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ABSTRACT 
As cyber-attacks become more sophisticated, cyber-attack 
analysts are required to process large amounts of network 
data and to reason under uncertainty with the aim of 
detecting cyber-attacks. Capturing and studying the fine-
grained analysts’ cognitive processes helps researchers gain 
deep understanding of how they conduct analytical 
reasoning and elicit their procedure knowledge and 
experience to further improve their performance. However, 
it’s very challenging to conduct cognitive task analysis 
studies in cyber-attack analysis. To address the problem, we 
propose an integrated computer-aided data collection 
method for cognitive task analysis (CTA) which has three 
building blocks: a trace representation of the fine-grained 
cyber-attack analysis process, a computer tool supporting 
process tracing and a laboratory experiment for collecting 
traces of analysts’ cognitive processes in conducting a 
cyber-attack analysis task. This CTA method integrates 
automatic capture and situated self-reports in a novel way 
to avoiding distracting analysts from their work and adding 
much extra work load. With IRB approval, we recruited 
thirteen full-time professional analysts and seventeen 
doctoral students specialized in cyber security in our 
experiment. We mainly employ the qualitative data analysis 
method to analyze the collected traces and analysts’ 
comments. The results of the preliminary trace analysis turn 
out highly promising.  

INTRODUCTION 
According to a recent Kaspersky report, Brazil faced 87,776 
cyber-attack attempts during the period of World Cup 2014 
[1]. Cyber-attack analysis, as a newly emerged complex 
cognitive task, has been increasingly vital for organizations 
to tackle various cyber threats. Due to the lack of uniformed 
terminology, there are many other terms used such as 
network security analysis or intrusion detection analysis. 

As cyber-attacks become more sophisticated, many security 
technologies have been developed to help organizations 
enhance cyber situational awareness. Intrusion detection 
and prevention systems (IDS/IPS) are widely deployed to 
monitor the organizations’ network traffic and to be alert to 
possible intrusion attempts, policy violation, or malicious 
activities. Firewalls are also widespread network security 
systems that inspect the incoming and outgoing network 
connections and allow or deny them using one or more sets 
of rules. With the disparate technologies applied in the 
network, cyber-attack analysis is a human-in-the-loop 
process, in which cyber analysts (shortened as “analysts” in 
the remaining part) identify malicious network activities by 
analyzing the data sources (e.g. IDS alerts and firewall 
logs). For example, analyzing firewall logs and IDS alerts 
in a correlated way can help the analysts identify false 
alarms. 

Cyber-attack analysis places high cognitive load on 
individual analysts for information foraging and analytical 
reasoning [2]. The amount of data generated by the network 
security technologies is enormous and among which are 
abundant in false alerts [3]. Sometimes the Security 
Information and Event Management (SIEM) products (e.g. 
ArcSight) may be used to conduct real-time initial data 
aggregation and correlation. Even with the aid of SIEM, 
analysts still need to conduct data filtering and triage to 
identify the “true signals” and to correlate the network 
activities in depth to gain insights into cyber threats [2]. 
Furthermore, nowadays more attackers would conduct 
coordinated activities to achieve their malicious goals at 
different points of time and/or different segments of a 
network. Detecting such attacks requires analysts’ ability to 
reason under uncertainty and connect their insights 
generated in the analysis process (“connect the dots”).  

Potential Benefits of Studying the Analysis Processes 
As cyber-attack analysis is a very complex cognitive task, it 
requires analysis to draw on their knowledge and 
experiences, which involved various cognitive activities in 
its accomplishment. There are several important benefits for 
capturing and analyzing the cyber-attack analysis processes 
of analysts and these benefits can be best illustrated in the 
following example. 

A Motivating Example. Figure 1 shows an organization’s 
network and the data sources with more than 200 IDS 
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alerts, and 100,000 Firewall logs generated in 10 minutes. 
To detect the attack events, Alice, an analyst, started with 
browsing the IDS alerts. She first noticed some alerts about 
SMB (Sever Message Block) buffer overflow attempts on 
the DNS server inside the network, which made her 
generate a hypothesis about DNS attack. Meanwhile, she 
thought another possibility could be that the alerts were 
caused by normal DNS updates. To investigate the possible 
DNS attack, she further turned to the firewall logs to check 
whether there was any suspicious network connection to the 
DNS server. Instead of finding any suspicious DNS 
connection, she noticed some connections were built 
between the inner-network IP addresses and outside IP 
addresses using the port “6667”. According to her domain 
knowledge, port “6667” is usually used for IRC (Internet 
Relay Chat) service and could be exploited by a botnet. To 
verify it, she went to the IDS alerts and found the alerts 
about the IRC connections between the same set of IP 
addresses. This observation strengthened her hypothesis 
that the IRC connections indicate the botnet traffic. After 
that, she easily linked her previous hypothesis about the 
DNS attack to this one, believing the DNS attack as a pre-
step of the botnet traffic. Finally, she wrote an incident 
report about the attack.  

Cyber Analyst

?

