
P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of
Attacker Intent, Objectives, and Strategies

PENG LIU and WANYU ZANG
Pennsylvania State University
and
MENG YU
Monmouth University

Although the ability to model and infer attacker intent, objectives, and strategies (AIOS) may
dramatically advance the literature of risk assessment, harm prediction, and predictive or proactive
cyber defense, existing AIOS inference techniques are ad hoc and system or application specific.
In this paper, we present a general incentive-based method to model AIOS and a game-theoretic
approach to inferring AIOS. On one hand, we found that the concept of incentives can unify a large
variety of attacker intents; the concept of utilities can integrate incentives and costs in such a
way that attacker objectives can be practically modeled. On the other hand, we developed a game-
theoretic AIOS formalization which can capture the inherent interdependency between AIOS and
defender objectives and strategies in such a way that AIOS can be automatically inferred. Finally,
we use a specific case study to show how attack strategies can be inferred in real-world attack–
defense scenarios.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: Security and
Protection

General Terms: Security, Theory

Additional Key Words and Phrases: Attacker intent and strategy modeling, attack strategy infer-
ence, game theory

1. INTRODUCTION

The ability to model and infer attacker intent, objectives, and strategies (AIOS)
may dramatically advance the state of the art of computer security for several
reasons. First, for many “very difficult to prevent” attacks such as DDoS, given
the specification of a system protected by a set of specific security mechanisms,

This work was supported by DARPA and AFRL, AFMC, USAF, under award number F20602-02-
1-0216, and by Department of Energy Early Career PI Award.
Authors’ addresses: P. Liu and W. Zang, School of Information Science, Pennsylvania State
University, University Park, PA 16802; email: pliu@ist.psu.edu; M. Yu, Department of Computer
Science, Monmouth University, West Long Branch, NJ 07764.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1094-9224/05/0200-0001 $5.00

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005, Pages 1–41.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

2 • P. Liu et al.

this ability could tell us which kind of strategies are more likely to be taken by
the attacker than the others, even before such an attack happens. Such AIOS
inferences may lead to more precise risk assessment and harm prediction.

Second, AIOS modeling and inference could be more beneficial during run
time. A big security challenge in countering a multiphase, well-planned, care-
fully hidden attack from either malicious insiders or outside attackers is “how
to make correct proactive (especially predictive) real-time defense decisions
during an earlier stage of the attack in such a way that much less harm will
be caused without consuming a lot of resources?” Although many proactive de-
fense techniques are developed such as sandboxing [Malkhi and Reiter 2000]
and isolation [Liu et al. 2000], making the right proactive defense decisions
in real time is very difficult primarily due to the fact that intrusion detection
during the early stage of an attack can lead to many false alarms, which could
make these proactive defense actions very expensive in terms of both resources
and denial of service.

Although alert correlation techniques [Cuppens and Miege 2002; Ning et al.
2002] may reduce the number of false alarms by correlating a set of alerts
into an attack scenario (i.e., steps involved in an attack) and may even tell
which kind of attack actions may follow a given action [Debar and Wespi 2001],
they are limited in supporting proactive intrusion response in two aspects. (1)
When many types of (subsequences of) legitimate actions may follow a given
suspicious action, alert correlation can do nothing except for waiting until a
more complete attack scenario emerges. However, intrusion response at this
moment could be “too late.” (2) When many types of attack actions may follow
a given (preparation) action, alert correlation cannot tell which actions are
more likely to be taken by the attacker next. As a result, since taking proactive
defense actions for each of the attack actions can be too expensive, the response
may have to wait until it is clear what attack actions will happen next—perhaps
during a later stage of the attack. However, late intrusion response usually
means more harm. By contrast, with the ability to model and infer AIOS, given
any suspicious action, we can predict the harm that could be caused; then we
can make better and affordable proactive intrusion response decisions based
on the corresponding risk, the corresponding cost (e.g., due to the possibility of
false alarms), and the attack action inferences. Moreover, the intrusion response
time is substantially shortened.

However, with a focus on attack characteristics [Landwehr et al. 1994] and
attack effects [Browne et al. 2001; Zou et al. 2002], existing AIOS inference tech-
niques are ad hoc and system or application specific [Gordon and Loeb 2001;
Syverson 1997]. To systematically model and infer AIOS, we need to distin-
guish AIOS from both attack actions and attack effects. Since the same attack
action can be issued by two attackers with very different intents and objectives,
AIOS cannot be directly inferred from the characteristics of attacks. Although
the attacker achieves his or her intents and objectives through attacks and
their effects, the mapping from attack actions and/or effects to attacker intents
and/or objectives is usually not one-to-one but one-to-many, and more inter-
estingly, the (average) cardinality of this mapping can be much larger than
the mapping from attacker intents and/or objectives to attack actions and/or

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 3

effects. This asymmetry nature indicates that in many cases using AIOS mod-
els to predict attack actions can be more precise than using the set of actions
already taken by the attacker based on either their effects or the causal rela-
tionship between them and some other attack actions.1 As a result, although
a variety of attack taxonomies and attribute databases have been developed,
people’s ability to model and infer AIOS, to predict attacks, and to do proactive
intrusion response is still very limited. Nevertheless, a good understanding of
attacks is the foundation of practical AIOS modeling and inference.

In this paper, we present a systematic incentive-based method to model AIOS
and a game-theoretic approach to inferring AIOS. On one hand, we found that
the concept of incentives can unify a large variety of attacker intents; the con-
cept of utilities can integrate incentives and costs in such a way that attacker
objectives can be practically modeled. On the other hand, we developed a game-
theoretic AIOS formalization which can capture the inherent interdependency
between AIOS and defender objectives and strategies in such a way that AIOS
can be automatically inferred. Finally, we use a specific case study to show how
attack strategies can be inferred in real-world attack–defense scenarios. The
proposed framework, in some sense, is an economics-based framework since it
is based on economic incentives, utilities, and payoffs.

The rest of the paper is organized as follows. In Section 2, we discuss the
related work. Section 3 presents a conceptual, incentive-based framework for
AIOS modeling. In Section 4, we present a game-theoretic formalization of this
framework. Section 5 addresses show to infer AIOS. In Section 6, we use a
specific case study to show how attack strategies can be inferred in real-world
attack–defense scenarios. In Section 7, we mention several future research
issues.

2. RELATED WORK

The use of game theory in modeling attackers and defenders has been addressed
in several other research. In Syverson [1997], Syverson talks about “good” nodes
fighting “evil” nodes in a network and suggests using stochastic games for rea-
soning and analysis. In Lye and Wing [2002], Lye and Wing precisely formalize
this idea using a general-sum stochastic game model and give a concrete ex-
ample in detail where the attacker is attacking a simple enterprise network
that provides some Internet services such as web and FTP. A set of specific
states regarding this example are identified, state-transition probabilities are
assumed, and the Nash equilibrium or best-response strategies for the players
are computed.

In Browne [2000], Browne describes how static games can be used to an-
alyze attacks involving complicated and heterogeneous military networks. In
his example, a defense team has to defend a network of three hosts against
an attacking team’s worms. The defense team can choose either to run a worm

1To illustrate, consider a large space of strategies the attacker may take according to his or her
intent and objectives where each strategy is simply a sequence of actions. An attack action may
belong to many strategies, and the consequences of the action could satisfy the preconditions of
many other actions, but each strategy usually contains only a small number of actions.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

4 • P. Liu et al.

detector or not. Depending on the combined attack and defense actions, each
outcome has different costs. In Burke [1999], Burke studies the use of repeated
games with incomplete information to model attackers and defenders in in-
formation warfare. In Hespanha and Bohacek [2001], Hespanha and Bohacek
discuss zero-sum routing games where an adversary (or attacker) tries to in-
tersect data packets in a computer network. The designer of the network has to
find routing policies that avoid links that are under the attacker’s surveillance.
In Xu and Lee [2003], Xu and Lee use game-theoretical framework to analyze
the performance of their proposed DDoS defense system and to guide its design
and performance tuning accordingly.

Our work is different from the above game theoretic attacker modeling works
in several aspects. First, these works focus on specific attack–defense scenarios,
while our work focuses on general AIOS modeling. Second, these works focus
on specific types of game models, for example, static games, repeated games,
or stochastic games; while our work focuses on the fundamental characteris-
tics of AIOS, and game models are only one possible formalization of our AIOS
framework. In addition, our AIOS framework shows the inherent relationship
between AIOS and the different types of game models, and identifies the condi-
tions under which a specific type of game models will be feasible and desirable.
Third, our work systematically identifies the properties of a good AIOS for-
malization. These properties not only can be used to evaluate the merits and
limitations of game-theoretic AIOS models, but also can motivate new AIOS
models that can improve the above game theory models or even go beyond
standard game-theoretic models.

In Gordon and Loeb [2001], information security is used as a response to
game theoretic competitor analysis systems (CAS) for the purpose of protecting a
firm’s valuable business data from its competitors. Although understanding and
predicting the behavior of competitors are key aspects of competitor analysis,
the behaviors CAS want to predict are not cyber attacks. Moreover, security
is what our game theoretic system wants to model while security is used in
Gordon and Loeb [2001] to protect a game-theoretic system.

The computational complexity of game-theoretic analysis is investigated in
several research. For example, Conitzer and Sandholm [2002] show that both
determining whether a pure strategy Bayes–Nash equilibrium exists and de-
termining whether a pure strategy Nash equilibrium exists in a stochastic
(Markov) game are NP-hard. Moreover, Koller and Milch [2001] show that some
specific knowledge representations, in certain settings, can dramatically speed
up equilibrium finding.

The marriage of economics and information security has attracted a lot of in-
terests recently (a lot of related work can be found at the economics and security
resource page maintained by Ross Anderson at http://www.cl.cam.ac.uk/∼rja14
/econsec.html). However, these work focuses on the economics perspective of
security (e.g., security market, security insurance), while our approach is to
apply economics concepts to model and infer AIOS.

In recent years, it is found that economic mechanism design theory [Clarke
1971; Groves 1973; Vickrey 1961] can be very valuable in solving a variety of
Internet computing problems such as routing, packet scheduling, and web

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 5

Fig. 1. Network topology.

caching [Feigenbaum et al. 2002; Nisan and Ronan 2001; Wellman and Walsh
2001]. Although when market-based mechanisms are used to defend against at-
tackers [Wang and Reiter 2003], the AIOS are incentive based, which is consis-
tent with our framework, market-based computing does not imply an in-depth
AIOS model.

Finally, it should be noticed that AIOS modeling and inference are very differ-
ent from intrusion detection [Lunt 1993; McHugh 2001; Mukherjee et al. 1994].
Intrusion detection is based on the characteristics of attacks, while AIOS mod-
eling is based on the characteristics of attackers. Intrusion detection focuses on
the attacks that have already happened, while AIOS inference focuses on the
attacks that may happen in the future.

3. AN INCENTIVE-BASED FRAMEWORK FOR AIOS MODELING

In this section, we present an incentive-based conceptual model of attacker
intent, objectives, and strategies. Our model is quite abstract. To make our
presentation more tangible, we will first present the following example, which
will be used throughout the paper to illustrate our concepts.

Example 1. In recent years, Internet distributed denial-of-service (DDoS)
attacks have increased in frequency, severity, and sophistication and become
a major security threat. When a DDoS attack is launched, a large number of
hosts (called zombies) “controlled” by the attacker flood a high volume of pack-
ets toward the target (called the victim) to downgrade its service performance
significantly or make it unable to deliver any service.

In this example, we would model the intent and objectives and infer the
strategies of the attackers that enforce brute-force DDoS attacks. (Although
some DDoS attacks with clear signatures, such as SYN flooding, can be effec-
tively countered, most DDoS attacks without clear signatures, such as brute-
force DDoS attacks, are very difficult to defend against since it is not clear which
packets are DDoS packets and which are not.) An example scenario is shown
in Figure 1 where many zombies (i.e., a subset of source hosts {S0, . . . , S64}) are
flooding a couple of web sites (i.e., the victims) using normal HTTP requests.
Here, Rx. y denotes a router; the bandwidth of each type of links is marked; and
the web sites may stay on different subnets.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

6 • P. Liu et al.

