
This paper is included in the Proceedings of the 
2015 USENIX Annual Technical Conference (USENIC ATC ’15).

July 8–10, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-225

Open access to the Proceedings of the 
2015 USENIX Annual Technical Conference 
(USENIX ATC ’15) is sponsored by USENIX.

Between Mutual Trust and Mutual Distrust: 
Practical Fine-grained Privilege Separation  in 

Multithreaded Applications
Jun Wang, The Pennsylvania State University; Xi Xiong, Facebook Inc. and  

The Pennsylvania State University;  Peng Liu, The Pennsylvania State University

https://www.usenix.org/conference/atc15/technical-session/presentation/wang_jun



USENIX Association  2015 USENIX Annual Technical Conference 361

Between Mutual Trust and Mutual Distrust: Practical Fine-grained
Privilege Separation in Multithreaded Applications

Jun Wang, Xi Xiong†1, Peng Liu
Pennsylvania State University, Facebook Inc.†

Abstract
Threads in a multithreaded process share the same ad-

dress space and thus are implicitly assumed to be mutu-
ally trusted. However, one (compromised) thread attack-
ing another is a real world threat. It remains challenging
to achieve privilege separation for multithreaded applica-
tions so that the compromise or malfunction of one thread
does not lead to data contamination or data leakage of
other threads.

The Arbiter system proposed in this paper explores
the solution space. In particular, we find that page table
protection bits can be leveraged to do efficient reference
monitoring if data objects with the same accessibility stay
in the same page. We design and implement Arbiter
which consists of a new memory allocation mechanism, a
policy manager, and a set of APIs. Programmers specify
security policy through annotating the source code. We
apply Arbiter to three applications, an in-memory key/-
value store, a web server, and a userspace file system,
and show how they can benefit from Arbiter in terms of
security. Our experiments on the three applications show
that Arbiter reduces application throughput by less than
10% and increases CPU utilization by 1.37-1.55×.

1 Introduction
While multithreaded programming brings clear advan-

tages over multiprocessed programming, the classic mul-
tithreaded programming model has an inherent security
limitation, that is, it implicitly assumes that all the threads
inside a process are mutually trusted. This is reflected by
the fact that all the threads run in the same address space
and thus share the same privilege to access resources, es-
pecially data.

However, one thread attacking another thread of the
same application process is a real world threat. Here are
a few examples: (1) For the multithreaded in-memory
key/value store Memcached [9], it has been shown that
many large public websites had left it open to arbitrary
access from Internet [2], making it possible to connect to
(a worker thread of) such a server, dump and overwrite
cache data belonging to other threads [7]. In addition,
vulnerabilities [11, 10] could be exploited by an adver-
sary (e.g., buffer overflow attack via CVE-2009-2415) so
that the compromised worker thread can arbitrarily ac-
cess data privately owned by other threads. (2) For the
multithreaded web server Cherokee [3], an attacker could

1work was done while this author was at Pennsylvania State Univer-
sity.

exploit certain vulnerabilities (e.g., format string CVE-
2004-1097) to inject shellcode and thus access the private
data of another connection served by a different thread.
Meanwhile, logic bugs (e.g., Heartbleed [8]) might ex-
ist so that an attacker can fool a thread to steal private
data belonging to other threads. (3) For the multithreaded
userspace file system FUSE [6], logic flaws or vulner-
abilities might also allow one user to read a buffer that
contains private data of another user, which violates the
access control policy. This is especially critical for en-
crypted file systems built upon FUSE (e.g., EncFS [5]),
wherein data can be stored as cleartext in memory and a
malicious user could enjoy a much easier and more ele-
gant way to crack encrypted files than brute force.

A common characteristic of the above applications is
that they may concurrently serve different users or clients,
which represent distinct principals that usually do not
fully trust each other. This characteristic directly con-
tradicts the “threads-are-mutually-trusted” assumption.
Therefore, a fundamental multithreaded application secu-
rity problem arises, that is, how to retrofit the classic mul-
tithreaded programming model so that the “threads-are-
mutually-trusted” assumption can be properly relaxed?
In other words, could different principal threads have dif-
ferent privileges to access shared data objects so that the
compromise or malfunction of one thread does not lead
to data contamination or data leakage of another thread?

1.1 Prior Work and Our Motivation
From a programmer’s point of view, we identify two

kinds of privilege separation problems. The first prob-
lem is to split a monolithic application into least-privilege
compartments. For example, an SSH server only requires
root privilege for its monitor (listening to a port and per-
forming authentication), rather than the slave (process-
ing user commands). Since the two parts are usually
closely coupled, developers in the old days simply put
the two into one program. Due to the emergence of buffer
overflow and other relevant attacks against the root privi-
leged part, however, this monolithic program design is no
longer appropriate. Separation of the two parts into dif-
ferent privileged processes with IPC mechanisms in be-
tween (e.g., via pipes) becomes a more appropriate ap-
proach. Actually, OpenSSH has already adopted this ap-
proach.

The second problem is to do fine-grained privilege sep-
aration in multithreaded applications. As introduced ear-
lier, threads in a multithreaded program were implicitly
assumed to be mutually trusted. However, the evolving



362 2015 USENIX Annual Technical Conference USENIX Association

of multithreaded applications tends to break this assump-
tion by concurrently serving different principals. Usually
the principals do not fully trust one another.

The first problem has been studied for many years
[29, 27, 19, 15, 14]. Provos et al. [27] pioneered the
methodology and design of privilege separation. Priv-
trans [15] can automatically partition a program into a
privileged monitor and an unprivileged slave. Wedge [14]
combines privilege separation with capabilities to do
finer-grained partitioning. For the second one, however,
there are no systematic research investigations that we are
aware of.

This paper focuses on the second privilege separation
problem. Our goal is to apply least privilege principle on
(shared) data objects so that a data object can be read-
writable, read-only, or inaccessible to different threads at
the same time and, more importantly, to require minimum
retrofitting effort from programmers. First of all, let’s
look at existing mechanisms to see whether they can be
applied to solve this problem.

1) Process isolation. Process isolation is the essen-
tial idea behind existing approaches to the first privilege
separation problem. OpenSSH [27] and Privtrans [15]
leverage process address space isolation while using IPC
to make the privileged part and the unprivileged part
work together. However, neither of them handles data
object granularity. In addition, when there are many
principal threads, IPC might become very inefficient.
Wedge [14] advances process isolation with new ideas.
It creates compartments with default-deny semantics and
maps shared data objects into appropriate compartments.
However, Wedge is proposed to address the first privilege
separation problem, which has very different nature from
the problem we consider, as shown in Table 1. Due to
these differences, Wedge’s all-or-nothing privilege model
with default-deny semantic is not very applicable to a
multithreaded program, wherein threads by default share
lots of resources. To apply Wedge on our problem, one
still needs to address the challenges considered in this pa-
per.

Manually retrofitting a multithreaded program to use
multiple processes is possible. However, commodity
shared memory mechanisms, such as shm open and
mmap, do not allow one thread to specify the access right
of another thread on the shared memory. Alternatively,
designing a sophisticated one-on-one message passing
scheme (e.g., using Unix socket) can enforce more con-
trol on data. However, the programming difficulty and
complexity (e.g., process synchronization, policy han-
dling and checking) could be much higher and thus re-
quires lots of retrofitting effort from programmers.

Another notable idea is to redesign an application from
scratch using a multi-process architecture, as what is
done in Chrome [4]. However, one of our quick survey

1st PS Problem (OpenSSH [27],
Privtrans [15], Wedge [14], etc.)

2nd PS Problem (Arbiter)

Sequential invocation of compartments
with different privileges

Concurrent execution

Only privileged process/thread can
access sensitive data

Data shared among different
(unprivileged) principal threads

Static capability policy Dynamic (label) policy

Table 1: Different assumptions of 1st and 2nd privilege separa-
tion (PS) problem

reveals that over 80% of existing web servers are multi-
threaded. It is impractical to redesign all those applica-
tions that are already multithreaded.

