
U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 1

Journal of Computer Security 00 (2005) 1–36 1
IOS Press

Specifying and using intrusion masking models to
process distributed operations

Meng Yu a, Peng Liu b,∗ and Wanyu Zang b

a Department of Computer Science, Monmouth University, West Long branch, NJ 07764, USA
b School of Information Sciences and Technology, The Pennsylvania State University, University Park,
PA 16802, USA

It is important for critical applications to provide critical services without any integrity or availability
degradation in the presence of intrusions. This requirement can be satisfied by intrusion masking tech-
niques under some situations. Compared with intrusion tolerance techniques, where some integrity or
availability degradations are usually caused, intrusion masking techniques use substantial replications to
avoid such degradations. Existing intrusion masking techniques, such as the state machine approach, can
effectively mask intrusions when processing requests from a client using a server replica group, but they
are fairly limited in processing a (multi-stage) distributed operation across multiple server replica groups.
As more and more applications (e.g., supply chain management, distributed banking) need to process
distributed operations in an intrusion-masking fashion, it is in urgent need to overcome the limitations
of existing intrusion masking techniques. In this paper, we specify and compose two intrusion-masking
models for inter-replica-group distributed computing. Using these two models, a variety of applications
can mask (numerous kinds of) intrusions. Our intrusion masking models overcome the limitations of ex-
isting intrusion masking techniques. The survivability of our intrusion-masking models is quantitatively
analyzed. A simple yet practical implementation method of our intrusion-masking models is proposed
and applied to build two intrusion-masking two-phase-commit (2PC) protocols, and the corresponding
efficiency is analyzed. The two intrusion-masking 2PC protocols and the analysis results show that the
proposed intrusion-masking models have good utility, practicality, and survivability. Finally, the composi-
tion methodology developed in this paper can also be used to develop other intrusion-masking distributed
computing models.

Keywords: Intrusion masking, survivable systems, distributed systems, security

1. Introduction

1.1. Background

Computer systems are designed to satisfy specific specifications. When behaviors
of a system do not meet its specification, we say that the system is faulty. Although
we would try our best to build reliable, bug free systems, unfortunately, from the
point of view of software engineering, vulnerabilities cannot be totally removed from
software systems. Therefore, hackers can find these vulnerabilities if they stick to

*Corresponding author. Tel.: 814-863-0641; Fax: 814-865-6426; E-mail: pliu@ist.psu.edu

0926-227X/05/$17.00 2005 – IOS Press and the authors. All rights reserved

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 2

2 M. Yu et al. / Specifying and using intrusion masking models

looking for them. Consequently, successful attacks (i.e., intrusions) always happen
and may cause serious damage to the system.

In the literature of building a reliable system, two types of faults have been stud-
ied for a few decades: fail-stop faults and Byzantine faults [20]. If a system stops
doing anything during a failure, the fault that causes the failure is a fail-stop fault. If
a system demonstrates arbitrary behaviors during a failure, the corresponding fault is
a Byzantine fault. When an attacker successfully breaks into a system, he may sim-
ply crash the system or manipulate the system to do anything he wants. In the first
case, the system demonstrates a fail-stop fault. In the latter case, the system demon-
strates a Byzantine fault. Therefore, attackers’ behaviors, or effects of intrusions, can
usually be modeled as Byzantine failures [20]. In this paper, we focus on intrusions
(on distributed systems) that can be modeled as Byzantine failures, and the term of
intrusions and the term of Byzantine faults are interchangeably used. Note that we
will not address fail-stop faults in the rest of the paper.

In the development of secure and reliable systems, considerable effort is devoted
to making a system robust in the face of a variety of Byzantine faults. When a failure
happens in a system, although the system may deviate from its specification for some
time, if the system can sooner of later meet its specification as long as there are no
further faulty actions, the system is fault tolerant (in terms of the fault that causes
the failure). If no faulty actions caused by a fault can violate the specification of the
system, we say that the system can mask the fault [6]. Note that a system that can
mask a fault must be able to tolerate the fault.

Similarly, intrusion tolerance techniques, e.g., intrusion tolerant architectures
[25,40], intrusion detection [21], damage containment [23], isolation [24], and attack
recovery [5,48], try to identify intrusions, locate damage, reconfigure and recover
a system automatically so that intrusions can be tolerated. However, in intrusion
tolerant systems, attacks and intrusions will typically cause degradation in service
integrity or availability. By contrast, intrusion masking techniques try to operate a
system through attacks without service integrity or availability degradation. In other
words, an intrusion masking system is able to deliver correct and sustained services
to users despite intrusions that cause some portions of the system to behave in an
arbitrary or malicious manner.

In the literature, intrusion masking is typically achieved by replications [6,7,13,
34,45]. These techniques replicate either services or data. In case some replicas are
compromised, these techniques guarantee that when enough number of correct repli-
cas are there, the client can still get correct responses.

In particular, most of these techniques adopt the state machine approach [39],
which implements an intrusion-masking server (modeled as a state machine) by
replicating that server (i.e., both services and data) and running a (server) replica
on each of the nodes in a distributed system. In the state machine approach, given
the same sequence of requests (from probably a set of clients) to each replica, a group
of non-faulty replicas which start consistent (i.e., having the same state) will remain
consistent (after the sequence of requests are processed). Hence, when a group of

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 3

M. Yu et al. / Specifying and using intrusion masking models 3

server replicas is serving a set of clients, if the requests of the clients can be deliv-
ered to the replicas in such a way that the same sequence of requests will always be
received by each replica, then if the group has 2t + 1 replicas, it can mask t intruded
replicas, since each client can use majority voting to identify both the correct and the
malicious responses.

Ensuring that the same sequence of requests will be delivered to each replica is,
however, fairly difficult, due to the complexities of the networking environment and
the fact that any node or (communication) link in a distributed system could be faulty
or vulnerable. For one example, if we let a replica be the (designated) sender that
transmits the clients’ messages (or requests) to the other replicas, then if the sender
is faulty, then the group of replicas can receive inconsistent requests. On the other
hand, even if the sender is not faulty, communication failures can still cause repli-
cas to receive inconsistent or differently-ordered requests. For another example, if
we let each client directly send its requests to each replica, then even if nothing is
faulty, two replicas could receive two requests from two clients, respectively, in dif-
ferent orders, due to such reasons as delay and competition. According to [39], two
requirements need to be satisfied to achieve this goal: (a) Consistency. Every non-
faulty server replica receives every request. (b) Total Order. Every nonfaulty replica
processes the requests it receives in the same relative order. Developing the protocols
that can satisfy these two requirements has raised a tremendous amount of interests,
and fortunately as a result, a family of reliable totally ordered group communication
services [1,4,17,29,35,38] which can satisfy the two requirements are developed.
And these protocols (or services) have naturally become a key component of a typi-
cal implementation of the state machine approach.

However, although how to use a replica group to serve a client in an intrusion
masking way is well studied in the literature, researchers have paid very little atten-
tion to interactions among replica groups, which are fairly different from the inter-
actions between a single host (i.e., a client) and a replica group. In particular, the
differences can be better illustrated using the scenario shown in Fig. 1, where two
inter-connected (server) replica groups (i.e., A and B) are processing a specific re-
quest of a client. And the major differences between the two types of interactions
are as follows. (a) In client-to-group interactions, only one host can send requests
and receive responses, while in group-to-group interactions, any replica of Group A
can send requests and receive responses when Group A wants Group B to process a
request. (b) The message passing schemes between Group A and Group B are much
more complicated than those between the client and Group A. Note that replica
groups A and B consist of replicas of two different servers. Note also that using
multiple servers to process a single request is not unusual in many real world ap-
plications. For example, in the banking industry, processing a request (e.g., a fund
transfer request) may involve a set of interactions among two or more banks in many
cases.

These differences lead to several interesting research issues, which are the focus
of this paper. For example, when a n-member group A sends a request to another

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 4

4 M. Yu et al. / Specifying and using intrusion masking models

Fig. 1. Three types of interactions in distributed systems.

m-member group B, which message passing schemes should the two replica groups
use to interact with each other? Should each member in A send a message to one
member in B, or to all members in B? If each member in B can receive messages
from only one specific member in A, how to know if the messages are faulty (or
malicious)? Moreover, we hope that distributed operations across a set of replica
groups can be executed in an intrusion-masking manner, thus which intrusion mask-
ing model should the replica groups use? To which degree can these approaches
mask intrusions? How efficient are these approaches?

Although some of these issues are addressed in [39], where the idea of tolerat-
ing faulty clients using a group of replicated clients is discussed, the discussion is
very preliminary and most of the questions we raised above are left unanswered.
In addition, the fact that more and more real world critical servers have already
been replicated to replica groups for reliability, availability, and survivability also
indicates the need for practical, cost-effective intrusion-masking inter-replica-group
distributed computing platforms. For example, when most banks replicate their data-
base servers, every distributed transaction across a couple of branches within the
same bank, or across a couple of banks, is actually executed on top of a set of replica
groups. Transactions across banks (or branches) are treated as atomic operations and
such atomicity is typically provided by the two-phase commit protocol (2PC) or the
three-phase commit protocol (3PC). However, neither 2PC nor 3PC is designed for
running on top of replica groups. Do they need to be changed for correct execu-
tions on top of replica groups? If so, how should they be adapted? In this paper, we
not only address general intrusion-masking models for inter-replica-group distrib-
uted computing, but also address some specific application of these models such as
intrusion-masking 2PC and 3PC protocols.

1.2. Our contributions

Our main contributions are as follows. First, we formally specify a group-to-group
communication service with the I/O automaton model proposed by Lynch and Tut-

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 5

M. Yu et al. / Specifying and using intrusion masking models 5

tle [27]. The group-to-group communication service handles message passing be-
tween replica groups. Compared with existing group communication services, ours
has the following merits.

• Accept consistent messages from a non-faulty group. A replica group is non-
faulty if the number of faulty members is no more than one third of the group.
The group-to-group communication service accepts consistent inputs from non-
faulty groups even if some of the members of the sending group are faulty.
It delivers totally ordered messages to replica groups.

• Fault tolerant. When the receiving group is a non-faulty group, all non-faulty
members of the receiving group can get consistent messages if the sending
group is a non-faulty replica group.

• Abstraction. Our specification does not describe all the potentially useful prop-
erties of an application built on top of the communication service. Instead, it
includes only the properties that are needed for applications to do ordered-
communications. Nevertheless, our preliminary analysis results suggest that our
specification is also useful for satisfying some other needs of applications.

