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Abstract. Browser extensions are widely used by millions of users. How-
ever, large amount of extensions can be downloaded from webstores with-
out sufficient trust or safety scrutiny, which keeps users from differentiat-
ing benign extensions from malicious ones. In this paper, we propose an
aspect-level behavior clustering approach to enhancing the safety man-
agement of extensions. We decompose an extension’s runtime behavior
into several pieces, denoted as AEBs (Aspects of Extension Behavior).
Similar AEBs of different extensions are grouped into an “AEB cluster”
based on subgraph isomorphism. We then build profiles of AEB clusters
for both extensions and categories (of extensions) to detect suspicious
extensions. To the best of our knowledge, this is the first study to do
aspect-level extension clustering based on runtime behaviors. We evalu-
ate our approach with more than 1,000 extensions and demonstrate that
it can effectively and efficiently detect suspicious extensions.
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1 Introduction

Extensions are pervasively supported by commodity web browsers, such as Fire-
fox, Chrome, and Internet Explorer. With thousands of extensions in webstores,
Firefox add-ons are the most heavily used extensions. It is reported that 85% of
Firefox 4 users have installed an extension, with “more than 2.5 billion down-
loads and 580 million extensions in use every day in Firefox 4 alone” [23].

However, as we will shortly discuss in Section 2, there are three major security
issues associated with those extensions. First, to support the enhanced function-
ality, web browsers usually grant the “guest” extensions from third-party with
full or similar privileges as granted to the “host” browsers themselves [8]. This
entails that they can breach the sandboxing policy and the same origin policy.
Second, extensions can hide themselves or even masquerade other legitimate ones
to conduct malicious actions. Third, there lacks a sufficient security management
for extensions among developers, browser webstores, and users.

Protection Requirements. To address these issues, a variety of techniques
have been proposed in the literature; however, existing techniques are still limited
in meeting the following real-world protection requirements: (R1) User data
confidentiality and integrity [20]; (R2) Simplicity and practicality in deployment
and use, which means the approach should not require one to modify the browser



2 Bin Zhao and Peng Liu

code; (R3) Resilience to code obfuscation/polymorphism and runtime actions of
JavaScripts; (R4) Acceptable overhead to the browser and OS.

Limitations of Prior Approaches. To see the limitations of existing de-
fenses with respect to these four requirements, let us break down prior ap-
proaches into three classes which we will review shortly in Section 8: (C1) Sand-
boxing policy; (C2) Using static information flow analysis to identify potential
security vulnerabilities in extensions [2, 29]; (C3) Using dynamic information
flow to monitor the execution of extensions [8, 20, 21].

We briefly summarize their limitations as follows. (a) Classes C1 and C2
cannot meet R1, as they often have a high false negative rate. (b) Classes C1
and C3 cannot satisfy R2 because they often require browser code modification
or are difficult to deploy in practice. (c) Classes C1 and C2 cannot satisfy R3, as
many obfuscation/polymorphism techniques can evade them. Particularly, static
information flow analysis cannot properly handle dynamic scripting languages
like JavaScript as many runtime actions cannot be determined statically [21, 25].
(d) Finally, Class C3 cannot satisfy R4 as they usually pose big overhead.

Key Insights and Our Approach. Motivated by the limitations of exist-
ing defenses and to satisfy the protection requirements, we propose aspect-level
browser extension behavior clustering.

We aim to generate alerts for suspicious extensions based on behavior char-
acteristics. In this paper, System Call Dependence Graphs (SCDGs) are used as
a representation of behaviors for extensions. We then decompose an extension’s
runtime behavior into several pieces, denoted as Aspects of Extension Behavior
(AEBs). Basically, each AEB corresponds to a unique (sub)SCDG. We aim to
group similar AEBs of different extensions into an “AEB cluster”. As a result,
each extension is mapped to a vector of AEB clusters, which we call the exten-
sion profile. On a commodity browser’s webstore, the extensions are organized
by categories; so each category can also be mapped to a vector of AEB clusters,
which we call the category profile.

A key observation is that extensions in the same category have similar behav-
iors as they implement similar functionality. Hence, the detection of suspicious
extensions is based on the following rationales. First, uniqueness. Each category
in the webstore has a unique functionality. A category’s functionality correlates
to a unique category profile. Second, inclusiveness and exclusiveness. Using a
large set of training extensions, we can build a representative profile for each
category, meaning that most of the legitimate AEB clusters will be included in
each category’s profile. However, a suspicious extension bearing different func-
tionality will generate its unique vector of AEB clusters, and thus lead to a
unique extension profile, which is not a subset of its category’s profile.

Based on this insight, we aim to help (augment) the human review process,
as a “safety checker”, as follows: whenever a new extension (which might be
malicious) is submitted for adoption by Category C, the reviewers or the end-
users can firstly use our system to map the extension to a particular vector of
AEB clusters and generate this extension’s profile. If this extension’s profile is
not a subset of C’s profile, an alert may be raised. The users or reviewers can
then look into it and decide whether or not to install this extension.

Main Use Cases of Our Approach. In general, there are two primary
concern holders for the usages of detecting suspicious extensions, end-users and
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webstores. Our approach can be both used by these two concern holders. The
two main use cases of our approach should be as follows. (a) Webstores can use
our approach to do cost-effective safety check of uncertified extensions submitted
by third party developers; (b) A trustworthy web portal, e.g., one operated by
governments or authoritative organizations, can be set up to allow end-users to
upload and check the safety of any extensions through simply a couple of clicks.

Though this work is not the first to apply behavior clustering in the security
field [4, 16], this is still the first attempt to employ it into detecting suspicious
browser extensions, which is a rather different story with others. Overall, this
work makes the following contributions:

• To the best of our knowledge, this is the first study to cluster web browser
extensions based on Operating System level runtime behaviors.

• This is the first attempt to apply symbolic execution into the study of web
browser extensions. By increasing the input space coverage, the detection
rate of suspicious extensions is greatly improved.

• We introduced new methods to address the differentiating of system call
traces between the “host” browser and extensions. This greatly improves
the accuracy of clustering and detection results.