2) Software fault isolation. Address space isolation
puts each process into a protection domain, but does not
do finer-grained isolation inside an address space. Soft-
ware fault isolation [30, 17] did an innovative work on
making a segment of address space as a protection do-
main by using software approaches like a compiler. Nev-
ertheless, it is difficult for SFI to map program data ob-
jects (e.g., array) into a protection domain: address-based
confinement and static instrumentation cannot easily deal
with dynamically allocated data. LXFI [24] instruments
kmalloc so that the principal and address information of
dynamic kernel data objects are made aware to the ref-
erence monitor. However, this is done only to kernel
modules and kernel data. In addition, LXFI focuses on
integrity and does not check memory reads due to per-
formance reasons. However, our goal is to prevent both
unauthorized reads and writes. Therefore, we need to
catch invalid reads as well.

3) Other related mechanisms. We investigate four
additional types of related mechanisms to see whether
they can handle our problem. (a) OS abstraction level ac-
cess control has been extensively studied (e.g., SELinux
[23], AppArmor [1], Capsicum [31]). However, these
mechanisms treat a process/thread as an atomic unit and
do not deal with data objects “inside” a process. So a
granularity gap exists between these techniques and our
goal. (b) HiStar [33] is a from-scratch OS design of
decentralized information flow control (DIFC). Perhaps
HiStar can meet our goal of privilege separation on data
objects. However, HiStar does not apply to commod-
ity systems. Besides, to use HiStar to achieve our goal,
there still needs to be a major change in the program-
ming paradigm. Flume [20] implements DIFC in Linux.
However, it focuses on OS-level abstractions such as pro-
cesses, files, and sockets and thus does not address the
privilege separation problem at data object granularity
within a multithreaded program. It can be complemen-
tary to the approach proposed in this paper. (c) With
the tagged memory in Loki [34] or the permission ta-
ble lookup mechanism in MMP [32], as new features to
the CPU, access to each individual memory word can be
checked. Both methods can enforce privilege separation
policy on data objects. However, they require architec-
tural changes to commodity CPUs. (d) Language-based



USENIX Association  2015 USENIX Annual Technical Conference 363

solutions, such as Jif [26], Joe-E [25], and Aeolus [16]
can realize information flow control and least privilege
at the granularity of program data object. However, they
need to rely on type-safe languages like Java. As a re-
sult, programmers have to rewrite legacy applications not
originally developed in a type-safe language.
1.2 Challenges and Our Approach

We would like to solve this problem in a new way
based on this insight: we find that page table protection
bits can be leveraged to do efficient reference monitor-
ing, if the privilege separation policy can be mapped to
those protection bits. We find that this mapping is pos-
sible through a few new kernel primitives and a tailored
memory management library. However, doing so still in-
troduces three major challenges:
• Mapping Challenge (C1) In the current multithreaded

programming paradigm, all the threads in the same
process share one set of page tables. This convention,
however, would disable the needed mapping from priv-
ilege separation policy to protection bits.

• Allocation Challenge (C2) To make the protection
bits work, data objects that demand distinct privileges
cannot be simply allocated onto the same page because
this will result in the same access rights. Existing
memory management algorithms have difficulty meet-
ing such a requirement because they were not designed
to enforce privilege separation.

• Retrofitting Challenge (C3) It is challenging to mini-
mize programmers’ retrofitting effort to communicate
complex privilege separation policies with the under-
lying system without modifying the source code dras-
tically.
We present Arbiter to address the above challenges.

To address the mapping challenge (C1), we associate
a separate page table to each thread and create a new
memory segment named Arbiter Secure Memory Seg-
ment (ASMS) for all threads. ASMS maps the shared
data objects onto the same set of physical pages and set
the page table permission bits according to the privilege
separation policy. To deal with the allocation challenge
(C2), we design a new memory allocation mechanism to
achieve privilege separation at data-object granularity on
ASMS. To resolve the retrofitting challenge (C3), we pro-
vide a label-based security model and a set of APIs for
programmers to make source-level annotations to express
privilege separation policy. We design and implement Ar-
biter based on Linux, including a new memory allocation
mechanism, a policy manager, and a set of kernel primi-
tives.

We port three types of multithreaded applications to
Arbiter, i.e., an in-memory key/value store (Memcached),
a web server (Cherokee), and a userspace file system
(FUSE), and show how they can benefit from Arbiter
in terms of security. Our own experiences indicate that

porting programs to Arbiter is a smooth procedure. The
changes to the program source code is 0.5% LOC on aver-
age. Regarding performance, our experiments show that
the runtime throughput reduction is below 10% and CPU
utilization increase is 1.37-1.55×.

2 Overview
2.1 Motivating Examples

Programmers have both intended privilege separation
and intended sharing of data objects when writing mul-
tithreaded programs. We classify these intentions into
three categories.
• Category 1: A data object is intended to be exclu-

sively accessed by its creator thread.
Figure 1(a) shows the request processing code snip-

pet from Cherokee. The data object buf is allocated
by a worker thread and then used to store the incoming
packet. Therefore, this data object belongs to that partic-
ular worker thread and other worker threads are not sup-
posed to access it.
• Category 2: A data object is intended to be accessed

by a subset of threads.
Figure 1(b) and 1(c) show the connection handling

code snippets from Memcached. The main thread re-
ceives a network request, allocates a data object item to
store the connection information, selects a worker thread
and then pushes the item into the thread’s connection
queue. The worker thread wakes up, dequeues the con-
nection information and handles the request. Ideally, the
data object item is only intended to be accessed by the
main thread and the particular worker thread, excluding
any other worker thread.
• Category 3: A data object is intended to be shared

among all the threads.
This data sharing intention is commonly seen, es-
pecially on metadata. For instance, the struct

cherokee server and the struct fuse store the
global configurations of Cherokee and FUSE, respec-
tively, and are intended to be accessible to all the threads.

Overall, Category 1 and 2 are two very representative
privilege separation intentions. Unfortunately, there is ac-
tually no such enforcement in real world execution en-
vironments. Only the intention in Category 3 has been
taken care. We propose Arbiter, a general purpose mech-
anism so that every category is respected.

2.2 Threat Model
We consider two types of threats. First, some threads

could get compromised by malicious requests (e.g.,
buffer overflow attacks, shellcode injection, return-to-libc
attacks, ROP attacks). Second, application has certain
logic bugs (a.k.a. logic vulnerabilities [18] or logic flaws
[22]). For example, the logic bug exploited by Heart-
Bleed [8] can potentially lead to a buffer overread attack,



364 2015 USENIX Annual Technical Conference USENIX Association

process_active_connections(cherokee_thread_t *thd) {
...
buf = (char *) malloc (size);
...

 len = recv (SOCKET_FD(socket), buf, buf_size, 0);
...

}

(a) Cherokee-1.2.2

void dispatch_conn_new(...) {
...
CQ_ITEM *item = malloc(sizeof(CQ_ITEM));
...
cq_push(thread->new_conn_queue, item);
...

}

(b) Memcached-1.4.13 Main thread

static void *worker_libevent(...) {
...
item = cq_pop(me->new_conn_queue);
...

}

(c) Memcached-1.4.13 Worker thread
Figure 1: Motivating examples

which allows an attacker to steal sensitive information of
other users from a web server. In reality, both threats can
lead to data leakage and data contamination of a victim
thread, which usually result in the compromise of end
user’s data secrecy and integrity. Besides, we assume
that the application is already properly confined by well-
defined OS level access control policies (e.g., which files
the application can access) using SELinux, AppArmor,
etc. We also assume that the kernel is inside TCB. The
fact that the kernel could be compromised is orthogonal
to the problem we aim to solve.

2.3 Problem Statement
How to deal with the two types of threats through a

generic data object-level privilege separation mechanism
so that all of the three categories of how a data object is
intended to be accessed by threads can get respected?