IDS Alerts
{  DataTime, SourceIP,  
DestIP,  Category,  
Priority,  Description,  
SourcePort,  DestPort }

Firewall Logs
{  DataTime,  Priority,  
Operation,  Protocol,  SrcIP,  
DesIP,  SrcPort,  
DestDesPort }

 Network 
Topology

(Shown below)

Network Data Sources 

   
Figure 1. An analyst is performing a cyber-attack analysis 
task. The data is from VAST Challenge 2012 [4]. 

Analyzing Alice’s analysis process, we can know the steps 
Alice took in exploring the data sources, generating and 
verifying hypotheses, and “connecting the dots”. Several 
benefits for understanding an analyst’s analysis process can 
be illustrated by this Example. Firstly, knowing how Alice 
generates a hypothesis of an attack event is helpful for 
understanding her conclusion about the event in her report 
and for assessing how valid and reliable the conclusion is, 
which enhances the accountability of decision making. 
Secondly, through reflecting on the reasoning process, 
Alice may realize there is no sufficient evidence showing 
that the DNS server attack is a pre-step of the botnet traffic, 
which means the her original hypothesis about the 
relationship between the DNS attack with botnet traffic may 
be invalid. She relied too heavily on her first finding (i.e. 
the suspicious connections to the DNS server), which is 
referred to as anchoring bias in cognitive science [5]. 

Therefore, lessons can be learned through reflecting on the 
analysis process and thus improving Alice’s performance 
over time. Thirdly, if Alice was working together with other 
analysts, knowing Alice’s analysis process could help 
others better comprehend her observations and hypotheses 
of attack events so that they can better collaborate to 
counter cyber-attacks, especially the multistep cyber-attacks 
that may last a long period of time on a large number of 
machines. Fourthly, we can extract some practical 
knowledge and experience from Alice’s analysis process. 
For example, the suspicious IRC connections were found 
based on the port of interest (i.e. port “6667”); and Alice 
strengthened her hypothesis of malicious IRC connections 
by seeking for consistent evidence in different data sources. 
The knowledge and experience can be transferred into 
cognitive aids and tools for improving the agility of cyber 
defense. Besides, understanding the analysis process of the 
analysts made it possible for the comparison between high-
performance analysts and less experienced ones so that their 
differences can be recognized and better training tools can 
be developed to address these differences. 

Need for Capturing Fine-Grained Cognitive Processes 
Given the important potential benefits, it’s highly desirable 
to capture and analyze the analysts’ fine-grained cognitive 
processes of cyber-attack analysis. The term “fine-grained 
cognitive process” refers to a cyber-attack analysis process 
involving the following detailed activities: (1) actions 
performed by the analyst for filtering the data sources and 
for searching for evidence of attack events; (2) the analysts’ 
observations of suspicious network traffic and events; (3) 
the analysts’ hypotheses about suspected the attack events 
that are generated based on the existing observations.  

The reason why we need to focus on the fine-grained 
cognitive process comes from the characteristics of cyber-
attack analysis tasks. First of all, cyber-attack analysis tasks 
are by nature data-driven and labor-intensive [6], 
considering that most network technologies are prone to 
data flooding [3]. Handling a large amount of data sources 
to identify the attack events plays a dominate role in 
analysts’ analysis process [2, 7].  It is necessary to capture 
the actions that an analyst explores the data sources, 
including searching, filtering and aggregation [8]. 
Meanwhile, it is also important to know what observations 
the analyst obtain by data exploration, what he/she knows 
from the observation, and how he/she evaluates the cyber 
situation (i.e. the analyst’s hypothesis of the attack events) 
[9]. Secondly, the dynamic evolution of network and threat 
behaviors requires analysts to connect their findings to 
maintain a holistic and history-aware understanding of the 
network situation [6]. How analysts think and choose 
actions mainly depends on the current analysis process (i.e. 
the observations they have gained after conducting the 
previous actions). Specialized knowledge and experience is 
needed to generate a reasonable hypothesis or to choose an 
appropriate action under a certain context. Therefore, it is 
necessary to highlight the connections between an analyst’s 



hypotheses about attack events and his/her data exploration 
actions and observations, and it again requires fined-grained 
capturing of cognitive activities. 

Related Work 
Cognitive Task Analysis (CTA) is a family of methods that 
“help researchers understand how cognition makes it 
possible for human to get things done and then turning that 
understanding into aids—low or high tech—for helping 
people get things done better” [10]. There are multiple 
techniques used by CTAs, including interviews (e.g. 
unstructured/semi-structured/structured interviews [11]), 
observations (e.g. shoulder surfing), self-reports (e.g. 
questionnaires, surveys and diaries), process tracing (e.g. 
eye-tracking, think-aloud protocols [12, 13]). Each 
technique has its own advantages and disadvantages [10, 
14]. Wei and Salvendy carefully compared these 
advantages and disadvantages and provided 11 useful 
guidelines in selecting CTA techniques according to a 
particular task [15].  