Although our modeling and inference framework can handle almost every
DDoS defense mechanism, to make this example more tangible, we select
pushback [Ioannidis and Bellovin 2002], a popular technique, as the security
mechanism. Pushback uses aggregates, that is, a collection of packets from one
or more flows that have some properties in common, to identify and rate limit
the packets that are most likely to cause congestion or DoS. Pushback is a
coordinated defense mechanism that typically involves multiple routers. To il-
lustrate, consider Figure 1 again, when router R1.0 detects a congestion caused
by a set of aggregates, R1.0 will not only rate-limit these aggregates, but also
request adjacent upstream routers (e.g., R2.1) to rate-limit the corresponding
aggregates via some pushback messages.

The effectiveness of pushback can be largely captured by four bandwidth
parameters associated with the incoming link to the victims (i.e., the link that
connects R1.0 and R0.0): (a) BN , the total bandwidth of this link; (b) Bao, the
(amount of) bandwidth occupied by the DoS packets; (c) Blo, the bandwidth
occupied by the legitimate packets; (d) Blw, the bandwidth that the legitimate
users would occupy if there are no attacks. For example, pushback is effective
if after being enforced Bao can become smaller and Blo can become larger.

We build our AIOS models on top of the relationships between the attacker
and a computer system (i.e., the defender). In our model, the computer sys-
tem can be any kind (e.g., a network system, a distributed system, a database
system). We call it the system for short. For example, in Example 1 the sys-
tem consists of every router on a path from a zombie to a victim. The attacker
issues attacks to the system. Each attack is a sequence of attack actions associ-
ated with the system. For example, an action can be the sending of a message,
the submission of a transaction, the execution of a piece of code, and so on. An
attack will cause some effects on the system, that is, transforming the system
from one state to another state. For example, in Example 1 the main attack
effects are that many legitimate packets could not reach the victims.

Part of the system is a set of specific security mechanisms. A mechanism
can be a piece of software or hardware (e.g., a firewall, an access controller, an
IDS). A mechanism usually involves a sequence of defense actions associated
with the system when being activated. For example, in Example 1 a router
sending out a pushback message is a defense action, and this action can trigger
the receiving router(s) to take further defense actions. A security mechanism
is activated when an event arrives which causes a set of specific conditions
to be satisfied. Many of these conditions are associated with the effects of an
attack action in reactive defense, or the prediction of an incoming attack action
in proactive defense. For example, in Example 1 a packet arriving at a router is
an event. When there is no congestion at the router, this event will not activate
any security mechanism. However, when this event leads to “the detection of a
congestion” (i.e., the condition), pushback will be activated. And it is clear that
whether this condition can be satisfied is dependent upon the accumulated
effects of the previous DoS packets arriving at the router. Finally, a defense
posture of the system is defined by the set of security mechanisms and the ways
they are activated. For example, in Example 1, pushback may be configured

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 7

to stay at various defense postures based on such parameters as congestion
thresholds and target drop rate, which we will explain in Section 3.3 shortly.

The attacker-system relation has several unique characteristics (or proper-
ties) that are important in illustrating the principles of our attack strategy
inference framework. These properties are as follows.

—Intentional Attack Property. Attacks are typically not random. They are
planned by the attacker based on some intent and objectives.

—Strategy-Interdependency Property. Whether an attack can succeed is depen-
dent on how the system is protected. Whether a security mechanism is effec-
tive is dependent on how the system is attacked. In other words, the capacity
of either an attack or a defense posture should be measured in a relative way.
We will define the notion of strategy shortly. And we will use concrete attack
and defense strategies derived from Example 1 to illustrate this property
shortly in Section 3.3.

—Uncertainty Property. The attacker usually has incomplete information or
knowledge about the system, and vice versa. For example, in Example 1 the
attacker usually has uncertainty about how Pushback is configured when he
or she enforces a DDoS attack.

3.1 Incentive-Based Attacker Intent Modeling

Different attackers usually have different intents even when they issue the
same attack. For example, some attackers attack the system to show off their
hacking capacity, some hackers attack the system to remind the administrator
of a security flaw, cyber terrorists attack our cyberspace for creating damage,
business competitors may attack each other’s information systems to increase
their market shares, just to name a few. It is clear that investigating the char-
acteristics of each kind of intents involves a lot of effort and complexity, and
such complexity actually prevents us from building a general, robust connec-
tion between attacker intents and attack actions. This connection is necessary
to do almost every kind of attacker behavior inference.

We focus on building general yet simple intent models. In particular, we
believe that the concept of economic “incentives” can be used to model attacker
intent in a general way. In our model, the attacker’s intent is simply to maximize
his or her incentives. In other words, the attacker is motivated by the possibility
of gaining some incentives. Most, if not all, kinds of intents can be modeled as
incentives such as the amount of profit earned, the amount of terror caused,
and the amount of satisfaction because of a nice show-off. For an example, in
Example 1 the incentives for the attacker can be the amount of DoS suffered by
the legitimate users. For another example, the incentives for an attacker that
enforces a worm attack can be the amount of network resources consumed by
the worm’s scanning packets plus the amount of DoS caused on certain type of
services. We may use economics theory to classify incentives into such categories
as money, emotional reward, and fame.

To infer attacker intents, we need to be able to compare one incentive with
another. Incentives can be compared with each other either qualitatively or

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

8 • P. Liu et al.

quantitatively. Incentives can be quantified in several ways. For example, prof-
its can be quantified by such monetary units as dollars. For another exam-
ple, in Example 1, the attacker’s incentives can be quantified by two metrics:
(a) Bao/BN , which indicates the absolute impact of the DDoS attack; and (b)
Blo/Blw, which indicates the relative availability impact of the attack. Accord-
ingly, the attacker’s intent is to maximize Bao/BN but minimize Blo/Blw. One
critical issue in measuring and comparing incentives is that under different
value systems, different comparison results may be obtained. For example, dif-
ferent types of people value such incentives as time, fame, and differently. As
a result, very misleading attacker strategy inferences could be produced if we
use our value system to evaluate the attacker’s incentives.

After an attack is enforced, the incentives (e.g., money, fame) earned by the
attacker are dependent on the effects of the attack, which are typically captured
by the degradation of a specific set of security measurements that the system
cares about. Each such measurement is associated with a specific security met-
ric. Some widely used categories of security metrics include but not limited to
confidentiality, integrity, availability (against denial-of-service), nonrepudia-
tion, and authentication. For example, in Example 1 the major security metrics
of the system are (a) Blo, which indicates the absolute availability provided by
the system; and (b) Blo/Blw, which indicates the relative availability provided by
the system. In our model, we call the set of security metrics that a system wants
to protect the metric vector of the system. (Note that different systems may
have different metric vectors.) For example, the metric vector for the system in
Example 1 can be simply defined as 〈Blo, Blo/Blw〉. At time t, the measurements
associated with the system’s metric vector are called the security vector of the
system at time t, denoted by V s

t . As a result, assume an attack starts at time t1
and ends at t2, then the incentives earned by the attacker (via the attack) may
be measured by degradation(V s

t1
, V s

t2
), which basically computes the distance be-

tween the two security vectors. For example, in Example 1 assume the security
vector is V s

t1
= 〈1000 Mbps, 100%〉 before the attack and V s

t2
= 〈50 Mbps, 5%〉

after the attack, then degradation (V s
t1

, V s
t2

) = 〈−950 Mbps, −95%〉.
The above discussion indicates the following property of AIOS inference:

—Attack Effect Property. Effects of attacks usually yield more insights about at-
tacker intent and objectives than attack actions. For example, in Example 1,
a DoS packet indicates almost nothing about the attacker’s intent which can
only be seen after some DoS effects are caused.

3.2 Incentive-Based Attacker Objective Modeling

In real world, many attackers face a set of constraints when issuing an attack,
for example, an attacker may have limited resources; a malicious insider may
worry about the risk of being arrested and put into jail. However, our intent
model assumes no constraints. To model attacker motivations in a more realistic
way, we incorporate constraints in our attack objective model. In particular, we
classify constraints into two categories: cost constraints and noncost constraints.
(a) Cost constraints are constraints on things that the attacker can “buy” or
“trade” such as hardware, software, Internet connection, and time. Such things

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 9

are typically used to measure the cost of an attack. In addition, risk is typically
a cost constraint. (b) Noncost constraints are constraints on things that the
attacker cannot buy such as religion-based constraints and top secret attacking
tools that the attacker may never be able to “buy.”

The cost of an attack is not only dependent on the resources needed to en-
force the attack, but also dependent on the risk for the attacker to be traced
back, arrested, and punished. Based on the relationship between incentives
and costs, we classify attackers into two categories: (a) rational attackers have
concerns about the costs (and risk) associated with their attacks. That is, when
the same incentive can be obtained by two attacks with different costs, ratio-
nal attackers will pick the one with a lower cost. (b) Irrational attackers have
no concerns about the costs associated with their attacks. They only want to
maximize the incentives.

Given a set of (cost) constraints, inferring the attack actions of an irrational
attacker is not so difficult a task since we need only to find out “what are the
most rewarding attack actions in the eyes of the attacker without violating
the constraints?” By contrast, we found that inferring the attack actions of a
rational attacker is more challenging. In this paper, we will focus on how to
model and infer the IOS of rational attackers.

In our model, an attacker’s objective is to maximize his or her utilities through
an attack without violating the set of cost and noncost constraints associated
with the attacker. The utilities earned by an attacker indicate a distance be-
tween the incentives earned by the attacker and the cost of the attack. The dis-
tance can be defined in several ways, for example, utilities = incentives − cost,
utilities = incentives

cost . Note that the cost of an attack can be measured by a set of
cost values which captures both attacking resources and risk.

To illustrate, let us revisit Example 1. The attacker’s total incentives may
be measured by αBao/BN + (1 − α) (1 − Blo/Blw), where α determines how the
attacker weighs the two aspects of the impact of the DDoS attack. The attack’s
costs in this example are not much, though the attacker needs a computer and
Internet access to “prepare” the zombies and the needed controls. The cost will
become larger when the risk of being traced back is included. Let us assume the
cost is a constant number η. Then the attacker’s utilities can be measured by
αBao/BN +(1−α) (1− Blo/Blw)−η, and the attacker’s objective can be quantified
as Max αBao/BN + (1 − α) (1 − Blo/Blw).

3.3 Incentive-Based Attacker Strategy Modeling

Strategies are taken to achieve objectives. The strategy-interdependency prop-
erty indicates that part of a good attacker strategy model should be the defense
strategy model because otherwise we will build our AIOS models on top of the
assumption that the system never changes its defense posture, which is too
restrictive. See that whenever the system’s defense posture is changed, the
defense strategy is changed.

In our model, attack strategies are defined based on the “battles” between the
attacker and the system. Each attack triggers a battle which usually involves
multiple phases. (For example, many worm-based attacks involve such phases

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

10 • P. Liu et al.

Fig. 2. Phases in Mstream DDoS attacks.

as reconnaissance, probe and attack, toehold, advancement, stealth (spread-
ing quietly), and takeover.) In each phase, the attacker may take some attack
actions and the system may take some defense actions (automatically). How
such attack actions are taken in each phase of the battle defines the attacker’s
strategy for the battle. How such defense actions are taken defines the system’s
defense strategy.

Example 2. Mstream DDoS attacks, a common type of DDoS attacks,
have several phases, which are shown in Figure 2. In phase 1, the attacker
uses Sadmind Ping (attacking tools or commands) to find out the vulnerable
Sadmind services. In phase 2, the attacker uses Sadmind Over flow to break
into the hosts that run these vulnerable Sadmind services. In phase 3, the
attacker uses rsh or rexecute to install the mstream daemon and master pro-
grams and the needed backdoors. In phase 4, the attacker uses Mstream DoS to
send commands to activate the master programs (via the backdoors). In phase 5,
the DDoS master programs communicate with the daemon or zombie programs
to ask them to send out a large number of DoS packets.

Let us assume that the attack scenario is shown in Figure 1 and that
all of the 64 source hosts run vulnerable Sadmind services. Then two sim-
ple attack strategies can be specified as follows: (A1) Sadmind Ping and
Sadmind Over flow the 64 hosts in phase 1 and phase 2, respectively; use rsh
in phase 3 and install a master program on S1 but a daemon program on each
of the 64 hosts; use Mstream DoS in phase 4; ask only 10 zombies to send CBR
(constant bit rate) DoS traffic to a single web site (the victim) in the speed of
201.3 kbps per zombie. (A2) The same as A1 except for using rexecute in phase
3 and asking 30 zombies to send CBR DoS traffic to the victim in the speed of
67.1 kbps.