2.4 System Architecture
Figure 2 shows the architecture of our system. In Ar-

biter, threads are created in a new way, resulting in what
we call Arbiter threads. Arbiter threads resemble tradi-
tional threads in almost every aspect such as shared code
segment (.text), data segment (.data,.bss), and open
files, but they have a new dynamically allocated memory
segment ASMS. To give threads different permissions to
access the same data object, we maintain a separate page
table for each thread and maps the shared data objects
on ASMS to the same set of physical pages. To set the
needed permissions, protection bits inside each page ta-
ble will be set up according to the privilege separation
policy. In kernel, these are realized by the ASMS Man-
agement component, including system call code plus a
set of kernel functions, and the corresponding additions
to the page fault handling routine. Due to ASMS, two ob-
jects with different accessibility will be allocated on two
different pages. By accessibility, we mean which threads
can access an object in what way. However, many pages

Security Manager

RPC
...

User Space
Kernel Space

ASMS  Management

Page Fault Handler

Arbiter API

Arbiter
Thread 1

Arbiter
Thread K

ASMS Library

R
W

R
-

...Page 
Table

Physical 
Memory

Annotations Annotations

ASMS

Figure 2: System architecture. Shaded parts indicate Arbiter’s
trusted computing base (TCB).

Main Thread Thread A Thread B
A’s Data buf – RW –
B’s Data buf – – RW

Shared Data item RW R R

Table 2: Accessibility generated from Figure 1

could end up with being half empty by doing so. Our
solution is to leverage homogeneity, that is, objects with
the same accessibility are put into the same page. Such
memory allocation is achieved by the ASMS Library.

There are three things a thread needs to go through Ar-
biter: (1) memory allocation and deallocation, (2) thread
creation, and (3) policy configuration. For security pur-
pose, Arbiter threads delegate these operations to the Se-
curity Manager running in a different address space via
remote procedure calls (RPC).

To specify security policy, programmers will need to
make annotations to the source code via the Arbiter API
according to our label-based security model. The Secu-
rity Manager will figure out the permissions at runtime
and the page table protection bits will be set up properly
before the corresponding data object is accessed by an
Arbiter thread.

3 Design
3.1 Accessibility

In our system, accessibility means which threads can
access an object in what way. Conceptually, we need
to map the aforementioned three categories of intentions
onto accessibility before we can enforce fine-grained
privilege separation.

Table 2 shows a formally defined accessibility gener-
ated from the motivating examples in Figure 1. Accessi-
bility is defined in terms of a set of threads. Given a set
of threads {th1, · · · , thk}, the accessibility of data object
x is defined as a vector of k elements. For example, the
accessibility vector of A’s data buf is < /0,RW, /0 >. Two
data objects have the same accessibility if and only if they
have the same vector in term of all of the k threads.

3.2 Design Goal
At a high level, our goal is that through Arbiter the

accessibility originated from the privilege separation in-
tentions can be enforced. This goal boils down to the fol-
lowing three design requirements. (1) From a system’s
perspective, separate page tables are required in order to
enforce accessibility vectors and a synchronized virtual-
to-physical mapping is required to make such separation
transparent to the threads. (2) From a program’s perspec-
tive, a smart memory allocation strategy is required in



USENIX Association  2015 USENIX Annual Technical Conference 365

order to bridge the granularity gap between page-level
protection and individual data objects and do it in an effi-
cient way, for which we propose the idea of “same acces-
sibility, same page”. These two requirements lead to the
kernel-level and user-level design of ASMS (§3.3). (3)
From a programmer’s perspective, it is important to cor-
rectly code accessibility in the program without changing
the program drastically. We create a label-based security
model and a set of APIs for this purpose (§3.4). In ad-
dition, how Arbiter converts accessibility into protection
bits is introduced in §3.5. §3.6 discusses the thread cre-
ation and context switch issues incurred by our design.

3.3 ASMS Mechanism
Kernel Memory Region Management. To grant

threads with different permissions to the shared memory,
our initial thought was to leverage the file system access
control mechanism user/group/others to mmap files
with allowed open modes so as to realize different ac-
cess rights. Since this method has to assign a unique
UID for each principal thread, however, it would mess
up the original file access permission configurations. In
addition, mmap cannot automatically do memory alloca-
tion and configuration for multiple sets of page tables in
a single invocation.

We design a new memory abstraction called Arbiter
Secure Memory Segment (ASMS) to achieve efficient
privilege separation. ASMS is a special memory segment
compared to other segments like code, data, stack, heap,
etc. The difference is that when creating or destroying
ASMS memory regions for a calling thread, the operation
will also be propagated to all the other Arbiter threads.
In other words, ASMS has a synchronized virtual-to-
physical memory mapping for all the Arbiter threads, yet
the access permissions (page protection bits Present and
Read/Write) could be different. Furthermore, only the
Security Manager has the privilege of controlling ASMS.
Arbiter threads, in contrast, cannot directly allocate/deal-
locate memory on ASMS. Neither can they modify their
access rights of ASMS data objects on their own.

User-level Memory Management Library. A gran-
ularity gap exists between page-level protection (enabled
by the per-page protection bits) and individual program
data objects. Data objects demanding distinct accessibil-
ity can no longer be allocated on the same page. To this
end, existing memory allocation algorithms (e.g., dlmal-
loc [21]) cannot directly work for ASMS. An intuitive
solution is to allocate one page per data object. However,
this is not preferable mainly because a huge amount of
memory will be wasted if the sizes of data objects are
much smaller than the page size.

We design a special memory allocation mechanism for
ASMS: permission-oriented allocation. The key idea is
to put data objects with identical accessibility onto the
same page, or “same accessibility, same page”. When we

... allocated
free

L1 L2 L1 L3 L2 L1

Bl
oc

ks

Pa
ge

s Chunks

Regular Blocks Large Blocks

Figure 3: A typical memory layout of ASMS. L1/L2/L3 indi-
cate different accessibility.

allocate memory for a new data object x with accessibil-
ity vector v, we search for a page containing data objects
with the same vector v and put x into that page. If that
page is full, we search for another candidate page. If all
candidate pages are full, we allocate a new page and put x
into it. In practice, we allocate from the system one mem-
ory block instead of one page per time so as to save the
number of system calls. Here a memory block means a
contiguous memory area containing multiple pages. Fig-
ure 3 demonstrates this idea (further details in §4.1). In
this way, both memory waste and performance overhead
can be reduced.

3.4 Label-based Security Model
To accommodate programmers’ privilege separation

intentions, we need a security model for specifying and
enforcing accessibility vectors. Our initial attempt was to
load the entire accessibility table into the Security Man-
ager as an access control list (ACL) so that it can check
and determine each thread’s permission for a data object.
However, to regulate each thread’s capability of making
allocation requests (e.g., thread A is not allowed to allo-
cate objects that are accessible by everyone) and to deal
with dynamic policies (e.g., thread A first grants thread
B permission and later on revokes it), ACL is insufficient
and further mechanisms must be employed. It is desirable
to have a unified and flexible security model.

To achieve unification and flexibility, we develop a
label-based security model wherein threads and data ob-
jects are associated with labels so that data access per-
missions and allocation capabilities can be dynamically
derived and enforced. Essentially, it is a special form
of “encoding” of the accessibility table. The basic no-
tions and rules follow existing dynamic information flow
(DIFC) models [33, 28] with a few adaptations. It should
be noted that Arbiter itself is not a DIFC system (see §7
for more discussion).