• We dramatically increased the scale of dynamic analysis of browser exten-
sions from around 20 (extensions per study) in the literature [3, 8, 20, 21] to
more than 1,000 extensions in our study. Although static analysis [2, 29] of
over 1,000 extensions can be done in a rather efficient way, dynamic analysis
of over 1,000 extensions is a totally different “story”.

• We evaluate our approach atop the Mozilla Firefox browser. The experi-
ment results using large amount of training and testing dataset extensions
show that our approach can effectively and efficiently cluster the existing
extensions and detect suspicious ones.

2 Issues Associated with Browser Extensions
In this section, we discuss two major security issues with extensions, the breach
of sandboxing policy for extensions and the hidden/masquerading extensions.

Breach of Sandboxing Policy. Due to the functionality, some extensions
may contain native libraries and call corresponding APIs so that they can access
browser resources while other scripts are usually restrained [12]. This feature may
expose users to the threat of information leaks. Scripts that run on web pages
conform to certain constraints, e.g., Same Origin Policy (SOP); however, exten-
sions can read and alter web pages, and execute with full or similar privileges as
the browser, meaning that they are not restricted by SOP. With these privileges,
extensions, if malicious, can put users under security risks. For example, a com-
mon practice found in many extensions is using XMLHttpRequest to download
JavaScript or JSON from a remote web site [24]. Once downloaded, extension
authors proceed to “use eval() to decode the string content into JavaScript ob-
jects”. This is dangerous because the decoded JavaScript has full chrome privi-
leges and can perform unpredictable malicious actions [8, 24].

Hidden and Masquerading Extensions. An extension can hide itself
from the browser’s extension manager via the install manifest or CSS [5]. Thus,
the extension can steal the user’s credentials, create sockets, and even delete
user’s files though this is rarely seen. Extensions can also hide their behaviors
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by pretending to be legitimate ones. One example is FormSpy (2006), which is
actually a downloader-AXM Trojan, but masquerades as the legitimate Num-
beredLinks 0.9 extension. It can steal passwords and e-banking login details,
forwarding them to a third party web site [22].

3 Problem Statement and Behavior Representation

3.1 Problem Statement
Currently, neither webstores nor users can distinguish benign extensions from
malicious ones. There misses a bridge among developers, users, and webstores.
Users need a reliable checker to know what exactly an extension has done and
how it deals with the data and personal information. We aim to let users know
this before they install a specific extension through our approach.

Specifically, the problem statement is as follows. First, how to provide de-
tailed behavior indicators to the users? Second, how to generate alerts based
on behavior characteristics of extensions? Third, how to represent behavior so
that meaningful analysis can be done? This representation should also reflect
the functionalities and features of those extensions. Fourth, how to do the above
things in an automatic way, so that human involvement can be minimized?

3.2 Behavior Representation
A proper representation of behaviors for extensions should be determined first.
We represent behavior using a particular graph called SCDG. In our model, the
behavior (of an extension) is represented by a set of disconnected SCDGs. Each
SCDG is a graph in which “system calls are denoted as vertices, and dependen-
cies between them are denoted as edges” [30]. A SCDG essentially shows the
interaction between a program and its operating system. This interaction is an
essential behavior characteristic of the program in concern [30, 31]. We formally
define SCDG as follows [30, 31].

Definition 1. System Call Dependence Graph. Let p be the running program
(say extension). Let I be the input to p. f(p, I) is the obtained system call traces.
f(p, I) can be represented by a set of System Call Dependence Graphs (SCDGs)⋃n

i=0Gi: Gi = 〈N,E, F, α, β〉, where
• N is a set of vertices, n ∈ N representing a system call
• E is a set of dependence edges, E ⊆ V × V
• F is the set of functions

⋃
f : x1, x2, ..., xn → y, where each xi is a return

value of system call, y is the dependence derived by xi
• α assigns the function f to an argument ai ∈ A of a system call
• β is another function assigning attributes to node value

In our model, the behavior of an extension has several aspects. We define Aspect
of Extension Behavior (AEB) as follows.

Definition 2. Aspect of Extension Behavior. Let p be the running extension.
G = 〈N,E, F, α, β〉 is one SCDG for p. If ∃ G′ ⊆ G such that G′ can represent
what p has done and accessed, we say that G′ is an Aspect of Extension Behavior
(AEB) for p.

An AEB is a subgraph of a SCDG. Each AEB corresponds to a unique (sub)SCDG.
Consequently, the behavior of an extension can be decomposed into a set of
AEBs. Representative AEBs include “bookmark accessing”, “DOM storage ac-
cessing”, “form submitting”, “Cookies reading”, and “Downloading”, etc.
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3.3 Why Use SCDG and AEB as the Representation of Behavior?

Why System Calls? We perform system call tracing on browser extensions for
several reasons. First, system calls are the only interface between OS and a pro-
gram, providing the only way for a program to access the OS services. Second,
almost every attack goal is bundled with OS resources. Hence, for malicious ex-
tensions, it is usually not possible for them to conduct malicious actions without
triggering system calls, even if they use obfuscation or polymorphism techniques
[18, 30]. Third, though the attacker can use compiler optimization techniques to
camouflage an extension, these tricks usually do not change dependencies be-
tween system calls [30]. In addition, system calls can be practically tracked and
analyzed, while giving little overhead to the browser and OS.

Why SCDGs and AEBs? SCDGs are employed based on the following ob-
servation and insight. A single system call trace tells little information about the
overall behavior of an extension directly, as system calls are low level reflection
about the behavior characteristics of a program. A problem occurs how to map
the low level system call traces with application level behavior. An intermediate
representation is required to correlate them. SCDGs can appropriately reflect
the dependencies between system calls. They are the abstraction of a sequen-
tial system calls. To connect SCDGs with application level behavior, we then
introduce AEBs in this paper. Based on the definition, every AEB is associated
with a unique (sub)SCDG, while AEBs are the decomposed runtime behavior
of an extension. Hence, SCDGs and AEBs can be employed as an intermediate
representation of behavior for an extension. AEBs thus can act as a difference
between benign and suspicious extensions.

