
Cruiser: Concurrent Heap Buffer Overflow
Monitoring Using Lock-free Data Structures

Qiang Zeng
Department of Computer Science &

Engineering, Pennsylvania State
University, University Park, PA 16802

quz105@cse.psu.edu

Dinghao Wu
College of Information Sciences &

Technology, Pennsylvania State
University, University Park, PA 16802

dwu@ist.psu.edu

Peng Liu
College of Information Sciences &

Technology, Pennsylvania State
University, University Park, PA 16802

pliu@ist.psu.edu

Abstract
Security enforcement inlined into user threads often delays the pro-
tected programs; inlined resource reclamation may interrupt pro-
gram execution and defer resource release. We propose software
cruising, a novel technique that migrates security enforcement and
resource reclamation from user threads to a concurrent monitor
thread. The technique leverages the increasingly popular multicore
and multiprocessor architectures and uses lock-free data structures
to achieve non-blocking and efficient synchronization between the
monitor and user threads. As a case study, software cruising is
applied to the heap buffer overflow problem. Previous mitigation
and detection techniques for this problem suffer from high per-
formance overhead, legacy code compatibility, semantics loyalty,
or tedious manual program transformation. We present a concur-
rent heap buffer overflow detector, CRUISER, in which a concur-
rent thread is added to the user program to monitor heap integrity,
and custom lock-free data structures and algorithms are designed
to achieve high efficiency and scalability. The experiments show
that our approach is practical: it imposes an average of 5% perfor-
mance overhead on SPEC CPU2006, and the throughput slowdown
on Apache is negligible on average.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging; D.1.3 [Programming Techniques]:
Concurrent Programming

General Terms Security, Verification, Languages, Algorithms

Keywords Software cruising, buffer overflow, program monitor,
multicore, concurrency, lock-free, non-blocking algorithms

1. Introduction
Despite extensive research over the past few decades, buffer over-
flow remains as one of the top software vulnerabilities. In 2009,
39% of the security vulnerabilities published by US-CERT [67]
were related to buffer overflows. As of September 2010, 12 of the
20 most severe vulnerabilities ranked by US-CERT were buffer
overflow related. Vulnerabilities listed by security websites such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

SecurityFocus [60] and Securiteam [54] manifest a similar pattern.
The related exploits, such as CodeRed [10] and SQLSlammer [12],
have inflicted billions of dollars worth of damages [38].

A buffer overflow occurs when a program, while writing data
to a buffer, overruns the buffer’s boundary and overwrites adjacent
memory. There are mainly two types of buffer overflows accord-
ing to the overflowed buffer’s memory region, namely stack-based
buffer overflows and heap-based buffer overflows.

Stack-based buffer overflows are the most exploited vulnerabil-
ity, as the return addresses for function calls are stored together with
buffers on stack. By overflowing a local buffer, the return address
can be overwritten so that, when the function returns, the control
flow is redirected to execute malicious code, which is called “stack
smashing” [3]. Other forms of stack-based buffer overflow attacks
overwrite frame pointers and local variables, e.g. function point-
ers, to affect program behaviors [8, 50]. Many countermeasures
against stack-based buffer overflow attacks have been devised, such
as StackGuard [17], StackShield [64], Non-executable stack [63]
and Libsafe [66], some of which have been widely deployed.

Exploitation of a heap-based buffer overflow is similar to that
of a stack-based buffer overflow, except for that there are no return
addresses or frame pointers on heap. For some widely deployed
memory allocators, such as Doug Lea’s malloc [36] for the glibc
library, altering memory management information to achieve arbi-
trary memory overwrites is a general way to exploit a heap-based
buffer overflow [11, 33]. More recently non-control data based ex-
ploits [12, 13, 15], by means of tampering the content of a memory
block adjacent to the overflowed buffer, have been increasing.

As stack-based buffer overflow attacks are better understood
and defended, heap-based buffer overflows have gained growing
attention of attackers. According to the National Vulnerability
Database [43], 177 heap-based buffer overflow vulnerabilities were
published in 2009. As of September 2010, 287 heap-based buffer
overflow vulnerabilities had been published in that year. Related
exploits have affected widely deployed programs [11, 12].

Current buffer overflow detectors can be roughly classified into
two categories: static and dynamic approaches. Static analysis tools
usually have high false alarm rates; dynamic buffer overflow de-
tectors can provide precise detection and generally there can be
no false alarms [71]. However few dynamic heap buffer overflow
detectors are widely deployed due to one or more of the follow-
ing reasons: (1) Most countermeasures result in high performance
overhead [1, 5, 9, 22, 27, 34, 52, 68]; (2) Some only protect spe-
cific libc functions [5, 19]; (3) A few of them only work with spe-
cific memory allocators [2, 19]; (4) Many require source code for
recompilation [1, 4, 9, 31, 34, 42, 52]; (5) Some are incompatible
with legacy code [4, 31, 42]; and (6) Some require special platforms
or hardware supports that are rarely available [1, 34].

In this paper, we present Cruiser—a novel dynamic heap buffer
overflow detector which does not have those limitations. The key
ideas are (1) to create a dedicated monitor thread, which runs con-
currently with user threads to cruise over, or keep checking, dy-
namically allocated buffers against buffer overflows; and (2) to uti-
lize lock-free data structures and non-blocking algorithms, through
which user threads communicate with the monitor thread with min-
imum overhead and without being blocked. Buffer addresses are
collected in a lock-free data structure efficiently without blocking
user threads. By traversing the data structure, buffers on heap are
under constant surveillance of the concurrent monitor thread. Each
dynamically allocated buffer is surrounded by two canary words; as
long as a canary is found corrupted, a buffer overflow is detected.

Different from conventional methods that detect buffer over-
flows inside user threads, which evidently delays protected pro-
grams, we propose to move the detection work out of user threads
and enforce it in a separate thread, which we call software cruising.
The approach leverages the hardware evolution trend that multi-
core processors and multiprocessor machines are more and more
popular, which allows us to deploy dedicated monitor threads run-
ning concurrently with user threads to enhance application security.
However applications may be significantly slowed down due to the
overhead of communication and synchronization between the mon-
itor threads and user threads. We address this problem by design-
ing highly efficient lock-free data structures and non-blocking algo-
rithms; their scalability implies the approach can be applied to not
only single-threaded programs but also large-scale multithreaded
applications. Our experiments show that the software cruising ap-
proach is practical—it only imposes an average of 5% performance
overhead on SPEC CPU2006, and the throughput slowdown on
Apache is negligible on average.

Our contributions include:

• To the best of our knowledge, this is the first work reported
in the open literature that utilizes concurrent threads to detect
buffer overflows.

• Among existing buffer overflow detectors, this is the first work
that utilizes and designs lock-free data structures to support
large-scale applications.

• Cruiser can detect buffer overflows that occur in any function,
rather than specific libc functions. In addition, Cruiser can de-
tect buffer underflows, duplicate frees, and memory leakage.

• Cruiser is legacy code compatible and can be applied to protect
binary executables transparently, thus no source code or binary
rewriting is needed. In addition, Cruiser does not rely on spe-
cific memory allocation algorithms; it can work with any mem-
ory allocator. Hence, Cruiser can be directly applied to shrink-
wrapped software, and can be deployed easily to large-scale
systems such as data centers and server farms in an automated
manner.

• We propose a novel concurrent program monitoring method-
ology called software cruising, which leverages multicore ar-
chitectures and utilizes non-blocking data structures and algo-
rithms to achieve good efficiency and scalability; it can be ap-
plied to background security enforcement, as demonstrated in
this paper, and concurrent resource reclamation (Section 7).

The remainder of the paper is organized as follows. In Sec-
tion 2 we briefly discuss lock-free synchronization and review re-
lated work. We discuss our motivations in Section 3 and present
the design overview in Section 4. In Section 5 we describe the de-
sign and implementation. In Section 6 we present the evaluation
results. We discuss applications of software cruising beyond buffer
overflows in Section 7 and conclude with Section 8.