Second, we build specifications of some building blocks of the intrusion mask-
ing models we are going to develop. In particular, the building blocks are a replica,
a multicast channel, a totally ordered group-communication service, and a voting
machine. The specification of a replica specifies a replicated server with both repli-
cated data and replicated service. The replica processes requests according to their
arriving order. The multicast channel specifies a general multicast service that is not
fault tolerant and provided by normal network services. The totally ordered group-
communication service specifies a reliable group-communication service that ac-
cepts inputs from a single host. The voting machine accepts majority of inputs as
its input to resist faults. All the building blocks are easy to implement and obtain.
They can be combined to construct complex distributed systems. Their combinations
have not been well studied in the literature, and many features or properties of such
combinations are not clearly understood.

Third, based on the state-machine model, we construct two composite intrusion-
masking models by integrating the group-to-group communication service and the
set of building blocks. Using these two generic intrusion masking models, a variety
of distributed applications can mask intrusions. Fourth, we analyze the survivability
and efficiency of both of the two composite models. According to the analysis results,
our approaches can effectively mask intrusions and are practical. Finally, we apply
the two intrusion-masking distributed computing models to develop two intrusion
masking 2PC protocols across replica groups.

1.3. Organization of the paper

The rest of this paper is organized as follows. We start from introducing some
important properties and assumptions about distributed systems in Section 2. In

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 6

6 M. Yu et al. / Specifying and using intrusion masking models

Section 3, we specify and compose two intrusion-masking models for inter-replica-
group distributed computing. In particular, first, we discuss two possible message
passing schemes among replica groups: symmetric message passing and asymmetric
message passing. Second, we construct a simple state machine that accepts messages
from a replica group and discuss its limitations. Third, we specify a group-to-group
communication service and a set of building blocks. Fourth, we compose two intru-
sion masking models using the group-to-group communication service and the set
of building blocks. Finally, we extend BFT [7] to implement the proposed models
and demonstrate the feasibility of our techniques, and develop two intrusion masking
2PC protocols across replica groups to demonstrate the utility of our techniques.

The survivability and efficiency of our approaches are analyzed in Section 4 and
Section 5. We address the related work in Section 6. Section 7 concludes the paper
with a few suggestions on future work.

2. Preliminaries

In this section, we introduce some concepts and describe the assumptions used in
this paper.

2.1. System properties

A system is not faulty if and only if it satisfies its specifications. The specification
of a system describes a variety of properties of the system. In this paper, we are
mainly concerned with safety, liveness, and survivability properties of systems.

The safety property of a system specifies the functions that a non-faulty system
should perform. In this paper, we specify the safety properties of an intrusion mask-
ing system using the I/O automaton model proposed by Lynch and Tuttle [27]. The
model and its proof methods can be found in Chapter 8 of [28]. Since the two
intrusion-masking models presented in this paper are both composite models, and
complicated and subtle relationships among the set of building blocks (i.e., compo-
nent models) are usually involved in these models, we need such formal methods
as the I/O automaton model to remove the ambiguity in specifying and proving the
correctness of these composite intrusion masking models.

The liveness property requires that a request to a system can always get a response.
The intrusion masking solutions proposed in this paper are built on top of consensus
protocols (among replicas) to ensure the safety or security, but it has been proved
that in an asynchronous system consensus cannot be implemented [10]. Therefore,
our approaches rely on synchrony to provide liveness.

Another important property of a system is survivability, which has been defined in
several different ways in the literature [8,14,18,22]. However, since these definitions
either are qualitative thus they cannot be used for quantitative analysis of survivabil-
ity, or are defined for a specific environment, e.g., survivability of networks, none of
them can be directly applied here.

In this paper, we define survivability of a system as follows.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 7

M. Yu et al. / Specifying and using intrusion masking models 7

Definition 1. The survivability of a given system under a given condition is the prob-
ability that the system can provide liveness and safety.

For example, a crashed system that does not respond to any request has surviv-
ability 0 and a normally functioned web server has survivability 1. A web server
group with 1 normally functioned server and 1 faulty server that never responds has
survivability 0.5 if any of them does not forward requests to the other and does not
answer requests from the other. In other words, a client has probability 0.5 to obtain
the service correctly from the server group.

2.2. Assumptions

2.2.1. Intrusions
In this paper, we assume a hacked system may demonstrate arbitrary behaviors

that are usually modeled as Byzantine faults [20].
Note that although our intrusion model can handle every type of insider or outsider

attacks on a server (replica) and many types of attacks on the client (e.g., a hacked
client can send inconsistent requests to a server replica group), some intrusions can-
not be handled by our approaches. For example, malicious transactions submitted
by authorized but malicious clients to corrupt server data cannot be handled by our
approaches. They can be handled by transaction level intrusion tolerance techniques
[5,48], which are complementary to our approaches.

2.2.2. Replica group
We call a set of replicated servers a replica group. Each replicated server is a

replica. Replicas in the same replica group have consistent data, services, and initial
states. In our model, a service is a sequence of operations.

A replica group consists of several replicas that have the same initial status
(or state) S and operation (or services) set O . We use G1, G2, . . . , Gn to denote
replica groups. We use ri,1, ri,2, . . . , ri,k to represent replicas belonging to ith replica
group Gi, where Gi is called a k-size-group if |Gi| = k. For simplicity, any non-
replicated host is treated as a 1-size-group in the rest of this paper.

For a distributed system composed of n replica groups, i.e., G1, G2, . . . , Gn, we
assume any two groups will not overlap each other, that is, if i �= k, then Gi∩Gk = φ.
In addition, we use R = G1 ∪ G2 ∪ . . . ∪ Gn to denote the universal set of replicas,
and we use U = {G1, G2, . . . , Gn} to denote the universal set of groups.

The safety properties for a replica are specified in Fig. 2.
In the specification, a replica is an I/O automaton denoted R. The automaton is

composed of a set of input operations, a set of output operations, and a set of internal
operations. A state of the automaton is defined by a specific set of state variables. In
particular, variable ready denotes the set of requests sent to R; variable last demotes
the total count of requests; variable result denotes the set of results generated by
processing the requests in ready; variable faulty – replica indicates whether R is
faulty. The initial values of the set of state variables are called the initial state of R.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 8

8 M. Yu et al. / Specifying and using intrusion masking models

In R, a state transition can be caused by an input operation, an output operation, or
an internal process. For one example, when a replica group G asks R to perform oper-
ation o, the corresponding input operation REQUEST(o)G will add a new request into
ready and increase last by 1; the corresponding internal operation EXECUTE(o, i, G)
will perform o (when o is the next one to handle) and generate an answer a (which
is part of result); then the corresponding output operation REPLY(a)r will send the
answer a to each replica r of G . In our specification, the effects (Eff for short) of
each operation type are specified. In addition, the specification of an operation may
include a set of preconditions (Pre for short), which must be satisfied before the
operation is performed. In our specification, a replica strictly executes and replies re-
quests according to their arrival order. The function F (o, S) maps the current state
S and the requested operation o to a new state and an answer a ∈ A . For any two
replicas in the same replica group, if we can guarantee that they always receive the
same requests in the same order, they will always result in the same state S , as the
state machine approach does.

In our model, a replica accepts an request from a group if it receives consistent
requests from all members of the group. Otherwise, the replica will not accept the
request and the corresponding operation will not be performed. In our specification,

Signature:

Input: REQUEST(o)G , o ∈ O, G ∈ U
REPLICA-FAILURE

Internal: EXECUTE(o, i, G), o ∈ O, i ∈ N, G ∈ U
Output: REPLY(a)r , a ∈ A , r ∈ R

SREPLY(a)r , a ∈ A , r ∈ R

State:

ready ⊆ O × N × U , init φ
result ⊆ A × N × U , init φ
last ∈ N, init 0

faulty-replica ∈ Bool, init false
S , initial value depends on the replica group

Transitions(if faulty-replica = false):

input REQUEST(o)G
Eff: ready ← ready ∪ {〈o, last, G 〉}

last ← last + 1
input REPLICA-FAILURE

Eff: faulty-replica = true
output REPLY(a)r

Pre: 〈a, i, G 〉 ∈ result, where
i = min({i′ | 〈a, i′, G 〉 ∈ result})

Eff: result ← (result − {〈a, i, G 〉})
∪{〈a, i, G − {r}〉}

internal EXECUTE(o, i, G)
Pre: 〈o, i, G 〉 ∈ ready, where

i = min({i′ | 〈o, i′, G 〉 ∈ ready})
Eff: (a, S) ← F (o, S)

result ← result ∪ 〈a, i, G 〉
ready ← ready − {〈o, i, G 〉}

output SREPLY(a)r
Pre: 〈a, i, G 〉 ∈ result, where r ∈ G ,

i = min({i′ | 〈a, i′, G 〉 ∈ result})
Eff: result ← result − {〈a, i, G 〉}

Fig. 2. R.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 9

M. Yu et al. / Specifying and using intrusion masking models 9

R offers two different kinds of outputs. REPLY provides replies to all members of the
group that sends requests. SREPLY provides replies to only one member of the group
who sends requests. Behaviors of a faulty replica are left unspecified to simulate
Byzantine faults.

Since replicas may be faulty, replicas in the same group may have different states.
When we get results or receive responses from a replica group, we need to know
how many consistent messages are enough to guarantee that the results are correct
or valid. A size-n-group usually can resist no more than f = �n−1

3 � faulty members
that have Byzantine faults [7,20]. Accordingly, first, we define a specific majority
measurement for replica groups, that is, for a group G composed of n members, we
define majority(G) = 2f + 1. (Note that our majority definition is very different
from the normal majority definition where a sub-group of size n/2+1 is a majority.)
Second, we call any size-n-group that has more than �n−1

3 � faulty members a faulty
group.

2.2.3. Communication environment
For simplicity, we assume any two hosts in a distributed system have a “connec-

tion” protected by cryptography in such a way that no message between any two
hosts can be modified or forged. Nevertheless, messages may be delayed without
boundary. Hence, asynchronous communications are assumed.

We define a multicast service which is specified in Fig. 3. MC does not guarantee
delivery orders while it eventually delivers all messages. In this paper, our discus-
sions about the relationships between the number of faulty hosts and the survivabil-
ity of a system are based on the MC service. Since persistent communication faults
can be handled as processor faults, we do not try to conclude results related to the
number of faulty connections. Although using unicast to implement MC can easily
ensure that no message between any two hosts can be modified or forged, ensuring

Signature:

Input: MC-SEND(m, G)r , m ∈ M , G ∈ U , r ∈ R
Output: MC-RECEIVE(m)r , m ∈ M , r ∈ R

State:

wire ⊆ R × M × U , init φ

Transitions:

input MC-SEND(m, G)r
Eff: wire ← wire ∪ {〈r, m, G 〉}

output MC-RECEIVE(m)r
Pre: 〈r′, m, G 〉 ∈ wire, r ∈ G
Eff: wire ← wire − {〈r′, m, G 〉}

∪{〈r′, m, G − {r}〉}

Fig. 3. MC.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 10

10 M. Yu et al. / Specifying and using intrusion masking models

this property when broadcast is used to implement MC is not that straightforward
since a compromised replica knowing the encryption key could be used to cause
damage to the other replicas. Nevertheless, this problem can be solved in several
ways (e.g., using digital signatures) and such details are out of the scope. Finally, in
this paper we do not consider connectivity and network partitions either.