Several CTAs have been conducted for cyber-attack 
analysis, which provide a basis for this research. Priolli and 
Card proposed a notional model of sensemaking process 
that involves leverage points dealing with data overload and 
attention management, based on interviews and think-aloud 
protocols with intelligence analysts [9]. D’Amico and 
Whitley described how the data sources are transferred into 
situation awareness in the cognitive process of computer 
network defense (CND) analysis and identified three stages 
of CND analysis in a generalized CND workflow, using 
interviews, observations and self-reports [16]. To identify 
the needs of analysts for visualizations in their tasks, 
another study followed a multi-phase CTA using interviews 
and self-reports to analyze analysts’ cognitive activities and 
proposed a task-flow diagram [7].  

Most CTA studies give description of the macro-level 
cyber-attack analysis processes (e.g. classifying analysts’ 
activities and identifying them in the task workflow), which 
provides valuable insights into the analysts’ cognitive 
activities in these processes. However, few of them capture 
the fine-grained cognitive activities and the contextual links 
among them due to several unique challenges of conducting 
CTA studies of cyber-attack analysis.  

First of all, analysts are fully concentrated on 
accomplishing their cyber-attack analysis tasks and are 
sensitive to interruptions [7]. Using common think-aloud 
protocols during the task could be an unacceptable 
distraction for analysts because it is likely to influence their 
performance. Besides, self-report techniques and think-
aloud rely on analysts’ motivation and “self-CTA” 
capability to report their cognitive activities [10]. However, 
analysts may be unable to give a complete and accurate 
report of their own cognitive processes [17], especially for 
the experienced analysts [18]. Besides, analysts may be 
unwilling to self-report because they are totally engaged in 
their analysis tasks. The second challenge for conducting 

CTA of cyber-attack analysis is that the time schedule of 
professional analysts is pretty tight, considering that 
professional analysts conduct 24/7 (24 hours a day, 7 days a 
week) security operations and rotate through day shift and 
night shift [19]. It could be difficult for them to participant 
in interviews. Thirdly, conducting CTAs of cyber-attack 
analysis processes raises several important practical issues, 
including the accessibility to analysts and an organization’s 
network. Researchers outside an organization have very 
limited access to the real data sources and attack events as 
most of them are kept confidential.  

Our Method: An Integrated Computer-Aided CTA 
Due to the difficulties of conducting CTA studies for cyber-
attack analysis, there is a gap between the need for 
capturing fine-grained cognitive processes of cyber-attack 
analysis and the limited capability of existing CTA methods.  

To fill the gap, we propose an integrated computer-aided 
CTA data collection method to trace the analysts’ fine-
grained cognitive processes. This method mainly relies on 
tracking the analysis process by integrating automated 
capture and situated self-reports in a novel way. A 
computer tool is developed by us to support tracking the 
analysis processes of analysts when they are concentrated 
on their cyber-attack analysis tasks. An experiment is 
designed to collect traces of analysts’ cognitive processes in 
which each participant is asked to perform a simulated 
cyber-attack analysis task by working with the tool. This 
experiment setting is completely isolated from the real 
organizational network so that organizations’ concern of 
confidentiality is dispelled. Meanwhile, the experiment is 
carefully designed to ensure that the participants’ 
performance in our cyber-attack analysis task is close to 
their performance in their real-world jobs. Obtained IRB 
approval for conducting the proposed CTA study, we 
recruited thirteen professional cyber analysts and seventeen 
doctoral students specialized in cyber security. We 
collected thirty traces of their cyber-attack analysis 
processes and analyzed these traces using qualitative data 
analysis method. 

The contributions of this work are two-fold. Theoretically, 
our study shows that fine-grained CTA can be conducted to 
study human’s cognitive processes in an analytical 
reasoning task like cyber-attack analysis, and gains insights 
into the fine-grained cognitive processes from which 
human’s procedure knowledge and experience can be 
elicited. Practically, our method may guide CTA 
researchers on how to effectively conduct CTA within a 
field where participants’ time and confidentiality are set at a 
high value. The preliminary results provide a starting point 
for developing technologies to lever-age the captured 
processes to improve analysts’ performance.   

AN INTEGRATED COMPUTER-AIDED CTA DATA 
COLLECTION METHOD 
We develop our method on the basis of three principles. 
Firstly, it should be able to capture the fine-grained 



cognitive processes of cyber-attack analysis. Secondly, it 
should avoid adding too much workload and distracting 
their attention from the cyber-attack analysis task. Thirdly, 
we want to ensure the captured cognitive processes reflect 
the analysts’ performance in the real-world cyber-attack 
analysis tasks.  

Figure 2 shows that our method has three building blocks: 
(1) a trace representation which describes the fine-grained 
cognitive process of cyber-attack analysis, (2) a computer 
tool which is developed based on the trace representation to 
trace analysts’ cognitive processes, and (3) an experiment 
in which participants are asked to work with the tool to 
accomplish a cyber-attack analysis task. With three building 
blocks, this CTA method enables us collect traces of 
analysts’ cognitive processes in performing a cyber-attack 
analysis tasks, without scheduling time-consuming 
interviews. We can analyze the collected traces after the 
experiment to reveal the participants’ original cognitive 
processes in the task. Next, we explain the method in detail 
by describing the three building blocks.  