2. Background
2.1 Lock-free Synchronization

A conventional approach to multithreaded programming is to use
locks to synchronize access to shared resources. However, the lock-
based approach causes many problems, one of which is lock con-
tention. No matter whether the thread holding a lock is running or
descheduled, other threads waiting for the lock are blocked, which
limits concurrency and scalability. Another problem is priority in-
version, i.e. a low priority thread holding the lock cannot get sched-
uled while high priority threads are waiting for the lock. Although
fine-grained locking reduces lock contention, it introduces more
lock overhead and increases the risk of deadlock.

In contrast to the lock-based approach, lock-free and wait-free
algorithms allow high concurrency and scalability. An algorithm is
lock-free if in a finite number of execution steps, at least one of the
program threads makes progress, while an algorithm is wait-free if
in a finite number of steps, every thread makes progress [28]. All
wait-free algorithms are lock-free but the reverse is not necessarily
true. Both are non-blocking and, by definition, they are immune to
deadlock and priority inversion.

Lock-free algorithms commonly rely on hardware synchro-
nization primitives. A typical primitive is Compare-And-Swap
(CAS) [30]; it takes three arguments (addr, expval, newval) and
performs the following atomically:

if (*addr != expval)
return false;

*addr = newval;
return true;

Specifically, if the memory location addr does not hold the ex-
pected value expval, the Boolean false is returned; otherwise the
new value newval is written to it and the Boolean true is returned,
atomically.

2.2 Related Work

We divide the existing countermeasures against buffer overflow at-
tacks into the following seven categories. Given extensive research
in this area, this is not intended to be exhaustive.

Bounds checking: Many static analysis tools fall under this
category [20, 69], which detect buffer overflows by examining
source code statically and automatically. This approach usually
suffers from high false positive or negative rate [71]. Some dynamic
approaches [4, 31, 42] change the C pointer representation to carry
buffer size information with pointers to enable bounds checking,
i.e. “fat pointer,” which is incompatible with legacy library code.
CRED [52], built on the work of Jones and Kelly [32], does not
change pointer representations but associates a buffer bound lookup
with each pointer reference. However, the performance overhead is
more than 2X. A recent work, baggy bounds checking [2], reduces
the cost of bounds lookups by relaxing bounds checking precision,
which however may lead to false negative, and it relies on specific
memory allocators. Some library-based countermeasures [5, 19,
66] provide bounds checking only for specific functions in the C
standard library.

Canary checking: Canary was firstly proposed in Stack-
Guard [17], which tackles stack smashing attacks by placing a ca-
nary word before the return address on stack. Attempts to overwrite
the return address would corrupt the canary value first. Although
there are arguments that canary-based countermeasures can be by-
passed [8, 50], the wide deployment and successes of StackGuard
and its derivation ProPolice [29] have manifested their effective-
ness. Robertson et al. [51] first proposed to use canary to protect
heap chunk metadata. A canary is placed at the beginning of each
chunk, thus when a buffer on heap is overflowed, the canary of the

adjacent chunk is corrupted, which, however, is not detected until
the adjacent chunk is coalesced, allocated or deallocated; therefore
the detection relies on program execution.

Return address (RA) shadow stack or stack split: Stack-
Shield [64], RAD [14] and their derivations [23, 49] maintain an
RA shadow stack, i.e. a copy of the RA is saved on the shadow
stack at the prologue of a function call and is compared against the
RA on the conventional stack at the epilogue. If the two RAs di-
verge, a buffer overflow is detected. In [70], the stack is split into
an RA stack and a data stack, such that return addresses are pro-
tected from buffer overflows.

Non-executable (NX) memory: By setting the memory pages
as non-executable, NX memory [63, 65] prevents code injected
onto stack and heap from being executed. However it can be by-
passed by a return-to-libc attack, which overwrites function point-
ers or return addresses with function addresses in libc, e.g. sys-
tem().

Non-accessible memory: Both Purify [27] and Valgrind [68]
insert guard zones, which are marked as inaccessible, surround-
ing dynamically allocated buffers, and track all memory references.
When a guard zone access is detected, e.g. due to buffer overflows,
an error is reported. Eletric Fence [22] places an inaccessible mem-
ory page immediately after (or before) each dynamically allocated
buffer. If a buffer is overflowed (or underflowed), a segmentation
fault is signaled. Tools in this category result in significant memory
and performance overhead.

Randomization and obfuscation: Address Space Layout Ran-
domization (ASLR) [7, 65] randomizes the locations of stack, heap
and/or variable locations for each execution, such that a buffer over-
flow attack, such as return-to-libc, cannot be achieved reliably; that
is, probabilistic protection is provided. However as it requires pro-
grams to be compiled into position-independent executables, it is
incompatible with legacy code. In addition, it may be defeated by
brute-force attacks or bypassed by partial overwrite attacks on the
least significant bytes of a pointer [21]. PointGuard [16] encrypts
pointers stored in memory and decrypts them before loading them
into registers, such that pointers corrupted by attackers will not
be decrypted to intended values. This countermeasure is incom-
patible with legacy code and cannot protect non-pointer data. In-
stead of randomizing pointers, instruction set randomization [6]
keeps instructions encrypted, and decrypts them only before they
are fetched into processors, which, however, results in substantial
performance overhead. It can be bypassed by return-to-libc attacks.

Execution monitoring: Program shepherding [34] monitors
control flow transfer in order to enforce a security policy. Buffer
overflow attacks that lead to deviant control flow transfer are pre-
vented. Control-flow integrity [1] determines a program’s control
flow graph beforehand and ensures that the control flow adheres to
it. Castro et al. [9] proposed to compute a data-flow graph using
static analysis and monitor whether the program data flow adheres
to the graph. Like Cruiser, n-variant execution [18, 53] also takes
advantage of multicore and multiprocessor architectures to enhance
security. It runs a few variants of a single program simultaneously;
behavioral divergences among the variants raise alarms. Execution
monitoring usually imposes high performance overhead.

Despite so many countermeasures, only a few of them, such
as StackGuard, ASLR, and NX memory, are widely deployed in
production systems. Table 1 summarizes the properties of these
three approaches and compares them with Cruiser. The common
properties of these approaches include low performance overhead,
easiness to deploy and apply, no false alarms,1 compatibility with

1 As described in Section 5.2, one variant of Cruiser does incur false alarms,
however, at an extremely low probability (1/264 in 64-bit OS) and can be
safely ignored in practice.

StackGuard ASLR NX Cruiser
Low performance overhead

√ √ √ √
Easy to deploy and apply

√ √ √ √
No false alarms

√ √ √ √
Mainstream platform compatible

√ √ √ √
Program semantics loyalty

√ √ √ √
Legacy code compatible

√ √ √
No need for recompilation

√ √
Able to locate corrupted buffers

√

Table 1. Comparison of some widely deployed countermeasures
and Cruiser.

mainstream platforms and program semantics loyalty. In addition
to having all the advantages, Cruiser have three other important
properties: compatibility with legacy code, no need for recompila-
tion, i.e. working with binary executables, and ability to precisely
locate corrupted buffers, which is critical for testing, debugging,
and security monitoring.

3. Motivations
3.1 Why Concurrent Detection and Challenges

There are mainly two categories of dynamic heap-based buffer
overflow detectors. One category [51] detects buffer overflows in-
side memory allocation functions such as malloc and free, while
the other [5, 19] enforces detection inside specific libc functions
such as strcpy and gets. Both execute detection code inside user
threads, which inevitably affects application performance, and the
performance overhead is proportionally correlated with the invoke
density of related functions. In addition, because detection is en-
forced in specific functions, they suffer from either severe temporal
limitations, i.e. buffer overflows are not detected until one of the
malloc function family is called, or spatial limitations, i.e. only a
few libc functions are protected. Approaches that enforce bounds
checking for each buffer reference do not have such limitations;
however, they usually incur high performance overhead [32, 52] or
false negative rate [2].

We propose to move detection code out of user threads and ex-
ecute it in a separate monitor thread, which constantly cruises over
buffers on heap, such that user threads are not delayed. Rich com-
putational resources on modern machines, especially widely avail-
able multicore and multiprocessor architectures, enable us to run
a dedicated monitor thread without competing too much resources
with user threads, in other words, applications can potentially gain
enhanced security with no pain.