4 System Design

4.1 Approach Rationale

First, given that most webstores already have a human review process in place
for adoption of new extensions (though it is not sufficient enough), our goal
is to augment this process and off-shoulder the human reviewer’s workload as
much as possible. Second, we aim to build a system that can differentiate be-
nign extensions from suspicious ones based on behaviors. An appropriate and
accurate representation of extension’s behavior can reflect the difference of be-
haviors between benign and suspicious extensions. Specifically, SCDGs are used
to represent the behavior of extensions in system level. They can act as a dis-
tinguishing characteristic between extensions. Third, extensions are classified
into several categories by extension webstores, such as Bookmarks, Tabs, and
Shopping, etc. A basic observation is that extensions in the same category have
similar behaviors as they implement similar functionality. SCDGs and AEBs act
as the intermediate representation to correlate the system level behavior track-
ing and application level behavior. If an extension has one outlier AEB that all
other extensions (in the same category) do not have, this should be considered
as abnormal and suspicious.

4.2 System Overview

Fig. 1 shows the architecture of our system. It consists of four components:
Dynamic Tracer, SCDG Extractor, SCDG Clustering, and Alert Generator.
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Fig. 1. Architecture of our system, which consists of four components: Dynamic Tracer,
SCDG Extractor, SCDG Clustering, and Alert Generator.

Dynamic Tracer. The dynamic tracer is mainly composed of an input re-
solver and a trace differentiator. The dynamic tracer tracks the behaviors of both
benign and suspicious extensions in the form of system calls, using the input re-
solver to address the input space issue. The trace differentiator is a component
resolving the system call traces of extensions from the host browser.

SCDG Extractor. The SCDG Extractor takes the trimmed system call
traces of each extension as the input, and aim to generate SCDGs for each exten-
sion. It first explores the dependencies between system calls. Then, it identifies
objects and encodes them for the use of the following component.

SCDG Clustering. SCDG Clustering is used to generate AEB clusters.
Specifically, we compare the SCDGs using subgraph isomorphism under the re-
striction of γ-isomorphism. To increase the efficiency, we also perform several
pruning techniques to reduce the search space and computational complexity.

Alert Generator. The alert generator aims to raise alerts for suspicious
extensions. This component has two primary functionalities. It first builds pro-
files for each extension and thereafter the categories. Then, we use the profiles
of categories instead of extensions to detect suspicious extensions.

Challenges. This system faces several key challenges. The first is the input
space issue. We use an input resolver to overcome this challenge. The second
hurdle is the differentiating of system call traces between the browser and ex-
tensions. As the tracing is conducted per process, we need our tracing to know
whether a system call is invoked by a specific extension or the browser. The trace
differentiator is employed to handle this. The third one is to identify the relevant
objects and encode them when extracting SCDGs. Though exploring dependen-
cies between system calls is not new, for browser extensions, we have to identify
relevant objects and encode them to formalize the nodes in SCDGs so that we
can do additional pruning techniques in SCDG clustering. A fourth challenge
is how to identify suspicious extensions and raise alerts for them. The profile
builder acts as the key factor to serve the detection of suspicious extensions.

4.3 Dynamic Tracing

Dynamic Tracing is a key challenge in our system. The dynamic tracer takes
the browser and extensions as the input, and eventually generates the trimmed
system call traces for each extension. It consists of four smaller components:
trace generator, input resolver, trace differentiator, and the noise filter. In a nut-
shell, the trace generator takes the browser and running extensions, and inputs
to obtain the system calls. The inputs associated with the trace generator are
generated by the input resolver to address the input space issue. Trace differen-
tiator is used to identify whether a system call is invoked by a specific extension
in concern. Finally, the noise filter can remove the noises to reduce the workload
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of SCDG extraction in the following work. In this subsection, we primarily fo-
cus on two key challenges when perform dynamic tracing. We then give a brief
introduction to the noise filter.

Input Resolving. A first key challenge for dynamic tracing is known as
input space issue. An input used by a program (value and event, e.g. data read
from disk, a network packet, mouse movement, etc.) cannot always be guaranteed
to reoccur during a re-execution. As a result, an extension will result in a set of
execution paths due to different inputs, while these execution paths cannot be
guaranteed the same during the dynamic tracing. It is very likely that certain
malicious actions can only be triggered under specific inputs (i.e., conditional
expressions are satisfied, or when a certain command is received). If these specific
inputs are not included in the test input space, it is possible that malicious
actions can be triggered in a particular execution path.

However, almost none of the prior approaches related to browser extensions
have taken input space coverage issue into account [2, 18, 20, 21, 29]. There is a
need to automatically explore the input space of client-side JavaScript exten-
sions. Generally, the input space of a JavaScript extension can be divided into
two categories: the event space and the value space [28]. Rich browser exten-
sions typically define many JavaScript event handlers, which may execute in any
order as a result of user actions such as clicking buttons or submitting forms.
The value range of an input includes user data such as form field and text areas,
URL and HTTP channels.

To address the input space issue, an input resolver (IR) is used based on
dynamic symbolic execution in our paper. The IR can be used to “hit” as many
execution paths as possible for an extension. In the IR, symbolic variables are
tracked instead of the actual values. Values of other variables which depend on
symbolic inputs are represented by symbolic formulas over the symbolic inputs.
When a symbolic value propagates to the condition of a branch, it can use a
constraint solver to generate inputs to the program that would cause the branch
to satisfy some new paths [28].