Trace Representation of the Analytical 
Reasoning Process

 

Observation

 AOH 
Model

ARSCA: A Computer Tool for Process 
Tracing

An Experiment for Trace Collection

Conceptual 
Model

• Automated Capture 
(Actions, Observations)

• Self Report (Hypotheses)

Integrated Process 
Tracing

Building Blocks

 
Figure 2 The framework of the CTA method. 

Trace Representation 
A cognitive process of cyber-attack analysis can be 
modeled as an analytical reasoning process, which is 
“central to the analysts’ task of applying human judgments 
to reach conclusions from a combination of evidence and 
assumptions.” [20]. More specifically, given the network 
and the network data sources, an analyst conduct actions 
(e.g. searching and filtering) to explore the data; an action 
may result in an observation of suspicious network 
activities; based on the observation, the analyst may 
generate a hypothesis (e.g. a new insight into or an in-depth 
understanding of an attack event). To further investigate 
this hypothesis, the analyst may need to conduct a new 
action. Therefore, actions, observations and hypotheses 
form a iterative cycle [21, 22].  

Based on the conceptual understanding, an analyst’s 
analytical reasoning process is a process where actions, 
observations and hypotheses are created, modified and 
connected. These changes are caused by the operations 
performed by the analyst when he/she is accomplishing a 
task. We classify the operations into 11 categories based on 
the literature of existing CTA studies in cyber-attack 

analysis [16] and the comments from domain experts. The 
types of operations are shown in Table 1.  

With the specified operation types, we define a trace as a 
sequence of operations in a time order. Each operation is 
performed under a certain context. Therefore, a trace can 
represent a complex and non-linear analytical reasoning 
process. Definition 1 gives the formal definition of a trace.  

Table 1 11 types of operations conducted by analysts. 

Operation Description 
BROWSE BROWSE 𝐷! ,𝐷! ⊆ 𝐷𝑆!*: Browse the data sources. 

FILTER FILTER 𝐷𝑆! ,𝐶𝑜𝑛𝑑. : Filter the source data 𝐷𝑆!   based on 
condition 𝐶𝑜𝑛𝑑. 

SEARCH SEARCH 𝐷! ,𝐾 ,𝐷! ⊆ 𝐷𝑆!: Search 𝐾 in data 𝐷!. 
INQUIRE INQUIRE 𝑇! :  Inquire about a term 𝑇!  

SELECT SELECT 𝐷! ,𝐷! ⊆ 𝐷𝑆!:Select the data of interest in 
𝐷! . 

SELECTED
* 

*(Come in pairs with SELECT) 
SELECTED 𝐷! ,𝐷! ⊆ 𝐷𝑆!: The selected data of interest  

LINK LINK 𝐷! , 𝐿 ,𝐷! ⊆ 𝐷𝑆!:   The links 𝐿  among the 
selected data 𝐷! (e.g. common features in 𝐷!) 

NEW_HYP
O 

NEW ℎ,𝑂 :  Generate a hypothesis ℎ in the context of 
observation O. 

MODIFY MODIFY ℎ, 𝑣!, 𝑣! :  Modify the content of an hypothesis 
ℎ from v! to v! 

SWITCH 
CONTEXT 

SWITCH_CONTEXT ℎ!, ℎ! :   Change current focus of 
attention from hypothesis ℎ!  to hypothesis ℎ!.  

CONFIRM/ 
DENY 

CONFIRM_DENY ℎ!,𝑌/𝑁 :   Confirm or deny an 
hypothesis ℎ!. 

*The data set is 𝐃 =    𝑫𝑺𝒊, 𝑫𝑺𝒊 is a data source. 
Definition 1: A cognitive trace 𝓣𝐫  is a sequence of 
items 𝐩𝟏,… ,𝐩𝐧 ,∀𝐩𝐢   𝟏 ≤ 𝒊 ≤ 𝒏 , 𝐩𝐢  is a tuple (𝒕𝒊,   
𝒐𝒑𝒊(𝑰,𝑪𝒊)) , where 𝐭𝐢  is the timestamp, 𝒐𝒑𝒊(𝑰,𝑪𝒊)  is an 
operation on a cognitive activity 𝑰 under the context    𝑪𝒊. 𝑰 
is an action, observation or hypothesis, 𝑪𝒊  is a set of 
connections between 𝑰  with the existing actions, 
observations and hypotheses.  

ARSCA: The Computer Tool for CTA 
Based on the trace representation, a computer tool named 
ARSCA (Analytical Reasoning Support system for Cyber 
Analysis) is developed by us to trace the fine-grained 
cognitive processes of analysts. The process tracing 
supported by ARSCA integrates both automated capture 
and situated self-reports so that they can reinforce each 
other, thus reducing the distraction and analysts’ extra work 
load to analysts’ analysis task [23].  