However, synchronization is one of the major challenges. In
Cruiser, a collection of heap buffer addresses needs to be main-
tained, so that the monitor thread surveils live buffers, and in the
meanwhile avoids checking deallocated buffers, which would oth-
erwise incur false alarms or segfaults. Therefore, the user threads
and monitor thread have to be synchronized when buffers are al-
located or deallocated. A conventional approach to achieving syn-
chronization is to use locks; however, it has various limitations,
such as severe performance degradation due to lock contention and
low scalability, which is manifested by our first attempt.

In our first attempt, a lock-based red-black tree was used to
collect buffer addresses. Inside a malloc call, the address of the
newly allocated buffer is inserted into the tree with O(log n) time
complexity where n is the number of collected addresses. Simi-
larly inside a free call, the address of the released buffer is removed
from the tree with O(log n) complexity also. Meanwhile a monitor
thread traverses the tree to check the buffers. All the buffer ad-
dress insert, delete and traverse operations are synchronized using
locks. Our experiments showed that user threads were significantly

delayed. The problem becomes more severe as more user threads
contend locks and the tree grows.

3.2 Why Lock-free and Challenges

The limitations of lock-based approach pushed us towards lock-
free synchronization in order to avoid lock contention and improve
scalability. However, the difficulty of designing non-blocking algo-
rithms is well recognized, which often thwarts the application of
this approach.

We escaped the problems in our second attempt by utilizing the
state-of-the-art extensible lock-free hash table algorithm proposed
by Shalev and Shavit [62], such that the user threads and mon-
itor thread can operate on the hash table concurrently, and each
buffer address can be inserted into or removed from the hash table
in O(1) time. Although good scalability is achieved, the operation
time is significant compared to malloc and free calls. Specifically,
the slowdown of each pair of malloc and free calls observed in
our experiment is more than 5X on average. The overhead is un-
acceptable for many applications with massive dynamic memory
allocation.

To address these challenges, we have designed our own lock-
free data structures and non-blocking algorithms to achieve concur-
rent detection with low overhead and high scalability, which will be
presented in Section 4 and 5.

4. Design Overview
In addition to custom lock-free data structures, two design choices
were made. First, as presented above, removing buffer addresses
inside free calls may significantly delay user threads. In Cruiser
the free function marks the buffer with a tombstone flag; when the
monitor thread checks the buffer and finds it no longer alive, the
monitor thread removes the buffer address from the collection of
heap buffer addresses, such that the concern of delaying frees is
resolved and the data structure representing the buffer address col-
lection can be simplified. The details are covered in Section 5.2.
Second, instead of modifying a specific memory allocator, Cruiser
is implemented as a dynamic shared library to interpose the malloc
function family and it passes the allocation requests to the corre-
sponding memory allocator functions, therefore Cruiser can work
with any memory allocator and it can be applied to protecting bi-
nary executables without instrumenting them.

4.1 Buffer Structure

Our method inserts two canary words around each buffer, namely
head canary and tail canary, as shown in Figure 1, so that when-
ever a buffer is overflowed (underflowed), the tail (head) canary is
corrupted. The size field, which is the encryption (XOR) result of
the buffer size and a secret key, is used to locate the tail canary
given a buffer address. As buffer size information is encrypted, it
is not leaked to attackers, and it is more difficult for attackers to
counterfeit. The head canary is the encryption result of another se-
cret key, the buffer size and the buffer address. If the head canary
and the size field cannot be decrypted to consistent size values, a
buffer overflow is detected. As the buffer address is used to gener-
ate the canary, each buffer has a unique head canary, thus even if
the canary of a buffer is leaked, it is difficult for attackers to forge
the canary of another buffer without knowing the buffer sizes and
addresses. The tail canary is encrypted and verified the same way
using a different secret key. All the keys are initialized as random
numbers when the monitored program is started.

4.2 Cruiser

Our previous attempts maintain a collection of buffer addresses but
lead to high overhead. To efficiently collect memory allocation in-

Size User buffer Tail
canary

Head
canary

Figure 1. Buffer structure.

formation, we design the cruiser information collection (CIC) ar-
chitecture which is composed of (1) a lock-free express data struc-
ture onto which user threads put information, (2) a lock-free ware-
house data structure that supports multiple threads to concurrently
insert, delete and access information, and (3) a non-blocking de-
liver thread to copy the information from the express to the ware-
house data structure. Instead of inserting information into the ware-
house directly, user threads put the information onto the express
data structure highly efficiently, and the deliver thread takes care of
the rest of the information collection work, thus performance im-
pact on user threads is minimized. In addition, as the warehouse
structure supports concurrent operations, CIC scales well.

…

User
Threads

Warehouse
data

structure

Deliver
Thread

Monitor
Thread

malloc
hook

malloc
hook

CIC

Express
data

structure

Figure 2. Cruiser architecture.

Based on CIC, we present a dynamic heap-based buffer over-
flow detector—Cruiser, which uses CIC to collect memory allo-
cation information, e.g. buffer addresses and sizes. As shown in
Figure 2, the malloc calls are hooked to place the buffer allocation
information onto the express data structure and return promptly; the
deliver thread then finishes the information collection.

From the perspective of Cruiser, the life cycle of a dynamically
allocated buffer can be divided into three phases: Pre-checking:
Inside a malloc call, a buffer that is three words larger than what the
user thread requests is allocated. The buffer is filled as specified in
Section 4.1, and the buffer allocation information used for overflow
detection, such as the buffer address, is put onto the express data
structure. Then the malloc call returns the address of the user buffer
(see Figure 1). Checking: The pre-checking phase ends when the
deliver thread moves the address from the express to the warehouse
data structure, which is traversed by the monitor thread to detect
buffer overflows. Post-checking: Inside the free call, the buffer is
marked with a tombstone flag by encrypting the head canary once
again using another key; later when the monitor thread checks the
buffer and finds it no longer alive, the dated buffer information is
removed from the warehouse by the monitor thread, so it is the
monitor thread rather than user threads that tides up dated metadata
information.

5. Design and Implementation
This section describes the design and implementation of Cruiser.
Section 5.1 describes the data structures in CIC and how CIC is
used in Cruiser to maintain buffer information. Section 5.2 presents
the algorithms to release buffers and delete dated metadata informa-
tion. We elaborate special issues on extensions and optimizations in
Section 5.3.

5.1 Collection of Buffer Information

5.1.1 Express data structure

We implement the express data structure based on the single-
producer single-consumer FIFO wait-free ring buffer proposed by
Lamport [35]. Lamport’s algorithm allows a producer thread and
a consumer thread to operate concurrently on a ring. The synchro-
nization overhead between the producer and the consumer is low,
as two threads are synchronized via read/write instructions on the
two control variables head and tail. Because of its high efficiency,
the data structure has been applied to Gigabit network packet pro-
cessing systems [24, 37].

To avoid the failure of Enqueue operation when the ring is full,
we extend the basic ring to a linked list of rings, called CruiserRing,
as shown in Figure 3. Whenever the ring is full and a new element is
produced, instead of returning failure in Enqueue as in Lamport’s
algorithm, the producer creates a new ring with doubled capacity
and links it after the full ring; the producer proceeds to insert
elements into the new ring. Accordingly, in Dequeue when the ring
is consumed up and another ring is linked after it, the consumer
destroys the empty ring and proceeds to work on the next one.
Because the ring size grows exponentially, as long as the speed
of the consumer matches that of the producer, CruiserRing will
converge to a stable state quickly. (The speed mismatch problem
is addressed in Section 5.3.) Unless the new ring creation fails,
CruiserRing ensures the success of the producer, which implies that
the producer always moves on without dropping data.

As each CruiserRing supports one producer thread, a Cruiser-
Ring is needed for each producer thread. The method AddCruiser-
Ring (see Figure 3) shows how to construct a list of CruiserRings
in a lock-free manner, such that a single consumer thread can walk
along the list to access all CruiserRings.

5.1.2 Warehouse data structure

We implement the warehouse data structure as a custom lock-free
list, called CruiserList. CruiserList is a linked list of segments, each
of which is a linked list itself with a never-removed dummy node
as the segment head, as shown in Figure 4 and 5.

The basic form of CruiserList contains one segment, which
supports a single insert thread to insert nodes and a single traverse
thread to traverse the list concurrently. The method CheckNode is
invoked in Traverse to check each node and returns whether the
node should be deleted.