Similarly, two simple defense strategies can be specified as follows: (D1)
Take no defense action in the first four phases. Enforce pushback (shown in
Example 1) in phase 5 and set the target drop rate for each router (i.e., the
upper-bound drop rate of the router’s output queue) as 7%, while keeping all
the other configuration parameters in default values. (D2) The same as D1
except that setting the target drop rate as 3%.

Note that an attack strategy is not simply a sequence of attack actions; it
may also include such dynamic, strategic decision-making rules as “what action
should be taken under what state or condition.” For example, in Example 2 an

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 11

attack strategy may include the following rule: when rsh is disabled by the
system, use rexecute. Hence, during two different battles with the system, the
same attack strategy may result in two different sequences of attack actions.
When a battle has multiple phases, we could have two possible types of attack
or defense strategies: (1) static strategies take exactly the same set of actions
in every phase; (2) dynamic strategies adjust actions when a new phase arrives
based on what has happened. For example, in Example 2 both A1 and A2 are
static attack strategies.

In our model, each defense posture defines a defense strategy since it specifies
how a set of security mechanisms behave in the face of an attack. Some security
mechanisms are adaptive, but adaptations do not indicate a different defense
strategy because the adaptation rules are not changed. The way we define de-
fense postures is general enough to support a variety of defense strategies.
The definition allows us to (dynamically) add, activate, deactivate, or remove a
security mechanism. It also allows us to reconfigure a security mechanism by
“replacing” an old mechanism with the reconfigured mechanism.

In our model, an attacker’s strategy space includes every possible attack strat-
egy of the attacker under the set of constraints associated with the attacker.
To infer an attacker’s strategy space, a good understanding of the system’s vul-
nerabilities and the attack/threat taxonomy is necessary. Moreover, constraints
and costs help infer the boundary of a strategy space, since they imply which
kind of attacks will not be enforced. Similarly, the system’s strategy space is
determined by the set of defense postures of the system. Due to the constraints
associated with the system and the cost of security,2 the system’s strategy space
is usually bounded.

A key issue in modeling attacker strategies is how to compare two attack
strategies and tell which one is better (for the attacker). Based on the purpose
of attack strategies, the answer is dependent on the degree to which the at-
tacker objectives can be achieved with a strategy. Based on the definition of
attacker objectives, the answer is then dependent on determining which strat-
egy can yield more utilities to the attacker. Based on the definition of utilities,
if we assume that the costs for these two strategies are the same, the answer
is then dependent on determining which strategy can yield more incentives to
the attacker. Since attacker incentives are determined by degradation(V s

t1
, V s

t2
),

the answer is then dependent on determining which strategy can cause more
degradation to the system’s security vector. However, the answer to this ques-
tion is in general determined by the defense strategy that the system will take,
since different battles may lead to different amount of security degradation. To
illustrate, let us revisit Example 2. Based on our simulations (done in Section
6), we found that when D1 is taken by the system, A2 is better than A1 (i.e.,
causing more security degradation); however, when D2 is taken by the system,
A1 is better than A2. More interestingly, we found that when A1 is taken by the
attacker, D2 is better than D1; however, when A2 is taken, D1 is better than
D2.

2Security mechanisms not only consume resources but also can have a negative impact on the
system’s functionality and performance.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

12 • P. Liu et al.

Fig. 3. A game-theoretic formalization.

The above discussion not only confirms the strategy-interdependency prop-
erty, but also implies the following property of attack strategy inference:

—Dual Property. (a) Given two attack (defense) strategies, determining which
one is a better attack (defense) strategy is dependent on the defense (attack)
strategies the system (attacker) is going to take. (b) Each type of information
useful for the attacker (system) to choose a good attack (defense) strategy
will also be useful for the system (attacker) to choose a good defense (attack)
strategy.

4. A GAME-THEORETIC FORMALIZATION

Our goal is to formalize the AIOS models developed in the previous section in
such a way that good inferences of AIOS can be automatically computed. For
this purpose, we first propose a game-theoretic AIOS formalization, then we
show why it is a good formalization.

Our game-theoretic AIOS formalization is shown in Figure 3, where

—Instead of neglecting the attacker and viewing attacks as part of the system’s
environment, we model the attacker as a “peer” of the system, namely the
attacking system.

—The environment only includes the set of good accesses by a legitimate user.
—We further split the system into two parts: the service part includes all and

only the components that provide computing services to users; and the protec-
tion part includes the set of security mechanisms. For example, in Example
1 the service part mainly includes the hardware and software components
(within the routers) that route packets; the pushback components belong to
the protection part.

—Instead of passively monitoring, detecting, and reacting to attacks, the re-
lation between the system and the attacker is modeled as a game (or bat-
tle) across the time dimension where the system may actively take defense
actions.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 13

—The game is a 6-tuple.
—The two players, namely the (secure) system and the attacking system.

Note that the “real” player for the system is the set of security mechanisms.
—The game type (e.g., a Bayesian game or a stochastic game) and the set of

type-specific parameters of the game.
—The two strategy spaces of the two players, defined in the same say as in

Section 3. The attacker’s strategy space is denoted as Sa = {sa
1 , . . . , sa

m},
where sa

i is an attack strategy. The system’s strategy space is denoted as
Sd = {sd

1 , . . . , sd
m}, where sd

i is a defense strategy. Note that the constraints
associated with the attacker and the cost of each attack imply the boundary
of Sa. A more detailed formalization of attack strategies is described in
Section 5.

—A set of game plays. A play is a function pli : Sa × Sd → O, where O
is the set of outcomes which indicate the effects of an attack. Each play
involves one battle due to an attack. Each play may have several phases.
We assume each player uses a game engine to determine which strategy
should be taken in a specific play. For example, in Example 2 a game play
between the DDoS attacker and the network may involve attack strategy
A1 and defense strategy D2.

—The two utility (or payoff) functions which calculate the utilities earn
by the two players out of each play. The attacker’s utility function is
ua : Sa × Sd → R, where R is the set of utility measurements. Given
a play (sa

i , sd
i), the attack cost is an attribute of sa

i , denoted as cost(sa
i). The

attacker’s incentives are determined by degradation(V s
t1

, V s
t2

), where t1 is
the time when the play starts; t2 is the time when the play ends; and secu-
rity vector V s

t2
is dependent on the outcome of the play, namely pli(s

a
i , sd

i).
And ua(sa

i , sd
i) is a distance between cost(sa

i) and the attacker’s incentives.
By contrast, the system’s utility function is ud : Sa × Sd → R. Given a
play (sa

i , sd
i), the system’s cost is cost(sd

i). The system’s incentives are deter-
mined by improvement(V s

∅ , V s
sd
i
), where V s

∅ is the security vector resulted
after the attack when no security mechanisms are deployed; V s

sd
i

is the vec-
tor resulted after the attack when strategy sd is taken. And ud (sa

i , sd
i) is

still a distance between the system’s incentives and cost.
—A knowledge base maintained by each player. The attacker’s (system’s)

knowledge base maintains the attacker’s (system’s) knowledge about the
system’s (attacker’s) strategy space (including the system’s (attacker’s) cost
and constraints), the system’s (attacker’s) value system, the system’s met-
ric and security vectors. Note that the attacker’s (system’s) knowledge may
not always be true; it in fact captures the attacker’s (system’s) beliefs.

—Note that for clarify, only the game-relevant components are shown in
Figure 3. Note also that the game model can be extended to cover multiple
attackers who are either cooperating with other attackers (i.e., coopera-
tive) or not (i.e., noncooperative). This extension is out of the scope of this
paper.

Discussion. We believe a game-theoretic formalization can be very valuable
for AIOS modeling and inference because (1) such a formalization shifts the

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

14 • P. Liu et al.

focus of traditional AIOS modeling from attacks to attackers; (2) such a for-
malization captures every key property of the attacker-system relation such
as the Intentional Attack Property and the Strategy Interdependency Prop-
erty; (3) such a formalization captures every key element of our incentive-
based AIOS modeling framework such as incentives, utilities, costs, risks, con-
straints, strategies, security mechanisms, security metrics, defense postures,
vulnerabilities, attacks, threats, knowledge, and uncertainty; (4) such a for-
malization can be used to infer AIOS. The rationale is that (a) noncooperative
game theory is the primary tool to handle strategic interdependence [Mas-Colell
et al. 1995], which is the fundamental property of the attacker-system rela-
tion; (b) game-theoretic models have been successfully used to predict rational
behaviors in many applications such as auctions and their rationality notion
(that each player plays an expected-utility maximizing best response to ev-
ery other player) is consistent with the goals of many, if not most, attackers
and systems; (c) Nash equilibria of attacker-system games can lead to good
AIOS inferences since Nash equilibria indicate the “best” rational behaviors
of a player, and when the system always takes a Nash equilibrium defense
strategy, only a Nash equilibrium attack strategy can maximize the attacker’s
utilities.

5. GAME-THEORETIC AIOS INFERENCE

As we mentioned in previous sections, the ability to infer attacker intent, ob-
jectives, and strategies (in information warfare) may dramatically advance the
literature of risk assessment, harm prediction, and proactive cyber defense. In
the previous section, we show how to model AIOS via a game-theoretic formal-
ization. In this section, we address how to exploit such formalizations to infer
AIOS. In particular, we tackle two types of AIOS inference problems, which are
illustrated below.

Type A—Infer Attack Strategies. Given a specific model of attack intent and
objectives, infer which attack strategies are more likely to be taken by the
attacker. The previous presentation implies the following pipeline in inferring
attack strategies:

(1) Make assumptions about the system and the (types of) attacks that concern
the system. Note that practical attack strategies inferences may only be able
to be computed within some domain or scope (due to the complexity).

(2) Model the attacker intent, objectives, and strategies (conceptually). Specify
the attacker’s utility function and strategy space. Estimate the attacker’s
knowledge base.

(3) Specify the system’s metric vector and security vector. Specify the system’s
utility function and strategy space. Build the system’s knowledge base.

(4) Determine the game type of the game-theoretic attack strategy inference
model that will be developed, then develop the model accordingly.

(5) Compute the set of Nash equilibrium strategies of the attack strategy infer-
ence game model developed in step 4. A key task is to handle the computa-
tion complexity. If the complexity is too much, we need to do (inference)

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 15

precision-performance trade-offs properly using some (semantics-based)
approximate algorithms.

(6) Validate the inferences generated in step 5. The relevant tasks include but
are not limited to accuracy analysis (i.e., how accurate the inferences are)
and sensitivity analysis (i.e., how sensitive the inferences are to some spe-
cific model parameters). The relevant validation techniques include but
are not limited to (a) investigating the degree to which the inferences
match the real-world intrusions; (b) extracting a set of high-level prop-
erties or features from the set of inferences and asking security experts
to evaluate if the set of properties match their experiences, beliefs, or
intuitions.

(7) If the validation results are not satisfactory, go back to step 1 to rebuild or
improve the inference model.

Type B—Infer Attacker Intent and Objectives. Based on the attack actions
observed, infer the intent and objectives of the attacker in enforcing the cor-
responding attack. To a large degree, the pipeline for inferring attacker intent
and objectives is the reverse of that for inferring attack strategies. In particular,
the pipeline has two phases: the learning phase and the detection phase, which
are as follows.

—In the learning phase, do the same thing in step 1 as the previous pipeline. In
step 2, identify and classify the possible models of attacker intent and objec-
tives into a set of representative attacker intent and objectives models. Then
model the attack strategies for each of the representative models. In steps
3–5, do the same thing as the previous pipeline. As a result, a (separate) set
of attack strategy inferences will be generated for each of the representative
AIOS models built in step 2.

—In the detection phase, once an attack strategy is observed, match the ob-
served attack strategy against the inferred attack strategies generated in the
learning phase. Once an inferred attack strategy is matched, the correspond-
ing attacker intent and objective model(s) will be the inference(s) of the real
attacker’s intent and objectives. (Note that sometimes an observed attack
strategy may “match” more than one attacker intent and objective models.)
Nevertheless, when none of the inferred attack strategies can be matched,
go back to the learning phase and do more learning.

In summary, both type A and type B inference problems need a game-
theoretic inference model, and we call such inference models AIOS inference
models in general. As we will show shortly in Section 6, given a specific attack–
defense scenario, once we have a good understanding of the attack, the defense,
the attacker and the system, most steps of the two pipelines are fairly easy to
follow, but the steps of determining the game type of the AIOS inference model
are not naive and require substantial research. Therefore, in the following,
before we show how an AIOS inference pipeline can be implemented in a real-
world attack–defense scenario in Section 6, we would first show how to choose
the right game type for a real-world AIOS inference task.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

16 • P. Liu et al.