Design Principles  
The design principles of this tool are as follows: 
� To capture analysts’ fine-grained cognitive processes, 

the tool should be able to support analysts to perform 
all types of operations shown in Table 1. The reaction 
time of the tool should be short enough so that users 
can hardly notice it.  

� The tool should support the integrated process tracing 
that minimize its distraction and analysts’ work load. 

� The tool should be easy for analysts to learn and use 
so that analysts can get familiar with it in a short 
training session. 



Implementation 
ARSCA is developed as a Windows platform application 
based on the above principles. It has two views: Data View 
and Analysis View. Figure 3 illustrates its User Interface 
(UI) with the main components in these two views.  

Functionalities and Features 
Tracing Actions (Automated Capture). ARSCA enables 
analysts to manipulate the data sources (shown in the Data 
View) in multiple ways, thus supporting the pre-defined 
operations including SEARCH, FILTER, and INQUIRE 
(Region 2, 3 and 4). ARSCA records these operations with 
an analyst’s inputted keywords or filtering conditions. 

Tracing Observations (Automated Capture). An analyst can 
select the data of interest (Region 5) and the selected data 
are displayed in another window (Region 6) so that he/she 
can review and confirm them. ARSCA automatically 
recorded the selected data as one observation of the analyst.  

Tracing Hypotheses (Situated Self-reports). Once an analyst 
generates a new hypothesis about an attack event based on 
an observation, he/she can write down it (Region 7 and 8). 
ARSCA records not only the hypothesis but also its 
connections to the relevant observations.  

Process Navigation. ARSCA displays the analyst’s existing 
actions, observations, and hypotheses in the Analysis View 
(Region 9). If a hypothesis is created based on an 
observation, ARSCA uses a nested structure to show the 
relationship because analysts are familiar with this display 
in their work places. Analysts can select each of them to see 
the details. Region 11 shows the details of the selected 
observation in Region 10, and Region 13 shows the details 
of a selected hypothesis in Region 12, including its truth 
value and description. ARSCA enables the analyst to 
modify the truth value and the description, thus supporting 
the pre-defined operation COMFIRM/ DENY and 

MODIFY. ARSCA also enables the analyst to change 
his/her current focus from one hypothesis to another by 
double clicking the targeted hypothesis, thus supporting the 
operation SWITCH _CONTEXT. After changing the focus, 
ARSCA will link the newly captured action and observation 
of the analyst to the targeted hypothesis. 

Trace Output. When the analyst performs an operation, the 
UI events (e.g. keystroke inputs and mouse clicks) will 
trigger ARSCA to record the details of the operation in the 
background. These operations are recorded in a trace in 
temporal order. Once a task is finished, ARSCA outputs the 
captured trace in a XML file. An example of ARSCA’s 
output is shown in Table 2. 

Rationale of Integration  
The process tracing supported by ARSCA integrates 
automated capture and self-reports, both of which have 
advantages and disadvantages. As for automated capture, it 
obtains precise quantitative data unobtrusively and the 
records can give useful insights into analysts’ behaviors 
[24]. However, it can’t capture analysts’ comments and in-
depth thoughts. Besides, the collected data don’t contain 
any contextual information. If there are no other data 
provided, it will be difficult for the follow-up analysis 
which in turn may limit the data’s utility. As for self-
reports, it can gain quality data, but it relies on participates’ 
willingness to report.  

Integrated in ARSCA, the automated capture and situated 
self-reports can mutually strengthen. After an action or 
observation is automatically captured, the following 
hypothesis can provide the analyst’s comments on the 
observation. Meanwhile, the automatically captured data 
provide the contextual information for the hypothesis. 
Moreover, the Analysis View (i.e. Process Navigation) 
helps analysts reflect on their previous analysis process and 
organize their thoughts. Therefore, analysts are encouraged 

 
Figure 3 The ARSCA User Interface with the main components in the Data View and Analytical View 



to report their findings and thoughts emerged in the tasks. 
(However, the Analysis View is not indispensable. Analysts 
can also accomplish their tasks without using the Analysis 
View if they don’t like it).  

ARSCA Testing 
Table 2 RUI and ARSCA record a same set of operations. 

Opera
tions 

Filter the firewall logs based on condition “protocol=’TCP’”. 