New nodes are always inserted between the dummy node and
the first genuine node (the node linked immediately after the
dummy node). If the first genuine node is determined to be deleted
(Line 63), it should not be removed directly, as it may otherwise
lead to list corruption or node loss. Specifically, if the first genuine
node is removed between the execution of Line 51 and Line 52
when a new node is being inserted, the list is corrupted, because
the newly inserted node has been linked to a deleted node. An-
other situation is when the first genuine node M is determined to
be deleted, a new node N is inserted, which is not known by the
traverse thread. Consequently, by removing node M , the dummy
node is linked to the node after node M , such that node N is lost.
The contention between node insertion and deletion is a common
problem in lock-free data structures.

A conventional method to resolve the contention problems in
non-blocking algorithms is to use CAS in a loop to insert or delete
a node, as in the CruiserRing method AddCruiserRing (see Fig-
ure 3). However, CAS is relatively expensive and due to contention
concurrent operations may experience frequent failure and retry of
CAS instructions, which delays the progress of concurrent threads.

In CruiserList, we essentially eliminate the contention and thus
CAS is not needed, as shown in the method Traverse. In our al-

1 struct Ring {
2 Element ∗buffer;
3 unsigned int size;
4 unsigned int head, tail;
5 Ring ∗next; // next Ring
6 };
7
8 struct CruiserRing {
9 Ring ∗pr, ∗cr; // producer ring and consumer ring
10 CruiserRing ∗next; // next CruiserRing
11 };
12
13 CruiserRing ∗Head; // head of CruiserRing list
14
15 NEXT(index, size) { return (index + 1) % size; }
16
17 Enqueue(pr, data) {
18 if (NEXT(pr−>head, pr−>size) == pr−>tail) {
19 newRing = createRing(2 ∗ (pr−>size));
20 if (null == newRing)
21 return failure;
22 pr−>next = newRing;
23 pr = newRing;
24 }
25 pr−>buffer[pr−>head] = data;
26 pr−>head = NEXT(pr−>head, pr−>size);
27 return success;
28 }
29
30 Dequeue(cr, data) {
31 if (cr−>head == cr−>tail) {
32 if (null == cr−>next)
33 return failure;
34 temp = cr; cr = cr−>next;
35 destroy(temp);
36 return Dequeue(cr, data);
37 }
38 data = cr−>buffer[cr−>tail];
39 cr−>tail = NEXT(cr−>tail, cr−>size);
40 return success;
41 }
42
43 AddCruiserRing(cruiserRing) {
44 do {
45 cruiserRing−>next = oldValue = Head;
46 } while (!CAS(&Head, oldValue, cruiserRing));
47 }

Figure 3. CruiserRing (Express data structure).

segment 1

segment 2

dummy

dummy

Figure 4. CruiserList.

gorithm, the first genuine node is never removed until new nodes
have been inserted, thus new nodes can always be inserted between
the dummy node and the first genuine node safely by the insert
thread, while the traverse thread never touches the link between the
dummy node and the first genuine node. Therefore, the node inser-
tion and deletion operations essentially play in different arenas, and
thus have no contention.

Specifically, when the first genuine node is determined to
be deleted, it is marked as to-be-deleted by calling the method
MarkDelete, which fills a special null value in the data field of the
node, or sets the least significant bit (LSB) of the next pointer of the
node, as the node address is usually word-aligned and the LSB of

48 Node ∗head; // head of CruiserList
49
50 Insert(dummy, node) {
51 node−>next = dummy−>next;
52 dummy−>next = node;
53 }
54
55 Traverse() {
56 Node ∗prev, ∗cur, ∗next;
57 cur = leftBoundary−>next;
58 if (cur == null)
59 return;
60
61 /∗Process the first genuine node∗/
62 if (!IsMarkedDelete(cur))
63 if (CheckNode(cur) returns PLEASE DELETE ME)
64 /∗Node removal is deferred to avoid contention∗/
65 MarkDelete(cur);
66
67 /∗ Process the rest genuine nodes ∗/
68 prev = cur; cur = cur−>next;
69 while (cur != rightBoundary) {
70 next = cur−>next;
71 if (IsMarkedDelete(cur) ||
72 CheckNode(cur) returns PLEASE DELETE ME) {
73 prev−>next = next;
74 DeleteNode(cur);
75 }
76 else
77 prev = cur;
78 cur = next;
79 }
80 }
81
82 AddSegment() {
83 Node ∗newDummy = AllocateDummyNode();
84 do {
85 newDummy−>next = oldValue = head;
86 } while (!CAS(&head, oldValue, newDummy));
87 return newDummy;
88 }

Figure 5. CruiserList (Warehouse data structure).

the next pointer is thus not used. Then the marked node is removed
in a future round of traverse when it is no longer the first genuine
node. Figure 6 shows the process of removing the first genuine
node A. It is first marked, but not deleted. After a new node C is
inserted, it will be deleted shortly. It is possible that no more new
nodes are inserted and the marked node sticks in the list; however,
there is only one such node in a segment and normally this occurs
only in the residual period of program execution. Note that the user
buffer is freed; only the first metadata node may stay alive after the
corresponding buffer is released. We can resolve this using CAS if
it becomes a serious issue. The Insert method inserts a node, just as
in a single-threaded list, between the never-removed dummy node
and the first genuine node which is never removed directly.

The technique of marking a node as to-be-deleted was first used
in the lock-free FIFO queue algorithm [48] proposed by Prakash
et al., then used in Harris’s [26] and Michael’s [40] lock-free lists,
respectively. All of them use this technique to prevent new nodes
from being linked to a marked node. As insertion and deletion may
operate on the same node, contention still exists; and they rely on
CAS. Our algorithm allows new nodes to be linked to a marked
node. Only simple reads and writes are needed.

The basic CruiserList can be easily extended to multiple seg-
ments using the method AddSegment, so that it can support mul-
tiple insert and traverse threads. Each insert thread has a thread-
private variable pointing to the dummy node of a different segment,

dummy A B

dummy A B

MarkDelete(node A)

dummy C A B

A new node C is inserted

Delete the marked node A

dummy C B

Figure 6. Deletion of the first genuine node.

into which this thread inserts nodes. On the other hand, the seg-
ments can be partitioned into multiple disjoint groups; each tra-
verse thread walks on a different group denoted by two thread-
private variables leftBoundary and rightBoundary, which point to
the dummy nodes of segments. If there is only one traverse thread,
its segment group consists of the whole CruiserList. For the sake of
simplicity, the Traverse method in Figure 5 is only for one-segment
groups. The time for a traverse thread to cruise through its segment
group once is called a cruise cycle.

Compared to general-purpose lock-free lists, CruiserList is
highly efficient and has the following advantages: (1) Wait-free
access and zero-contention: Both insert and traverse threads keep
making progress, and node insertion and deletion are executed in
different arenas; (2) No ABA problem: The ABA problem [30] is
historically associated with CAS. It happens if in a thread a shared
location with a value A was read, then CAS comparing the current
value of the shared location against A succeeds though it should
not, as between the read and the CAS other threads change the
value of the shared location from A to B and back to A again. The
only CAS in Line 86 has no ABA problem, because it is impossi-
ble for head, which was changed from the address of the dummy
node A to that of the dummy node B, to change back to A without
removing any dummy nodes; and (3) No special memory reclama-
tion needed: For a typical lock-free data structure, when a node is
removed by a thread, its memory cannot be released immediately
because other threads may be accessing it. So special memory
reclamation mechanisms are needed, such as reference counters
and hazard pointers [39]. On a given segment of the CruiserList,
the traverse thread is the only thread that deletes nodes, so it is not
concerned with accessing nodes being released by other threads. It
is not a problem for the insert thread either, as it only accesses the
content of the dummy node, which is never removed.

5.1.3 Applying CIC in Cruiser

Cruiser uses the CIC mechanism to collect memory allocation in-
formation (see Figure 2). The malloc calls of user threads are
hooked and memory allocation information is put on the Cruis-
erRings. The deliver thread moves the information from Cruiser-
Rings to CruiserList, while the monitor thread calling Traverse
of CruiserList cruises over buffers to detect overflow according to
the collected information in CruiserList. The buffer overflow detec-
tion code is executed in CheckNode (see Figure 5), which returns
PLEASE DELETE ME if the buffer is found no longer alive. More
details about CheckNode are described in Section 5.2.