5.1 How to Choose the Right Game-Theoretic AIOS Model?

A good AIOS inference model must be built on top of the real characteristics
of the attack–defense (A–D) scenario. Different A–D scenarios may require dif-
ferent inference models. Hence, to develop a taxonomy of game-theoretic AIOS
inference models, we need a general, simple model to classify the characteris-
tics of A–D scenarios. For this purpose, we will start with two critical factors
of the attacker-system relation, namely state and time. In our model, there are
two categories of states:

—System State. At one point of time, the state of a system is determined
by the state of each component of the system’s service part. A component
of the system’s service part can be a piece of data or a piece of code. Note
that sometimes a piece of code can be handled as a piece of data. For ex-
ample, in Example 1 a system state captures such state information as the
length of the packet queue(s) in each router. It should be noted that the
system’s state has nothing to do with the system’s defense posture, which is
determined by the configuration of each component of the system’s protection
part.

—Attack State. Attack states classify system states from the attack–defense
perspective. Every attack action, if successfully taken, will have some ef-
fects on the system state. Such effects are usually determined by the charac-
teristics of the attack. After a specific attack happens, the resulting effects
are specified as an attack state. For example, all the possible states of a
web server system after its Ftpd service is hacked can be denoted as the
Ftpd hacked attack state. Hence each attack state usually covers a cluster of
system states.

It is clear that the attacker can know the current attack state by analyzing
the defense system and his attack strategies even before the attacks, but the
defender (i.e., the system) is usually not. The system uses an intrusion detector
to learn the current attack state. Due to the latency of intrusion detection, the
system may know an attack state with some delay. Due to the false alarms (i.e.,
false positives), the system may have wrong belief about the current attack
state.

The relation between states and time is simple. At one point of time, the
system must be associated with a specific system state and attack state. Good
accesses, attack actions, and defense actions can all change the system state;
however, only attacks and defense operations can change attack states. Changes
of both system states and attack states indicate changes of time. An interest-
ing question here is: when should we terminate an attack state? One way to
solve this problem is to give each attack a lifetime. When the lifetime of an
attack is over, we make the corresponding attack state part of the history.
The lifetime of an attack should involve some defense actions or operations,
since when the life of the attack is over, the system should have already re-
covered from the attack in many possible ways, for example, replacing the sys-
tem with a new system, repairing the damaged part of the system, and so
on.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 17

Fig. 4. An example battle between the attacker and system.

We model the battles between the attacker and the system as follows:

Definition 1. (General model) A battle between the attacker and the system
is an interleaved sequence of system states and actions such that

—Each action belongs to one of three possible types: (a) the action can be an
attack action which is part of an attack strategy, (b) the action can be an
action or operation taken by a legitimate user which indicates a good access,
(c) the action can be a defense action which is part of a defense strategy. We
denote an attack action as oi

b. We denote a good access action as oi
g . We denote

a defense action as oi
d . We use i as the action index, for example, the oi

b is the
ith action taken by the attacker.

—There must be either one attack action or one good access action between two
adjacent states. (Two system states SSi and SS j are adjacent if there does
not exist a third state that stays between SSi and SS j in the interleaved
sequence of system states and actions.) No more than one attack action can
happen between two adjacent states. No more than one good access action
can happen between two adjacent states either.

—There is exactly one defense action between two adjacent states. However, a
defense action can be a null action, but neither an attack action nor a good
access action can be a null action.

Example 3. Consider the battle shown in Figure 4. Good access action o1
g

transforms the system state from SS1 to SS2. Then attack action o1
b transforms

SS2 to SS3 which is part of an attack state. We assume there is some latency
in detection, so no defense action is taken until alert 1 is raised in system state
SS4. Hence, the effects of attack action o1

b are initially embodied in SS3, and
o2

g , though a good action, may further spread the damage accidentally. When
alert 1 is raised, since it may not be able to confirm an intrusion and since it
may be a false alarm, the system is unsure whether SS4 belongs to an attack
state, and the system needs to determine whether a proactive defense action
should be taken or the system should just wait until an intrusion is detected.3

Suppose proactive defense is done here. After defense action o1
d is taken, o1

b’s
direct and indirect effects may be removed, at least to some extent. However,
o2

b, a new attack action, may be simultaneously taken together with o1
d , and a

3Note that false negatives may also affect the battle. In particular, the detection of an attack usually
involves a sequence of alerts. When there are false negatives, some alerts will not be raised. As a
result, the system can have more uncertainty about whether there is an intrusion and the response
can become even less proactive.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

18 • P. Liu et al.

Fig. 5. A battle between the attacker and system under instant accurate intrusion detection.

new attack state is reached. Finally, after the intrusion is detected in SS6 and
o2

d is taken, the attack state may terminate.

Under some specific conditions, the above model can be further simplified. In
particular, when every attack action can be detected instantly after it happens
with accuracy, the battles between the attacker and the system can be modeled
as follows.4 Here, we model an intrusion as a sequence of attack actions, namely
I j = {o1

b, o2
b, . . . , on

b}. Note that here since we can distinguish bad actions from
good ones, a set of system states can be clustered into a specific attack state,
and good actions need not be explicitly modeled.

Definition 2. (Under instant accurate intrusion detection.) A battle be-
tween the attacker and the system is an interleaved sequence of attack states
and actions such that

—Each action belongs to one of two possible types: (a) an attack action; or (b)
a defense action.

—Between any two adjacent attack states, attack and/or defense actions can
only be taken in three possible ways: (a) a single attack action is taken; (b)
a single defense action is taken; or (c) a pair of attack and defense actions
(oi

b, oi
d) are taken simultaneously by the attacker and the system, respec-

tively. Two attack states ASi and AS j are adjacent if there does not exist a
third attack state that stays between them in the interleaved sequence.

—The battle can involve several fights. A fight is composed of two adjacent
attack states and a pair of attack and defense actions between them, denoted
by (oi

b, oi
d). It is clear that (oi

b, oi
d) can transform the system from one attack

state to another.

Example 4. Consider the battle shown in Figure 5, where we assume in-
trusion detection can be instantly done with accuracy. Within the initial attack
state AS0 which consists of two system states (i.e., SS1 and SS2), there is no
attack effects, and a good action such as o1

g can transform one system state
(e.g., SS1) to another (e.g., SS1). When attack action o1

b is taken, the attack
state transits to AS1, where some attack effects are caused. Since AS1 can be
instantly detected, the time interval between o1

b and defense action o1
d can be

very short. After o1
d is taken, suppose 80% of the attack effects caused by o1

b is

4Note that since Definition 2 is mainly for theoretic analysis and meant to show how simple a battle
model can theoretically be, it is OK to make this not very practical assumption.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 19

repaired,5 then a new attack state, that is, AS2, is reached. Finally, note that
after o2

b is taken, within the new attack state AS3, a system state transition is
possible before o2

d is taken, since it may take a while for the system to determine
the proper defense action(s) to take.

When intrusions can be instantly detected with accuracy, it is clear that
both the system and the attacker know the current attack state for sure. The
system’s utility earned after each battle, denoted by ud (oi

b, oi
d), is computable

if we know which good actions are involved in the battle, so is ua(oi
b, oi

d). Note
that the system is clear about the set of good actions involved in each battle,
but the attacker could have some uncertainty about the good actions.

However, when intrusion detection has delay or when the detection is not
100% accurate, the simplified model cannot realistically model the battles be-
tween the attacker and the system, and the general model is the model we
should use. Why? When the accuracy is low, even if you can instantly raise
alarms, the simplified model still has too much uncertainty that makes the in-
ferences generated by the model difficult to be validated. See that because of the
inaccuracy, the system is actually not sure about the current attack state, and
taking the defense action as if the raised alarm is true is not only not secure but
also very expensive. When the detection latency is long, after an attack action
is detected, several attack states may have already been bypassed, and as a
result, the system can only take a null defense action for every bypassed state.
This indicates that the attacker can take a lot of advantage if the simplified
model is used to guide the defense.

The above discussion shows that (a) if the game model is not properly chosen
and followed, the system can lose a lot of security and assurance, and that (b)
the agility and accuracy of intrusion detection play a critical role in finding
optimal AIOS game models. In addition, we found that the correlation among
attack actions also plays a critical role in finding optimal AIOS game models.
Based on these two factors, the taxonomy of AIOS models can follow the regions
shown in Figure 6, and the taxonomy can be simply summarized as follows:

—In region 9, two types of dynamic games can be used together with primarily
reactive defense, which are illustrated below. In both scenarios, the attack is
composed of a sequence of highly correlated attack actions that are comple-
mentary to each other; and each attack action can be detected with agility.
And it should be noticed that the goal of both the attacker and the system is
to win the battle in a long run after a sequence of fights are finished.
— If the attacker can clearly recognize each defense action and wants to

see the effects of the current defense action against his latest attack ac-
tion before choosing a new action, a dynamic observe-then-act game (with
perfect information) can be used. In this game, the attacker and sys-
tem take actions in turn, and at each move the player with the move
knows the full history of the game play thus far. The theory of backwards
induction [Mesterton-Gibbons 1992] can be used to compute the optimal

5Note that being able to accurately detect intrusions does not always mean being able to accurately
identify all the attack effects and repair them.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

20 • P. Liu et al.

Fig. 6. A taxonomy of game-theoretic AIOS models.

attack/defense strategies. And the idea is that when an attack action ob
is followed by a defense action, the attacker will take the system’s best
response to ob into account when he or she chooses the “best” ob. Figure
5 shows an example play of this type of game. Finally, the defense should
be primarily reactive, since each attack action can be detected with agility
but it can be fairly difficult to predict the next action the attacker will
take.

—If the attacker has substantial uncertainty in recognizing a defense ac-
tion but is good at identifying an attack state, multistage dynamic games
with simultaneous moves can be used. In this game, the first attack action
and a null defense action are simultaneously taken in stage 1, the first
defense action and the second attack action are simultaneously taken in
stage 2, and so forth. In this scenario, observe-then-act games are not
very suitable because the attacker could not identify the exact defense
action and thus waiting for the current defense action to end will not
help the attacker much in choosing the next attack action. Moreover, in
general the optimal attack/defense strategies of this game can be cap-
tured by subgame-perfect Nash equilibrium (see Appendix). Finally, if the
attack state transitions are probabilistic, stochastic games, a special type
of multi stage dynamic games, should be used. When intrusion detec-
tion is highly effective, stochastic games become feasible. See that not
only that each attack state can be accurately identified by the system
with agility, which enables effective reactive defense, but also that the
transition probability among attack states can be estimated with good ac-
curacy. When there is strong correlation among attack actions, stochastic
game models are better than repeated game models, since they can model
the correlation relation among attack actions, but repeated game models
cannot.

—In region 1, Bayesian-repeated games should be used together with proac-
tive defense. When the intrusion detection effectiveness is poor, the system

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 21

can have substantial uncertainty about the current attack state, and such
uncertainty usually makes stochastic game models infeasible, since the util-
ity of stochastic game models is dependent on the assumption that each at-
tack state can be instantly identified by each player with accuracy. In this
case, Bayesian game models, which we will discuss shortly in Section 5.2,
are a robust realistic solution, since they do not require accurate detection,
and they do not require instant detection either. Finally, since the detection
latency is not short, proactive defense can be more beneficial than reactive
defense, and Bayesian-repeated game theory may guide us to find the “opti-
mal” proactive defense strategies.

—In region 7, Bayesian-repeated (signaling) games can be used. First, repeated
games can be used since the correlation degree among attack actions is low.
As a result, we can assume that in each stage game both the attacker’s and
system’s action spaces are the same. Second, although the detection accuracy
is very good, 100% accuracy is usually not achievable, so Bayesian games are
still beneficial. Third, since intrusion detection is both accurate and agile,
the system can gain much better knowledge about the attacker in this re-
gion than in region 1. And such knowledge should be fully exploited to do
better defense than in region 1 where simple Bayesian-repeated games are
played. In particular, we believe that in each stage a signaling game can be
played, where the system observes-then-act and exploits its knowledge about
attack actions to make its (type) belief about the observed action more pre-
cise. Fourth, in this region effective detection favors reactive defense mecha-
nisms, and doing proactive defense may not be cost effective, since substantial
denial-of-service can be caused.