RUI 
Log 

1．  Elapsed Time                  Action            X       Y 
2．  2014-05-24T13:24:10.726  Pressed Left   450    147 
3．  2014-05-24T13:24:12.390  Pressed Left   584    74 
4．  2014-05-24T13:24:13.959  Key  T  Shift 
5．  2014-05-24T13:24:14.228  Key  C  Shift 
6．  2014-05-24T13:24:14.325  Key  P  Shift 
7．  2014-05-24T13:24:15.874  Pressed Left   716    79 
8．… 

ARSCA
Trace 

9．<Item Timestamp="05/24 13:24:15"> 
10．   FILTER ( SELECT * FROM Task2Firewall WHERE  
11．     Protocol = 'TCP', Task2Firewall) 
12．</Item> 
13．… 

ARSCA has been tested in a pilot study. We ran ARSCA 
and performed all the pre-defined operations. Meanwhile, 
we ran an existing keystroke logging tool called RUI 
(Record User Input) as a reference. RUI (version2.3) is a 
well-tested tool that can record the interface behaviors and 
runs in the background [25]. Running together with 
ARSCA, RUI recorded our low-level interactions (i.e. 
keystrokes and mouse clicks) with ARSCA while we were 
performing the operations using ARSCA. Table 2 provides 
a short sample of RUI logs, and one item in ARSCA trace, 
which is a pair of timestamp and operations. The “FILTER” 
operation corresponds to the RUI logs in line 2-7.  

In total, we performed 126 operations, including 15 
FILTER, 22 SEARCH, 15 INQUIRE, 17 SELECT, 10 
LINK, 13 NEW, 10 MODIFY, 14 SWITCH_CONTEXT, 
10 CONFIRM/ DENY operations. We first went through 
each item in the ARSCA traces to investigate whether the 
operations were correctly captured. We found that the 
descriptions of the operations recorded in the traces are 
correct. We further checked whether the timestamps in 
ARSCA traces are accurate by matching them to the 
timestamps in RUI logs. According to a Wilcoxon signed-
rank test, the median absolute time difference is 
significantly less than 1000 (Wilcoxon Statistic = 535.0, P-
value = 0.000) in the unit of millisecond. It indicates no 
difference because timestamp in RUI log is accurate to .001 
second while the trace timestamp are accurate to 1 second. 

Experiment: Tracing Cyber-Attack Analysis Processes 
Due to the concern of organization’s confidentiality, we 
design a laboratory experiment to collect traces of the 
cyber-attack analysis processes. The goal of the experiment 
is to collect traces that represent analysts’ cognitive 
processes in their real-world cyber-attack analysis jobs. 
Next, we explain how we recruit participants and design the 
experiment and the experimental task to achieve this goal.  

Recruitment 
After obtaining the IRB approvals, we recruited thirteen 
full-time professional cyber analysts in collaboration with 
Army Research Lab and seventeen doctoral students 
specialized in cyber security from our University. Although 
the doctoral students are less professional, they all have 
sufficient domain knowledge and experience in cyber 
security analysis.  

Experiment Design 
Pre-task Questionnaire. Before beginning a task, a 
participant needs to complete the pre-task questionnaire that 
takes about 5 minutes. The questions focus on demographic 
factors, domain knowledge and expertise of cyber-attack 
analysis, familiarity with VAST Challenge 2012, and the 
participant’s current mental and physical status. 

Tutorial Session. Considering the potential influence of the 
participant’s proficiency with the tool on his/her 
performance of the task, we design a tutorial session to 
teach the participant about how to use ARSCA. At the end 
of the session, we require the participant to pass a quiz to 
make sure that the participant is familiar with the tool 
before undertaking the task. 

Conducting the Task. After the tutorial session, we task to 
the participant to work with ARSCA to conduct a cyber-
attack analysis task. Within the one-hour limit for 
conducting the task, participants can end the task at any 
time when they finished their analysis. The task will be 
described later.  

Post-task Questionnaire. After each task, we ask the 
participant to complete a post-task questionnaire that takes 
about 15 minutes. It includes both open-ended questions 
and closed-ended rating questions. The open-ended 
questions ask the participant to report the key observations 
and hypotheses and explain how they gain them, which can 
be used to confirm the information captured in the traces. 
The close-ended rating questions use a five-point Likert 
scale and ask the participant’s opinions on multiple aspects 
of the experiment setup and his/her performance in the task. 
We will discuss the questions in detail in the next section. 
Knowing the ground truth of the task, we can assess the 
participants’ performance according to their answers to the 
post-task questions and the collected traces. 

Follow-up Trace-Stimulated Recall (not required). Several 
participants may be invited by us to participate in a trace-
simulated recall study. It is not required and depends on 
their performance in the task and their time schedule. The 
details will be discussed in the next section.  

Experimental Task 
The cyber-attack analysis task in our experiment should be 
carefully designed to ensure the quality of the traces to be 
captured. More specifically, the task should be of 
reasonable complexity for our participants, which is neither 
too difficult nor too easy. The data sources provided in the 
task should be close to the real-world data sources with 



respect to the volume and complexity of noise. Meanwhile, 
we need to control the size of the data set to ensure the 
participants can finish the task within a specified time 
frame.  