We use labels to describe the security properties of
principal threads and data objects. A label L is a set that
consists of secrecy categories and/or integrity categories.
For a data object, secrecy categories and integrity cate-
gories help to protect its secrecy and integrity, respec-
tively. For a thread, the possession of a secrecy category
(∗r, where ∗ represents the name of a category) denotes
its read permission to data objects protected by that cat-
egory; likewise, an integrity category (∗w) grants a thread



366 2015 USENIX Annual Technical Conference USENIX Association

the corresponding write permission. Meanwhile, we use
the notion ownership O to mark a thread’s privilege to by-
pass security checks on specific categories. A thread that
creates a category also owns that category (i.e., has the
ownership). Different from threads, data objects do not
have ownership.

We define the rules that govern threads’ permissions
and activities as follows:

RULE 1 – Data Flow: We use LA � LB, to denote that
data can flow from A to B (A and B represent threads or
data objects). This means: 1) every secrecy category in
A is present in B; and 2) every integrity category in B is
present in A. If the bypassing property of ownership is
considered, a thread T can read object A iff: LA −OT �
LT −OT , which can be written as: LA �OT LT . Similarly,
thread T can write object A iff: LT �OT LA.

RULE 2 – Thread Creation: Thread creation is an-
other way of data flow and privilege inheritance. There-
fore, a thread T is allowed to create a new thread with
label L and ownership O iff: LT �OT L,O ⊆ OT . The
new thread is not allowed to modify its own labels.

RULE 3 – Memory Allocation: Memory allocation
also implies that data flows from a thread to the allocated
memory. As the result, a thread T can get a memory ob-
ject allocated on ASMS with label L iff: LT �OT L.

Therefore, one could make the following label assign-
ment to realize the accessibility vectors in Table 2. For
instance, Thread A can read but not write the Shared Data
item because of Litem �OA LA and LA ��OA Litem. Nei-
ther can Thread A create a thread with the Main Thread’s
privilege (OA �⊆ OMain) nor allocate a forged data item
(LA ��OA Litem). As such, our model unifies permission
and capability.

Thread Main A B
label {} {mr} {mr}

ownership {mr,mw} {ar,aw} {br,bw}
Data A’s Data buf B’s Data buf Shared Data item

label {ar,aw} {br,bw} {mr,mw}

The labels are attached by a programmer to the cor-
responding threads or data objects through annotating the
source code via Arbiter API. Appendix A.1 presents a list
of Arbiter API.

3.5 Protection Bits Generation
The Security Manager is responsible for converting la-

bels to page table protection bits. The Security Manager
maintains a real-time registry containing label informa-
tion of every thread and every ASMS memory block. The
conversion happens in two occasions: memory allocation
and thread creation. First, whenever a thread wants to al-
locate memory with certain labels, the Security Manager
determines the permissions for every thread by checking
our label model, and then invokes our system calls to con-
struct and configure ASMS memory regions accordingly.
Second, when a new thread is created, the Security Man-
ager walks through every ASMS memory block, deter-

mines the allowed permissions, and initializes the ASMS
correspondingly.

Note that in Linux a page table entry is not established
until the data on that page is actually accessed. There-
fore, the page fault handler will eventually further con-
vert the permissions stored in the flags of ASMS memory
regions into page table protection bits (further details in
§4.2). As the result, before a data object is accessed by
any thread, the page table protection bits would have been
set up properly.
3.6 Thread Creation and Context Switch

We identify two options to create an Arbiter thread.
Option 1: Conceptually, one can create a new address
space for every new Arbiter thread, reconfigure ASMS
permissions, and disable copy-on-write for all the other
memory segments to retain memory sharing. In this case,
although the context switch between two Arbiter threads
will lead to TLB flush (which is just like the context
switch between two processes), it can be automatically
done by existing kernel procedure and requires no further
code modification.

Option 2: A possible optimization is to create a new set
of page table only for ASMS when creating a new Arbiter
thread. Thus only part of the TLB needs to be flushed dur-
ing context switch between two Arbiter threads. While
this can potentially reduce the TLB-miss rate, it would re-
quire lots of modifications to the kernel, especially on the
context switch procedure to determine the type of con-
text switch, reload the page table for ASMS, and flush
the TLB partially.

In sum, there is a trade-off between “TLB-miss over-
head” and “how much code modification is needed”.
Both options have pros and cons. We take the first option
and our evaluation shows that the performance overhead
is already acceptable.
4 Implementation

We implement Arbiter based on Linux. This section
highlights a few implementation details.
4.1 ASMS Mechanism

Kernel Memory Region Management. To properly
create or destroy ASMS memory regions in the kernel
so as to enlarge or shrink ASMS, we implement a set of
kernel functions similar to their Linux equivalents such
as do mmap and do munmap. The difference is that when
creating or destroying ASMS memory regions for a call-
ing thread, the operation will also be propagated to all the
other Arbiter threads. How to configure the protection
bits is determined by the arguments passed in from our
special system calls (by the Security Manager), including
absys sbrk, absys mmap, and absys mprotect. They
all have similar semantics to their Linux equivalents, but
with additional arguments to denote the permissions.

We add a special flag AB VMA to the vm flags field
of the memory region descriptor (i.e., vm area struct),



USENIX Association  2015 USENIX Annual Technical Conference 367

which differentiates ASMS from other memory seg-
ments. The page fault handler also relies on this flag
to identify ASMS page faults. To make sure that only
the Security Manager can do allocation, deallocation, and
protection modification on ASMS memory regions, we
modify related system calls, such as mmap and mprotect,
to prevent them from manipulating ASMS.

User-level Memory Allocation Library. Built on top
of our special ASMS system calls is our user-level mem-
ory allocation library Memory blocks are sequentially al-
located from the start of ASMS. Some data objects might
have larger size and cannot fit in a regular block. In this
case, large blocks will be allocated backward starting at
the end of ASMS. The pattern of this memory layout is
shown in the top half of Figure 3. Inside each block, we
take advantage of the dlmalloc algorithm [21] to allocate
memory chunks for each data object. The bottom half of
Figure 3 depicts the memory chunks on pages inside a
block. Further details on our allocation/deallocation al-
gorithms can be found in Appendix A.2.

4.2 Page Fault Handling
A page fault on ASMS typically leads to two possible

results: ASMS demand paging and segmentation fault.
ASMS demand paging happens when a Arbiter thread
legally accesses an ASMS page for the first time. In this
case, the page fault handler should find the shared phys-
ical page frame and create and configure the correspond-
ing page table entry for the Arbiter thread. The protec-
tion bits of the page table entry are determined accord-
ing to the associated memory region descriptor. In this
way, subsequent accesses to this page will be automati-
cally checked by MMU and trapped if illegal. This hard-
ware enforced security check significantly contributes to
the runtime performance of Arbiter. An illegal access to
an ASMS page will result in a SIGSEGV signal sent to
the faulting thread. We implement a kernel procedure
do ab page as a subprocedure to the default page fault
handler to realize the above idea.

4.3 Miscellaneous
Application Startup. In Arbiter, an application is al-

ways started by a Security Manager. A Security Manager
first executes and initializes the needed data structures,
such as the label registry. Then, it registers its identity
to the kernel so as to get privileges of performing subse-
quent operations on ASMS. We implement a system call
ab register for this purpose. Next, the Security Man-
ager starts the application using fork and exec, and then
blocks until a request coming from the Arbiter threads.
The application process can create child thread by call-
ing ab pthread create, which is implemented based
on the system call clone. The label and ownership of the
new thread, if not specified, default to its parent’s.

RPC. A reliable RPC connection between Arbiter
threads and the Security Manager is quite critical in our

system. We implement the RPC based on Unix socket. A
major advantage of Unix socket for us is about security:
it allows a receiver to get the sender’s Unix credentials
(e.g., PID), from which the Security Manager is able to
verify the identity of the sender. This is especially impor-
tant in situations where the sender thread is compromised
and manipulated by the attacker to send illegal requests
or forged information on behalf of an innocent thread.