Cruiser is implemented as a dynamic shared library to inter-
pose the malloc function family. It contains a constructor (initial-
ization) function, which gets executed when the monitored program
is started. Inside the constructor function, the keys are initialized
with random numbers in /dev/urandom, the CruiserList is created
and initialized, and the deliver thread and the monitor thread are
created, which share the same address space as user threads. Each

user thread creates its CruiserRing when it invokes its first malloc
call. All the memory blocks used by Cruiser (the data structures
and keys) are allocated using mmap with two inaccessible guard
pages [22] surrounding each of them, such that they cannot be over-
flowed.

5.2 Buffer Release and Node Removal

Once a buffer is freed, the node in the CruiserList containing the
corresponding buffer information becomes dated and should be
removed; otherwise, buffer overflow checks over the buffer may
incur false alarms or segmentation faults, as the buffer memory may
have been reused or unmapped. Removing dated nodes inside free
calls may significantly delay user threads. We address the problem
with the following two approaches; both enable the monitor thread
to tidy-up CruiserList.

The first approach is a lazy two-step memory reclamation al-
gorithm. First, when a free call is intercepted, the target buffer is
marked with a tombstone flag by encrypting the head canary with
another key, called the release key; the free call returns without re-
leasing the buffer, which becomes a zombie buffer. Second, when
the monitor thread checks the buffer and finds it marked with a
tombstone, the method CheckNode in Figure 5 releases the buffer
and returns PLEASE DELETE ME. This approach removes dated
information effectively without incurring false alarms or segfaults.
The drawback is that buffer release is delayed; however, since all
zombie buffers are bound to be released no later than the next cruise
cycle, the delay should be reasonably short.

The second approach does not delay memory reclamation; how-
ever, it requires some changes about the head and tail canaries
and needs the assistance of recovery techniques. The head canary
field is filled with a random number (rather than the encrypted size
value), while the tail canary is the encryption (XOR) result of the
head canary value and a key. The random number along with the
buffer address is collected in CruiserList. Inside the free call, the
target buffer is checked against buffer overflow by decrypting the
tail canary and comparing with the head canary.2 If they are dif-
ferent, a buffer overflow is detected; otherwise the head canary is
set as zero, after which the buffer is released and the free call re-
turns. When the monitor thread checks a buffer and finds the num-
ber stored in the head canary is not the same as that stored in the
CruiserList, it assumes the buffer has been released and then the
corresponding dated node is removed from the CruiserList. After
a buffer is released and reused, the memory location of the origi-
nal head canary may happen to be written with the same value as
that before the buffer was released, so that when the monitor thread
checks the node using the dated buffer information, it would incor-
rectly determine this buffer is still alive and thus false alarms are
possible; however, the probability is extremely low (in 64-bit OS,
it is 1/264), which can be safely ignored in practice.

Three scenarios need to be considered for the second approach.
First, when a buffer is tampered due to an overflow occurred in its
preceding adjacent buffer, it would be incorrectly determined as a
released buffer by the monitor thread; however, this does no harm
and as the adjacent buffer is under surveillance, the overflow can
still be detected. Second, when a buffer is underflowed, the monitor
thread would also treat it as a released buffer. Underflows are rare
compared to overflows; moreover we can address the problem by
saving the buffer size in the CruiserList node, against which the size
field of each buffer is checked by the monitor thread in CheckNode
to detect underflows.

2 If the size field has been corrupted, the tail canary cannot be located cor-
rectly. As a result, the read of the tail canary may incur segfault, which,
however, essentially exposes buffer overflows. If necessary, the same re-
covery technique described here can be used to deal with segfault.

Third, when the monitor thread checks a buffer that has been re-
leased and the corresponding memory page(s) has been unmapped,
a segfault is triggered. The problem can be addressed using some
recovery techniques [47]. In Linux, a SIGSEGV signal handler can
be installed firstly. Each time before the monitor thread accesses a
buffer, it calls sigsetjmp to save the calling environment. Once a
SIGSEGV signal is triggered due to an invalid access, the monitor
thread is trapped to the SIGSEGV handler, and the calling envi-
ronment can be recovered by calling siglongjmp. Windows also
has similar recovery mechanism called Structured Exception Han-
dling [41].

Cruisers with the two approaches are called Lazy Cruiser and
Eager Cruiser, respectively. We have implemented both in Linux.

5.3 Extensions and Optimizations

5.3.1 Extensions

Flexible deployment options: The deployment of Cruiser is flex-
ible. One method is to implement Cruiser as a dynamic shared li-
brary. By setting the LD PRELOAD environment variable to the
path of the Cruiser library, an administrator can selectively enable
Cruiser for certain applications. With this method the malloc func-
tion family are interposed by Cruiser, which invokes the memory
allocation functions in the system library to enforce dynamic mem-
ory allocation, thus no system library is altered. This is the deploy-
ing method we adopt in the experiments.

A second method is to integrate Cruiser with the system dy-
namic library for dynamic memory allocation. The advantage is
that memory and performance overhead can be reduced. For exam-
ple, the overhead due to malloc function family interposition can be
avoided; some memory allocators, such as dlmalloc [36], place the
buffer size information in the beginning of each chunk, so Cruiser
does not need to maintain that information additionally.

A third method is to implement Cruiser as a static library and
integrate it into the compiler. Considering the two methods above
cannot be applied to statically linked applications, the third method
is complementary to them. Regardless of the deploying method,
Cruiser has no effect on applications that perform their own mem-
ory management, neither can it detect buffer overflows inside a
structure currently, which is a limitation shared by other techniques
that detect buffer overflows at the level of memory blocks [2, 5,
19, 22, 27, 51, 68]. However, Cruiser can be extended to monitor
buffers inside a struct by inserting canary words.

More Cruiser threads: Although our experiments show that
the Cruiser configuration with one deliver thread and one monitor
thread is sufficient for common applications, it may be desirable to
extend Cruiser with multiple deliver and monitor threads. For ex-
ample, there may be many user threads requesting dynamic mem-
ory intensively that a single deliver thread cannot match the speed
of buffer allocation; or the CruiserList is so long that it takes much
time for a monitor thread to traverse through the CruiserList once.
As both CruiserList and the list of CruiserRings support multiple
threads, Cruiser can be easily extended with more cruiser threads
to protect various applications.

5.3.2 Optimizations

Memory reuse: To mitigate memory allocation intensity and speed
up node insert and delete in CruiserList, a ring buffer is adopted to
store the addresses of removed nodes with the monitor thread as the
producer and the deliver thread as the consumer. Nodes removed
from CruiserList are not deleted but stored in the ring unless it is
full. Accordingly when the deliver thread needs a node, it first tries
to retrieve a node from the ring; only when the ring is empty, a new
node is allocated. The simple ring buffer can be replaced with other
advanced wait-free queues, such as a CruiserRing, to support more
efficient nodes buffering strategy.

On the other hand, each user thread requesting dynamic mem-
ory owns a CruiserRing. Considering some applications fork and
kill threads frequently, instead of allocating and releasing Cruis-
erRings intensively, we reuse CruiserRings. A Boolean flag indi-
cating whether the CruiserRing is available for reuse is added into
the CruiserRing structure. As the deliver thread traverses along the
list of CruiserRings, if it detects a user thread has exited, it marks
the related CruiserRing as available for reuse. When a user thread
needs a CruiserRing, it will try to reuse an available CruiserRing
before allocating a new one.

Backoff strategies: Although our experiments show that Cruiser
imposes low overhead, the performance can be further improved
with backoff strategies, for example, by inserting NOP instructions
or sleep calls inside the monitor thread. Reduced monitor intensity
leads to less memory access interference, thus decreases perfor-
mance impact. Cruiser can also switch to monitor buffers selec-
tively, for example, buffers involved in data flows stemming from
networks or user inputs. For Lazy Cruiser, it is a good choice to ig-
nore large buffers and hence release them inside free calls directly
under intense memory pressure. More advanced monitor strategies
based on computational resource dynamics can be adopted as well.