As our IR is primarily designed based on symbolic execution, we first intro-
duce how symbolic execution works. Suppose that a list of symbols {ξ1, ξ2 ...}
are supplied for a new input value of a program each time [17]. Symbolic execu-
tion maintains a symbolic state, which maps variables to symbolic expressions,
a symbolic path constraint pc, and a Boolean expression over the symbolic in-
puts {ξi}. pc accumulates constraints on the inputs that trigger the execution to
follow the associated path. For a conditional if (e) S1 else S2, pc is updated
with assumptions on the inputs to choose between alternative paths [6, 33]. If the
new control branch is chosen to be S1, pc is updated to pc∧µ(e) = 0; otherwise
for S2, pc is then updated to pc∧ µ(e) 6= 0. µ(e) denotes the symbolic predicate
obtained by evaluating e in symbolic state µ. In symbolic state, both branches
can be taken, resulting in two different execution paths. Symbolic execution ter-
minates when pc is not satisfied. Satisfiability is checked with a constraint solver.
For each execution path, every satisfying assignment to pc gives values to the
input variables that guarantee the concrete execution proceeds along this path.
For code containing loops or recursion, one needs to give a limit on the iteration,
i.e., a timeout or a limit on the number of paths [6, 17, 33].
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Specifically, the IR includes a dynamic symbolic interpreter that performs
symbolic execution of JavaScript, a path constraint extractor that builds queries
based on the results of symbolic execution, a constraint solver that finds satis-
fying assignments to those queries, and an input feedback component that uses
the results from the constraint solver as new program inputs [28]. They are used
to generate values to “hit” as many paths as possible.

On the other hand, a unique challenge for extensions is the event space issue.
Our IR can address the issue of detecting all events causing JavaScript code
execution as follows. First, a GUI explorer will search the space of all events using
a random exploration strategy. Second, an instrumentation of browser functions
can process HTML elements to record the time of the creation and destroy of
an event handler [28]. Ordering of user events registered by the web page is
randomly selected and automatically executed. The same ordering of events can
be replayed by using random seed. The explorer also generates random test
strings to fill text fields when handlers are invoked [28].

System Call Differentiating. The other big challenge is the differentiating
of system call traces between the browser and extensions. Different browsers
have adopted various extension system mechanisms, posing great challenge to
the tracing of system calls. For Firefox, all extensions and the browser itself are
wrapped into a single process. This poses great challenge to differentiate all the
running extensions from the browser: First, how does one differentiate system
calls between the browser and extensions? Second, how does one differentiate
system calls among various extensions?

To address this, we introduce fine-grained system call tracing. When ex-
ecuting, extension and browser JavaScript are interpreted by JavaScript En-
gine and connect XPCOM through XPConnect. An important issue is extension
JavaScript can access to the resources through browser APIs. Therefore, a pos-
sible way is to track or intercept the functions to distinguish the real callers of
system calls. Prior approaches have been proposed to track those functions [1, 2].
Functions can give cues with respect to when a function is entered and exited,
and where the function is called from. Through these runtime call tree we can
differentiate the system calls between web browser and extensions.

Specifically, we use Callgrind, which is based on Valgrind [14, 15]. Callgrind
uses runtime instrumentation via the Valgrind framework for its cache simula-
tion and call-graph generation [26]. It can collect the caller/callee relationship
between functions. It maps a subroutine to the component library which the sub-
routine belongs to. Hence, if a subroutine in the execution stack is called from
the component library during the execution of an extension and the browser, it
will be marked [31]. Therefore, it can dynamically build the call graph generated
by web browser and extensions. To increase the accuracy of system call differ-
entiating, we also add a timestamp for each call. The delay between the time
of system call trace and the timestamp is too small to be counted. The times-
tamp can help quickly locate the system call traces of extensions and remove
unnecessary system call traces.

To completely remove the interference from other extensions, we tend to run
just one extension while disabling all other irrelevant installed extensions. This
definitely reduces the possibility of parallel processing. However, two reasons can
support this practice. First, each system call tracing occupies very little time,
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open read write closelseek

Fig. 2. Possible dependencies among system calls of file management.

which we will see it in the evaluation section. Running one extension exclusively
will not reduce much of the speed in our approach. Second, this practice will
greatly improve the accuracy of the system call trace differentiating, serving
better in detecting suspicious extensions in later components.

Noise Filtering Rules. First, we neglect system calls that do not represent
the behavior characteristics we want, e.g., system calls related to memory man-
agement, page faults, and hardware interrupts [7, 30]. We will discuss why we
neglect them in details in the evaluation section. Second, system calls with very
similar functionality are considered the same. For example, fstat(int fd, struct
stat *sb) system call is very much the same as stat(const char *path, struct stat
*sb) [30]. Third, failed system calls are ignored [30, 31].

4.4 SCDG Extracting

A SCDG is determined by two parts, nodes which are system calls and edges
which are dependencies, respectively. We mainly focus on how to derive depen-
dencies between system calls and how to do object encoding on nodes.

Dependencies between System Calls. An entry in the system call trace
is composed of a system call name, arguments, return value and time, etc. Obvi-
ously, arguments of a system call are dependent on previous system calls. There
are two types of data dependence between system calls. First, there will be a
data dependence if a system call’s argument is derived from the return value(s)
of previous system calls. Second, a system call can also be dependent on the
arguments of previous system calls [18]. Fig. 2 shows an example of the possible
dependencies among system calls of file management [9]. System call read is de-
pendent on open as the input argument of read is derived from the return value
of open - the file descriptor.

In the definition of SCDG, we mention that α assigns function f to ai to a
system call. Here, f is a function to derive dependencies between system calls.
Specifically, for an argument ai, fai

is defined as fai
: x1, x2, ..., xn → y, where xi

denotes the return value or arguments of a previous system call , y represents the
dependence between ai and these return values. If ai of a system call depends on
the return value or arguments of previous system call, an edge is built between
these two system calls.

Objects Identifying and Encoding. A challenge related to node deriva-
tion function β in the definition of SCDG is to identify related objects. In this
paper, objects include related OS resources and services, browser resources, net-
work related services, and files, etc. In Linux, we divide those related objects
into an object tree as shown in Fig. 3. Under a particular parent node, each child
node represents an object. From left to right sibling node, each is represented by a
natural number as in Fig. 3. Thus, each node can be represented by the numbers
from root to its parent node and to this node. Hence, each node corresponds to
a unique code, which we call object code. This process is called objects encoding.
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Fig. 3. Object tree shows related objects and object encoding.