Authentication and Authorization. The Security
Manager needs to perform two actions before processing
an RPC: authentication and authorization. Authentica-
tion helps to make sure the caller is a valid Arbiter thread.
This is done by verifying the validity of its PID acquired
from the socket. Authorization ensures that the caller has
the needed privilege for the requested operation. For ex-
ample, RULE 2 must be satisfied for a thread creation
request, and RULE 3 must be satisfied for a memory al-
location request. If either of the two verifications fail, the
Security Manager simply returns the RPC with an indica-
tion of security violation.

Futex. Due to our implementation of thread creation,
a problem arises with the futexes (i.e., fast userspace mu-
tex) located on data segment (including both .data and
.bss). Multithreaded programs often utilize mutexes and
condition variables for mutual exclusion and synchro-
nization. In Pthreads, both of them are implemented us-
ing futex. Originally, kernel assigns the key (i.e., iden-
tifier) of each futex as either the address of mm struct

if the futex is on an anonymous page or the address
of inode if the futex is on a file backed page. In Ar-
biter, since data segment is anonymous mapping but the
mm struct’s of the Arbiter threads are different, kernel
will treat the same mutex or condition variable as dif-
ferent ones. Nonetheless, we can force programmers to
declare them on ASMS (which resembles file mapping)
that does not have this issue. However, we decide to re-
duce programmers’ effort by modifying the correspond-
ing kernel routine get futex key and set the key to a
same value (i.e., the address of mm struct of the Secu-
rity Manager). As such, the futex identification problem
is resolved.

5 Application
We explore Arbiter’s applicability through case studies

across various multithreaded applications. We find that
the inter-thread privilege separation problem are indeed
real-world security concerns. This section introduces our
case studies on three different applications: (1) Mem-
cached, (2) Cherokee, and (3) FUSE.

5.1 Memcached
Overview. Memcached [9] is an in-memory data ob-

ject caching system. It caches data objects from the re-
sults of database queries, API calls, or page renderings
into memory so that the average response time can be
largely reduced. There are mainly three types of threads



368 2015 USENIX Annual Technical Conference USENIX Association

in a Memcached process: main thread, worker thread,
and maintenance thread. Upon arrival of each client re-
quest, the main thread first does some preliminary pro-
cessing (e.g., packet unwrapping) and then dispatches a
worker thread to serve that request. Periodically, mainte-
nance threads wake up to maintain some important assets
like the hash table.

Security concern. We identify two potential security
concerns. (1) It is reported that a number of large pub-
lic websites had left Memcached open to arbitrary access
from the Internet [2]. This is probably due to the fact
that the default configuration of Memcached allows it to
accept requests from any IP address plus its authentica-
tion support SASL (Simple Authentication and Security
Layer) is by default disabled (as Memcached is designed
for speed, not security). It has been shown possible to
connect to such a server, extract a copy of cache, and
write data back to the cache [7]. (2) The vulnerabilities
in Memcached [11, 10] could be exploited by an adver-
sary (e.g., buffer overflow attack via CVE-2009-2415) so
that the compromised worker thread can arbitrarily access
data privately owned by other threads.

Retrofitting. We adapt Memcached to realize the ac-
cessibility shown in Table 2. In particular, we assume that
a Memcached server is used to serve two applications or
two users, A and B. Both A and B privately own their
cached data objects that are not supposed to be viewed
by the other. For the Shared Data, we make CQ ITEM

and a few other metadata read-writable to the main thread
but read-only to the worker threads. We slightly change
the original thread dispatching scheme so that requests
from different principals can be delivered to the associ-
ated worker threads. This modification does not affect
other features of Memcached.

5.2 Cherokee
Overview. Cherokee [3] is a multithreaded web server

designed for lightweight and high performance. Essen-
tially there is only one type of thread in Cherokee: worker
thread. Every worker thread repeats the same procedure,
that is, it first checks and accepts new connections, adds
the new connections to the per-thread connection list, and
then processes requests coming from these connections.
All the requests coming from the entire life cycle of a
connection will be handled by the same thread.

Security concern. (1) An attacker could exploit the
vulnerabilities of the Cherokee (e.g., format string vul-
nerability CVE-2004-1097) to inject shellcode and thus
access the data of another connection served by a differ-
ent thread. (2) Logic bugs might exist in the web server
so that an attacker can fool the thread to overread a buffer,
which may contain the data belonging to another connec-
tion/thread. A recent bug of this type is the Heartbleed
bug in OpenSSL [8].

Retrofitting. Our goal is to prevent the threads from

accessing each other’s private data without affecting the
normal functionality. Therefore, we make the buffers al-
located for individual connections only accessible by the
corresponding thread. Global data structures are made
accessible to all the threads, for example, the struct

cherokee server which stores the server global con-
figuration, listening sockets file descriptors, mutexes, etc.

5.3 FUSE
Overview. FUSE (Filesystem in Userspace) [6] is a

widely used framework for developing file systems in
user space. Common usages include archive file systems–
accessing files inside archives like tar and zip, database
file systems– storing files in a relational database or
allowing searching using SQL queries, encrypted file
systems– storing encrypted files on disk, and network file
systems– storing files on remote computers.

When a FUSE volume is mounted, all file system op-
erations against the mount point will be redirected to the
FUSE kernel module. The kernel module is registered
with a set of callback functions in a multithreaded user
space program, which implements the corresponding file
system operations. Each worker thread can individually
accept and handle kernel callback requests.

Security concern. (1) Logic flaws like careless bound-
ary checking might allow one user to overread a buffer
that contains private data of another user. The two users
could have very different file system permissions and thus
should not share the same set of files. This is especially
critical for encrypted file systems (e.g., EncFS [5]), since
the intermediate file data is in memory as cleartext. A
malicious user can enjoy a much easier and more elegant
way to steal data, compared with cracking the encrypted
file on disk by brute force. (2) Although the chance is
low due to the limited attack surface, we envision a type
of attack in which an attacker can compromise a particu-
lar thread and inject shellcode. Then the attacker will be
able to directly read the data of another user in memory.

Retrofitting. In general, we make the buffers allocated
inside process cmd() private to each thread. The global
data structure struct fuse is shared among all threads,
which contains information like callback function point-
ers, lookup table, metadata of the mount point, etc. In
addition, we change the thread dispatching scheme from
round robin to associating users with threads, which is
similar to what we do for Memcached.

5.4 Summary of Porting Effort
Porting these applications to Arbiter was a smooth ex-

perience. Actually, most of our time is spent on under-
standing the source code and data sharing semantics. Af-
ter that, we define accessibility and devise label assign-
ments accordingly. Finally, we modify the source code,
replacing related thread creation and memory allocation
functions with Arbiter API. Table 3 summarizes the total
LOC and the LOC added/changed for each application.



USENIX Association  2015 USENIX Annual Technical Conference 369

Application Total LOC (approx.) LOC added/changed
Memcached-1.4.13 20k 100 (0.5%)

Cherokee-1.2.2 60k 188 (0.3%)
FUSE-2.3.0 8k 129 (1.6%)

Table 3: Summary of porting effort in the amount of source
code change

6 Evaluation
6.1 Protection Effectiveness

As stated in our threat model, we assume that the target
application is already properly confined by OS abstrac-
tion level access control mechanisms, such as SELinux
or AppArmor. To this end, our system can be consid-
ered complementary to these OS abstraction level mech-
anisms. Here our goal is not to evaluate whether our sys-
tem can achieve the OS abstraction level access control
(e.g., preventing a compromised thread from accessing a
confidential file). Instead, we want to see under the pro-
tection of Arbiter whether a compromised thread can still
contaminate or steal the data belonging to another thread.

We assume that an adversary has exploited a program
flaw or vulnerability in the three applications ported by us
and thus taken control of a worker thread. We simulate
various malicious attempts based on the security concerns
we presented earlier in §5.