Variants of the deliver thread: In Cruiser, the deliver thread is
busy polling CruiserRings. Actually it can go to sleep when there
is no information to deliver and be waken up by user threads via
signals. To avoid sending a signal per malloc call, a global status
flag indicating whether the deliver thread is asleep can be used. The
flag is set as awake or asleep by the deliver thread; a wake-up signal
is sent to the deliver thread only when it is asleep.

Another variant is to combine the deliver thread and the monitor
thread; we can have the hybrid thread delivering information and
monitoring nodes alternatively, such that only one busy thread
is needed and the data structures can be further simplified. The
drawback is that the monitoring may be interrupted frequently.

Better ring algorithms: Based on Lamport’s ring [35], some
other ring algorithms have been proposed [24, 37]. We used the
ring algorithm proposed by Lee et al. [37] in our experiments to
mitigate the false sharing problem in Lamport’s ring.

6. Evaluation
We evaluated the effectiveness of Cruiser, its performance and
memory overhead, and analyzed the detection latency issue. This
section presents our results.

6.1 Effectiveness

We evaluated the effectiveness of Cruiser with two experiments.
Our first experiment was carried out using the SAMATE Reference
Dataset (SRD) [44] maintained by NIST. The dataset contains 12
test cases on heap-based buffer overflows due to contiguous writes,
which are caused by assignments, memcpy, strcpy, snprintf, etc.,
and another 10 test cases that fix the overflows. Cruiser detects all
the overflows in the 12 test cases and there is no false positive for
the 10 sound test cases.

The second experiment tested the effectiveness against both
well-known historic exploits (wu-ftpd [57], Sudo [61], CVS [55])
and recently published vulnerabilities (libHX [58], Lynx [59], Fire-
fox [56]), shown in Table 2. Each vulnerable program was run with
Cruiser and attacks were launched on them. Each attack was exe-
cuted 50 times and Cruiser detected all the overflows, duplicate and
invalid frees.

These experiments demonstrate that our technique is effective
in detecting not only heap-based buffer overflows but also memory
leakage and heap corruption including duplicate frees and frees on
invalid pointers. Therefore, Cruiser is a good candidate for finding
heap corruption and memory leakage defects during development
as well as monitoring production systems.

Program Vulnerability
wu-ftpd 2.6.1 Free calls on uninitialized pointers
Sudo 1.6.4 Heap-based buffer overflow
CVS 1.11.4 Duplicate free calls
libHX 3.5 Heap-based buffer overflow
Lynx 2.8.8 dev.1 Heap-based buffer overflow
Firefox 3.0.1 Heap-based buffer overflow

Table 2. The effectiveness experiment against real-world vulnera-
bilities.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

pe
rlb

en
ch

bz
ip2

gc

c
mcf

go
bm

k

hm
mer

sje
ng

lib
qu

an
tum

h2
64

ref

om
ne

tpp

as
tar

xa
lan

cb
mk

Geo
metr

ic
mea

n

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Lazy Cruiser Eager Cruiser DieHarder

Figure 7. Execution time with Cruiser (normalized by the execu-
tion time without Cruiser), compared with DieHarder. The last set
of bars is the geometric mean of the execution time of all bench-
marks.

6.2 Performance and Memory Overhead

We evaluated the performance and memory overhead of Cruiser us-
ing the SPEC CPU2006 Integer benchmark suite. The experiments
were performed on a Dell Precision Workstation T5500 with two
2.26GHz Intel Xeon E5507 quad-core processors and 4GB of RAM
running 32-bit Linux 2.6.24. Cruiser was implemented as a dynam-
ically linked library and loaded by setting the LD PRELOAD en-
vironment variable. In all the experiments, Cruiser created one de-
liver thread and one monitor thread with the optimizations memory
reuse and better ring algorithms enabled. We ran each experiment
three times and present the average result. The variance was negli-
gible.

We evaluated both Lazy Cruiser and Eager Cruiser, and com-
pared with DieHarder [45], which also provides probabilistic heap
safety. Figure 7 shows the execution time of the two implementa-
tions normalized by the execution time of original programs. The
average performance overhead is 12.5% for Lazy Cruiser and 5%
for Eager Cruiser, while DieHarder imposes 20% penalty on av-
erage. For the majority of the benchmark programs, the overhead
imposed by Cruiser is negligible. The perlbench has the highest
overhead due to its significantly dense dynamic memory alloca-
tion. Eager Cruiser performs generally better than the lazy version,
mainly because the former allows immediate memory reclamation
and reuse. The experiments show that Cruiser can be deployed in
field practically.

In addition to the three-word tag associated with each buffer,
the memory overhead of Cruiser is mainly due to its data structures
CruiserRings and CruiserList. For Lazy Cruiser, zombie buffers
are another source. To precisely analyze the memory overhead, as
shown in Table 3, we measured the maximum size of CruiserRing
and the maximum and average lengths of CruiserList normalized
by the live buffer counts at sample time (we sampled at the end of
each cruise cycle), respectively, from which we can get the percent-
age of dated nodes and zombie buffers. As the CruiserList length
is normalized, the maximum length can be less than the average

Bench- Maximum Maximum Average Average
mark CruiserRing CruiserList CruiserList cruise

size length length cycle (µs)
perlbench 8192 (1024) 1.06 (1.16) 1.02 (1.06) 4.3e4 (1.2e5)
bzip2 1024 (1024) 1.00 (1.00) 1.00 (1.00) .43 (1.2)
gcc 2048 (2048) 1.02 (1.05) 1.00 (1.01) 1.3e3 (3.5e3)
mcf 1024 (1024) 1.00 (1.00) 1.00 (1.00) .35 (.59)
gobmk 1024 (1024) 1.00 (1.00) 1.00 (1.00) .37 (1.6)
hmmer 1024 (1024) 1.11 (1.29) 1.00 (1.00) 26 (1.6e2)
sjeng 1024 (1024) 1.11 (1.00) 1.00 (1.00) .36 (0.82)
libquantum 1024 (1024) 1.00 (1.00) 1.00 (1.00) .16 (0.49)
h264ref 1024 (1024) 1.00 (1.00) 1.00 (1.00) 3.3e2 (1.7e3)
omnetpp 2048 (1024) 1.08 (1.08) 1.02 (1.08) 9.8e4 (3.2e5)
astar 4096 (2048) 1.04 (1.06) 1.00 (1.00) 19 (88)
xalancbmk 2048 (1024) 1.00 (1.00) 1.02 (1.07) 7.3e4 (1.5e5)

Table 3. Memory overhead and cruise cycle (Results of Ea-
ger Cruiser are enclosed in parentheses; the maximum/average
CruiserList lengths are normalized by the maximum/average heap
buffer counts, respectively).

one, as in the case of xalancbmk. The initial CruiserRing has 1024
elements; the size of each element is one word in Lazy Cruiser and
two words in Eager Cruiser, respectively. For the majority of bench-
marks, the CruiserRing does not grow, while the maximum Cruis-
erRing in perlbench test with Lazy Cruiser experienced 3 times of
growth (recall that the ring grows exponentially). The length of
CruiserList is close to the count of live buffers on heap. In other
words, the percentage of dated nodes and zombie buffers is low,
and on average it is negligible.

6.3 Scalability

To evaluate the scalability of our approach on multithreaded pro-
grams, we compared the throughputs of the Apache web server
with and without Cruiser. We ran Apache 2.2.8 on the same work-
station specified in Section 6.2, and used ApacheBench 2.3, which
ran on a machine with a 2.4GHz Intel Core 2 Duo processor, 4GB
of RAM, and Mac OS X 10.6.4, to measure the Apache through-
put over a Gbit LAN network. We issued repeated requests for
a 5KB HTML page with various numbers of concurrent clients.
We observed that Apache allocated two heap buffers per request;
ApacheBench issued one million requests for each concurrency
number. Figure 8 shows the throughputs of Apache (labeled as
baseline) and Apache with Lazy Cruiser and Eager Cruiser, respec-
tively. The throughputs of Apache with the two versions of Cruiser
are almost the same. The maximum 3% slowdown appears around
concurrency number 7, while the average slowdown is negligible.
For concurrency numbers greater than 11, the throughputs with and
without Cruiser are almost identical. We measured until concur-
rency number 110 when the client’s CPU was saturated, and the
throughput slowdown remained negligible. The machine running
Apache has 8 cores in processors, thus the Cruiser threads com-
pete processor time since concurrency number 6; however as the
working threads in Apache increase, the percentage of processor
time used by the Cruiser threads decreases, and thus the slowdown
declines.