For each particular argument ai of a system call, we search it by traversing the
object tree using depth-first-search algorithm. If found, retrieve the object code
for ai by backtracking to the root. Take “Files” in height 3 for example. It will
be denoted as 1.4.2, where 1 represents the root, 4 represents the parent object,
and 2 represents the object itself.

We build an object tree and assign each node with an object code primarily
for three reasons. First, each argument of a system call trace usually contains
a long string of characters. Using object code, we can formalize and simplify
each node. Second, simplifying node value can improve the efficiency when do-
ing subgraph isomorphism analysis. Compared with raw node values, check-
ing each node with simple object code will reduce the time consumption. Fig.
3 lists most of the related objects under the browser profile and the exten-
sion. Due to space limit, we place some sensitive objects into others including
XUL.m, xpti.dat, urlclassifierkey3.txt, etc. Besides node derivation, another
important application is using the object tree to identify AEBs. Through the
object tree, AEBs can be identified by (sub)SCDGs with real-world meaning re-
lated to browser extensions, such as “form submitting” and “Cookies accessing”.

4.5 SCDG Clustering

We use subgraph isomorphism to compare SCDGs and group them into AEB
clusters. We first define some terminology regarding graph isomorphism [30, 31].

Definition 3. Graph/Subgraph/γ−Isomorphism. Suppose there are two SCDGs

G = 〈N,E, F, α, β〉 and H = 〈N ′
, E

′
, F

′
, α

′
, β

′〉, where dependence edge e ∈ E
is derived from (F, α). A graph isomorphism of G and H exists if and only if

there is a bijection between the vertex sets of G and H: f : N → N
′

such that
any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are
adjacent in H, which is represented as G ' H. Specifically,

• ∀n ∈ N, β(n) = β(f(n)),

• ∀e = (u, v) ∈ E,∃e′ = (f(u), f(v)) ∈ E′
, and on the contrary,

• ∀e′ = (u
′
, v

′
) ∈ E′

,∃e = (f−1(u
′
), f−1(v

′
)) ∈ E

Particularly, if

• ∃ H1 ⊂ H such that G ' H1, we say that a subgraph isomorphism exists
between G and H.
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• ∃ H1 ⊂ H such that G ' H1 and |H1| ≥ γ|H|, where γ ∈ (0, 1], we say that
H is γ−isomorphic to G.

In principle, a large amount of pairs of subgraph isomorphism testing are re-
quired. However, we can perform some pruning techniques to reduce the search
space and computational complexity. First, based on the definition of γ-isomorphism,
a SCDG pair (g, g′) can be excluded if |g′| < γ|g|, where g′ and g are SCDGs
from different extensions. Second, although subgraph isomorphism is an NP-
complete problem, it has shown that some algorithms are fast in practice, which
are based on backtracking and look-ahead algorithm [30], e.g., the VF algorithm
which is suitable for graphs with a large number of nodes. In this paper, we
use an optimized VF algorithm called V F2 subgraph isomorphism algorithm to
compare SCDGs [10]. Third, SCDGs obtained and optimized are not ordinary
graphs. They bear special characteristics which can help reduce the compu-
tational complexity. We have encoded the nodes to make it more efficient to
perform backtrack-based isomorphism.

After performing the VF2 algorithm, SCDGs will be grouped into different
clusters. Each cluster is called AEB cluster. They are defined as follows.

Definition 4. AEB Cluster. Let P be the training set extensions, Gi be a vec-
tor of SCDGs derived from pi ∈ P , where (i = 0, 1, 2, ...). If ∃gj ∈ Gi&g

′

j ⊂
gj&|g

′

j | ≥ γ|gj | such that g
′

0 ' g
′

1 ' ... ' g
′

m, where γ ∈ (0, 1], we say that an

AEB Cluster is constructed and represented by 〈g′

0, g
′

1, ..., g
′

m〉.

Each AEB cluster is actually a set of (sub)SCDGs, corresponding to one par-
ticular AEB. As a result, each extension should fall into multiple AEB
clusters.

4.6 Alert Generating

So far, we can get the AEB clusters for each extension. However, how these
AEB clusters serve security purposes, namely, detecting suspicious extensions
is not presented yet. Alert generator acts as the last component in connecting
those AEB clusters with extensions and their categories in detecting suspicious
extensions. Specifically, we compare the profile of a to-be-examined extension
with the profile of the category that this extension belongs to. The rationale is
that the extension’s profile should be a subset of its category’s profile.

We define the profile of an extension as follows.

Definition 5. Extension Profile. For an extension p, AC is the corresponding
vector of AEB clusters derived from behavior clustering. Then, the profile of p
can be represented as 〈p,AC〉.

Following the same spirit, we define the profile of a category as follows.

Definition 6. Category Profile. For a category C in the extension webstore, its
profile is the union of the extensions’ (in category C) profiles, represented as⋃n

i=0〈pi, ACi〉, where pi ∈ C.

In this paper, we use the profiles of categories instead of extensions to detect
suspicious extensions. It does not make much sense to directly compare the
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profiles of two extensions, even if they are in the same category. None of the
extensions can represent the overall functionality of this category, and thus their
profiles can vary much to some degree.

Therefore, based on the detection rationales mentioned in the introduction
(uniqueness and inclusiveness/exclusiveness), we use profiles of categories cor-
relates existing categories and AEB clusters to detect suspicious extensions as
follows. For a to-be-examined extension belonging to category C, if its profile is
not a subset of C’s profile, we consider this extension as a suspicious one, and
those outlier AEB clusters are called suspicious AEB clusters. An alert will be
raised and those suspicious AEB clusters will be presented to the users. The
users can then look into these AEB clusters and decide whether to install it.

5 Implementation

We implemented a system call tracing tool strace++ based on strace [11, 19].
Strace++ can track the system calls with a given time and filter off the un-
necessary system calls. Our input resolver is primarily based on Kudzu [28]. We
modified it to employ it on the web browser and generate inputs for strace++.
Our trace differentiator employs Callgrind under Valgrind. We also implemented
the SCDG extractor under Valgrind. The SCDG extractor constructs SCDGs
based on the following functionality. When a system call of an extension is in-
voked, it can construct a new node and dependencies between system calls. The
SCDG extractor then formalizes the node by identifying the objects and en-
coding them. Thus, SCDGs can be extracted [30, 31]. We adopted the subgraph
isomorphism and γ-isomorphism based on V F2 algorithm of NetworkX [27].