—In region 3, normal multistage dynamic games should be used, and subgame
perfect Nash equilibrium strategies should be taken by the players. Specifi-
cally, since the detection latency is long, reactive defense can be very limited.
When defense actions are not taken until an intrusion is detected, the effects
of the intrusion can seriously spread throughout the system (via both at-
tack and good actions) during the detection latency. Hence, proactive defense
can be more beneficial. To support proactive defense, a simple multistage
dynamic game can be used, where each stage is associated with (a) a good
or bad action, but not both; and (b) a defense action which could be “null.”
Note that these two actions can be simultaneous or the system can observe-
then-act. Since the detection accuracy is poor, in each stage the system has
uncertainty about the other action’s type. Such uncertainty can be handled
by Bayesian type belief and expected payoffs. And in many cases, such un-
certainty can be substantially reduced by the alerts raised and the alert cor-
relation results, especially when the detection accuracy is not so bad (e.g., in
region 6).

Compared with the combination of probabilistic “attack states” and
stochastic game models, simple multistage dynamic games are easier,
cheaper, having a smaller search space, more accurate, and having no need to
know all the attack states. Finally, note that Bayesian-repeated games can-
not be directly applied here because the attack actions are highly correlated.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

22 • P. Liu et al.

So in each stage, the action spaces for both the attacker and the system are
typically different and a different game is played.

—Finally, the “gray” areas (i.e., regionsh 2,4,5,6, and 8 usually need a trade-off
between the extreme cases we discussed above when we need to build a good
game-theoretic AIOS model for such a region. For example, a good AIOS
game model for region 4 should be a trade-off between Bayesian-repeated
(signaling) games (which are used in region 7) and Bayesian-repeated games
(which are used in region 1). These trade-offs are dependent on many factors,
such as the amount of uncertainty, accuracy, and sensitivity, as we will discuss
shortly.

—Note that every type of AIOS inference games can support both pure strate-
gies and mixed strategies.

5.2 Bayesian Game-Theoretic AIOS Models

In this section, we present a concrete Bayesian game-theoretic AIOS model,
which can be used to handle regions 1 and 7. This model will be used shortly to
do the case study in Section 6.

A Bayesian game-theoretic AIOS inference model is composed of two parts:
a Bayesian game model that characterizes the attacker-system relation, and a
set of AIOS inferences generated by the game model. In particular, the game
model is a specific two-player finitely repeated Bayesian game between the
system and a subject, where (a) there can be multiple types of subjects. And the
type space is denoted as T sub = {good, bad}. A subject’s type is privately known
by the subject. (b) Asys is the action space of the system, and Asub is the action
space of the subject. One or more actions can build a strategy. (c) The game has a
finite number of plays (or stages), and each play includes a pair of simultaneous
actions (asys, asub). And each play will have an outcome denoted by o(asys, asub).
(d) The system is uncertain about the type of the subject. This uncertainty is
measured by the system’s type belief, denoted as ptype

sys . For example, ptype
sys (bad),

a probability, denotes the system’s belief about the statement that the subject
is an attacker. (e) For each outcome o, the system’s utility function is usys(o) =
ptype

sys (good)ugood
sys (o) + ptype

sys (bad)ubad
sys (o). If the subject is a legitimate user, his or

her utilities are determined by usub(o; good), otherwise, his or her utilities are
determined by usub(o; bad).

On the other hand, the set of AIOS inferences are determined by the Nash
equilibria of the game model based on the rationality notion of an expected-
utility maximizer.6 In particular, for each Nash equilibrium of the game, de-
noted as (a∗

sys, a∗
bad, a∗

good), the game model will output a∗
bad as the attack strat-

egy inferences (i.e., a∗
bad indicates the kind of strategies that are more likely

to be taken by the attacker); output usub(o; bad) (i.e., the utility function)
and usub(a∗

sys, a∗
bad; bad) as the attacker intent and objectives inferences, where

usub(a∗
sys, a∗

bad; bad) can be mapped to the amount of security vector degradation

6The Nash equilibrium theory can be found in Appendix and Mesterton-Gibbons [1992]. Note that
mixed strategy Nash equilibria exist for every Bayesian game, although sometimes no pure strategy
Nash equilibrium exists. Also a game may have multiple Nash equilibria.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 23

caused by the attack. Moreover, as side benefits, a∗
sys indicates a better defense

posture and usys(a∗
sys, a∗

bad) indicate the overall resilience of the system.
Discussion. Bayesian AIOS inference models are simple, robust and may

work well even when a very little amount of information is available. For exam-
ple, in region 1, although neither the intrusion detector nor the previous actions
(of a subject) can provide hints, timely inferences could still be generated based
on a probabilistic estimation of how intense the attacks are. Since a small num-
ber of disturbing attacks will not affect the estimated intensity degree much,
Bayesian AIOS inference models are very robust to disturbing alerts.

6. CASE STUDY: INFERRING THE ATTACK STRATEGIES
OF DDOS ATTACKERS

In this case study, we want to infer the strategies of the attackers that enforce
brute-force DDoS attacks. Regarding the network topology, the attack model,
the system model, and the defense mechanism, we make exactly the same as-
sumptions as in Example 1. In particular, we assume pushback is deployed
by the system. Based on the aggregates and the corresponding traffic volume,
pushback classifies both the traffic and the users into three categories: good,
poor, and bad. The bad traffic is sent by a bad user (attacker) and is responsible
for the congestion. The poor and good traffics are legitimate traffics, and are
sent by the poor and good users (both legitimate), respectively. However, the
poor traffic has the same aggregate properties as the bad traffic, but the good
traffic has not, though the good traffic may share some paths with the bad traf-
fic. To illustrate, in Figure 1. we assume the attacker compromises S0 and sends
“bad” packets to a victim denoted by d0. Simultaneously, S31 sends legitimate
packets to d0. If router R1.0 uses destination address to identify the congestion
aggregate, the poor packets sent from S31 to d0 may be viewed as “bad” packets
since they have the same destination address as the bad traffic, and dropped
by the defense system. In summary, if the aggregates are destination-address
based in Figure 1, then all packets sent to the same destination will belong
to the same aggregate. Accordingly, when the attacker floods DoS packets to a
set of victims, all the legitimate packets sent to the victims are poor traffic and
would be rate limited together with the bad traffic. Nevertheless, the legitimate
packets sent to other hosts are good traffic, such as the traffic between hosts in
{S0, . . . , S64}.

6.1 The Game-Theoretic AIOS Model

Now, we are ready to present the specific Bayesian game-theoretic AIOS model
for DDoS attack/defense, which is specified as follows. Without losing general-
ity, we assume that in each DDoS attack, there is one attacker and multiple
legitimate users. (Nevertheless, it should be noticed that our AIOS model can be
easily extended to handle collusive attackers.) For concision, we only mention
the differences from the generic Bayesian game model proposed in Section 5.2.

DDoSGM = {Aatt, A1
leg, . . . , Ai

leg, Asys, Tatt, T 1
leg, . . . , Ti

leg, Tsys,

patt, p1
leg, . . . , pi

leg, psys, uatt, u1
leg, . . . , ui

leg, usys},
ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

24 • P. Liu et al.

where

(1) The players are the attacker, the system, and several legitimate users. It
should be noticed that we cannot model this game as a two-player game
and we must extend the two-player Bayesian game model proposed in
Section 5.2, since zombies and legitimate hosts are sending packets to
the victim(s) simultaneously and neither zombies nor legitimate hosts can
“control” the actions taken by the other side. Also note that our game model
can be easily extended to model collusive DDoS attacks among multiple
attackers.

(2) The attacker’s action space is Aatt = {A1, . . . , Am}, where Ai is a DDoS
attack launched by the attacker. No matter which kind of DDoS attacks
Ai belongs to, there are typically some common properties among the at-
tacking packets involved in Ai. For example, they may have the same
destination address, or they may use the same protocol. In this model, we
use {Sour, V , AttTraf, Config} to specify a DDoS attack. In particular, Sour
is the set of zombies “selected” by this attack. V = {v1, . . . , vl } is the set
of victims. Note that the victims may stay on different subnets. AttTraf
specifies the attacking traffic patterns, for example, the protocol and trans-
mission rate patterns between Sour and V. Config specifies the adaptable
or reconfigurable aspects of the zombies. For example, the zombies may
adjust their sending rate or traffic patterns according to the response of
the defense system. In this study, we assume Config = Null, that is, the
zombies will not adjust their behaviors during this attack and all of them
will have simply the same behavior.

(3) The action space for legitimate user k is Ak
leg = {T1, . . . , Tm; 1 ≤ k ≤ i},

where Ti is a specific network application (or service). In the model, we use
{Sour, Dest, Traffic, Config} to specify such an application. Each network
application may involve multiple hosts that transmit packets simultane-
ously in a coordinated or interactive way to execute a business process.
Within a network application, Sour is the set of source hosts (or initiators)
involved; and Dest = {d1, . . . , dk} is the set of destinations (or responders)
involved. Moreover, Traffic captures the traffic patterns between Sour and
Dest. Config specifies the adaptable or reconfigurable aspects of the appli-
cation. In this study, we assume Config = Null.

(4) The system’s action space Asys is determined by the pushback postures of
each router in the system. The system is composed of every router that is
part of the pushback defense, denoted as {R1, . . . , Rn}. In particular, the
pushback behavior of a router is determined by the following configurable
parameters:
—Congestion checking time, denoted as p1

sys (default value: 2 s). The router
checks if the network is congested every p1

sys seconds. When serious con-
gestion is detected, the router will identify (and rate limit) the aggre-
gate(s) responsible for the congestion and send out some pushback mes-
sages. Note that in this study the thresholds are fixed for “reporting”

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 25

serious congestion and for determining who should receive pushback
messages. Note also that how the rate limits (for each aggregate) are
set up is also fixed.

—Cycle time, denoted as p2
sys (default value: 5 s) is the interval time that

the router reviews the limits imposed on its aggregates and sends re-
fresh messages to the adjacent upstream routers to update their rate
limits. Note that how such rate limits are updated is fixed in this study.

—Target drop rate, p3
sys (default value: 5%), determines the upper-bound

drop rate of the router’s output queue. To achieve this upper bound, the
rate limiter should make the bit rate toward the output queue less than
B/(1 − target drop rate), where B is the bandwidth of the output link.

—Free time, denoted as p4
sys (default value: 20 s), is the earliest time to

release a rate-limited aggregate after it goes below the limit imposed
on it.

—Rate-limit time, denoted as p5
sys (default value: 30 s), determines how

long a newly identified aggregate must be rate limited. After the period,
the router may release an aggregate.

—Maximum number of sessions, p6
sys (default value: 3), determines the

maximum number of aggregates the rate limiter can control.
—Aggregate pattern, denoted as p7

sys (default value: “destination address
prefix”) determines which kinds of properties will be used to identify
aggregates.

(5) The attacker’s type space is Tatt = {bad, good}. Legitimate user i’s type
space is also Ti

leg = {bad, good}. The system’s type space is Tsys = sys.
(6) Regarding the system’s type belief, since when a packet arrives at a router,

the router cannot tell whether the sender of the packet is a zombie or not,
the system’s belief (or uncertainty) about every other player’s type is the
same, that is, pgood

sys = θ , and pbad
sys = 1− θ . In our simulation, for simplicity,

we assume there are one attacker and one legitimate user. Accordingly,
θ = 0.5. In real world, the value of θ can be estimated based on some
specific statistics of the DDoS attacks that have happened toward the
system.

(7) Regarding the attacker and legitimate users’ type belief, since both the
attacker and the legitimate users know the system’s type, ptype

att (sys) =
ptype

leg (sys) = 1. Since the attacker knows who are zombies and who are
legitimate nodes, the attacker’s uncertainty about a legitimate user’s type
is ptype

bad (good) = 1. However, a legitimate user typically has uncertainty
about the type of a node that is not involved in his application, since he
is not sure whether the node is a zombie or not. So a legitimate user’s
uncertainty about the attacker’s type and another legitimate user’s type
are the same, namely ptype

leg (bad) = β and ptype
leg (good) = 1 − β.