3. Composing intrusion masking inter-replica-group computing models

In this section, first, we discuss two possible message passing schemes among
replica groups. Second, we construct a simple state machine that accepts messages
from a replica group and discuss its limitations. Third, we specify a group-to-group
communication service and a set of building blocks. Fourth, we compose two intru-
sion masking models for inter-replica-group distributed computing using the group-
to-group communication service and the set of building blocks. Finally, we present
an implementation of the proposed intrusion masking models to demonstrate the fea-
sibility of our techniques, and develop two intrusion masking 2PC protocols across
replica groups to demonstrate the utility of our techniques.

3.1. Message passing schemes

When replica groups want to interact with each other, numerous inter-group mes-
sage passing schemes are possible. Here, we focus on two frequently used schemes.

3.1.1. Symmetric configuration
If the size of all replica groups are the same, one method of message passing is

symmetric sending. For example, when a size-m-group Gi wants to send a request
r to a size-n-group Gj and m is equal to n, we can pass messages in an one-to-
one style. Symmetric sending can be constructed by a working group. In our model,
a working group is a group of replicas that satisfy the following conditions:

1. A member of a working group only interacts with members in the same work-
ing group.

2. A replica belongs to only one working group.
3. Any two replicas in the same replica group belong to different working

groups.

Formally, suppose there are m size-n-groups G1, G2, . . . , Gm in the system. For
all Gi, 1 � i � m, |Gi| = n. We construct working groups set W = {{r1,i, r2,j ,
. . . , rm,k} | r1,i ∈ G1, r2,j ∈ G2, . . . , rm,k ∈ Gm}, where |W | = n, ∀w ∈ W :
|w| = m, ∀wi, wj ∈ W : i �= j ⇒ wi ∩ wj = φ, ∀r, r′ ∈ w, w ∈ W , r �= r′ : r ∈
G ⇒ r′ /∈ G . Each element w of W is a working group. For all Gi, 1 � i � m, we
say W contains Gi. Every replica in a size-n-group is assigned to a working group.
Every two elements of a working group come from different replica groups.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 11

M. Yu et al. / Specifying and using intrusion masking models 11

Fig. 4. Examples of symmetric and asymmetric configurations.

In Fig. 4(a), Gi = {ri,1, ri,2, . . . , ri,n} and Gj = {rj,1, rj,2, . . . , rj,n} are two size-
n-groups. We can construct W = {{ri,1, rj,1}, {ri,2, rj,2}, . . . , {ri,n, rj,n}}. Each
element of W , {ri,l, rj,l}, 1 � l � n, is a working group. Please note that the
construction of set W is not unique according to our definition.

After a working group set W that contains Gi and Gj is constructed, for all ri,k ∈
Gi, ri,k sends request 〈req〉σri,k

to rj,l if and only if ∃w ∈ W : ri,k , rj,l ∈ w

and rj,l ∈ G . Here, σri,k means that req should be signed by ri,k . Note that when
there are no faulty replicas, the req parts in all these (request) messages from Gi
to Gj should be the same because they are the same request sent by different replicas.
Figure 4(a) shows an example of symmetric sending. In a distributed system, if all
replica groups interact with each other using symmetric sending, we denote such a
configuration by symmetric configuration or G-SC.

3.1.2. Asymmetric configuration
Another message passing pattern is asymmetric sending. Messages are passed in

a many-to-many style. When a size-m-group Gi wants to send a request r to a size-
n-group Gj , no matter m is equal to n or not, for all ri,k ∈ Gi, ri,k sends request
〈req〉σri,k

to every replica in Gj . Then totally mn messages are sent. Each replica
in Gj will receive m messages signed by different replicas in Gi. An example is
shown in Fig. 4(b). In the example, ri,2 interacts with all the replicas in Gj , such
as rj,1, rj,2, . . . , rj,n. In a distributed system, if all replica groups interact with each
other using asymmetric sending, we denote such a configuration as asymmetric con-
figuration or G-AC.

It should be noticed that symmetric configuration and asymmetric configuration
have different efficiency and capability of fault tolerance. In Fig. 4, replicas marked
with a cross are faulty replicas and messages marked with a cross are faulty mes-
sages. Symmetric sending has less communication cost but less capability of fault
tolerance than those of asymmetric sending. A fault (e.g., ri,n) in the sending replica
group (e.g., Gi) will be propagated to the receiving group (e.g., rj,n) in symmetric
sending, while asymmetric sending may be able to resist such fault propagations.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 12

12 M. Yu et al. / Specifying and using intrusion masking models

3.2. An extension to the state machine approach and limitations

An intuitive idea to build intrusion-masking inter-replica-group distributed sys-
tems is to extend the classic state-machine approach to handle a replica group as a
“single” client. The standard state-machine approach considers only single hosts as
clients. Our “intuitive” extension has two parts: (1) we specify a new, totally-ordered
communication service, denoted TO, to accept requests from group clients. TO is
specified in Fig. 5(a). (2) We use TO and R to compose an extended state machine
model that can handle group clients. The composite model is shown in Fig. 5(b).

In TO-R, two automatons are combined as follows: a directed edge from one au-
tomaton A1 to another automaton A2 always starts with an output action (or opera-
tion) of A1 and ends with an input action of A2. This means that the output action
always triggers the input action. For example, in Fig. 5(b), a TO-RECEIVE operation
of TO always triggers a REQUEST operation of R.

Signature:

Input: TO-SEND(m, G)G ′ , m ∈ M , G , G ′ ∈ U
REPLICA-FAILUREr , r ∈ R

Output: TO-RECEIVE(m)r , m ∈ M , r ∈ R

State:

for each r ∈R, faulty-replicar ∈Bool, initfalse
n-faulty(G)≡|{r | faulty-replicar = true, r ∈G }|

wire ⊆ U × M × N × U , init φ
last ∈ N, init 0

Transitions (if n-faulty(G) �
 |G |−1
3 �):

input TO-SEND(m, G)G ′
Eff: wire ← wire ∪ {〈G ′, m, last + 1, G 〉}

last ← last + 1
input REPLICA-FAILUREr

Eff: faulty-replicar = true

output TO-RECEIVE(m)r
Pre: 〈G ′, m, i, G 〉 ∈ wire, where r ∈ G ,

i = min({i′ | 〈G ′, m, i′, G 〉 ∈wire}),
faulty-replica = false

Eff: wire ← wire − {〈G ′, m, i, G 〉}
∪{〈G ′, m, i, G − {r}〉}

(a)

(b)

Fig. 5. Compose a state machine with totally ordered service. (a) TO. (b) An intuitive extension of the
state machine approach to handle group clients.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 13

M. Yu et al. / Specifying and using intrusion masking models 13

Since TO-R is a composite state machine automaton, it has its own input and output
operations, which are simply a subset of the unions of the input and output operations
of all of its component automatons, respectively. In particular, the REPLY output
operation of TO-R is offered by the REPLY output operation of R, and the REQUEST

input operation of TO-R is offered by the TO-SEND input operation of TO.
TO has the following properties:

1. TO is totally ordered. From one perspective, when a client replica group is
sending two requests (which have no causal relation between them) to a server
replica group, these two requests may reach two server replicas in different or-
ders. This property ensures that every server replica will always receive (and
process) the requests from the client group in the same order. From another
perspective, when two client replica groups A and B are sending requests to
a server replica group, a request from A and a request from B may reach
two server replicas in different orders. This property ensures that every server
replica will always receive (and process) requests from multiple client groups
in the same order.

2. TO is Byzantine fault tolerant. The capability of fault tolerance of TO is char-
acterized by the number of faulty members in the receiving group because TO

is usually implemented inside the receiving group as a software component

of the receiving group. TO can mask (or tolerate) up to � |G |−1
3 � malicious

members of the receiving group. This number adopts the result of some ex-
isting techniques for resisting Byzantine faults, such as BFT [7]. The case that

n-faulty(G) > � |G |−1
3 � is left unspecified to simulate arbitrary faults.

3. TO accepts a request from a replica group only if TO receives consistent re-
quests from all replicas of the requesting group.

Although TO-R can process requests from a replica group, TO-R is not a practical
intrusion masking computing model since it cannot mask (or tolerate) any faulty
member of the requesting group. Even a non-faulty group that has only one faulty
replica cannot be accepted by the TO-R machine.

3.3. A Practical solution

In this section, we overcome the limitations of TO-R by presenting two practical,
composite, intrusion-masking models for inter-replica-group distributed computing.
Compared with the intuitive extension of the state machine approach, these two mod-
els has two significant advantages:

• Both models can mask a specific number of faulty replicas of the client group
(though to some extent).

• Both models allow a set of server-replica-groups to collaboratively process a
distributed operation issued by the client. Note that the standard state machine
approach cannot handle interactions among server-replica-groups.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 14

14 M. Yu et al. / Specifying and using intrusion masking models

However, before we present the composite models, we need to first specify several
building blocks.

3.3.1. Totally Ordered Group-to-Group Communications
Inter-replica-group intrusion-masking computing needs appropriate group-to-

group communication services. In this section, we specify a totally ordered group
communications service that has multiple inputs. The specification is shown in Fig. 6.
To our best knowledge, this is the first specification of such group communication
services.