We designed our task by partially adopting the network 
dataset from VAST Challenge 2012 Mini Challenge 2 
produced by the Visual Analytics Community [4]. The 
VAST dataset are of high quality [26], containing 
23,711,341 firewall logs and 35,948 IDS alerts. It also 
provides a realistic cyber-attack scenario which is a 
multiple cyber-attack taking place within 40 hours on the 
network of an organization containing approximately 5000 
hosts. Figure 1 shows the network topology and the data 
sources: firewall logs and IDS alerts. However, the original 
dataset is too huge to be analyzed by the participants in the 
given time. To reduce the workload, we need to select a 
small portion from the original dataset. Given the ground 
truth (i.e. the original attack events occurring during the 40 
hours), we extract the data that corresponds to a critical 10-
minute period with three attack events. Finally, the data 
sources of our task include 239 IDS alerts and 115,524 
firewall logs. There are three obvious attack events 
underlying the data sources: (1) IRC communication 
between the inside workstations with a set of outside 
Command and Control (C&C) severs, (2) denied FTP 
connection attempts for data stealing, and (3) successful 
SSH connection for data stealing.  

PRELIMINARY RESULTS OF TRACE ANALYSIS 
We collected thirty traces by conducting the experiment. 
We analyze the traces as well as the participants’ post-task 
questionnaires with the aim of evaluating our CTA method 
and gaining a basic understanding of the participants’ 
cognitive processes of cyber-attack analysis.  

Use Traces to Describe Cognitive Processes 
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Figure 4 We use P1’s trace to explain his analysis process. 

We use the collected traces to explain the participants’ 
cognitive processes to investigate what has been captured in 

the traces. The unit of analysis is the trace item, which is a 
pair of timestamp and operation. We analyze the recorded 
operations and explain the reason why the participant 
conducted one operation after another.  

Our analysis of the trace starts with the activities that are 
explicitly recorded in the trace, such as the descriptions of 
Hypotheses. For example, a participant wrote in a 
hypothesis: “Websites are communicating with financial servers. 
They are communicating over what appears to be IRC which is 
commonly used by malware.” We can know that the 
participant has the domain knowledge that “IRC can be 
used by malware” and he/she generated this hypothesis 
based on this knowledge. However, the explicit cognitive 
activities can’t explain the analytical reasoning process 
completely, so we need to infer the implicit activities that 
are not recorded in the trace. These activities can be 
inferred by explaining the sequence of operations.  

Figure 4 shows an example of the partial trace of participant 
“P1”. The partial trace is demonstrated as a sequence of 
operations in the simplified representation. It shows that P1 
first browsed the IDS alerts at time  t!,  and then selected a 
set of alerts about IRC connections and confirmed them as 
an observation (O1). Based on the O1, he generates a new 
hypothesis (H1) about policy violation. We say that 
network policy is an explicit observation because it is 
mentioned in H1. Following this operation, the trace shows 
that P1 filtered the IDS alerts based on “Port=6667”. We 
notice that some connections via port “6667” have appeared 
in observation O1. So we can infer that P2 used this 
filtering condition because he thought the IDS alerts 
containing port “6667” are worthy of investigating. The 
reason why he suspected these alerts could be that he has 
the domain knowledge that port “6667” is a common port 
used by malicious C&C communication. Therefore, we 
created the implicit objects between the NEW_HYPO 
operation and the FILTER operation to explain why P1 
conducted the filtering after generating the hypothesis.  

After analyzing the 30 traces in the same way, we 
demonstrate two typical cases extracted from the traces of 
two participants who are professional analysts, in which 
experience plays an important role.  

Case 1: “Following up a Clue” 

H2: IRC used for C&C 
communication in a botnet H3: IRC alters are 

false positive

A3: Go to Firewall logs, 
Filter Firewall logs based on source port 6667

O3: Connections between internal IPs and external IPs via 
source port 6667 

H4: IRC communication confirmedt10: NEW 

t8: FILTER

t9: SELECT,SELECTED 

...

t6: NEW_HYPO

t7: NEW_HYPO 

(previous operations are omitted)

 
Figure 5 P1 found suspicious IRC connections in IDS alerts, 
and he checked for the relevant data in firewall logs. 

This case is still from participant P1 and the selected part is 
the operations following those in Figure 4. As shown in 
Figure 4, P1 filtered the IDS alerts based on “Port = 6667” 



and found that a lot of IDS alerts report the network 
connections via port 6667 (O2 in Figure 4). Based on the 
observation, he generated two alternative hypotheses, which 
are H2 and H3 (shown in both Figure 4 and Figure 5). To 
investigate H2, he shifted to the firewall logs for more 
evidence. He filtered the firewall logs based on the same 
condition “source port = 6667” (A3), and observed that the 
connections in the filtered firewall logs were also from 
internal IP addresses and external IP addresses (O3). So it 
strengthened his previous hypothesis that malicious IRC 
communication exists in the network.  In this case, when 
the participant found the suspicious connections in the IDS 
alerts, he continued to track down such connections in 
firewall logs (“following up a clue”). Using this strategy, he 
successfully correlated the evidence in IDS alerts with those 
in firewall logs and confirmed his hypothesis. 

Case 2: “Proceeding From One Event to its Associated 
Events” 

H1: It confirms IRC 
communication. The bots may 
launch attacks. Need to check 

potential attacks.   

O2: Denied FTP connections from internal IPs to external IPs through port 21.