6 Evaluation

Regarding the 4 protection requirements raised in Section 1, R2 has already
been satisfied due to the design of our system. So we evaluate our system in
this section with respect to R1, R3 and R4. Basically, we have three evaluation
goals: (G1) What is the effect of the input resolving on input space issue? (G2)
Whether our approach can identify suspicious extensions effectively? (G3) Can
our approach perform efficiently and scalably?

6.1 Evaluation Environment

Our experiments were performed on a workstation with a 2.40 GHz Quad-core
Intel(R) Xeon(R) CPU and 4GB memory, under Fedora 12. γ is set to be 0.8.
We use Firefox 3.6 as the host browser, as it is one of the most stable versions
among various Firefox versions. We have examined 1,293 extensions in total for
training and testing extensions (including malicious and new extensions).

6.2 What is the Effect of Input Resolving on Input Space Issue?

Two questions need to be answered to evaluate the effectiveness of our input
resolver (IR). First, will there be a significant increase in execution paths and
input after using the IR? Second, will there be any outliers for execution paths
and input without the IR? If so, is the percentage of outliers acceptable? With the
IR, we can get the times of execution, input, and system call traces. However,
without the IR, we can only get the system call traces. Hence, it is hardly
possible for us to directly compare the times of execution and input. Thus, we
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Table 1. Comparison on Input Space with and without IR

Category # of ext. # of SCDGs w/o IR # of SCDGs w/ IR outlier

alert 15 454 670 3
bookmark 19 720 1064 5
download 18 623 1085 2
shopping 20 640 956 0

can compare the system call traces as they can directly reflect the times of
execution and input. However, it is still difficult and impractical to compare
them among thousands of them. Therefore, we evaluated our IR by comparing
SCDGs as they can also reflect execution paths and the input to a large degree.

Specifically, we have evaluated our IR from two perspectives based on SCDGs.
First, is there a considerable increase in the total number of SCDGs after em-
ploying the IR? Second, are there any outliers of SCDGs after employing the IR?
Table 1 shows the results without and with applying the IR on the browser. We
have selected four categories and 72 extensions in total as the representatives.
The third and fourth columns show the total numbers of SCDGs for extensions
in the same category with and without the IR. On average, there is a significant
54.8% increase in the total number of SCDGs after using the IR. On the other
hand, if a SCDG before using the IR is not included in the set of SCDGs after
using the IR, we call it an outlier. The last column shows the total number of
outliers for each category. On average, 0.4% of previous SCDGs are outliers,
which we think is a very small amount of percentage. Outliers are most likely
caused by the different parameters of graphs. This basically does not impact
much on the follow-up clustering as we use γ-isomorphism. Not only can our IR
increase the total number of SCDGs substantially, but it can also control the
outliers in a very small range.

6.3 Can Our System Identify Suspicious Extensions Effectively?

To evaluate the effectiveness of our system in detecting suspicious extensions,
we first present the training extensions dataset and the clustering results. We
then use the testing extensions to evaluate our system.

What does the Training Dataset Look Like? In total, we extract
SCDGs for 1,107 training set extensions. Table 2 shows the training set statistics
for each category we examined. There are more than ten categories for Firefox
extensions; however, we choose 8 categories from them based on the following
criteria: downloads and representative categories for malicious extensions.

The unfiltered system call traces (SCTs) we obtained vary from 70,000 to
200,000. Based on our filtering rules, the average percentage of filtered SCTs
is 32.4%. Here, we find that up to 98.4% of the filtered system calls related to
memory management belong to the browser other than extensions. So it is im-
practical and makes little sense to include the memory management system calls
in our dynamic tracing. The training dataset clearly shows that our trace differ-
entiator can greatly decrease the SCTs for an extension, which is only 17.2% of
the filtered SCTs. In the training set, each SCDG usually has hundreds of nodes
and edges. Fig. 4 is a subgraph of the SCDGs from one famous Firefox extension
FoxTab. It clearly shows the attributes of each node and dependencies between
nodes. Take the first node N1(stat; 1.4.2.4.4) as example. The system call stat



14 Bin Zhao and Peng Liu

Table 2. Training Set Extensions Statistics

Category alert bookmark download feed privacy social shop search

# of extensions 135 154 103 150 130 150 145 140
# of avg. raw SCT 132,146 130,545 172,208 112,062 102,865 143,066 154,971 146,053
# of avg. SCT filt. 89,205 90,416 112,782 71,628 72,386 93,052 110,495 98,821
# of avg. ext. SCT 15,220 17,832 21,435 14,451 11,890 13,547 16,155 16,072
# of avg. SCDG 44 58 56 61 45 42 51 52
# of AEB clusters 46 53 44 55 48 43 47 56
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Fig. 4. One sub-SCDG extracted from the extension FoxTab, showing the dependence
graph of the system calls. Each node consists of two parameters, system call name and
the code for this system call. It is also one member subgraph of the “DOM Storage
Accessing” AEB cluster.

with the code 1.4.2.4.4 means Chrome accessing. Usually, for each particular
extension, there are 30 to 80 SCDGs if excluding repetitions.

What do the Clustering Results and Category Profiles Look Like?
We then compare SCDGs using subgraph/γ-isomorphism. We finally aggregated
SCDGs into AEB clusters. Fig. 4 also shows a member subgraph of the “DOM
Storage Accessing” AEB cluster for Foxtab. This AEB cluster includes hundreds
of SCDGs, one from each extension, as many extensions need this AEB to access
the DOM storage. If one SCDG or sub-SCDG is the only one in this category
after clustering, we will manually check whether it is a malicious one to guarantee
the ground truth of the training set.