MTO has two types of inputs. MTO-SSEND(r, m, G)r′,G ′ is for symmetric con-
figurations and MTO-ASEND(r, m, G)G ′ is for asymmetric configurations. When a

Signature:

Input: MTO-ASEND(r, m, G)G ′ , m ∈ M , G , G ′ ∈ U , r ∈ G
MTO-SSEND(r, m, G)r′,G ′ , m ∈ M , G , G ′ ∈ U , r ∈ G , r′ ∈ G ′

REPLICA-FAILUREr , r ∈ R
Internal: A-RECEIVED(G ′, m, G), m ∈ M , G , G ′ ∈ U

S-RECEIVED(G ′, m, G), m ∈ M , G , G ′ ∈ U
Output: MTO-RECEIVE(m)r , m ∈ M , r ∈ R

State:

for each r ∈R, faulty-replicar ∈Bool, init false
n-faulty(G)≡|{r | faulty-replicar = true, r ∈G }|
pending ⊆ R × M × U ,
∪R × U × R × M × U , init φ
wire ⊆ U × M × N × U , init φ

last ∈ N, init 0

Transitions (if n-faulty(G) �
 |G |−1
3 �):

input MTO-ASEND(r, m, G)G ′
Eff: pending ← pending ∪ {〈G ′, r, m, G 〉}

input MTO-SSEND(r, m, G)r′,G ′

Eff: pending ← pending ∪ {〈r′, G ′, r, m, G 〉}
input REPLICA-FAILUREr

Eff: faulty-replicar = true
internal A-RECEIVED(G ′, m, G)

Pre: S = {〈G ′, r, m, G 〉 | 〈G ′, r, m, G 〉 ∈
pending, faulty-replicar = false},
|S | � majority(G),

Eff: wire ← wire ∪ {〈G ′, m, last + 1, G 〉}
pending = pending − S
last ← last + 1

internal S-RECEIVED(G′, m, G)
Pre: |G | = |G ′|,

S = {〈r′, G ′, r, m, G 〉 | 〈r′, G ′, r, m, G 〉
∈ pending, faulty-replicar = false},
|S |� majority(G), ∀〈r1, G ′, r2, m, G 〉,
〈r3, G ′, r4, m, G 〉 ∈S : seq(r1) = seq(r2)
⇒ seq(r3) = seq(r4), seq(r3) = seq(r4)
⇒ seq(r1) = seq(r2)

Eff: wire ← wire ∪ {〈G ′, m, last + 1, G 〉}
pending = pending − S
last ← last + 1

output MTO-RECEIVE(m)r
Pre: 〈G ′, m, i, G 〉 ∈ wire, where r ∈ G ,

i = min({i′ | 〈G ′, m, i′, G 〉 ∈ wire}),
Eff: wire ← wire − {〈G ′, m, i, G 〉}

∪{〈G ′, m, i, G − {r}〉}

Fig. 6. MTO.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 15

M. Yu et al. / Specifying and using intrusion masking models 15

requesting group G ′ is sending a request to a receiving group G , |G | input oper-
ations will be performed by MTO under either symmetric sending or asymmetric
sending. Under symmetric sending, each MTO-SSEND involves a pair of replicas
from G and G ′, respectively; and any replica of G will not be part of two MTO-
SSEND operations. Under asymmetric sending, each MTO-SSEND involves a replica
of G and all the replicas of G ′. Compared with TO, MTO not only keeps the total-
order property and the Byzantine fault tolerance property, but also can tolerate up to

� |G
′|−1
3 � malicious members of the requesting group. For example, internal opera-

tion A-RECEIVED will allow a replica r of G to accept a request from G ′ as soon as
r receives majority(G) consistent copies of the request from majority(G) replicas
of G ′. Moreover, it should be noticed that MTO will not receive (inconsistent) re-
quests from faulty replica groups for correctness. Finally, MTO can be implemented
in many ways, and we will present an implementation shortly.

3.3.2. Voting machine
We design a voting machine, shown in Fig. 7, to handle messages sent from non-

faulty replica groups that have faulty replicas. If V receives consistent messages from
more than majority(G ′) replicas of the requesting group G ′, V will accept the mes-
sage and believe that the message is from a non-faulty group.

3.3.3. Composite models
Now we are ready to present the two intrusion masking models, namely C1

and C2. C1 is built for symmetric configurations, while C2 is built for asymmet-
ric configurations. C1 is composed of MTO and R. C1 is shown in Fig. 8(a). Here,
output operation REPLY(a)r′,r indicates that r′ gets reply, i.e., answer a, from r.

Signature:

Input: V-IN(m)r,G , G ∈ U , m ∈ M , r ∈ R
Output: V-OUT(m)G , G ∈ U , m ∈ M

State:

in ⊆ U × R × M , init φ

Transitions:

input V-IN(m)r,G
Eff: in ← in ∪ {〈G , r, m〉}

Output V-OUT(m)G
Pre: S = {〈G , r, m〉 | 〈G , r, m〉 ∈ in, r ∈G },

|S| � majority(G)
Eff: in ← in − S

Fig. 7. V.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 16

16 M. Yu et al. / Specifying and using intrusion masking models

In other words, when one replica group G ′ sends a (valid) request to another replica
group G , G will perform exactly |G | output operations where each output operation
will allow a replica r of G sends an instance of the reply to a specific replica r′ of G ′.

Theorem 1. C1 implements MTO-R.

(a)

Signature:

Input: REQUEST(r, o, G)r′,G ′ , o ∈ O, G , G ′ ∈ U , r ∈ G , r′ ∈ G ′

REPLICA-FAILUREr , r ∈ R
Internal: RECEIVED(G ′, o, G), o ∈ O, G , G ′ ∈ U

EXECUTE(G ′, o, i, G), o ∈ O, i ∈ N, G , G ′ ∈ U
Output: REPLY(a)r′,r , a ∈ A , r, r′ ∈ R

State:

pending ⊆ R × U × R × O × U , init φ
ready ⊆ U × O × N × U , init φ
result ⊆ U × A × N × U , init φ

last ∈ N, init 0
n-faulty(G)≡ |{r | faulty-replicar = true, r∈G }|
faulty-replicar ∈ Bool, init false

Transitions(if n-faulty(G) �
 |G |−1
3 �):

input REQUEST(r, o, G)r′ ,G ′

Eff: pending ← pending ∪ {〈r′, G ′, r, o, G 〉}
input REPLICA-FAILUREc

Eff: faulty-replicar = true
internal RECEIVED(G′, o, G)

Pre: |G | = |G ′|,
S = {〈r′, G ′, r, o, G 〉 | 〈r′, G ′, r, o, G 〉 ∈
pending, faulty-replicar = false},
|S | � majority(G),∀〈r1, G ′, r2, o, G 〉,
〈r3, G ′, r4, o, G 〉 ∈ S : seq(r1) = seq(r2)
⇒ seq(r3) = seq(r4), seq(r3) = seq(r4)
⇒ seq(r1) = seq(r2)

Eff: ready ← ready ∪ {〈G ′, o, last + 1, G 〉}
pending = pending − S
last ← last + 1

internal EXECUTE(G ′, o, i, G)
Pre: 〈G ′, o, i, G 〉 ∈ ready, where

i = min({i′ | 〈G ′, o, i′, G 〉 ∈ ready})
Eff: result ← result ∪ 〈G ′, F (o), i, G 〉

ready ← ready − {〈G ′, o, i, G 〉}
output REPLY(a)r′ ,r

Pre: 〈G ′, a, i, G , 〉 ∈ result, r ∈ G ,
r′ ∈ G ′, faulty-replicar = false,
i = min({i′ | 〈G ′, a, i′, G 〉 ∈ result})

Eff: result ← result − {〈G ′, a, i, G 〉}
∪{〈G ′ − {r′}, a, i, G − {r}〉}

(b)

Fig. 8. Composite model for G-SC. (a) Composite model C1. (b) MTO-R.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 17

M. Yu et al. / Specifying and using intrusion masking models 17

MTO-R is specified in Fig. 8. In this following, we prove this theorem by showing
that there exists a simulation relation (or mapping) (denoted F ()) between C1 and
MTO-R that satisfies the following requirements.

1. F () maps every initial state of C1 to an initial state of MTO-R.
2. F () maps every reachable state of C1 to a reachable state of MTO-R.
3. For each step (or state transition) of C1, denoted (s, π, s′), there is an execution

fragment α of MTO-R that goes from F (s) to F (s′), such that trace(α) =
trace(π).

We construct F (s) as follows:

• We let O ⊆ M , that is, a requested operation o ∈ O could be transmitted as a
message.

• If a state variable (e.g., result) belongs to a specific component automaton of
C1 (e.g., a specific replica r), we annotate the state variable with a subscript that
denotes the component, e.g., resultr.

• Let s be a state of C1. F () maps s to t, a state of MTO-R as follows.

– t.last = s.last
– t.pending = s.pending
– t.ready = s.wire
– ∀〈G ′, a, i, G 〉 ∈ t.result: 〈a, i, G 〉 ∈ s.resultr and r ∈ G ′.
– t.replica-failurer = s.replica-failurer

We prove the correctness of F () using two lemmas which are specified as follows.

Lemma 1. If s is an initial state of C1, then F (s) is an initial state of MTO-R.

Lemma 2. Let s be a reachable state of C1, F (s) a reachable state of MTO-R, and
(s, π, s′) a step of C1. Then there is an execution fragment α of MTO-R that goes
from F (s) to F (s′), such that trace(α) = trace(π).

Proof sketch. Consider all the actions (or operations) that automatons MTO and R

take.

• π = MTO-ASEND. This action is disabled in C1.
• π = MTO-SSEND. This action offers the input for requests. π is enabled and

it adds inputted message to pending. Let α = REQUEST and α does the same
thing in MTO-R.

• π = REPLICA-FAILURE. Let α = REPLICA-FAILURE. Since F (s) = s = t, so
(F (s), α, F (s′)) is a step of MTO-R.

• π = A-RECEIVE. This action is not an action of MTO-R. Since MTO-ASEND is
disabled in C1, according to the codes of MTO-ASEND there are no elements
in pending like 〈G ′, r, m, G 〉. Hence, the precondition of action π cannot be
satisfied. So, π is disabled.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 18

18 M. Yu et al. / Specifying and using intrusion masking models

• π = S-RECEIVE. π is not an action of MTO-R. Let α = RECEIVE. π and α have
the same precondition and effects. We map F (s) = s = t. So, trace(π) =
trace(α) = λ, namely, no external actions.

• π = MTO-RECEIVE. π has the same precondition as EXECUTE in MTO-R. Let
α = EXECUTE. In our composition, we consider MTO-RECEIVE(m)ri is the
ith output of MTO and the output is connected with the ith replica R. π triggers
an action REQUEST of R followed by an action EXECUTEri of the ith R. So,
π = MTO-RECEIVE · REQUESTr · EXECUTEr. They are not actions of MTO-R.
According to our codes, after taking these actions, π and α lead to the same
state since they take the same actions on ready(wire) and result.

• π = REQUEST. See that π = MTO-RECEIVE.
• π = EXECUTE. See that π = MTO-RECEIVE.
• π = REPLY. This action is disabled in C1.
• π = SREPLY. Let α = REPLY. According to the definition of F , if ∃〈a, i, G 〉 ∈

s.resultrj , then ∃〈G ′a, i, G 〉 ∈ t.result and r ∈ G ′. So, the jth R in C1 and
the jth output of MTO-R are enabled. After π and α, the jth result is removed
from both s.result and t.result. The result cannot be gotten twice in either C1
or MTO-R. So, getting it again is disabled. �

From Lemma 1 and Lemma 2 we have:

Theorem 2. F is a simulation relation.

Therefore, Theorem 1 has proved.
We conclude the following theorem directly from the composition.

Theorem 3. MTO-R can survive no more than �n−1
3 � faulty replicas.

