Gang Xu. Symbolic Execution Algorithms for Test Generation. PhD
thesis, University of California-Los Angeles, 2009.

[33] Bin Zhao and Peng Liu. Behavior decomposition: Aspect-level browser
extension clustering and its security implications. In International
Symposium on Research in Attacks, Intrusions and Defenses, pages 244–
264, 2013.

12