Memcached. We simulate two types of attacks men-
tioned in §5.1. (1) We simulate an attacker connect-
ing to Memcached via telnet. For the vanilla Mem-
cached, the attacker can successfully extract or overwrite
any data using the corresponding keys. On the ported
Memcached (protected by Arbiter), our attempts to re-
trieve data belonging to a different user always fail. (2)
We then simulate the scenario presented in §5.1 to simu-
late a buffer overflow attack. We assume that B is an at-
tacker. To simplify simulation, we hard-code our “shell-
code” in the source code. Our “shellcode” try to over-
write CQ ITEM and read A’s data by traversing the slab-
list ((&slabclass[i])->slab list[j]). We find that
writing to CQ ITEM always fail and traversing the slablist
will fail whenever encountering a slab storing A’s data.

Note that in both (1) and (2), a failed attempt always
triggers a segmentation fault and thus program crash. In
practice, the signal handler can be used with Arbiter to
deal with such security violations in a more robust way
(e.g., sending no response back or dropping the connec-
tion). In our experiments, we simply omit this part.

Cherokee. (1) We first simulate the format
string attack. We add our “shellcode” to the
source code to get another thread’s data via the
header and buffer field of the connection struc-
ture (struct cherokee connection), which is ref-
erenced by the victim thread’s active connection list
(&thd->active list). We observe that both read and
write attempts fail without exception. (2) Then we
simulate the logic bug. Particularly, we craft a buffer

overread bug by substituting the buf size parameter in
the cherokee socket write() function with a number
from our input. When we use a small value for buf size,
the buffer overread does not fail in most cases because
the adjacent memory is also allocated with the same la-
bel. This is tolerable since the attacker only gets the data
of his own. When we input a value that is larger than the
size of a regular block (i.e., 40KB in our case), the attack
always fail. Again, in both (1) and (2), a failure always
leads to a segmentation fault in the web server.

FUSE. The simulation of FUSE is very similar to what
we do for Cherokee. Arbiter can successfully defeat both
(1) logic flaw exploits and (2) code injection attacks.

Counterattacks. We enumerate a few typical counter-
attacks that are intended to bypass the Arbiter protection.

1) The adversary may want to call mprotect to change
the permission of ASMS and then access the data.

2) The adversary may attempt to call ab munmap first
and then ab mmap to indirectly modify the permission.

3) The adversary may call fork or pthread create

to create a normal process or thread that is out of the Se-
curity Manager’s control so as to access the data.

4) The adversary may also want to fork a child process
and let the child process call ab register to set itself as
a new Security Manager. In this way, the adversary hopes
to gain full control of the ASMS.

5) The adversary forges a reference and fools an inno-
cent thread to access data on behalf of the adversary.

We try each of the above counterattacks for multiple
times, but no one succeeds. The reasons are as below.
For 1), it is because Arbiter forbids normal system calls
including mprotect to operate ASMS. For 2), since the
adversary does not have permission to access the data,
the Security Manager simply denies the ab munmap re-
quest. For 3), unfortunately ASMS will not be mapped
to the normal processes or threads. For 4), there do ex-
ist ASMS now and the child process does gain full con-
trol. However, the ASMS no longer has the same physical
mapping. For 5), it would actually have a chance to suc-
ceed. However, Arbiter provides an API get privilege

which allows the innocent thread to verify if the request-
ing thread has the necessary permission. As such, Arbiter
can still defeat this counterattack. In sum, we believe that
within our threat model no counterattack can succeed.

6.2 Microbenchmarks
We build a set of microbenchmarks to examine the

performance overhead of Arbiter API. Our experiments
were run on a Dell T310 server with Intel Xeon quad-
core X3440 2.53GHz CPU and 4GB memory. We use 32-
bit Ubuntu Linux (10.04.3) with kernel 2.6.32 and glibc
2.11.1. Since we implement the ASMS Library based on
uClibc 0.9.32, we use the same version for comparison
on memory allocation. Each result is averaged over 1,000
times of repeat.



370 2015 USENIX Annual Technical Conference USENIX Association

Operation Linux (µs) Arbiter (µs) Overhead
(ab )malloc 4.14 9.09 2.20
(ab )free 2.06 8.36 4.06
(ab )calloc 4.14 8.41 2.03
(ab )realloc 3.39 8.27 2.43
(ab )pthread create 91.45 145.33 1.59
(ab )pthread join 36.22 41.00 1.13
(ab )pthread self 2.99 1.98 0.66
create category – 7.17 –
get label – 7.65 –
get ownership – 7.55 –
get mem label – 7.66 –
ab null (RPC round trip) – 5.84 –
(absys )sbrk 0.65 0.76 1.36
(absys )mmap 0.60 0.83 1.38
(absys )mprotect 0.83 0.92 1.11

Table 4: Microbenchmark results in Linux and Arbiter

Table 4 shows the comparison of microbenchmarks.
The overhead of memory allocation functions (e.g.,
ab free) is non-trivial. This is because they have to
go through the Security Manager via an RPC round trip,
which consists of RPC marshalling, socket latency, etc.
We find that a pure RPC round trip (ab null) itself al-
ready takes 5.84µs, which helps to justify the time con-
sumption of most Arbiter API functions. Due to our im-
plementation of thread creation, we directly use getpid

to return the thread ID. As the result, ab pthread self

runs even faster than its Linux equivalent. In addition to
the RPC latency, the system calls made by the Security
Manager also contribute to the API overhead. We ex-
amine sbrk, mmap, and mprotect and find that Arbiter
incurs 28% overhead on average.

There are two other factors that might affect the over-
head of Arbiter API: (1) The number of threads can af-
fect the memory allocation overhead. Figure 4(a) shows
that the time consumption of ab malloc is roughly cor-
related with the number of threads. The time consump-
tion increases by around 5.7% per additional thread. This
is because memory allocation on ASMS for one thread
is also propagated to other threads. For comparison, we
also show the result of get label. This operation does
not involve any “propagation” and thus is not affected by
the number of threads. (2) The size of allocated ASMS
can affect the thread creation overhead. This is because
thread creation involves the permission reconfiguration
of ASMS. Figure 4(b) shows that the time consumption
of ab pthread create increases along with the size of
allocated ASMS (note the logarithmic scale on x-axis).
This is also in line with our expectation.

1 2 3 4 5 6 7 8
Number of threads

0
2
4
6
8

10
12
14

Ti
m

e 
(u

s)

(a)

ab_malloc
get_label

0 10KB 100KB 1MB 10MB 100MB
Allocated ASMS size

0

5

10

15

20

25

Ti
m

e 
(x

10
 u

s)

(b)

ab_pthread_create

Figure 4: Arbiter API performance regarding number of
threads and allocated ASMS size

1 2 3 4 5 10 20 30 40 50 100
Value size (x10 byte)

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (x

10
00

 re
q/

se
c) (a)

SET Memcached
SET Arbiter

1 2 3 4 5 10 20 30 40 50 100
Value size (x10 byte)

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (x

10
00

 re
q/

se
c) (b)

GET Memcached
GET Arbiter

1 2 3 4 5 6 7 8 9 10
Key size (x10 byte)

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (x

10
00

 re
q/

se
c) (c)

SET Memcached
SET Arbiter

1 2 3 4 5 6 7 8 9 10
Key size (x10 byte)

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (x

10
00

 re
q/

se
c) (d)

GET Memcached
GET Arbiter

Figure 5: Performance comparison for Memcached

6.3 Application Performance
Memcached. We build a security-enhanced Mem-

cached based on its version 1.4.13 and we use libMem-
cached 1.0.5 as the client library. We measure the
throughput of two basic operations, SET and GET, with
various value sizes and key sizes. The results are com-
pared with unmodified Memcached. In Figure 5(a) and
5(b), we anchor the key size to 32 bytes and change the
value size. In Figure 5(c) and 5(d), we fix the value size
to 256 bytes and adjust the key size. Each point in the fig-
ure is an average of 100,000 times of repeat. All together,
the average performance decrease incurred by Arbiter is
about 5.6%.