For the asymmetric configuration we compose C2 with V, MTO and R to accept
asymmetric sending inputs, which is specified in Fig. 9(a). V-MTO-R accepts inputs
from a non-faulty group even if the group has some faulty replicas. The voting ma-
chine votes for inputs and ignores faulty inputs. Then, V-MTO-R votes for its own
inputs to prevent malicious groups from cheating it by inconsistent requests.

Theorem 4. C2 implements V-MTO-R.

Proof sketch. This theorem can be proved in a way quite similar to proving Theo-
rem 1. �

From the composition, we have the following theorem.

Theorem 5. V-MTO-R can survive no more than �n−1
3 � faulty replicas.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 19

M. Yu et al. / Specifying and using intrusion masking models 19

(a)

Signature:

Input: REQUEST(r, o, G)r′,G ′ , o ∈ O, G , G ′ ∈ U , r ∈ G , r′ ∈ G ′

REPLICA-FAILUREr , r ∈ R
Internal: RECEIVED(G ′, o, G), o ∈ O, G , G ′ ∈ U

EXECUTE(G ′, o, i, G), o ∈ O, i ∈ N, G , G ′ ∈ U
Output: REPLY(a)G ′ ,r , a ∈ A , G ′ ∈ U , r ∈ R

State:

pending ⊆ R × U × R × O × U , init φ
ready ⊆ U × O × N × U , init φ
result ⊆ U × A × N × U , init φ
last ∈ N, init 0

n-faulty(G) ≡ |{r | faulty-replicar = true,
r ∈ G }|
faulty-replicar ∈ Bool, init false

Transitions(if n-faulty(G) �
 |G |−1
3 �):

input REQUEST(r, o, G)r′ ,G ′

Eff: pending ← pending ∪ {〈r′, G ′, r, o, G 〉}
input REPLICA-FAILUREc

Eff: faulty-replicar = true
internal RECEIVED(G ′, r, o, G)

Pre: S = {〈r′, G ′, r, o, G 〉 | 〈r′, G ′, r, o, G 〉 ∈
pending, faulty-replicar = false},
|S | � majority(G ′)

Eff: pending = pending − S ∪ {〈G ′, r, o, G 〉}
internal RECEIVED(G ′, o, G)

Pre: S = {〈G ′, r, o, G 〉 | 〈G ′, r, o, G 〉 ∈
pending}, |S | � majority(G)

Eff: ready ← ready ∪ {〈G ′, o, last + 1, G 〉}
pending = pending − S
last ← last + 1

internal EXECUTE(G ′, o, i, G)
Pre: 〈G ′, o, i, G 〉 ∈ ready, where

i = min({i′ | 〈G ′, o, i′, G 〉 ∈ ready})
Eff: result ← result ∪ 〈G ′, F (o), i, G 〉

ready ← ready − {〈G ′, o, i, G 〉}
output REPLY(a)G ′,r

Pre: 〈G ′, a, i, G , 〉 ∈ result, r ∈ G ,
faulty-replicar = false,
i = min({i′ | 〈G ′, a, i′, G 〉 ∈ result})

Eff: result ← result − {〈G ′, a, i, G 〉}
∪{〈G ′, a, i, G − {r}〉}

(b)

Fig. 9. Composite model for G-AC. (a) Composite model C2. (b) V-MTO-R.

Now we can carry out a distributed operation in two possible ways. (1) Under
the G-SC configuration, every replica group is constructed as a MTO-R machine.
Every replica group sends requests and obtains replies from other groups using sym-
metric (message) sending. (2) Under the G-AC configuration, every replica group is

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 20

20 M. Yu et al. / Specifying and using intrusion masking models

constructed as a V-MTO-R machine. Every replica group sends requests and obtains
replies from other groups using asymmetric sending. Note that any distributed op-
eration (e.g., 2PC protocol operations) can be processed in these two ways, and our
intrusion masking computing models are generic models.

3.4. Case study: building intrusion masking 2PC protocols

In this section, first, we show how BFT [7], a popular and practical Byzantine
fault tolerance protocol, can be used to implement both C1 and C2. Second, we show
how such implementations can be applied to build practical intrusion masking 2PC
protocols.

3.4.1. Extending BFT to BFT-S
BFT is a practical Byzantine fault tolerance protocol that enables a server replica

group to handle requests from single-host clients. BFT ensures that when there are
no more than �n−1

3 � faulty replicas in the size-n-server-group, (a) all the non-faulty
replicas of the server group will process the requests from multiple clients in the
same order; (b) every request they process will be consistent; and (c) the clients will
receive correct, consistent replies. Moreover, BFT achieves practical performance.

Based on BFT, we introduce a new Byzantine fault tolerant protocol named BFT-
S to meet the requirements of our communication schemes among replica groups.
BFT-S is specified as follows and is shown in Fig. 10. Here, we assume the client
(group) interacts with a size-3k + 1-(server)-group. k is the maximum number of
Byzantine-faulty replicas in the (server) group that can be masked or tolerated. In
our architecture, either a single node or a replica group could be the client. Note that
here we focus on the differences of BFT-S from BFT. Note also that our techniques
are not limited to BFT and can be applied to other similar protocols based on the
state machine approach.

Phase request and phase reply. When the client is a size-3k + 1-group and the
system is under symmetric configuration, the client symmetrically sends the
〈SYMMETRIC-REQUEST, o, t, c〉σc message to the size-3k + 1-server-group.
In the request, t is the time stamp and o is the operation (requested to be per-
formed). c is a replica of the client group. At the end of BFT-S, each replica
i of the size-3k + 1-server-group symmetrically sends reply 〈SYMMETRIC-
REPLY, v, t, c, i, r〉σi to the client, where r is the result of request t and v is the
view number.
On the other hand, when the system is under asymmetric configuration (the
client can be either a single node or a replica group), or the client is a sin-
gle node and the system is under symmetric configuration, the client asym-
metrically sends the 〈ASYMMETRIC-REQUEST, o, t, c〉σc message to the size-
3k + 1-server-group. c is the client or a replica of the client. If the client is
a size-3j + 1-group and the system is under asymmetric configuration, each
replica in the size-3k + 1-server-group should not start to process a request

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 21

M. Yu et al. / Specifying and using intrusion masking models 21

Fig. 10. An normal BFT-S procedure.

until j + 1 matching instances of the request are received. When BFT-S ends,
the reply 〈ASYMMETRIC-REPLY, v, t, c, i, r〉σi will be asymmetrically sent to
the client. The client will wait for a weak certificate before accept the reply
as the result. The weak certificate is composed of k + 1 matching instances
(of the reply) that have a valid signature of a server replica, and the same v, t
and r. Note that the term “weak certificate” comes from BFT [7] since it only
requires k + 1 consistent messages rather than 2k + 1, the usual threshold.

Phase pre-prepare. The primary assigns a sequence number n to the request and
multicasts the request to other server replicas in the pre-prepare phase. Each
replica will accept the request if and only if the request from the client matches
the request from the primary. Otherwise, it will simply discard the request.
Note that in general any server replica can be the primary. Note also that BFT
[7] uses a specific “view change protocol” to handle corrupted primary nodes.

The prepare phase and the commit phase are the same as BFT. They can be simply
described as follows. In the prepare phase and the commit phase, each server replica
broadcasts the signed request to others and collects 2k + 1 matching requests as a
certificate to authorize itself to continue the following operations. For more informa-
tion about BFT please refer to [7]. A normal BFT-S procedure with single client is
shown in Fig. 10.

BFT-S improves BFT in three aspects. First, a replica group can be a client of
BFT-S. Second, in BFT-S all requests from the same replica group can be processed
in parallel. This property can greatly reduce the communications cost of BFT-based
2PC protocols. Third, clients do not need to know “who is the primary of a replica
group?” We have the following theorem directly from BFT.

Theorem 6. BFT-S can tolerate no more than �n−1
3 � faulty members of either a

size-n-server-group or a size-n-client-group.

3.4.2. BFT-S-based intrusion masking 2PC protocols
A distributed operation has different part of itself running on different hosts simul-

taneously. To ensure correct execution of distributed operations, we need to ensure

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 22

22 M. Yu et al. / Specifying and using intrusion masking models

the “all-or-nothing” property. The 2PC (or 3PC) protocol guarantees that a distrib-
uted operation will either be successfully committed or be aborted without any ef-
fect on the system. According to the 2PC protocol, when a distributed operation is
executed, the coordinator asks all the participants if they are ready to commit the
distributed operation. If every participant answer “ready”, the coordinator will order
all the participants to commit the operation. Otherwise, the distributed operation will
be totally aborted. The 3PC protocol is similar to the 2PC protocol.

Two intrusion masking atomic commit protocols (BFT-ACP) are introduced in this
section. Our BFT-ACP protocols can be combined with either 2PC or 3PC protocols,
and are named as BFT-2PC and BFT-3PC, respectively. We first discuss BFT-2PC
under Symmetry Configuration (BFT-2PC-SC), then discuss BFT-2PC under Asym-
metry Configuration (BFT-2PC-AC).

In our model, a client is asking a set of servers to process a distributed transaction.
For intrusion masking, each of the servers are replicated to form a replica group. The
client may be a replica group too. During the execution of the distributed transaction,
the replica group that receives the request from the client is called the coordinator
group and the other groups are called participant groups.

After accepting a distributed transaction from the client, the coordinator group
carries out three phase of BFT-S to achieve an agreement, namely PRE-PREPARE,
PREPARE and COMMIT. After that, the request will be logged in the stable storage
for further recovery in case of malicious transactions. Then, BFT-2PC-SC or BFT-
2PC-AC will be carried out according to the system configuration.

The BFT-2PC-SC protocol is described as follows.

Phase one: request to prepare. The coordinator group symmetrically sends
〈SYMMETRIC-REQUEST, REQUEST-TO-PREPARE, t, c〉σc to all the participant
groups. Each participant group starts a BFT-S for the request to prepare.
Note that t (the time stamp) in each of the request messages should be the
same. Because t is used to guarantee the semantics of “exactly once”, so it
will not be confusing even if two different requests have the same time stamp.

Phase two: voting on commit. The participant groups symmetrically send the reply
〈SYMMETRIC-REPLY, v, t, c, i, PREPARED〉σi or 〈SYMMETRIC-REPLY, v, t, c,
i, NO〉σi to the coordinator group in terms of the transaction can be prepared
or not.
Each replica in the coordinator group makes a decision for “commit” if all
the replies received from the participant groups are PREPARED. Otherwise, it
decides “abort”. In both cases, all replicas of the coordinator group should
achieve an agreement on their decisions to ensure consistency, which is im-
plemented by multicasting the decisions of each replica among the group and
collecting 2f + 1 matching decisions if the coordinator group is a size-3f + 1-
group.
Next, the coordinator group notifies all the participant groups to “commit”
or “abort” by symmetrically sending the request 〈SYMMETRIC-REQUEST,

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 23

M. Yu et al. / Specifying and using intrusion masking models 23

COMMIT, t, c〉σc or 〈SYMMETRIC-REQUEST, ABORT, t, c〉σc to all the partic-
ipant groups. Each participant group then starts another BFT-S procedure
for the notice. Finally, each participant group symmetrically sends the reply
〈SYMMETRIC-REPLY, v, t, c, i, DONE〉σi to the coordinator group.