6.4 Detection Latency

Heap-based buffer overflows can be divided into two classes [51].
One class of attacks alter memory allocators’ metadata. Exploits in
this class are often achieved by releasing a corrupted buffer [33].
Cruiser defeats this kind of exploits completely, as all buffers are
checked before release.

The other class comprises attacks that overflow a buffer to al-
ter the content of its adjacent memory block. This kind of exploits

500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
eq

ue
st

s
pe

r s
ec

on
d

Concurrency

Baseline

Lazy Cruiser

Eager Cruiser

Figure 8. Throughtputs of the Apache web server for varying
numbers of concurrent requests.

are not achieved until the corrupted content is used; the attacks
are not detected until corrupted buffers are checked by a monitor
thread. Like DieHarder, Cruiser provides probabilistic heap safety
for this kind of attacks. Assume an attack takes time E to achieve
the exploit after canary smashing and a cruise cycle takes time C,
if E ≥ C, Cruiser can detect the overflow before the exploit is
achieved; otherwise, assume the detection latency (elapsed time
since the overflow until detection) is uniformly distributed on the
interval (0, C], the probability P for Cruiser to detect an exploit be-
fore it completes is E/C. As shown in Table 3, with Lazy Cruiser, 5
of the 12 benchmarks’ average cruise cycles are shorter than 0.5µs,
and 8 of them are not longer than 0.5ms; with Eager Cruiser, 5
benchmarks’ average cruise cycles are not longer than 1.6µs, and
7 of them are shorter than 0.2ms. The average cruise cycles for
Apache test are 16µs and 78µs for Lazy and Eager Cruisers, re-
spectively. Considering C = NT , where N is the number of nodes
in the CruiserList and T is the average time for a monitor thread to
check a node, we can expect a high prevention probability by keep-
ing N small. One way is to divide the CruiserList into several seg-
ment groups and create the same number of monitor threads, each
of which cruises over a shorter part of CruiserList. For example, by
dividing the CruiserList into two parts and running one more mon-
itor thread on either part in omnetpp test, the average cruise cycle
decreased by 42% and 47% for Lazy Cruiser and Eager Cruiser,
respectively. Another way is to only monitor suspicious buffers, for
example, those buffers involved in data flows that stem from net-
works or user inputs.

Considering Cruiser shares the same address space as user pro-
grams, an attacker with arbitrary memory access privileges of the
compromised program can bypass Cruiser theoretically. Otherwise
a reliable and precise attack against Cruiser is hard to build. In
Cruiser, the canaries of a buffer are the XOR result of the buffer’s
address, size and the keys which were initialized using random
numbers, so it is difficult to predict or restore a canary. For ex-
ample, an elaborate attack that exploits other vulnerabilities, such
as format string [50], to obtain the keys still needs the target buffer
size and address information to calculate its canaries. Blind access
for Cruiser’s data structures will normally incur segfault, as they are
surrounded by inaccessible guard pages. The function pthread kill
can be interposed by Cruiser to prevent Cruiser threads from be-
ing killed, and Cruiser threads can detect the liveness of each other
when running, thus it is very unlikely to subvert Cruiser. Detection
can be evaded by terminating the process, which, however, explic-
itly exposes the attack and is not a usual way of real attacks.

7. Software Cruising
We have applied the software cruising technique to efficient heap
overflow detection by moving the detection work out of user

threads. Potentially all the inlined verification, monitoring and re-
source reclamation work can be migrated from user threads to one
or more monitor threads for concurrent execution in background.
This section discusses other applications of software cruising, some
of which we are currently working on as an extension of this work.

Background Software Monitoring: Depending on the security
policies enforced, inlined security enforcement may incur high per-
formance overhead. Software cruising takes a very different way
by moving inlined security enforcement out of user threads and
executing them in concurrent monitor threads, which can reduce
considerable performance overhead. Although synchronization and
race conditions between user and monitor threads are potential
challenges, they can be solved using lock-free data structures as
in Cruiser. For example, we can implement a call trace collector by
instrumenting the call instruction in the binary and placing the tar-
get address in a CruiserRing. A concurrent monitor thread analyzes
the call trace to evaluate whether specific control-flow policies are
followed. As simple examples, some control transfers are suspi-
cious; or a control-flow policy may require that a certain function
is called no more often than another function (such restrictions may
be desirable to prevent some “confused deputy” attacks [25]). The
monitor thread can detect abnormalities based on the call trace and
a finite automaton or simple counting. Other straightforward appli-
cations include integrity-checking of important program structures
such as the Global Offset Table.

OS Kernel Cruising: It is desirable to adopt software cruising
to monitor OS kernel memory integrity and other safety and live-
ness properties. We plan to develop a prototype that can monitor
integrity of OS kernel memory. One of the challenges of cruising
OS kernels is how to minimize the impact on the kernel memory
layout since kernel code contains many low-level programming id-
ioms that rely on certain memory layouts. One way to solve this
problem is to selectively monitor some buffers and make manual
transformation.

Concurrent Resource Reclamation: Software Cruising can
also be applied to implement efficient resource reclamation, for
example safe memory reclamation for lock-free data structures.
For lock-free dynamic objects, when a thread removes a node,
it is possible that some other thread has earlier read a reference
to that node, and is about to access its contents, therefore the
memory occupied by the node should not be released or reused
directly. When designing lock-free data structures, safe memory
reclamation is a major concern. Recent progress was made by
Michael [39]. The core idea is to associate a number of pointers,
called hazard pointers, with each thread. A hazard pointer points
to a node that may be accessed later by that thread; whenever a
thread frees a retired node, it has to scan hazard pointers of other
threads to make sure the node is not pointed to by any of the hazard
pointers. To achieve a low amortized overhead, a thread does not
free retired nodes until it accumulates a certain number of retired
nodes. The inlined batch processing of retired nodes inevitably
delays user threads and memory reclamation. The problem can be
solved elegantly by deploying a concurrent thread, which takes over
the work of memory reclamation by scanning hazard pointers to
determine which retired nodes can be released safely. The original
methodology is complementary to this solution in case too many
retired nodes are accumulated.

8. Conclusion
We have introduced a novel technique, software cruising. The core
idea is to mitigate inlined verification, monitoring and resource
reclamation work from user threads to a concurrent monitor thread.
Through lock-free data structures and non-blocking algorithms the
monitor thread and user threads can be synchronized with low
overhead and high scalability.

We have applied this technique to Cruiser, a dynamic heap-
based buffer overflow detector on the Linux platform. It is straight-
forward to adapt Cruiser to other platforms such as Windows and
Mac. We have evaluated Cruiser on a variety of programs to show
its effectiveness. The performance overhead of monitoring SPEC
CPU2006 benchmark is about 5% on average, and negligible in
the majority of cases. Cruiser also scales well on multithreaded
programs; the slowdown on the Apache throughput with different
numbers of concurrency is negligible on average and 3% maximal.
The experiments show that Cruiser is feasible to be applied.

Acknowledgments
The authors would like to thank Ori Shalev and Nir Shavit for shar-
ing the non-blocking hash table code [62], Maged M. Michael for
pointing to us the open source project “Amino Concurrent Build-
ing Blocks” [46], Andrew Appel and Xi Xiong for their valuable
comments, and the anonymous reviewers for their comments that
helped shape the final version of this paper.

This work was partially supported by AFOSR FA9550-07-
1-0527 (MURI), ARO W911NF-09-1-0525 (MURI), NSF CNS-
0905131, and AFRL FA8750-08-C-0137.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow

integrity. In CCS ’05, pages 340–353.

[2] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy bounds check-
ing: an efficient and backwards-compatible defense against out-of-
bounds errors. In Usenix Security ’09, pages 51–66.

[3] AlephOne. Smashing the stack for fun and profit. Phrack, 7(49), 1996.