Cherokee. We port Cherokee based on its version
1.2.2. We use the ApacheBench version 2.3 and static
HTML files to measure its performance. First, we mea-
sure the influence of file size. We choose files with sizes
of 1KB, 10KB, 100KB, and 1MB. Figure 6(a) shows the
comparison between vanilla Cherokee and the ported ver-
sion. The average slowdown is 1.8%. Second, we test the
system scalability by tuning the number of threads from 5
to 40. We fix the file size to 1KB during this round of test.
The throughput comparison is shown in Figure 6(b). The
average performance degradation is around 3.0%. This
comparison indicates that running more threads does not
necessarily induce more overhead. For each individual
test, we set ApacheBench to issue 10,000 requests with
the concurrency level of 10.

FUSE. We retrofit FUSE based on its version 2.3.0.
For the custom userspace file system, we use the exam-

1KB 10KB 100KB 1MB
File size

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (x

10
00

 re
q/

se
c)

(a)

Cherokee
Arbiter

5 10 15 20 25 30 35 40
Number of threads

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Th
ro

ug
hp

ut
 (x

10
00

 re
q/

se
c)

(b)

Cherokee
Arbiter

Figure 6: Performance comparison for Cherokee



USENIX Association  2015 USENIX Annual Technical Conference 371

cd ls touch cp mv echo cat rm
Operations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
 (x

10
00

 o
ps

/s
ec

)
FUSE
Arbiter

Figure 7: Performance comparison for FUSE

ple implementation fusexmp provided by FUSE source
package. It simply emulates the native file system. We
then select 8 representative commands relevant to file
system operations, namely, cd, ls, touch, cp, mv,

echo, cat, and rm. Note that the echo command is used
to write a 32-byte string to files. Each command is re-
peated for 10,000 times. Figure 7 shows the comparison
between unmodified FUSE and the ported version. On
average, the slowdown is 7.4%.

Overall, the application performance overhead is ac-
ceptable. This is partially contributed by the fact that the
extra cost of Arbiter API calls is amortized by other op-
erations of these programs.

6.4 CPU and Memory Overhead
In addition to the throughput comparison, we further

evaluate the CPU cost. As shown in Table 5, Arbiter in-
creases the CPU utilization by 1.29–1.55×. We leverage
the CPU time information in /proc/[pid]/stat to do the cal-
culation. We also count the types of labeled objects (not
to be confused with runtime instances), shown in the last
column of Table 5. Interestingly, the number of labeled
objects is roughly correlated with the CPU overhead.

Although our “same accessibility, same page” strat-
egy has already come with much less memory waste than
“one object per page”, it still incurs some memory over-
head. Table 6 shows the average resident memory (RSS)
usage of the three applications during the performance
test. We measure RSS by checking the VmRSS value of
/proc/[pid]/status around ten times per second. Given that
the policy we used for the three applications are quite typ-
ical, we believe real-world memory overhead should be
close to the measured overhead.

7 Discussion and Limitations
We believe that Arbiter provides a generic and prac-

tical mechanism for inter-thread privilege separation on
data objects. Nonetheless, it still has limitations in de-
fending against certain security threats. When two princi-
pal users or clients are served by the same thread, Arbiter
can no longer enforce privilege separation for the two
principals. Thus, programmers have to be very careful
dealing with user authentication and thread dispatching to

Application Original Arbiter Overhead Labeled objects
memcached 49.4% 76.7% 1.55× 14

cherokee 58.8% 76.1% 1.29× 8
FUSE 42.3% 58.0% 1.37× 10

Table 5: Comparison of CPU utilization and labeled objects

Application Original (KB) Arbiter (KB) Overhead
memcached 60,664 64,452 6.2%

cherokee 3,916 4,120 5.2%
FUSE 732 760 3.9%

Table 6: RSS memory overhead

associate principals with appropriate worker threads. To
fully address this issue, one possible solution is to have a
per-principal-user “virtual” thread to further separate the
privileges. We leave this as a future work.

One limitation of our implementation is that the user-
space memory allocator uses a single lock for alloca-
tion/deallocation. Therefore, the processing of allocation
and deallocation requests have to be serialized. A finer
lock granularity can help to improve parallelism and scal-
ability, such as Hoard [13] and TCMalloc [12]. In fact,
Arbiter’s memory allocation mechanism inherently has
the potential to adopt a per-label lock. We are looking at
ways to implement such a parallelized allocator.

Arbiter’s security relies on the correctness of privilege
separation policy configured by the programmer. How-
ever, it may not be that easy to get all the label assign-
ments correct, especially in complex and dynamic de-
ployment scenarios. Actually, DIFC systems also con-
front similar policy configuration challenges and research
efforts have been made to debug DIFC policy misconfig-
uration [35]. Our system is also able to incorporate a pol-
icy debugging or model checking tool that can verify the
correctness of label assignments.

Arbiter’s security model, including notions and rules,
is inspired by DIFC. However, it should be noted that Ar-
biter does not perform information flow tracking inside
a program, mainly due to two observations: (1) For a
runtime system approach, tracking fine-grained data flow
(e.g., moving a 4-byte integer from memory to a CPU
register) could incur tremendous overhead, making Ar-
biter impractical to use; (2) The fact that information
flow tracking can enhance security does not logically ex-
clude the possibility of solving real security problems
without information flow tracking. The main contribu-
tion of Arbiter is that it provides fine-grained privilege
separation for data objects using commodity hardware,
while still preserving the traditional multithreaded pro-
gramming paradigm.

8 Conclusion
Arbiter is a system targeting at fine-grained, data

object-level privilege separation for multi-principal mul-
tithreaded applications. Particularly, we find that page
table protection bits can be leveraged to do efficient ref-
erence monitoring if data objects with same accessibility
are put into the same page. We find that Arbiter is ap-
plicable to a verity of real-world applications. Our ex-
periments demonstrate Arbiter’s ease of adoption, effec-
tiveness of protection, as well as reasonable performance
overhead.



372 2015 USENIX Annual Technical Conference USENIX Association

Acknowledgement
We would like to thank our paper shepherd Xi Wang

and the anonymous reviewers, for their insightful feed-
back that helped shape the final version of this paper.

This work was supported by NSF CNS-1223710, NSF
CNS-1422594, and ARO W911NF-13-1-0421 (MURI).

References
[1] Apparmor. http://www.novell.com/linux/

security/apparmor/.

[2] Blackhat write-up: go-derper and mining memcaches.
http://www.sensepost.com/blog/4873.html.

[3] Cherokee. http://cherokee-project.com.

[4] The chromium projects: Multi-process architec-
ture. http://www.chromium.org/developers/

design-documents/multi-process-architecture.

[5] Encfs. http://www.arg0.net/encfs.

[6] Fuse: Filesystem in userspace. http://fuse.

sourceforge.net.

[7] go-derper. http://research.sensepost.com/

tools/servers/go-derper.

[8] The heartbleed bug. http://heartbleed.com.

[9] Memcached. http://www.memcached.org.

[10] Sa-contrib-2010-098 - memcache - multiple vulnerabili-
ties. http://drupal.org/node/927016.

[11] Security vulnerabilities in memcached. http:

//www.cvedetails.com/vulnerability-list/

vendor_id-9678/producti_id-17294/

Memcachedb-Memcached.html.

[12] Tcmalloc : Thread-caching malloc. http:

//goog-perftools.sourceforge.net/doc/

tcmalloc.html.

[13] BERGER, E. D., MCKINLEY, K. S., BLUMOFE, R. D.,
AND WILSON, P. R. Hoard: A scalable memory allo-
cator for multithreaded applications. In ASPLOS (2000),
pp. 117–128.

[14] BITTAU, A., MARCHENKO, P., HANDLEY, M., AND

KARP, B. Wedge: splitting applications into reduced-
privilege compartments. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and
Implementation (Berkeley, CA, USA, 2008), USENIX
Association, pp. 309–322.