After the coordinator group receives the DONE replay, the coordinator group sends
replies to the client.

The BFT-2PC-AC protocol can be described in exactly the same way as BFT-2PC-
SC except replacing all symmetric sending with asymmetric sending and replacing
all SYMMETRIC-REQUEST, SYMMETRIC-REPLY with ASYMMETRIC-REQUEST and
ASYMMETRIC-REPLY, respectively.

4. Survivability

In this section, we evaluate the intrusion-masking capability of the two intrusion-
masking distributed computing models we proposed in the previous section. Our
evaluation method is to quantify the survivability (we defined in Section 2) achieved
by these two intrusion-masking models. In our specification, a working group w is
correct if and only if every replica in w is not faulty and the communications among
them are not faulty. Otherwise, the working group is a faulty working group because
the operations among the replicas of the working group cannot obtain correct results.

On one hand, the survivability of G-SC can be characterized by the following
theorem.

Theorem 7. Given a distributed system composed of a set of size-n-replica-groups,
if the distributed system is under G-SC configuration (stated by C1), the system can
survive no more than �n−1

3 � faulty working groups when carrying out a distributed
operation.

Proof sketch. In G-SC, each replica in a replica group interacts with replicas of
other groups through a specific working group. If the replica belongs to a faulty
working group, it will not get a correct result when carrying out a distributed opera-
tion. When the number of faulty working groups is no more than �n−1

3 �, no replica
groups will have more than �n−1

3 � faulty members. According to Theorem 3, any
replica group can survive such failure. So, the distributed operation will be correct.

When the number of faulty working groups is more than �n−1
3 �, there exists at

least one communication step where the receiver will receive more than �n−1
3 �

faulty messages. According to Theorem 3, the receiving group cannot resist such
failure. �

Please note in Theorem 7 the faults are quantified by the number of faulty working
groups instead of the number of faulty replicas in each replica group. This is because
failures can be propagated across replicas within a working group. In particular, the

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 24

24 M. Yu et al. / Specifying and using intrusion masking models

following example shows why the number of faulty replicas in each replica group
should not be used.

Example 1. Assume two replica groups are collaborating on processing a distrib-
uted operation. Assume one group is {ri,1, ri,2, ri,3, ri,4}, and the other group is
{rj,1, rj,2, rj,3, rj,4}. Assume four working groups are formed: the first replicas of
each group form the first working group, and so forth. Assume only two replicas are
faulty; they are ri,1 and rj,3. It is clear that every replica group is non-faulty. How-
ever, this distributed system cannot survive these two faulty working groups, namely
working groups 1 and 3, since (a) when rj,1 receives a malicious request from ri,1,
the fault on ri,1 will be “propagated” to rj,1, that is, the internal operations of rj,1
based on the malicious request will usually be distorted; (b) as a result, replica group
j cannot reach an agreement on the reply that should be sent to group i because half
of the replicas of group j cannot correctly function. Moreover, from the perspective
of BFT-S, replica group j cannot earn the certificate needed to commit.

Based on Example 1, we can get the following corollary.

Corollary 1. Given a distributed system composed of m size-n-replica-groups, if
the distributed system is computing under G-SC configuration (stated by C1), then

• The distributed system can mask (or survive) up to k = �n−1
3 � malicious repli-

cas, no matter where these faulty replicas stay.
• When g, the total number of faulty (or malicious) replicas, is larger than k, but

less than or equal to mk, i.e., k < g � mk, if the probability that a replica
is faulty is identical throughout the whole system, the survivability P of the
system can be described with Eq. (1). G-SC cannot survive more than mk faulty
replicas.

P =

(n
k

)(mk
g

)
(mn

g

) . (1)

Proof sketch. Let k = �n−1
3 �. When there are k faulty replicas in the system, con-

sider the worst case, these replicas locate in different working groups then there are
totally �n−1

3 � faulty working groups in the system. According to Theorem 7, G-SC
can survive such failure.

When k < g � mk, according to Theorem 7 all g (faulty replicas) should stay
in no more than �n−1

3 � working groups to ensure that G-SC will survive the failure.

There are totally
(n
k

)(mk
g

)
solutions that put g faulty replicas in no more than �n−1

3 �
working groups while there are totally

(mn
g

)
solutions that put g faulty replicas in

mn positions in the system. Based on the assumption, the probabilities that g faulty
replicas occur at each group are equal, hence the survivability P of system is exactly
the expression of Eq. (1).

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 25

M. Yu et al. / Specifying and using intrusion masking models 25

When the number of faulty replicas is more than mk, there is no way to arrange
these faulty replicas in less than �n−1

3 � working groups, and according to Theorem 7,
G-SC cannot survive such failure. �

Remark. In Corollary 1 and Corollary 8 below, we assume the probability that a
replica is faulty is identical throughout the whole system. It should be noticed that
this assumption captures the scenarios where the inter-replica-group distributed com-
puting system may achieve the maximum amount of survivability. Although when
the system is poorly protected, the attacker may be able to select a set of well-selected
replicas to attack, this assumption enables us to derive the theoretical upper-bound of
the survivability of the proposed intrusion masking models, and it is practically sup-
ported by the emerging technologies to diversify systems (and their vulnerabilities)
and to hide the memberships within a replica group.

On the other hand, the survivability of G-AC can be characterized by the following
theorem.

Theorem 8. Given a distributed system composed of a set of replica groups, G-AC
(or C2) can survive no more than �n−1

3 � faulty replicas in each size-n-group of the
system.

Proof sketch. Because asymmetric sending can resist propagation of faults, so,
G-AC can function correctly if and only if every replica group in the system func-
tions correctly. Based on Theorem 5, this theorem is correct. �

The following corollary gives a lower bound of the survivability of G-AC.

Corollary 2. Given a distributed system composed of m size-n-replica-groups, if the
distributed system is computing under G-AC configuration, and if the probability that
a replica is faulty is identical throughout the whole system, then G-AC can survive at
least k = �n−1

3 � faulty replicas, no matter where these faulty replicas stay. Beside
this, if k < g � mk (g denotes the total number of faulty replicas), the survivability
P of the system can be characterized with Eq. (2). G-AC cannot survive more than
mk faulty replicas.

P � max

(
0,

(mn
g

)
− m

∑min(g,n)
i=k+1

(n
i

)((m−1)n
g−i

)
(mn

g

)
)

. (2)

Proof sketch. Let k = �n−1
3 �. When there are k faulty replicas in the system, ac-

cording to Theorem 8, G-AC can survive such failure because there is no such replica
group that has more than �n−1

3 � faulty replicas.
When k < g � mk, according to Theorem 8, all g faulty replicas should stay in

the “good” locating mode, where there is no such replica group that has more than
�n−1

3 � faulty replicas, to ensure that G-AC will survive the failure.

pliu
Change "Corollary 8" to "Corollary 2"

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 26

26 M. Yu et al. / Specifying and using intrusion masking models

Fig. 11. The survivability of G-SC and G-AC while m = 3.

To calculate the probability of the “good” node is not trivial. First, we can count
the “bad” modes where G-AC cannot survive. To construct a locating mode, we first
select one replica group, and there are m solutions. Then we assign �n−1

3 �+1 = k+1
faulty replicas in the replica group. Finally, we assign g − (k + 1) faulty replicas to
other replica groups. The total number of solutions for this locating configuration is
m

∑min(g,n)
i=k+1

(n
i

)((m−1)n
g−i

)
. Unfortunately, in fact the bad modes have been repeatedly

counted when m is big enough.
Because there are totally

(mn
g

)
solutions that put g faulty replicas in mn positions

in the system, so, the number of locating modes that G-AC can survive is more than(mn
g

)
−m

∑min(g,n)
i=k+1

(n
i

)((m−1)n
g−i

)
. Based on the assumption, the probabilities that g

faulty replicas occur at each group are equal, hence the survivability P of the system
can be characterized by Eq. (2).

When the number of faulty replicas more than mk, there is no way to arrange these
faulty replicas to ensure that there is no such replica group that has more than �n−1

3 �
faulty replicas. According to Theorem 8, G-AC cannot survive such failure. �

Note that Corollary 2 gives a lower bound of survivability of G-AC. When m is
small enough (e.g., m = 2 or m = 3), the corollary gives the accurate survivability.

When there are m size-n-groups in the system, we compared the expected sur-
vivability of G-SC and G-AC. The expected survivability when m = 3 is shown
in Fig. 11. When m has different values, the subtractions of G-SC’s survivability
from G-SC’s survivability are shown in Fig. 12. We observed that G-AC always has

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 27

M. Yu et al. / Specifying and using intrusion masking models 27

Fig. 12. The subtractions of G-SC’s survivability from G-AC’s survivability.

better survivability than that of G-SC. We believe this is because asymmetric send-
ing has better capability of fault tolerance. The asymmetric structure of G-AC also
contributes to its survivability.

5. Efficiency

In this section, we evaluate the efficiency of the two intrusion-masking distributed
computing models we proposed in Section 3. The efficiency of the two intrusion-
masking models can be characterized in several aspects. In this paper, we focus on
the communication costs and the latency.

The communication costs can be quantified by the number of messages, which
depends on the implementation of the communication layer. For example, multicast
could be implemented by unicast or broadcast in the lower layer. The communica-
tion costs of these two implementation methods are very different. So we count the
(number of) messages for both cases.

Suppose a distributed operation consists of a sequence of M1, C1, M2, C2, . . . ,
Mk, Ck , where Mi, 1 � i � k, is a step of message passing and Ci, 1 � i � k,
is a step of computing. Under G-SC, there are totally k(f (n) + n) messages, where
f (n) is the number of messages consumed to achieve a consensus within the MTO

machine. Under G-AC, there are totally
∑k

i=1(f (nk) + nknk+1) messages.
In the rest of the paper, we investigate a more practical scenario where 2PC op-

erations are performed across a set of replica groups under symmetric sending and

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 28

28 M. Yu et al. / Specifying and using intrusion masking models

Fig. 13. Time model.