(8) For each outcome o of a game play, the attacker’s utility is uatt(o) =
αusys

att (o) + (1 − α)
∑i

k=1 ulegk
att (o), where usys

att (o) measures the attack’s impact
on the network, while ulegk

att (o) measures the attack’s impact on legitimate
user k. In particular, uatt(o) = αBao/BN + (1 − α)(1 − Blo/Blw), where Bao

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

26 • P. Liu et al.

is the bandwidth occupied by the attacker; BN is the bandwidth capacity;
Blo is the bandwidth occupied by the legitimate user (note that we assume
there is only one legitimate user); Blw is the bandwidth that the legiti-
mate user wants to occupy. For simplicity, Bao, BN , Bi

lo, and Bi
lw are all

measured based on the incoming link to the edge router of the victim(s),
as shown in Figure 1. Note that Bao/BN indicates the absolute impact of
the attack on the (whole) network, while 1− Bk

lo/Bk
lw indicates the relative

availability impact of the attack on legitimate user k. α is the weight that
balances these two aspects. Usually the attacker is mainly concerned with
the attack’s impact on legitimate users, so in this study we let α = 0.2.

(9) The legitimate user’s utility is uleg(o) = usys
leg (o)+ ptype

leg (bad)ubad
leg (o). Since the

system controls both the legitimate and the bad traffic, and the attacker
does not control the legitimate traffic directly, we simply let ubad

leg (o) = 0.
Therefore, uleg(o) = Blo/Blw.

(10) The system’s utility function is usys(o) = wθ Blo/Blw + (1 − w)(1 −
θ)(−Bao/BN); and it is defined in the standard way. w is the weight that
helps the system make the trade-off between throttling the attacker and
providing more bandwidth to legitimate users, and we set it as 0.8 in the
simulations.

Although in this case study several specific parameter values are set, the
above DDoS attack strategy inference model is a general model and can handle
a variety of other DDoS attack scenarios beyond the case study. For example,
our model can handle the scenario where the zombies adjust their strategies
(e.g., attacking rate, traffic pattern) according to the response of the defense
system. Moreover, although in our model the system’s action space is pushback
specific, our model can be extended to support other DDoS defense mechanisms
such as traceback.

6.2 Simulation

In order to obtain concrete attack strategy inferences of real-world DDoS at-
tackers, we have done extensive simulations on the game plays specified above
using ns-2 [ns2]. The network topology of our experiments is shown in Figure 1,
which is the same as the topology used in pushback evaluation [Ioannidis and
Bellovin 2002]. There are 64 source hosts and four levels of routers. Except the
routers at the lowest level, each router has a fan-in of 4. The link bandwidths
are shown in the figure. Each router uses a ns-2 pushback-module to enforce
the pushback mechanism. It should be noticed that although there can be mul-
tiple victims staying on different subnets, we assume all the victims share the
same incoming link, namely R1.0 − R0.0.

In our experiments, Asys is materialized as follows. Asys includes 11 defense
strategies, as shown in Table I. The default value combination of {p1

sys, . . . , p7
sys}

is the 7th defense strategy, which is the default defense strategy. In the exper-
iment, we only change one parameter each time and compare the results with
those under the default strategy. The 1st strategy is the same as the 7th except
that p1

sys = 4s. The 2nd is the same as the 7th except that the cycle time is 10 s.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 27

Table I. The Eleven System Strategies

System Strategy p1
sys (s) p2

sys (s) p3
sys p4

sys (s) p5
sys (s) p6

sys p7
sys

1st 4 5 0.05 20 30 3 Destination Address Prefix
2nd 2 10 0.05 20 30 3 Destination Address Prefix
3rd 2 5 0.03 20 30 3 Destination Address Prefix
4th 2 5 0.07 20 30 3 Destination Address Prefix
5th 2 5 0.05 10 30 3 Destination Address Prefix
6th 2 5 0.05 30 30 3 Destination Address Prefix
7th 2 5 0.05 20 30 3 Destination Address Prefix
8th 2 5 0.05 20 15 3 Destination Address Prefix
9th 2 5 0.05 20 50 3 Destination Address Prefix
10th 2 5 0.05 20 30 5 Destination Address Prefix
11th 2 5 0.05 20 30 3 Destination Address Prefix

plus traffic pattern

The 3rd is different in that that the target drop rate is 0.03. The difference of
the 4th is that the target drop rate is 0.07. The 5th is different in that the free
time is 10 s. The 6th is different in that the free time is 30 s. The 8th is different
in that the rate limit time is 15 s. The 9th is different in that the rate limit
time is 50 s. The 10th is different in that the maximum number of sessions is
5. The 11th is that the aggregate property is destination address prefix plus
traffic pattern.

In our experiments, Aleg is materialized as follows:

—The poor traffic volume is determined based on several real-world Inter-
net traces posted at http://ita.ee.lbl.gov/html/traces.html. These traces show
three typical volume patterns when there are no attacks: RATE1 = 67.1 kbps
(the average rate to a web site during the rush hour); RATE2 = 290 kbps (the
average rate from an Intranet to the Internet); RATE3 = 532 kbps (the aver-
age rate from an Intranet to the Internet during the rush hour). Based on
these statistics, we let the total poor traffic volume be 67.1 kbps, 290 kbps,
or 532 kbps.

—The traffic pattern of the good and poor traffic is CBR (constant bits rate).
—There is only one legitimate user in the system. In each DDoS experiment,

the legitimate user selects 2 (FEWPOOR) or 4 (MANYPOOR) hosts to send packets
to the victim. When the poor traffic volume is 290 kbps and there are four
poor hosts, each host will send out 290/4 bps traffic to the victims. Since the
traffic pattern for poor traffic is fixed, the poor traffic belongs to a single
aggregate.

—Moreover, in each DDoS experiment, the legitimate user selects 5 or 10 hosts
to sends packets to other destinations. We assume the good traffic flows will
not cause any congestion by themselves. Hence, they will not be involved in
any aggregate in our experiments and their influence can be neglected.

—The poor and good hosts are randomly chosen from the 64 hosts.
—In summary, for each poor traffic volume, there are four legitimate strategies

corresponding to different numbers of poor hosts and good hosts. So in total
there are 12 legitimate strategies.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

28 • P. Liu et al.

Aatt is materialized as follows:

—We set the number of zombies as 12 (FEWBAD) or 32 (MANYBAD). The zombies
are randomly chosen from the 64 hosts.

—We determine the total attack traffic volume based on a parameter called
the bad-to-poor ratio. For example, when the ratio is 30 and the poor traffic
volume is 290 kbps, the total attack traffic volume is 30*290 bps. Moreover,
if there are 32 zombies, each zombie will send out 30*290/32 bps traffic to
the victim(s).

—When the poor traffic volume is 67.1 kbps or 290 kbps, we let the bad-to-poor
ratio be 30, 35, 40, 45, or 50. When the poor volume is 532 kbps, we let the
ratio be 30, 35, or 40. In this way, we totally get 13 possible attack traffic
volumes.

—The traces also show four traffic patterns. They are constant bits rate (CBR),
exponential (EXP), ICMP, and mixed (i.e., half CBR and half ICMP). We let
the attack traffic patterns be of these four types.

—If we count the number of value combinations of these attack strategy pa-
rameters, we can know that there are 40 possible strategies under RATE1 or
RATE2, and there are 24 possible strategies under RATE3.

—We number the attack strategies as follows. In the first 20 (12) strategies of
the 40 (24) strategies, the number of zombies is FEW. In the second 20 (12)
strategies, the number of zombies is MANY. Within each 20 (12) strategy group,
the first 5 (3) strategies use CBR traffic, the 2nd use exponential traffic, the
3rd use ICMP traffic, and the 4th use mixed traffic. Within each such 5 (3)
strategy group, the strategies are ordered according to the bad-to-poor ratio,
and the order is 30, 35, 40, 45, and 50 (30, 35, and 40). Finally, it should be
noticed that when the system takes strategy 10, the attacker will target 4
victims in each of the 40 (24) strategies, although in every other case the
attacker will target only one victim.

6.3 Payoffs and Their Attack Strategy Implications

Figure 7 shows the attacker’s, legitimate user’ and defense system’s payoffs
under different network scenarios (i.e., poor traffic volumes), attacking strate-
gies, and defense strategies when the aggregate property is destination address
prefix. Figure 8 is different in that the aggregate property is destination ad-
dress prefix plus traffic pattern. That is, two traffic flows sent to the same host
or subnet may not always belong to the same aggregate because their traffic
patterns may be different from each other. Note that for clarity, we show the
legitimate strategies’ effects in a special way. Since our results show that poor
traffic volumes can have a significant impact on the players’ payoffs while the
numbers of poor or good hosts have almost no impact, we break down the 12
legitimate strategies into three groups based on the three different poor traffic
volumes. And within each group, for each pair of attack and defense strategies,
first the players’ payoffs are measured based on the four legitimate strategies
in that group, then an average payoff will be calculated for each player. Hence,
each payoff shown in Figures 7 and 8 is an average payoff.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 29

Fig. 7. The attacker’s, legitimate user’s and defense system’s payoffs under different defense and
attack strategies.

Based on the simulation results summarized in these two figures, where axis
X represents the 10-defense strategies and axis Y represents the attacking
strategies, we found that

(1) The attacker’s payoffs are dependent upon not only attack strategies, but
also network scenarios and defense postures, which well justifies the strat-
egy interdependency property of our AIOS model.

(2) Our experiments confirm many well-known observations about DDoS at-
tack and defense. For example, the attacker prefers more zombies and the
defense system prefers lower drop rate. Nevertheless, our experiments give
more insights on DDoS attack and defense. For example, many people be-
lieve that the attacker’s and defense system’s payoffs are mainly determined
by the attack and defense strategies, but Figure 9 shows that the ratio be-
tween the poor traffic volume and the total bandwidth is a very important
factor, and this ratio may greatly affect the attacker’s and defense system’s
payoffs.

(3) Our experiments also yield several surprising observations. (a) Many peo-
ple may believe that the more packets the zombies send out to the victims,

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

30 • P. Liu et al.

Fig. 8. The attacker’s, legitimate user’s and defense system’s payoffs under different defense and
attack strategies.

the more bandwidth and payoffs the attacker should earn. (b) Many people
may believe that using different traffic patterns should be more effective
in attacking than a single traffic pattern. (c) Many people may believe that
exponential bit rate should be more effective in attacking than constant bit
rate. (d) Many people may believe that using UDP should be more effec-
tive in attacking than TCP or ICMP. However, our results show that nei-
ther the attacking rate nor the traffic pattern matters, and different bad-
to-poor ratios (30, 35, or 50) or different traffic patterns (UDP or ICMP)
give the attacker similar amounts of payoffs. Actually, Figure 7 shows
that among all the attacking strategies, only the number of zombies and
the traffic aggregate properties can substantially affect the payoffs of the
attacker.

(4) For the system, to obtain higher resilience against DDoS attacks, it needs
only be concerned with three specific pushback parameters, namely target
drop rate (p3

sys), maximum number of sessions (p6
sys), and aggregate pattern

(p7
sys). The other parameters do not affect the results much.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 31

Fig. 9. The attacker’s and defense system’s payoffs under different poor traffic.

6.4 Nash Equilibrium Calculation

Figures 7 and 8 show the attacking capacity of the attacker, the survivability
of the legitimate user, and the resilience of the defense system under different
defense and attacking strategies. In the real world, the legitimate user, attacker,
and defense system will only choose optimal strategies from their action spaces
to maximize their payoffs. Hence, to know what the attacker, legitimate user,

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

32 • P. Liu et al.

and defense system will do when a DDoS attack really happens, we need to
know the Nash equilibrium strategies of the players. Nash equilibria specify the
expected payoff maximizing best response of one player to every other player.

For each game play that involves a legitimate strategy, an attacking strat-
egy, and a defense strategy, we can get three payoffs for the legitimate user,
the attacker, and the system, respectively. We denote the payoffs by a 3-tuple
〈L, A, D〉. “L” is the legitimate user’s payoff, “A” is the attacker’s payoff, and
“D” is the system’s payoff. Note that each payoff 3-tuple is associated with a
strategy 3-tuple which records the corresponding legitimate, attack, and de-
fense strategies. Based on the experimental results of multiple game plays, we
can get a set of payoff 3-tuples, which is called the payoff list. In accordance
with the definition of Nash equilibria, we use the following steps to calculate
the Nash equilibria:

(1) In the payoff list, for each legitimate strategy and attack strategy combina-
tion, we look for the defense strategies that give the highest payoff to the
system. The resulting strategy 3-tuples forms strategy sublist 1.

(2) In the payoff list, for each legitimate strategy and defense strategy combi-
nation, we look for the attack strategies that give the highest payoff to the
attacker. The resulting strategy 3-tuples forms strategy sublist 2.