[4] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detection of all
pointer and array access errors. In PLDI ’04, pages 290–301.

[5] K. Avijit and P. Gupta. Tied, libsafeplus, tools for runtime buffer
overflow protection. In Usenix Security ’04, pages 4–4.

[6] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D.
Zovi. Randomized instruction set emulation to disrupt binary code
injection attacks. In CCS ’03, pages 281–289.

[7] E. Bhatkar, D. C. Duvarney, and R. Sekar. Address obfuscation: an
efficient approach to combat a broad range of memory error exploits.
In Usenix Security ’03, pages 105–120.

[8] Bulba and Kil3r. Bypassing StackGuard and StackShield. Phrack, 10
(56), May 2000.

[9] M. Castro, M. Costa, and T. Harris. Securing software by enforcing
data-flow integrity. In OSDI ’06, pages 147–160.

[10] CERT Advisory, CA-2001-19 CodeRed worm.

[11] CERT Advisory, CA-2002-33 Heap Overflow Vulnerability in Mi-
crosoft Data Access Components.

[12] CERT Advisory, CA-2003-20 SQLSlammer worm.

[13] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-
data attacks are realistic threats. In Usenix Security ’05, pages 177–
192, 2005.

[14] T. Chiueh and F. Hsu. RAD: A compile-time solution to buffer
overflow attacks. In ICDCS ’01, pages 409–417.

[15] M. Conover. w00w00 on heap overflows, 1999. www.w00w00.org/
files/articles/heaptut.txt.

[16] C. Cowan and S. Beattie. PointGuard: protecting pointers from buffer
overflow vulnerabilities. In Usenix Security ’03, pages 91–104.

[17] C. Cowan and C. Pu. StackGuard: automatic adaptive detection and
prevention of buffer-overflow attacks. In Usenix Security ’98, pages
63–78, January 1998.

[18] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong, and J. Hiser. N-variant systems: a se-
cretless framework for security through diversity. In Usenix Security
’06, pages 105–120.

[19] E. D.Berger. HeapShield: Library-based heap overflow protection for
free. Tech. report, Univ. of Massachusetts Amherst, 2006.

[20] N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistic tool for
statically detecting all buffer overflows in C. In PLDI ’03, pages 155–
167, June 2003.

[21] T. Durden. Bypassing PaX ASLR protection. Phrack, 2002.

[22] E. Fence. Malloc debugger. http://directory.fsf.org/project/ElectricFence/.

[23] M. Frantzen and M. Shuey. Stackghost: Hardware facilitated stack
protection. In Usenix Security ’01, pages 55–66.

[24] J. Giacomoni, T. Moseley, and M. Vachharajani. Fastforward for
efficient pipeline parallelism: a cache-optimized concurrent lock-free
queue. In PPoPP ’08, pages 43–52.

[25] N. Hardy. The confused deputy. ACM Oper. Syst. Rev., 22(4):36–38.

[26] T. L. Harris. A pragmatic implementation of non-blocking linked lists.
In DISC ’01, pages 300–314.

[27] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. In the Winter 1992 Usenix Conference, pages 125–136.

[28] M. Herlihy. A methodology for implementing highly concurrent data
structures. In PPoPP ’90, pages 197–206.

[29] IBM. ProPolice detector. www.trl.ibm.com/projects/security/ssp/.

[30] IBM System/370 Extended Architecture, Principles of Operations.
IBM Publication No. SA22-7085, 1983.

[31] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. In Usenix ATC ’02, pages
275–288, June 2002.

[32] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible bounds
checking for arrays and pointers in C programs. In the International
Workshop on Automatic Debugging, 1997.

[33] M. Kaempf. Vudo malloc tricks. Phrack, 11(57), 2001.

[34] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure execution
via program shepherding. In Usenix Security ’02, pages 191–206.

[35] L. Lamport. Proving the correctness of multiprocess programs. IEEE
Trans. Softw. Eng., 3(2):125–143, 1977.

[36] D. Lea. dlmalloc. http://g.oswego.edu/.

[37] P. Lee, T. Bu, and G. Chandranmenon. A lock-free, cache-efficient
multi-core synchronization mechanism for line-rate network traffic
monitoring. In IPDPS ’10, pages 1–12.

[38] R. Lemos. Counting the cost of Slammer, 2003. http://news.cnet.com/
Counting-the-cost-of-Slammer/2100-1002 3-982955.html.

[39] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-
free objects. IEEE Trans. Parallel Distrib. Syst., 15(6):491–504, 2004.

[40] M. M. Michael. High performance dynamic lock-free hash tables and
list-based sets. In SPAA ’02, pages 73–82.

[41] MSDN. Structured exception handling. http://msdn.microsoft.com/
en-us/library/ms680657(VS.85).aspx.

[42] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer.
CCured: type-safe retrofitting of legacy software. ACM Trans. Pro-
gram. Lang. Syst., 27(3):477–526, 2005.

[43] NIST. National Vulnerability Database. http://nvd.nist.gov/.

[44] NIST. SAMATE Reference Dataset. http://samate.nist.gov/SRD.

[45] G. Novark and E. D. Berger. Dieharder: securing the heap. In CCS
’10, pages 573–584.

[46] Open Source project. Amino concurrent building blocks. http://amino-
cbbs.sourceforge.net/.

[47] Open Source Project. libsigsegv. http://libsigsegv.sourceforge.net/.

[48] S. Prakash, Y.-H. Lee, and T. Johnson. A nonblocking algorithm for
shared queues using compare-and-swap. IEEE Trans. Comput., 43(5):
548–559, 1994.

[49] M. Prasad and T. Chiueh. A binary rewriting defense against stack
based buffer overflow attacks. In Usenix ATC ’03, pages 211–224.

[50] G. Richarte. Four different tricks to bypass StackShield and Stack-
Guard protection. Tech. report, Core Security Tech., 2002.

[51] W. Robertson, C. Kruegel, D. Mutz, and F. Valeur. Run-time detection
of heap-based overflows. In LISA ’03, pages 51–60.

[52] O. Ruwase and M. S. Lam. A practical dynamic buffer overflow
detector. In NDSS ’04, pages 159–169.

[53] B. Salamat, T. Jackson, A. Gal, and M. Franz. Orchestra: intrusion
detection using parallel execution and monitoring of program variants
in user-space. In EuroSys ’09, pages 33–46.

[54] SecuriTeam. http://www.securiteam.com/.

[55] SecurityFocus. CVS directory request double free heap corruption,
2003.

[56] SecurityFocus. Mozilla Firefox and Seamonkey regular expression
parsing heap buffer overflow, 2009.

[57] SecurityFocus. Wu-ftpd file globbing heap corruption, 2001.

[58] SecurityFocus. libHX ‘HX split()’ remote heap-based buffer overflow,
2010.

[59] SecurityFocus. Lynx browser ‘convert to idna()’ function remote heap
based buffer overflow, 2010.

[60] SecurityFocus. http://www.securityfocus.com/.

[61] SecurityFocus. Sudo password prompt heap overflow, 2002.

[62] O. Shalev and N. Shavit. Split-ordered lists: Lock-free extensible hash
tables. J. ACM, 53(3):379–405, 2006.

[63] Solar Designer. Non-executable user stack, 1997. http://www.open
wall.com/linux/.

[64] StackShield. http://www.angelfire.com/sk/stackshield/, January 2000.

[65] The PaX project. http://pax.grsecurity.net/.

[66] T. K. Tsai and N. Singh. Libsafe: Transparent system-wide protection
against buffer overflow attacks. In DSN ’02, pages 541–541.

[67] US-CERT. Vulnerability notes database. www.kb.cert.org/vuls.

[68] Valgrind. http://valgrind.org/.

[69] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first step
towards automated detection of buffer overrun vulnerabilities. In
NDSS’00, pages 3–17.

[70] J. Xu, Z. Kalbarczyk, S. Patel, and R. Iyer. Architecture support for
defending against buffer overflow attacks. In Workshop Evaluating &
Architecting Sys. Depend., 2002.

[71] M. Zhivich, T. Leek, and R. Lippmann. Dynamic buffer overflow
detection. In Workshop on the Evaluation of Software Defect Detection
Tools, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