Table 1

Communication cost of BFT-2PC-SC and BFT-2PC-AC

BFT-2PC-SC BFT-2PC-AC n1 =n2 = · · · =nm

NpI (4m − 3)n n + 4
∑m

i=2 n1ni 4(m − 1)n2 + n

NpL 6n2 − 3n − 3 2n2 − n − 1 + 2 max(2n2
i − ni − 1) 6n2 − 3n − 3

NbI 2mn + 1 1 + 2(m − 1)n1 + 2
∑m

i=2 ni 4(m − 1)n + 1
NbL 6n + 3 2n + 1 + 2 max(2ni + 1) 6n + 3
Nsig 14 14 14
Nq 6n + 2m − 2 2n + 2(n1 − 1) + 2(2 max(ni) − 1) + 2

∑m
i=2 ni (2m + 6)n − 4

asymmetric sending, respectively. In particular, we evaluate the efficiency of BFT-
2PC-SC and BFT-2PC-AC respectively. Here we assume MTO is implemented by an
adapted BFT protocol, namely BFT-S [46].

As for the latency of processing, we adopt the time model shown in Fig. 13, which
is similar to the time model of BFT. In the figure, U is the multicasting time. All
messages received by a receiver are queued in the buffer of the receiver. The receiver
needs time TQ to process the message queue. Finally, the receiver needs time TE to
execute the request.

Based on our time model, the latency of a (message passing) procedure can be
calculated by Eq. (3) based on the critical path of the procedure.

L =
∑

U +
∑

TE +
∑

TQ. (3)

Because all participants can execute in parallel, so in the critical path, TE can be
calculated by Eq. (4).

∑
TE = TT + 2TC + 2 max TP + tσNsig. (4)

In the equation, TT is the executing time of the transaction (involved in the 2PC
protocol); TC is the time of executing one BFT-S protocol by the coordinator group;
TP is the time of executing one BFT-S protocol by a participant group; TV is the
time of voting in the coordinator group; tσ is the signature time for a single message,
and Nsig is the total number of messages that need be signed on the critical path.

The communication costs of BFT-2PC-SC and BFT-2PC-AC are shown in Table 1.
In the table, the configuration of BFT-2PC-SC is m size-n-groups under symmetric

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 29

M. Yu et al. / Specifying and using intrusion masking models 29

Table 2

The parameters for latency evaluation

Symbol definitions Default values

TT : executing time of a transaction 1.2 second

TC : time of one BFT-S procedure by coordinator 0.1 second

TP : the longest time of one BFT-S by a participant 0.1 second

tσ : signature time of a single message 0.1 second

tI : time for transmitting a message on the Internet 0.02 second

tL: time for transmitting a message locally 0.002 second

tq : time to process a message in the queue 0.005 second

configuration. The configuration of BFT-2PC-AC is that the coordinator group is a
size-n1-group, the participant groups are composed of a size-n2-group, a size-n3-
group, · · ·, and a size-nm-group under asymmetric configuration. In Table 1 NpI
represents the number of messages transmitted on the Internet by point-to-point.
NpL represents the number of messages transmitted locally by point-to-point. NbI
represents the number of messages transmitted on the Internet by broadcasting. NbL
represents the number of messages transmitted locally by broadcasting.

Despite the impact of the network topology and the implementation details, for
simplicity, we assume the transmitting time U is in proportion to the total number of
messages NI and NL. We also assume that TQ is in proportion to the total length of
message queue Nq on the critical path. Then we have Eq. (5).

∑
U +

∑
TQ = tINI + tLNL + tqNq. (5)

In the equation, tm is the unit time to transmit a message, and tq is the unit time to
process a message in the queue. So, we have the latency described with Eq. (6).

L = TT + 2TC + 2 max TP + tσ
∑

Nsig + tINI + tLNL + tqNq. (6)

Suppose we have m size-n-groups, they can be configured in either symmetric
sending or asymmetric sending. We compared their communication costs and la-
tency. The parameters for latency evaluation are shown in Table 2.

Some default values about transactions and communications in the table are cho-
sen based on [26]. Based on the parameters for latency evaluation, and the latency
equation (i.e., Eq. (6)), we can compute the latency for a distributed transaction with
either BFT-2PC-SC or BFT-2PC-AC. Because the implementation of multicast has
great impact on communication costs and the latency of transactions, so we compare
the latencies under two different implementations of multicast.

The latencies of the two intrusion masking 2PC protocols are shown in Fig. 14
and Fig. 15. According to the results shown in the figures, BFT-2PC-AC is not a very
pragmatic scheme due to its poor latency performance, while BFT-2PC-SC demon-
strates better results. Also the total number m of replica groups has great impact on

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 30

30 M. Yu et al. / Specifying and using intrusion masking models

Fig. 14. Latencies under different configurations.

Fig. 15. Contours of latencies.

the latency of BFT-2PC-AC. Nevertheless, as shown in Fig. 15, when the size of a
group is not larger than 5 and the number of groups is less than 10, the latencies of
both BFT-2PC-AC and BFT-2PC-AC are shorter than 25 s. Hence, both BFT-2PC-
SC and BFT-2PC-AC are practical under such settings.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 31

M. Yu et al. / Specifying and using intrusion masking models 31

So far, we ignored the impact of the network topology and the implementation
details. In fact, the latency in multicast communications is not exactly proportional to
the total number of messages and should actually be shorter than what we calculated
in Eq. (6). So, the real efficiency of BFT-2PC-AC may be better. Still, BFT-2PC-SC
has better performance than BFT-2PC-AC if we consider this optimization.

6. Related work

The work similar to ours can be classified into four categories which are discussed
as follows.

6.1. Replication-based fault tolerance

Significant research efforts have been seen in search of replication algorithms that
achieve both high performance and availability [2,9,15,26,37,42], in which updates
are produced by a master replica then broadcasted to other replicas. A serious limi-
tation of such systems is that the master replica may be faulty.

PASIS [11,41,43,44] is designed as a survivable storage system. It provides the
stable storage we need. As we mentioned earlier, reliable storage, though an impor-
tant technique, is not enough to tolerate Byzantine faults because the services which
produce data may be faulty.

To handle Byzantine faults, the basic idea is to duplicate both services and data,
namely full replication. The state machine approach [39] is one of such meth-
ods. Some reliable group communication services [1,4,17,29,35,38] can be valuable
building blocks of the state-machine-approach. The standard state machine approach
and its building blocks can handle single-host clients very well, but they are not ade-
quate in handling replica group clients and interactions among a set of server replica
groups. BFT [7] is a special type of state machine methods and is considered as a
practical scheme for Byzantine fault tolerance. Unfortunately, it has no solution for
carrying out operations among replica groups.

Quorum replication [3,30–32] can also have the capability of intrusion masking,
but quorum replications usually restricts (the type of) operations (read and write) and
needs locks to access variables. State machine approach based algorithms have no
limitation on operations and could have better performance as BFT does.

6.2. Byzantine fault tolerance

Arbitrary faults or intrusions are usually modeled as Byzantine faults [20]. Byzan-
tine agreement algorithms can resist some kinds of malicious attacks, but they are
mainly for achieving consensus and not affordable in many, if not most, real world
distributed environments due to their high costs.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 32

32 M. Yu et al. / Specifying and using intrusion masking models

Applying Byzantine agreement (BA) to database systems has been discussed
in [12], which suggests that the only necessary application of BA is submission of
transactions. Furthermore, full replication is necessary. This idea is the same as the
state machine approach, but it has no solution for handling replica group clients.

In [12,33], BA is applied in the second phase of 2PC. But in fact, a single ma-
licious participant can paralyze the system by simply voting “NO”, which can be
tolerated in our approaches.

If we assume Byzantine faults, the problem of distributed atomic operations is a
Weak Byzantine Generals Problem [19], which is usually solved by Byzantine agree-
ment techniques [19,20] theoretically. However, Byzantine agreement algorithms are
usually not affordable in distributed environment due to their high communication
costs.

6.3. Application level intrusion tolerance

Because our approaches are based on the state machine approach, they cannot
handle consistent but malicious requests sent by malicious clients. Transaction level
intrusion tolerance and attack recovery techniques have been studied in [5,47,48].
These work implements intrusion tolerance at the transaction level. When intrusions
are detected by an intrusion detector, the database system isolates and confines the
impaired data. Then, the system can recover from malicious transactions. These work
is different from ours in that their system has a “window” from the status of destruc-
tion to the status of recovery. And user may obtain wrong data during this window.
Hence, their systems cannot totally mask the intrusions. Nevertheless, these tech-
niques and our intrusion masking distributed computing models are complementary
to each other, and these techniques can be integrated into our scheme.

6.4. Voting after reliable atomic group communications

Distributed operations implemented by voting after reliable atomic group commu-
nications have been proposed in [16,36]. Their work can be modeled by Fig. 16.

Suppose there is a single step operation that a size-m-group G sends a request to
a size-n-group G ′. In G-AC configuration (see Fig. 9(b)), there are mn + f (n) mes-
sages that need to send, where f (n) is the messaging cost in MTO per consensus. By
voting after reliable atomic group communication, there are totally mg(n) messages
that need to send, where g(n) is the messaging cost in TO per consensus. Usually

Fig. 16. Voting after reliable group communication.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 33

M. Yu et al. / Specifying and using intrusion masking models 33

f (n) ≈ g(n) and g(n) � n (e.g., in BFT, g(n) = 2n2 − n − 1). So, their approach
costs about (m−1)g(n) more messages than our V-MTO-R model without improving
survivability.

Finally, this work is different from our previous work [46] as follows. (a) In this
paper, we show how a set of well specified I/O automatons can be composed to
construct intrusion masking models, while in [46], no automatons are specified and
no composite intrusion masking models are proposed. (b) In [46], a specific BFT-S
based intrusion masking approach is proposed, but it is not generic. In this paper, we
identify the building blocks for intrusion masking distributed computing and these
building blocks are simple and powerful enough to compose new models besides the
two models we proposed. (c) We have more results of analysis of survivability and
efficiency.

7. Conclusions

Today, many critical applications want their services to be executed in an
intrusion-masking fashion. Compared with intrusion tolerance techniques, where
some integrity or availability degradations are usually caused, intrusion masking
techniques use substantial replications to avoid such degradations. Existing intru-
sion masking techniques can effectively mask intrusions when processing requests
from a client using a server replica group, but they are fairly limited in processing
distributed operations across multiple server replica groups. As more and more appli-
cations need to process distributed operations in an intrusion-masking fashion, it is
in urgent need to overcome the limitations of existing intrusion masking techniques.

In this paper, we specify and compose two intrusion-masking models for inter-
replica-group distributed computing. Using these two models, a variety of applica-
tions can mask intrusions. Our intrusion masking models overcome the limitations
of existing intrusion masking techniques. The survivability of our intrusion-masking
models is quantitatively analyzed. A simple yet practical implementation method
of our intrusion-masking models is proposed and applied to build two intrusion-
masking two-phase-commit (2PC) protocols, and the corresponding efficiency is an-
alyzed. The two intrusion-masking 2PC protocols and the analysis results show that
the proposed intrusion-masking models have good utility, practicality, and surviv-
ability. Finally, the composition methodology developed in this paper can also be
used to develop other intrusion-masking distributed computing models.