[15] BRUMLEY, D., AND SONG, D. Privtrans: automati-
cally partitioning programs for privilege separation. In
Proceedings of the 13th conference on USENIX Secu-
rity Symposium - Volume 13 (Berkeley, CA, USA, 2004),
SSYM’04, USENIX Association, pp. 5–5.

[16] CHENG, W., PORTS, D. R. K., SCHULTZ, D., POPIC,
V., BLANKSTEIN, A., COWLING, J., CURTIS, D.,
SHRIRA, L., AND LISKOV, B. Abstractions for Usable
Information Flow Control in Aeolus. In USENIX ATC ’12.

[17] ERLINGSSON, U., ABADI, M., VRABLE, M., BUDIU,
M., AND NECULA, G. C. XFI: Software Guards for Sys-
tem Address Spaces. In OSDI (2006).

[18] FELMETSGER, V., CAVEDON, L., KRUEGEL, C., AND

VIGNA, G. Toward automated detection of logic vulner-
abilities in web applications. In USENIX Security Sympo-
sium (2010), pp. 143–160.

[19] KILPATRICK, D. Privman: A library for partitioning
applications. In USENIX Annual Technical Conference,
FREENIX Track (2003), USENIX, pp. 273–284.

[20] KROHN, M., YIP, A., BRODSKY, M., CLIFFER, N.,
KAASHOEK, M. F., KOHLER, E., AND MORRIS, R.
Information flow control for standard OS abstractions.
SOSP ’07.

[21] LEA, D. A memory allocator. http://gee.cs.oswego.
edu/dl/html/malloc.html.

[22] LI, X., YAN, W., AND XUE, Y. Sentinel: securing
database from logic flaws in web applications. In Pro-
ceedings of the second ACM conference on Data and Ap-
plication Security and Privacy (2012), ACM, pp. 25–36.

[23] LOSCOCCO, P., AND SMALLEY, S. Integrating flexible
support for security policies into the linux operating sys-
tem. In USENIX ATC (2001).

[24] MAO, Y., CHEN, H., ZHOU, D., WANG, X., ZEL-
DOVICH, N., AND KAASHOEK, M. F. Software fault
isolation with api integrity and multi-principal modules.
In In SOSP (2011).

[25] METTLER, A., WAGNER, D., AND CLOSE, T. Joe-E: A
Security-Oriented Subset of Java. In NDSS ’10.

[26] MYERS, A. C. JFlow: practical mostly-static information
flow control. In Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages (New York, NY, USA, 1999), ACM, pp. 228–241.

[27] PROVOS, N., FRIEDL, M., AND HONEYMAN, P. Pre-
venting privilege escalation. In Proceedings of the 12th
conference on USENIX Security Symposium - Volume
12 (Berkeley, CA, USA, 2003), USENIX Association,
pp. 16–16.

[28] ROY, I., PORTER, D. E., BOND, M. D., MCKINLEY,
K. S., AND WITCHEL, E. Laminar: practical fine-grained
decentralized information flow control. PLDI ’09.

[29] SALTZER, J. H., AND SCHROEDER, M. D. The protec-
tion of information in computer systems. Proceedings of
the IEEE 63, 9 (1975), 1278–1308.

[30] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRA-
HAM, S. L. Efficient software-based fault isolation. SOSP
’93.

[31] WATSON, R. N. M., ANDERSON, J., LAURIE, B., AND

KENNAWAY, K. Capsicum: practical capabilities for unix.
In Proceedings of the 19th USENIX conference on Secu-
rity (Berkeley, CA, USA, 2010), USENIX Security’10,
USENIX Association, pp. 3–3.

[32] WITCHEL, E., CATES, J., AND ASANOVIĆ, K. Mon-
drian memory protection. In Proceedings of the 10th in-
ternational conference on Architectural support for pro-
gramming languages and operating systems (New York,
NY, USA, 2002), ASPLOS X, ACM, pp. 304–316.



USENIX Association  2015 USENIX Annual Technical Conference 373

[33] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E.,
AND MAZIÈRES, D. Making information flow explicit in
HiStar. Commun. ACM 54, 11 (Nov. 2011), 93–101.

[34] ZELDOVICH, N., KANNAN, H., DALTON, M., AND

KOZYRAKIS, C. Hardware enforcement of application
security policies using tagged memory. In Proceedings
of the 8th USENIX conference on Operating systems de-
sign and implementation (Berkeley, CA, USA, 2008),
OSDI’08, USENIX Association, pp. 225–240.

[35] ZHAO, M., AND LIU, P. Modeling and checking the secu-
rity of DIFC system configurations. In Automated Security
Management. Springer, 2013, pp. 21–38.

A Appendix
A.1 Arbiter API

Figure 8 lists the Arbiter’s API, which are used for la-
beling, threading, and memory allocation. To preserve
the multithreaded programming paradigm, the function
syntax is fully compatible with the C Standard Library
and the Pthreads Library. For example, if a program-
mer uses ab malloc without assigning any label (L =

NULL;), it will behave in the same way as libc malloc,
i.e., allocating a memory chunk read-writable to every
thread. This makes it possible for programmers to in-
crementally adapt their programs to our system.

A.2 ASMS Memory Allocation Algorithm
§3.3 and §4.1 described our permission-oriented allo-

cation mechanism. Here we explain the detailed algo-
rithm shown in Figure 9. For clarity, we omit the dis-
cussion on the strategy of memory chunk management
adopted from dlmalloc.
• Allocation If the size of the data is larger than a reg-

ular block size (i.e., threshold), a large block will be
allocated using absys mmap (line 5). Otherwise, the
allocator will search for free chunks inside blocks with
that label (line 7). If there is an available free chunk,
the allocator simply returns it. If not, the allocator will
allocate a new regular block using absys sbrk (line
12).

• Deallocation For a large block, the allocator simply
frees it using absys munmap (line 3) so that it can
be reused later on. Otherwise, the allocator puts the
chunk back to the free list (line 5). Next, the allocator
checks if all the chunks on this block are free. If so,
this block will be recycled for later use (line 7).

• cat t create category(cat type t);
Create a new category of type t, which can be either secrecy cat-
egory CAT S or integrity category CAT I.

• void get label(label t L);
Get the label of a thread itself into L.

• void get ownership(own t O);
Get the ownership of a thread itself into O.

• void get mem label(void *ptr, label t L);
Get the label of a data object into L.

• int ab pthread create(pthread t
*thread, const pthread attr t *attr,
void *(*start routine)(void *),
void *arg, label t L, own t O);
Create a new thread with label L and ownership O.

• int ab pthread join(pthread t thread, void
**value ptr);
Wait for thread termination.

• pthread t ab pthread self(void);
Get the calling thread ID.

• void *ab malloc(size t size, label t L);
Allocate dynamic memory on ASMS with label L.

• void ab free(void *ptr);
Free dynamic memory on ASMS.

• void *ab calloc(size t nmemb, size t size,
label t L);
Allocate memory for an array of elements on ASMS with label L.

• void *ab realloc(void *ptr, size t size);
Change the size of the memory on ASMS.

• void *ab mmap(void *addr, size t length, int
prot, int flags, int fd, off t offset, label t
L);
Map files to ASMS with label L.

• int get privilege(pthread t thread, void *ptr);
Query the permission of a thread to accessing memory on ASMS.

Figure 8: List of Arbiter API

1 ablib malloc(sz , L)
2 if sz > threshold then
3 for every member thread do
4 Compute permission
5 Allocate a large block
6 return
7 Search free chunks in blocks with label L
8 if there is an available free chunk then
9 return

10 for every member thread do
11 Compute permission
12 Allocate a regular block
13 return

1 ablib free ( ptr )
2 if it is a large block then
3 Free the block
4 return
5 Free the chunk pointed by ptr
6 if the whole block is free now then
7 Free the block
8 return

Figure 9: ASMS memory allocation algorithm