Based on the definition of category profile, each category can be mapped to a
vector of AEB clusters. Table 2 shows that each category usually has a number
of AEB clusters from 30 to 60. For example, for “Download” category profile, the
AEB clusters are as follows: “chrome context accessing”, “language pack retriev-
ing”, “file system checking”, “webappstore.sqlite accessing”, “webappstore.sqlite
modifying”, “nsIXMLHttpRequest”, “nsIHttpChannel”, “socket opening”, “nsI-
Downloader accessing”, “DOM Storage accessing”, “nsIInputStream”, “down-
load.sqlite opening”, and “download.sqlite modifying”, etc.

What does the Testing Dataset Look Like? There are 186 extensions
in our testing set, including 8 existing malicious extensions and 1 malicious
extension written by us. Table 3 shows the statistics. There is a slight difference
in the number of AEB clusters between training set and testing set. So are there
any suspicious AEB clusters that deviate from the category profiles?

What are the Resulting Suspicious AEB Clusters? To answer this
question, we use our detection rules to examine the AEB clusters of those ex-
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Table 3. Testing Set Extensions Statistics and Results

Categories alert bookmark download feed privacy social shop search

# of ext. 20 25 24 25 25 22 25 20
# of average ext. SCT 16,925 17,946 22,531 16,013 10,462 9,952 13,674 11,895
# of average SCDG 42 53 54 65 44 47 58 50
# of AEB clusters 50 55 48 54 52 45 46 51

 

46  

53  

44  

55  

48  
43  

47  

56  

46  50  
44  

54  
48  

42  44  
49  

4  
5  

4  

0  
4  

3  2  
2  

0  

10  

20  

30  

40  

50  

60  

Alert Bookmark Download Feed Privacy Social Shopping Search 

Training Set Testing Set-Overlap Outliers 

Fig. 5. The number of AEB clusters for training set and testing set including outliers.

tensions. Fig. 5 clearly shows a comparison between the training set and testing
set in the number of AEB clusters corresponding to each category. Most AEB
clusters of the testing set belong to the category profiles. However, 7 of 8 cate-
gories have outliers, namely suspicious AEB clusters. On average, there are 6.0%
of suspicious AEB clusters in the testing set.

Table 5 presents the detailed information for 5 extensions, including 4 exist-
ing malicious extensions and 1 malicious extension written by us. Note that the
extensions in Table 5 do not represent all the detection results. They are just 5
of 10 extensions which are detected as suspicious. Facebooker is said to provide
status updates to users; however, in the back end, it can download files stealthily.
Let us analyze the results shown in Table 5. The column of “suspicious AEB clus-
ters” shows the suspicious AEB clusters presented to the users. The suspicious
AEB clusters of FormSpy and FFsniFF are “form action”, “form submission”,
“formhistory.sqlite accessing”, and “nsIHttpChannel”. Particularly, for Form-
Spy, “ID masquerading” is detected as suspicious by the system. As mentioned
before, FormSpy would forward sensitive information the user submitted to a
third party web site. Similarly, FFsniFF can find form and send it to a specified
email. The suspicious AEB clusters for FireStarterFox are “data submission” and
“unknown URL injection”. FreeCF is posted as a shopping coupon, but actually
it can cause Facebook scams. Its suspicious AEB clusters are “script loading”
and “unknown server accessing”. For the extension written by us, Facebooker is
successfully detected as a suspicious one with suspicious AEB clusters “unknown
downloads”, “downloads.sqlite opening” and “nsIDownloader Accessing”.

False Negative and False Positive Analysis. In the testing set, 10 exten-
sions are detected as suspicious ones, while the other 176 extensions are regarded
as benign with no suspicious AEB clusters. Among the 10 suspicious extensions,
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Table 4. Results of 5 Example Extensions Drawn from Testing Set.

Testing set version SCDG category suspicious AEB clusters

FormSpy N/A 24 bookmarks ID masquerading, form submission, nsI-
HttpChannel, form action, formhistory.sqlite
accessing

FFsniFF 0.3 14 privacy form action, form submission, nsIHttpChan-
nel, formhistory.sqlite accessing

FireStaterFox 1.0.2 17 search data submission, unknown URL injection
FreeCF 0.1 12 shop script loading, unknown server accessing
Facebooker 1.0 19 social downloads, nsIDownloader accessing, down-

loads.sqlite opening

8 are the malicious extensions we provided, 1 is the malicious extension we wrote.
To thoroughly evaluate the false negatives, we manually examined the remaining
176 extensions. Basically, as most of them are small programs, we examine the
source code and compare them with the functionalities they claim. So far, we
find them benign with no malicious actions. This means all the 9 malicious ex-
tensions are detected without any false negatives, meaning the false negative
rate is 0% using the test set, demonstrating the effectiveness of our system on
detecting suspicious extensions. This is reasonable, as a large pool of training
extensions enable more accurate clustering results.

However, in the results, 1 of the suspicious-regarded extensions is actually
a false positive after we manually check the source code. We examine it on
the webstores, and find that it bear a distinct feature. It belongs to more than
one category with a larger range of functionalities (this is possible, but not
many). Specifically, the extension named MailAlert belongs to both Alert and
Feed categories. It provides mail account alert and news feed. Consequently,
this extension’s profile may not be the subset of the Alert category profile. In
this case, a false positive may occur as our detection rules are restrictive when
MailAlert is regarded as only belonging to the Alert category during detecting.
Though the false positive rate seems a little higher (10%) in our testing, it is not
the real case for the webstores, as only less than 1% of extensions belong to more
than one categories. In fact, we provide two alternatives to address this issue.
Before examining an extension, we first check whether it belongs to more than
one categories or not. If so, we examine it combining all the category profiles it
belongs to. Basically, this is the primary and regular approach as done with other
extensions, which can eliminate most of the false positives. In addition, manually
checking its code can reduce the false positive sharply while this practice is not
recommended as the first alternative can satisfy the basic requirements.