(3) In the payoff list, for each defense strategy and attack strategy combination,
we look for the legitimate strategies that give the highest payoff to the
legitimate user. The resulting strategy 3-tuples forms strategy sublist 3.

(4) Every strategy 3-tuple in the intersection of sublist 1, sublist 2, and sublist 3
is a Nash Equilibrium.

It should be noticed that even in the same experimental environment, we
may get different results in each experiment. Due to experiment errors, when
we repeat an experiment, the payoffs of the three players may not be exactly
the same as those produced by the original experiment. For example, in ns2,
when a host is set up to send packets at rate 10 kbps, we cannot guarantee that
the host will send exactly 10 kbps in every experiment. Some minimum errors
usually exist, and the host may send 10.2 kbps or 9.8 kbps. Therefore, when
we calculate the Nash equilibria, we set a relative measurement error. If the
difference between two payoffs is less than the given measurement error, we
view them equivalent to each other.

6.5 Nash Equilibria and Their Attack Strategy Implications

We get 42 Nash equilibria in the experiments when the relative measurement
error is 0.005.7 And some of them are shown in Table II.

We found that several interesting and fresh attack strategy inferences can
be obtained from the distributions of the set of equilibria. In particular,

(1) In terms of the traffic pattern, the distribution is shown in Table III. “Dest”
means the aggregate property is destination address prefix. “DestPatt”

7When we reduce the relative measurement error, we get fewer Nash equilibria but the distributions
of the Nash equilibria are almost the same.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 33

Table II. Nash Equilibrium Strategies

System Strategy Legitimate Strategy Attacking Strategy

Target-drop-rate = 0.03 RATE1, ManygoodFewpoor Few, 35, CBR, One aggregate
Target-drop-rate = 0.03 RATE1, ManygoodManypoor Many, 30, CBR, One aggregates
Target-drop-rate = 0.03 RATE1, ManygoodFewpoor Many, 30, CBR, One aggregate
Maximum session = 5 RATE2, ManygoodManypoor Many, 35, CBR, Multiple aggregates
Maximum session = 5 RATE2, ManygoodManypoor Many, 30, EXP, Multiple aggregates
Maximum session = 5 RATE2, ManygoodManypoor Many, 35, EXP, Multiple aggregates
Maximum session = 5 RATE2, ManygoodManypoor Many, 45, EXP, Multiple aggregates

Table III. Nash Equilibrium Distribution under
Different Attacking Patterns

Aggregate Property CBR EXP ICMP Mixed

DEST 0.09 0.50 0.27 0.14
DESTPATT 0.38 0.25 0 0.38

means that the aggregate property is destination address prefix plus traffic
pattern. Table III shows that the attacker is more likely to use EXP traffic.
In this way, he has more chances to stay at a Nash equilibrium since 50%
Nash equilibria occur when the traffic pattern is EXP. When the aggregate
is DESTPATT, obviously, the attacker prefers to use the same traffic patterns
as those used by poor and good users.

(2) The distribution under bad-to-poor ratio is shown in Table IV. Surprisingly,
the distribution shows that the attacker is most unlikely to use a high ra-
tio. Some people may believe that higher bad-to-poor ratio should make the
attack more successful since more packets will be flooded to the victim(s).
However, our analysis of Nash equilibria distributions shows that the at-
tacker has better opportunities to converge to a Nash equilibrium strategy
with low bad-to-poor ratio. We believe that an important reason for this
phenomenon is because our DDoS game is not a zero-sum game.

(3) The distribution under different combinations of the number of zombies,
poor hosts and good hosts is shown in Table V. In the table, “F” means
“Few” and “M” means “Many”. “FMF” means “FewgoodManypoorFewbad”.
The table indicates that the attacker prefers to use as many zombies as
possible, which is consistent with the common sense of DDoS attacks.

(4) The distribution under different defense strategies indicates that most
Nash equilibria occur when the target-drop-rate is 0.03 or when the max-
number-of-sessions is 5. The probability that Nash equilibria occur under
target-drop-rate 0.03 is 0.45, and under max-number-of-session 5 is 0.36.
Hence, to be more resilient, the system can increase the number of sessions
and decrease the target-drop-rate. Our analysis also shows that the impact
of other defense strategy parameters on this distribution is minimum.

(5) Based on the set of Nash equilibria calculated and Figure 7, we can get
the upper bounds of the attacking capacity of the attacker and the upper
bounds of the assurance capacity of the defense system under different net-
work scenarios. These upper bounds are shown in Table VI. In particular,

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

34 • P. Liu et al.

Table IV. Nash Equilibrium Distribution under
Different Attacking Ratios

Aggregate Property 30 35 40 45 50

DEST 0.23 0.32 0.14 0.09 0.23
DESTPATT 0.50 0 0.13 0.25 0.13

Table V. Nash Equilibrium Distribution under Different Number of Users

Aggregate Property FFF FFM FMF FMM MFF MFM MMF MMM

DEST 0 0 0 0 0 0.09 0.55 0.36
DESTPATT 0.12 0 0.13 0.13 0 0 0.38 0.25

Table VI. Upper Bounds of the Assurance Capacity and
Attacking Capacity

Network Scenario Attacking Capacity Assurance Capacity

RATE1 0.2076 0.3941
RATE2 0.2668 0.3820
RATE3 0.2862 0.3320

the upper bounds of the assurance capacity tell us how well the system (i.e.,
pushback) is resilient to DDoS attacks. The upper bounds of the attacking
capacity tell us how serious the damage could be in the worst case. Accord-
ing to the definition of payoff function, the highest attacking capacity is 1
and the highest defense capacity is θ , which is 0.5 in the paper. We use dif-
ferent normal traffic to the victim to represent different network scenarios
in the paper. When the traffic rate is very low, such as RATE1, no matter how
hard the attacker tries, the highest attacking capacity he could get is only
0.2076. And the highest assurance capacity of the defense system is 0.3941.
When the traffic rate is high, such as RATE3, the highest attacking capacity is
0.2862.

6.6 Converging to Nash Equilibria

If the attacker, legitimate user, and defense system are rational, they should
take a Nash equilibrium (optimal) strategy. Even if they did not choose a
Nash equilibrium strategy at the very beginning, incentives may automati-
cally “guide” them to converge their ad hoc strategies to a Nash equilibrium
strategy at a later stage. In this section, we give a simple example in Figure 10
to explain how a Nash equilibrium can be dynamically converged.

We assume that the legitimate user, attacker, and system start from
state 1. The strategies and payoffs are listed in the sequence of legitimate
user, attacker, and defense system in box 1, where 〈MF〉 means MANYPOOR-
FEWGOOD, 〈F,CBR,35〉 means FEWBAD, CBR traffic and ratio = 35. More-
over, we assume that each player may change his strategy, while strat-
egy changes are not simultaneously done, and the outcome of each strategy
change can be observed by the other players before another strategy change is
performed.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 35

Fig. 10. Converging to Nash equilibrium strategies.

In state 1, based on who is going to perform the next strategy change, the
state may transit to different states. In particular, (a) if it is the attacker’s turn,
since he is not satisfied with his attack effects and since he finds that if he
changes his strategy to 〈M,EXP,50〉, he can maximize his attack effects, he may
take this strategy and transform the state to state 2. (b) If it is the system’s
turn, since the system is not satisfied with its resilience either and changing its
strategy to 〈DESTPATT, target-drop-rate 0.03〉 can maximize its resilience, the
system may take this strategy and transform the state from state 1 to state
3. (c) Finally, if it is the legitimate user’s turn, he will probably stay in state 1
without changing his strategy since his payoffs will decrease if he changes his
strategy unilaterally.

In state 2, the system finds it can maximize its resilience if it changes its
strategy to 〈target-drop-rate 0.03〉, so the system may take this strategy and
transform the state to state 4. Similarly, in states 3 and 4, the attacker wants
to change his strategy to 〈M,CBR,30〉 to maximize his attack effects, and the
state finally transits to 5.

In state 5, everyone finds that if he changes his strategy unilaterally, his
payoffs will decrease. Therefore, no one wants to change his strategy. Not sur-
prisingly, this strategy 3-tuple in state 5 is a Nash equilibrium, as shown in
Table II. The example shows that no matter what the start state is, the three
players can ultimately “agree” on a Nash equilibrium to maximize their own
incentives. Note that if there are more than one Nash equilibrium points, the
convergence state would be dependent on the starting state.

6.7 Using Attack Strategy Inferences to Improve the Network’s Resilience

One side benefit of AIOS modeling and inferring is that the distribution of Nash
equilibria and the payoff results could be used to optimize the system’s defense
posture for more resilience. In particular, we found that to better defend against
DDoS attacks, the following issues need to be concerned by the network in its
pushback defense:

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

36 • P. Liu et al.

(a) Normal Bandwidth Usage Planning. We measure the degree of normal
bandwidth usage by the ratio between the bandwidth occupied by the
legitimate traffic and the total network bandwidth. Our results show that
the higher the usage degree is, the lower the network’s resilience will be.
When the usage degree is high, more legitimate packets would be consid-
ered as malicious packets. When the usage degree is 0.05, less than 5%
legitimate packets will be dropped no matter how the attacker changes
his strategies. However, when the usage degree is 0.25, about 30% legiti-
mate packets will be dropped. Hence, the degree of normal bandwidth us-
age should be carefully planed for good resilience. In practice, based on the
profile of the legitimate traffics and their availability requirements, the sys-
tem should be able to figure out the suitable degree of normal bandwidth
usage.

(b) Target Drop Rate Selection. The lower the target drop rate is, the less pack-
ets will be sent to the output queue when a router is doing pushback,
and more packets will be dropped by the defense system. From Figure 7,
we found a lower drop rate is better than a higher drop rate. But it is
hard to say if a lower drop rate is always better than a higher drop rate,
since lower drop rates may cause more legitimate packets to be dropped
by the system, especially when the legitimate traffic volume is high. To
find the best drop rate, we give the simulation results of the assurance ca-
pacity of the system and the attacking capacity under different drop rate
{0, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08} in Figure 11. We found
when the percentage of poor traffic in the whole bandwidth is low, such as
15%, a lower drop rate is always better for the system even when the legiti-
mate traffic rate is high. When the percentage of poor traffic goes up to 25%,
the system gets the best payoffs at the highest target drop rate. Hence, the
target drop rate is dependent upon the percentage of poor traffic. When the
percentage of poor traffic is low, the system should use a low drop rate, and
vice versa. In practice, to find out the suitable target drop rate, the system
needs to analyze the legitimate traffic when there are no attacks to get a
profile of the legitimate traffic.

(c) Configuration of the Number of Rate-Limited Sessions. When the number
of rate-limited sessions is less than the number of the attacking aggre-
gates, there will be some malicious traffic not rate limited and the sys-
tem will be jeopardized by these attack traffic. Hence, we need to make
the number of rate limited sessions larger than the number of aggregates
of the attacking traffic. Some people may believe that having too many
rate-limited sessions is not good, since the legitimate traffic may be consid-
ered as malicious traffic and get rate limited. However, since the volume
of malicious traffic is much larger than the normal traffic, our experiment
results show that a larger number of rate-limited sessions do not affect
the system’s resilience seriously. In the real world, it is usually hard to
predict accurately the number of attacking aggregates, therefore, we sug-
gest the system just set a large number of rate-limited session for better
resilience.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 37

Fig. 11. The attacker’s and defense system’s payoffs under different drop rates.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

38 • P. Liu et al.

Table VII. The Distribution of Nash Equilibria under Different Topologies

Topology cont4 cyct10 dr0.03 dr0.07 ft10 ft30 default sess5 rt15 rt50

PUSHBACK 0 0 0.45 0 0 0.14 0 0.36 0 0.05
BRITETOPO 0.02 0 0.38 0 0 0 0.08 0.39 0.06 0.06

6.8 Experiments with a Larger Network Topology

So far, our simulations are based on the original pushback topology composed
of 64 hosts and 22 routers. To see whether the characteristics of the simu-
lated DDoS attack/defense game (e.g., characteristics of the payoffs and Nash
equilibria) and the corresponding conclusions we have drawn can still hold in
a large scale DDoS attack/defense game, we have done some experiments with
a larger network topology. In particular, we use Brite [Medina et al. 2001], a
popular topology generator, to create a network with 101 routers and more
than 1000 hosts. We randomly select 200 hosts as zombies. To compare the ex-
periment results with those generated with the pushback topology, we let the
attacking bit rate (of each zombie) be the same as before, and we also let the
legitimate bit rate be the same as before.