Acknowledgements

We thank anonymous reviewers for their valuable and insightful comments. This
work is supported by the Defense Advanced Research Projects Agency (DARPA)
and Air Force Research Laboratory, Air Force Material Command, USAF, under
agreement number F30602-00-2-0575, by DARPA and AFRL, AFMC, USAF, under
award number F20602-02-1-0216,by NSF CCR-TC-0233324, and by Department of
Energy Early Career PI Award.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 34

34 M. Yu et al. / Specifying and using intrusion masking models

References

[1] D.A. Agarwal, L.E. Moser, P.M. Melliar-Smith and R.K. Budhia, The totem multiple-ring ordering
and topology maintenance protocol, ACM Transactions on Computer System 16(2) (1998), 93–132.

[2] D. Agrawal and A. EL Abbadi, The generalized tree quorum protocol: An efficient approach for
managing replicated data, ACM Transactions on Database Systems 17(4) (1992), 689–717.

[3] L. Alvisi, D. Malkhi, E. Pierce and M.K. Reiter, Fault detection for byzantine quorum systems, IEEE
Transactions on Parallel and Distributed Systems 12(9) (2001), 996–1007.

[4] Y. Amir, L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal and P. Ciarfella, The totem single-ring
ordering and membership protocol, ACM Transactions on Computer System 13(4) (1995), 311–342.

[5] P. Ammann, S. Jajodia and P. Liu, Recovery from malicious transactions, IEEE Transaction on
Knowledge and Data Engineering 14(5) (2002), 1167–1185.

[6] A. Arora and S.S. Kulkarni, Designing masking fault-tolerance via nonmasking fault-tolerance,
IEEE Transactions on Software Engineering 24(6) (1998), 435–450.

[7] M. Castro and B. Liskov, Practical byzantine fault tolerance, in: The Third Symposium on Operating
Systems Design and Implementation (OSDI ’99), New Orleans, USA, 1999, pp. 173–186.

[8] D. Chen, S. Garg and K.S. Trivedi, Network survivability performance evaluation: a quantitative ap-
proach with applications in wireless ad-hoc networks, in: Proceedings of the 5th ACM International
Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems, ACM Press, 2002,
pp. 61–68.

[9] S.-W. Chen and C. Pu, A structural classification of integrated replica control mechanisms, Technical
Report CUCS-006-92, Columbia University, New York, NY, 1992.

[10] M.J. Fischer, N.A. Lynch and M.S. Paterson, Impossibility of distributed consensus with one faulty
process, Journal of the ACM 32(2) (1985), 374–382.

[11] G.R. Ganger, P.K. Khosla, M. Bakkaloglu, M.W. Bigrigg, G.R. Goodson, S. Oguz, V. Panduran-
gan, C.A.N. Soules, J.D. Strunk and J.J. Wylie, Survivable storage systems, in: DARPA Information
Survivability Conference and Exposition, Vol. 2, Anaheim, CA, IEEE, 2001, pp. 184–195.

[12] H. Garcia-Molina and F. Pittelli, Applications of byzantine agreement in database systems, ACM
Transactions on Database Systems 11(1) (1986), 27–47.

[13] F.C. Gärtner, Fundamentals of fault-tolerant distributed computing in asynchronous environments,
ACM Computing Surveys 31(1) (1999), 1–26.

[14] S. Jha and J.M. Wing, Survivability analysis of networked systems, in: Proceedings of the 23rd
International Conference on Software Engineering, IEEE Computer Society, 2001, pp. 307–317.

[15] B. Kemme and G. Alonso, A new approach to developing and implementing eager database replica-
tion protocols, ACM Transactions on Database Systems 25(3) (2000), 333–379.

[16] B. Kemme, F. Pedone, G. Alonso and A. Schiper, Processing transactions over optimistic atomic
broadcast protocols, in: Proc. 19th IEEE International Conference on Distributed Computing Sys-
tems, Austin, TX, USA, 1999, pp. 424–431.

[17] K.P. Kihlstrom, L.E. Moser and P.M. Melliar-Smith, The securering group communication system,
ACM Transactions on Information and System Security 4(4) (2001), 371–406.

[18] K. Kyandoghere, Survivability performance analysis of rerouting strategies in an atm/vp dcs surviv-
able mesh network, ACM SIGCOMM Computer Communication Review 28(5) (1998), 22–49.

[19] L. Lamport, The weak byzantine generals problem, Journal of the Association for Computing Ma-
chinery 30(3) (1983), 668–676.

[20] L. Lamport, R. Shostak and M. Pease, The byzantine general problem, ACM Transactions on Pro-
gramming Languages and Systems 4(3) (1982), 382–401.

[21] W. Lee and S.J. Stolfo, A framework for constructing features and models for intrusion detection
systems, ACM Transactions on Information and System Security 3(4) (2000), 227–261.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 35

M. Yu et al. / Specifying and using intrusion masking models 35

[22] H.F. Lipson and D.A. Fisher, Survivabilityąła new technical and business perspective on security, in:
Proceedings of the 1999 Workshop on New Security Paradigms, ACM Press, 2000, pp. 33–39.

[23] P. Liu and S. Jajodia, Multi-phase damage confinement in database systems for intrusion tolerance,
in: Proc. 14th IEEE Computer Security Foundations Workshop, Nova Scotia, Canada, 2001, pp. 191–
205.

[24] P. Liu, S. Jajodia and C.D. McCollum, Intrusion confinement by isolation in information systems,
Journal of Computer Security 8(4) (2000), 243–279.

[25] P. Liu, Architectures for intrusion tolerant database systems, in: The 18th Annual Computer Security
Applications Conference, 2002, pp. 311–320.

[26] X. (Sean) Liu and W. Du, Multiview access protocols for large-scale replication, ACM Transactions
on Database Systems 23(2) (1998), 158–198.

[27] N. Lynch and M.R. Tuttle, An introduction to input/output automata, CWI Quarterly 2(3) (1989),
219–246; also available as MIT Technical Memo MIT/LCS/TM-373.

[28] N. Lynch, Distributed Algorithm, Morgan Kaufmann, San Mateo, CA, 1996.

[29] D. Malkhi and M. Reiter, A high-throughput secure reliable multicast protocol, Journal of Computer
Security 5(1) (1997), 113–127.

[30] D. Malkhi and M. Reiter, Byzantine quorum system, Distributed Computing 11(4) (1998), 203–213.

[31] D. Malkhi and M.K. Reiter, Secure and scalable replication in phalanx (extended abstract), in: The
Seventeenth IEEE Symposium on Reliable Distributed Systems, 1998, pp. 51–58.

[32] D. Malkhi and M.K. Reiter, An architecture for survivable coordination in large distrusted systems,
IEEE Transactions on Knowledge and Data Engineering 12(2) (2000), 187–202.

[33] C. Mohan, R. Strong and S. Finkelstein, Method for distributed transaction commit and recovery
using byzantine agreement within clusters of processors, in: Proceedings of the Second Annual ACM
Symposium on Principles of Distributed Computing, 1983, pp. 89–103.

[34] G. Morgan and P.D. Ezhilchelvan, Policies for using replica groups and their effectiveness over the
Internet, in: The Second International COST264 Workshop on Networked Group Communication
(NGC 2000), Palo Alto, California, 2000, pp. 119–129.

[35] L.E. Moser and P.M. Melliar-Smith, Byzantine-resistant total ordering algorithms, Journal of Infor-
mation and Computation 150(1) (1999), 75–111.

[36] P. Narasimhan, L.E. Moser and P.M. Melliar-Smith, Strong replica consistency for fault-tolerant
corba applications, in: Sixth International Workshop on Object-Oriented Real-Time Dependable Sys-
tems (WORDS ’01), Rome, Italy, 2001, pp. 10–17.

[37] M. Tamer Özsu and P. Valduriez, Principles of Distributed Database Systems, Prentice Hall, 1999.

[38] M.K. Reiter, Secure agreement protocols: Reliable and atomic group multicast in rampart, in: Pro-
ceedings of the 2nd ACM Conference on Computer and Communications Security, Fairfax, VA,
1994, pp. 60–80.

[39] F.B. Schneider, Implementing fault-tolerant services using the state machine approach: a tutorial,
ACM Computing Surveys 22(4) (1990), 299–319.

[40] V. Stavridou, B. Dutertre, R.A. Riemenschneider and H. Saidi, Intrusion tolerant software architec-
tures, in: DARPA Information Survivability Conference & Exposition II, 2001. DISCEX ’01, Pro-
ceedings, Vol. 2, 2001, pp. 230–241.

[41] J.D. Strunk, G.R. Goodson, M.L. Scheinholtz, C.A.N. Soules and G.R. Ganger, Self-securing stor-
age: Protecting data in compromised systems, in: Operating Systems Design and Implementation,
San Diego, CA, USENIX Association, 2000, pp. 165–180.

[42] O. Wolfson, S. Jajodia and Y. Huang, An adaptive data replication algorithm, ACM Transactions on
Database Systems 22(2) (1997), 255–314.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2004/11/22 Prn:7/12/2004; 8:47 F:jcs240.tex; VTEX/Olga p. 36

36 M. Yu et al. / Specifying and using intrusion masking models

[43] J.J. Wylie, M. Bakkaloglu, V. Pandurangan, M.W. Bigrigg, S. Oguz, K. Tew, C. Williams,
G.R. Ganger and P.K. Khosla, Selecting the right data distribution scheme for a survivable storage
system, Technical Report CMU-CS-01-120, Carnegie Mellon University, 2001.

[44] J.J. Wylie, M.W. Bigrigg, J.D. Strunk, G.R. Ganger, H. Kiliccote and P.K. Khosla, Survivable infor-
mation storage systems, IEEE Computer 33(8) (2000), 61–68.

[45] C.T.Y. Amir, From total order to database replication, in: 22nd International Conference on Distrib-
uted Computing Systems (ICDCS ’02), Vienna, Austria, 1992, pp. 494–503.

[46] M. Yu, P. Liu and W. Zang, Intrusion masking for distributed atomic operations, in: The 18th IFIP In-
ternational Information Security Conference, Athens Chamber of Commerce and Industry, Greece,
IFIP Technical Committee 11, Kluwer-Academic, 2003, pp. 229–240.

[47] M. Yu, P. Liu and W. Zang, Self-healing workflow systems under attacks, in: The 24th International
Conference on Distributed Computing Systems (ICDCS ’04), 2004, pp. 418–425.

[48] M. Yu, P. Liu and W. Zang, Multi-version based attack recovery of workflow, in: The 19th Annual
Computer Security Applications Conference, 2003, pp. 142–151.