6.4 Efficiency and Scalability

We tend to provide a cost-effective online service for both helping the certification
of webstores and the safety check of any extensions submitted by public users.
Hence, we discuss the efficiency of our approach, specifically, the time consumed
when employing each component. Fig. 6 shows the average time consumed by
eight categories during dynamic tracing, SCDG extracting, and SCDG cluster-
ing. Each category corresponds to one in Table 2 from left to right. Dynamic
tracing takes up to 48.4% of the total average time, which is 56.5 seconds on
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Fig. 6. Avg. time consumed by the eight categories during the first three components.

average for all the categories. SCDG extracting and SCDG clustering cost 32.9
seconds and 27.3 seconds on average, respectively. The total consumed time for
the three evaluated components is 116.7 seconds on average, which is a reason-
able time performance. For the profile building and detecting, it is usually very
natural and easy once we have completed the previous work. As a result, the
time consumed by them can be neglected. Hence, our approach can be efficiently
used to detect suspicious extensions for the use of both end-users and webstores.

Scalability is another important factor to evaluate the detection approach.
Unlike other dynamic analysis approaches, our approach can scale from 20 exten-
sions to over 1,000 extensions, due to several reasons: (a) the symbolic executions
of multiple extensions are independent of each other, so they can be done in a
parallel manner; (b) the system call tracking of multiple extensions are to a
large extent independent of each other; (c) although the VF2 algorithm has an
exponential complexity, which does not directly indicate superb scalability, our
experiments show SCDG clustering consumes the least amount of absolute time.

7 Discussion and Limitations

There are several limitations and counterattacks while employing behavior clus-
tering into detecting suspicious extensions. First, although we have a fine-grained
technique to differentiate system call traces between the browser and running
extensions, it is still possible that we mix system call traces between them. Let
us take a clear look at the two possible mistakes. The first possibility is that sys-
tem call traces of the running extension may be treated as the browser’s. This
may eliminate some SCDGs for this single extension. We use a large number
of extensions in the same category to build the category profile instead of each
extension; hence, the first possibility can rarely affect the detection results. The
other possibility is that system call traces of the browser may be treated as the
running extension. However, when extracting SCDGs from the set of system call
traces for this extension, most of the mistaken ones will be excluded. Therefore,
this possibility also affects little on SCDG extraction.

Second, as a common limitation for system call tracing, it is not applicable
if the running program invokes no system calls. This is possible for some simple
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extensions such as some arithmetic operations [30]. However, this rarely happens
on malicious extensions, as most malicious actions would invoke system calls.

Third, one may consider developing a malicious extension that implements its
behaviors in a different way to evade the system. However, such kind of mimicry
attack is very difficult to implement. In our SCDGs, each node separates itself
from other nodes through two things: system call name and object code. To make
a successful mimicry attack, the attacker needs to mimic not only the system
call name, which is sometimes quite easy [32], but also the object code. Most
malicious extensions have to access objects that are different from those accessed
by others in the same category. Hence, some object codes must be different and
so are some nodes in some SCDGs. On the other hand, the attacker can always
let extensions do more, i.e., accessing more objects than needed. In this way, a
malicious extension can access the objects accessed by the others in the same
category. However, this kind of “object mimicry attack” usually cannot satisfy
the attackers requirements. In addition, to successfully mimic an attack, the
attacker also needs to consider the dependencies besides nodes. Even if several
system calls are reordered, it cannot change the results of SCDGs and subgraph
isomorphism as we use γ-isomorphism to cluster extensions.

Finally, our system has a limitation when malicious extensions inject JavaScript
into pages rather than carrying out malicious actions directly. Currently we do
not track those injected JavaScript pages, so we do not know whether they have
done some malicious actions or not. However, in future work, our system can be
modified to first identify possible injections and then track both the injections
and extensions. As many of the injections relate to “alerting” a new window, an
injection of “url” or “image”, accessing the cookies, etc, the system should pay
particular attention to them to detect possible malicious actions.

8 Related Work
Static Analysis. Static analysis is used to identify malicious extensions via
analyzing JavaScript code statically including objects and functions without
executing the programs [2, 29]. Bandhakavi et al. [2] proposes VEX to exploit
the extension vulnerabilities using static analysis. They describe several flow
patterns as well as unsafe programming practices, particularly regarding some
crucial APIs, which may lead to privilege escalation in JavaScript extensions.
VEX analyzes extensions for these flow patterns using context-sensitive and
flow-sensitive static analysis. This approach can address some crucial security
issues. However, it is very difficult to employ this on dynamic scripting languages
like JavaScript in extensions. A well-known example is the eval() statement in
JavaScript that allows a string to be evaluated as executable code. Without
knowing the runtime values of the arguments to the eval() expressions, it is very
difficult to determine runtime actions of the scripts [21, 25]. On the other hand,
static analysis may not work if obfuscation techniques are used by attackers.

Dynamic Analysis. Consequently, recent efforts have been employed using
runtime monitoring and tracking as these techniques can avoid the static analysis
pitfalls [8, 13, 21]. Several methods have been proposed using runtime monitoring,
including tainting XPCOM calls, and monitoring sensitive APIs and resources.

Dhawan et al. [8] implement a system called Sabre to monitor the JavaScript
execution. They enumerate all the sensitive resources and low-sensitivity sinks.
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Sabre associates one label with each JavaScript object in the browser and exten-
sion. Objects that contain sensitive data will be labeled differently with those
containing low-sensitive data. The system will propagate labels as objects are ex-
ecuted and modified by extensions. An alert will be raised if an object containing
sensitive data is accessed in an untrusted way or by a suspectable object.

Ter Louw et al. [21] implement a new tool called BROWERSPY to monitor
XPCOM calls so that every time an extension accessing XPCOM is monitored
and controlled by policies defined in the execution monitor. However, the over-
head caused by the runtime monitoring sometimes can become a headache to
the browser. In addition, XPCOM level monitoring is too restrictive and can
disable some useful and normal XPCOM calls [8].

9 Conclusion
We propose a new approach of aspect-level behavior clustering in detecting sus-
picious extensions. We use SCDGs and AEBs derived from system level tracking
to represent behavior characteristics of extensions. We then create profiles for
both extensions and categories in the use of identifying suspicious extensions
and raising alerts. We evaluate our system atop a real-world web browser with a
large set of extensions including malicious ones. The experimental results show
the effectiveness and efficiency of our system in detecting suspicious extensions.
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