We found that with the Brite topology, the legitimate user’s and system’s
payoffs are slightly smaller than those with the pushback topology, but the
attacker’s payoffs are slightly larger than those with the pushback topology.
We believe the reason is mainly due to the fact that the pushback mechanism
works in slightly different ways under different topologies. Nevertheless, the
absolute values of payoffs are not very important for this comparison, and we
are mainly concerned with the impact of the game parameters on the players’
payoffs and the distributions of the Nash Equilibria.

Through a comparison study, we found that compared with the DDoS at-
tack/defense game with the pushback topology, the impact of the game param-
eters on the players’ payoffs is of almost the same set of properties, and the
distributions of the Nash equilibria, as shown in Table VII, are very similar.
For example, with the Brite topology, (a) the legitimate user always gets the
highest payoffs when the target-drop-rate is 0.03 and gets the lowest payoffs
when the target-drop-rate is 0.07; and (b) most Nash equilibria occur when the
target-drop-rate is 0.03 or when the max-number-of-sessions is 5. These en-
couraging results, though still preliminary, show that the set of attack strategy
characteristics (inferences) we have identified (computed) about DDoS attack-
ers should hold in a large network and can be fairly consistent with the IOS of
real-world DDoS attackers against the Internet.

7. CONCLUSION AND FUTURE WORK

In this paper, we present a general incentive-based method to model AIOS
and a game-theoretic approach to infer AIOS. On one hand, we found that the
concept of incentives can unify a large variety of attacker intents; the concept of
utilities can integrate incentives and costs in such a way that attacker objectives
can be practically modeled. On the other hand, we developed a game-theoretic
AIOS formalization which can capture the inherent interdependency between

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 39

AIOS and defender objectives and strategies in such a way that AIOS can be
automatically inferred. Moreover, we developed a taxonomy of game-theoretic
AIOS inference models. Finally, we use a specific case study on DDoS attack
and defense to show how attack strategies can be inferred in real-world attack–
defense scenarios.

Nevertheless, our work in inferring AIOS is still preliminary and several
important research issues need to be further explored in order to get better
AIOS inferences. In particular, in our future work (a) we would investigate
model level inference accuracy analysis and sensitivity analysis that can model
and predict the influence of incomplete information, asymmetric information
(between the attacker and system), and uncertainty; (b) we would investigate
approximate algorithms that can do optimal, quantitative trade-offs between
inference precision and efficiency during Nash equilibria estimation; (c) we
would investigate AIOS inference models beyond Bayesian games, that is, the
other type of AIOS inference models identified by our taxonomy.

APPENDIX: A SIMPLE REVIEW OF GAME THEORY

The normal-form representation of an n-player game specifies the players’ strat-
egy spaces S1, . . . , Sn and their payoff functions u1, . . . , un. We denote this game
by G = {S1, . . . , Sn; u1, . . . , un}. In this game, the strategies (s∗

1, . . . , s∗
n) are a

Nash equilibrium if, for each player i, s∗
i is (at least tied for) player i’s best

response to the strategies specified for the n − 1 other players, (s∗
1, . . . , s∗

i−1,
s∗
i+1, . . . , s∗

n). That is, s∗
i solves maxsi∈Si ui(s∗

1, . . . , s∗
i−1, si, s∗

i+1, . . . , s∗
n).

A pure strategy for player i is an element of set Si. Suppose Si = {si1, . . . , sik},
then a mixed strategy for player i is a probability distribution pi = (pi1, . . . , pik),
where o ≤ pik ≤ 1 for k = 1, . . . , K and pi1 +· · ·+ pik = 1. Although a game does
not always have a pure strategy Nash equilibrium, Nash [1950] proved that a
game always has at least one mixed strategy Nash equilibrium.

The static Bayesian game theory is mentioned in Section 5.2. Note that a
Bayesian Nash equilibrium can be defined in a way very similar to a normal
Nash equilibrium.

Given a stage game G (e.g., a static Bayesian game), let G(T) denote the
finitely repeated game in which G is played T times, with the outcomes of all
preceding plays observed before the next play begins. The payoffs for G(T) are
simply the sum of the payoffs from the T stage games. If the stage game G
has a unique Nash equilibrium then, for any finite T , the repeated game G(T)
has a unique subgame-perfect outcome: the Nash equilibrium of G is played in
every stage.

Moreover, in a finitely repeated game G(T), a player’s multistage strategy
specifies the action the player will take in each stage, for each possible history
of play through the previous stage. In G(T), a subgame beginning at stage t +1
is the repeated game in which G is played T − t times, denoted by G(T − t).
There are many subgames that begin at stage t + 1, one for each of the possible
histories of play through stage t. A Nash equilibrium is subgame-perfect if the
player’s strategies constitute a Nash equilibrium in every subgame.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

40 • P. Liu et al.

Besides repeated games, there are several types of more general dynamic
games. For example, in multistage dynamic games, a different game can be
played in each stage instead of playing the same game repeatedly. In dynamic
observe-then-act games, players can take actions in turn instead of taking
actions simultaneously. Nevertheless, the definitions of strategies, subgames,
and subgame-perfect Nash equilibriums are very similar to those in repeated
games.

Finally, a standard formal definition of stochastic games is as follows. An n-
player stochastic game � is a tuple 〈 S, A1, . . . , An, r1, . . . , rn, p 〉, where S is the
state space, Ai is the action space of player i for k = 1, . . . , n, ri : S × A1 × · · · ×
An → R is the payoff function for player i, p : S × A1 ×· · ·× An → ∇ is the tran-
sition probability map, where ∇ is the set of probability distributions over state
space S [Thusijsman 1992]. In �, a strategy π = (π0, . . . , πt , . . .) is defined over
the entire course of the game, where πi is called the decision rule at time t. A de-
cision rule is a function πt : Ht → σ (Ai), where Ht is the space of possible histo-
ries at time t, with each Ht ∈ Ht , Ht = (s0, a1

0, . . . , an
0 , . . . , st−1, a1

t−1, . . . , an
t−1, st),

and σ (Ai) is the space of probability distributions over agent i’s actions. π is
called a stationary strategy if πt = π for all t, that is, the decision rule is indepen-
dent of time. Otherwise, π is called a behavior strategy. In �, a Nash equilibrium
point is tuple of n strategies (π1

∗ , . . . , πn
∗) such that for all s ∈ S and i = 1, . . . , n,

vi(s, π1
∗ , . . . , πn

∗) ≥ vi(s, π1
∗ , . . . , π i−1

∗ , π i, π i+1
∗ , . . . , πn

∗) for all π i ∈ Pii, where �i
is the set of strategies available to agent i.

REFERENCES

BROWNE, H., ARBAUGH, W. A., MCHUGH, J., AND FITHEN, W. L. 2001. A trend analysis of exploitations.
In Proceedings of the 2001 IEEE Symposium on Security and Privacy. 214–229.

BROWNE, R. 2000. C4i defensive infrastructure for survivability against multi-mode attacks. In
Proceedings of 21st Century Military Communication-Architectures and Technologies for Infor-
mation Superiority.

BURKE, D. 1999. Towards a Game Theory Model of Information Warfare. Tech. rep., Air force
Institute of Technology. Master’s Thesis.

CLARKE, E. H. 1971. Multipart pricing of public goods. Public Choice 11, 17–33.
CONITZER, V. AND SANDHOLM, T. 2002. Complexity Results About Nash Equilibria. Tech. rep.,

Carnegie Mellon University. CMU-CS-02-135.
CUPPENS, F. AND MIEGE, A. 2002. Alert correlation in a cooperative intrusion detection framework.

In Proceedings of the 2002 IEEE Symposium on Security and Privacy.
DEBAR, H. AND WESPI, A. 2001. Aggregation and correlation of intrusion detection alerts. In Pro-

ceedings of the 2001 International Symposium on Recent Advances in Intrusion Detection. 85–103.
FEIGENBAUM, J., PAPADIMITRIOU, C., SAMI, R., AND SHENKER, S. 2002. A BGP-based mechanism for

lowest-cost routing. In Proceedings of the 2002 ACM Symposium on Principles of Distributed
Computing.

GORDON, L. A. AND LOEB, M. P. 2001. Using information security as a response to competitor
analysis systems. Commun. ACM 9, 44.

GROVES, T. 1973. Incentives in teams. Econometrica 41, 617–663.
HESPANHA, J. P. AND BOHACEK, S. 2001. Preliminary results in routing games. In Proceedings of

the 2001 American Control Conference.
IOANNIDIS, J. AND BELLOVIN, S. M. 2002. Implementing pushback: Router-based defense against

ddos attacks. In Proceedings of the 2002 Annual Network and Distributed System Security Sym-
posium.

KOLLER, D. AND MILCH, B. 2001. Multi-agent influence diagrams for representing and solving
games. In Proceedings of the 2001 International Joint Conference on Artificial Intelligence.

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

P1: IAZ
ACMJ030-01 ACM-TRANSACTION February 7, 2005 23:34

Incentive-Based Modeling and Inference of AIOS • 41

LANDWEHR, C. E., BULL, A. R., MCDERMOTT, J. P., AND CHOI, W. S. 1994. A taxonomy of computer
program security flaws. ACM Comput. Surv. 26, 3.

LIU, P., JAJODIA, S., AND MCCOLLUM, C. D. 2000. Intrusion confinement by isolation in information
systems. J. Comput. Security 8, 4, 243–279.

LUNT, T. F. 1993. A survey of intrusion detection techniques. Computers & Security 4, 12 (June),
405–418.

LYE, K. AND WING, J. M. 2002. Game strategies in network security. In Proceedings of the 2002
IEEE Computer Security Foundations Workshop.

MALKHI, D. AND REITER, M. K. 2000. Secure execution of java applets using a remote playground.
IEEE Trans. Software Eng. 26, 12.

MAS-COLELL, A., WHINSTON, M. D., AND GREEN, J. R. 1995. Microeconomic Theory. Oxford Univer-
sity Press, Oxford, UK.

MCHUGH, J. 2001. Intrusion and intrusion detection. Int. J. Inf. Security 1, 14–35.
MEDINA, A., LAKHINA, A., MATTA, I., AND BYERS, J. 2001. An approach to universal topology gen-

eration. In Proceedings of the International Workshop on Modeling, Analysis and Simulation of
Computer and Telecommunications Systems.

MESTERTON-GIBBONS, M. 1992. An Introduction to Game-Theoretic Modeling. Addison-Wesley
Publishing, Reading, MA.

MUKHERJEE, B., HEBERLEIN, L. T., AND LEVITT, K. N. 1994. Network intrusion detection. IEEE
Network, 26–41.

NASH, J. 1950. Equilibrium points in n-person games. In Proceedings of the National Academy
of Sciences. 48–49.

NING, P., CUI, Y., AND REEVES, D. S. 2002. Constructing attack scenarios through correlation of
intrusion alerts. In Proceedings of the 2002 ACM Conference on Computer and Communications
Security.

NISAN, N. AND RONAN, A. 2001. Algorithmic mechanism design. Games and Economic Behavior 35.
NS2. The network simulator. http://www.isi.edu/nsnam/ns/.
SYVERSON, P. F. 1997. A different look at secure distributed computation. In Proceedings of the

1997 IEEE Computer Security Foundations Workshop.
THUSIJSMAN, F. 1992. Optimality and Equilibria in Stochastic Games. Centrum voor Wiskunde

en Informatica, Amsterdam.
VICKREY, W. 1961. Counterspeculation, auctions, and competitive sealed tenders. J. Finance 16,

8–37.
WANG, X. AND REITER, M. 2003. Defending against denial-of-service attacks with puzzle auctions.

In Proceedings of the 2003 IEEE Symposium on Security and Privacy.
WELLMAN, M. P. AND WALSH, W. E. 2001. Auction protocols for decentralized scheduling. Games

and Economic Behavior 35.
XU, J. AND LEE, W. 2003. Sustaining availability of web services under distributed denial of service

attacks. IEEE Trans. Comput. 52, 4 (Feb.), 195–208.
ZOU, C., GONG, W., AND TOWSLEY, D. 2002. Code red worm propagation modeling and analysis. In

Proceedings of the 2002 ACM Conference on Computer and Communications Security.

Received May 2004; revised September 2004; accepted September 2004

ACM Transactions on Information and System Security , Vol. 8, No. 1, February 2005.