O1: IRC connections via source port 6667 in Firewall logs

Domain Knowledge of botnet attack: 
the ports commonly used by botnet are 
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H3: Failed FTP connection attempts from internal IP 
to external IP. Need to check whether SSH is used.  

A2: Filter Firewall logs based on port =21
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A3: Filter Firewall logs based on port=22

H4: Bots use SSH to exfiltrate data.

t1: SELECT, SELECTED
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Figure 6 When P8 confirmed his hypothesis of an attack event, 
he speculated on the associated attack events and further 
investigated them. 

Figure 6 demonstrates the partial trace of the participant P8. 
P8 first confirmed his hypothesis about IRC 
communications in a botnet (H1) after gaining the 
observation O1. According to his following operations (i.e. 
filtering firewall logs by port), we can infer that he knew 
that port “21”, “22” and “25”, which correspond to the 
service FTP, SSH and SMTP respectively, are often used 
by botnet based on his experience knowledge. Therefore, 
after confirming the existence of the botnet, he suspected 
that the bots conducted some malicious activities through 
the commonly used ports, and then investigated them one 
by one. He first filtered the firewall logs based on “port = 
21” (A2) and found denied FTP connections from internal 
IP addresses to external IP addresses through port “21” 
(O2). Then, he knew some malicious FTP attempts indeed 
existed but were failed. He expected those bots would 
choose another way, and decided to investigate the 
connections using SSH (H3). He filtered the firewall logs 
based on port = “22” (A3), and found that three SSH 
connections were successfully built between internal IP 

addresses and external IP addresses (O3), which is very 
subtle. So he generated a hypothesis that the bots exfiltrate 
data to outside C&C servers using SSH.  

In this case, after the participant confirmed his hypothesis 
about the IRC communication in a botnet, he further 
explored the follow-up attack events, and then gained the 
two key observations (i.e. failed FTP connections and 
successful data exfiltration using SSH). It largely relies on 
his experience which is obtained from long-term on-the-job 
training. 

Traces Capture the Key CTA Data 
We expect that the process tracing can capture the evidence 
and thoughts considered important by the participants in 
their analysis processes. In the post-task questionnaire, 
participants were asked to answer four open-ended 
questions: (1) IMP_OBS: “Reflecting back, what are the 3 
most important evidence that you observed in the data that 
contributed to your conclusion?” (2) FD_OBS: “Please 
explain how you find the above evidence.” (3) IMP_HPY: 
“Reflecting back, what are the 3 most important thoughts in 
your mind that contributed to your conclusion?” (4) EVTS: 
“Based on your analysis, please create one or more 
narratives that describe the events on the network (i.e. tell 
the storyline of the potential events)”. 

Given participants’ answers to these questions, we checked 
whether the information in the answers had been captured 
in the traces. We need to analyze the content of the free-text 
answers to extract the themes in each of them and then 
match them to the traces. The procedure of our analysis is 
as follows.  

We first weeded out the undesirable answers, including 
irrelevant answers (e.g. “the tool is helpful”) and vacuous 
answers (e.g. “I don’t have any comment”). Next, we 
analyzed the content of each answer and extracted themes 
from it (i.e. coding the answer). The unit of analysis is 
sentence. We have one main coder and one evaluator. 
Given a sentence in an answer, the main coder and the 
evaluator first read through it respectively, and then the 
main coder extracts the themes and generates a preliminary 
coding. After that, the evaluator proofreads the coding and 
revises it if necessary. At last, we matched the codes to 
relevant items in the traces.  

We have 30 answers to “IMP_OBS”, 27 answers to 
“FD_OBS”, 29 answers to “IMP_HPY”, and 29 answers to 
“EVTS” after data cleaning. Figure 7 presents an example 
of a coded answer. Themes are marked by “#”, and “[H]” 
indicates a theme about hypothesis/thought and “[O]” 
indicates a theme about observation/evidence. Different 
themes, which corresponding to different attack events, are 
marked in different colors. In total, we generated 318 
themes in these answers. Fortunately, we found that all the 
themes in the answers to “IMP_OBS”, “IMP_HPY” and 
“EVTS” are captured in traces. As for “FD_OBS”, 5 
themes in its answers are not captured by the trace. The 



themes are about either the domain knowledge used (e.g. 
“some ports are always used by attacker”) or implicit 
assumption made by the participants (e.g. “outbound 
connections are not allowed by the network policy”), which 
are the implicit parts and can be inferred by analyzing the 
trace. In conclusion, the results of the content analysis show 
that traces can capture the key evidence and thoughts in the 
cognitive processes of cyber-attack analysis. 

I conclude that there was likely IRC communication on the network.  This could have 

been a policy violation or malware C2 communication.  In addition, I saw attempts for 

FTP (tcp/21), SSH (tcp/22), and HTTP (tcp/80) from internal address space to the 

internet, which are policy violations.  Lastly, there were a large number of IDS alerts 

that were generated about SMB null sessions and overflow attempts which point to 

potentially malicious activity over SMB.  

#[H]:  IRC communication #

#[H]: Policy violation or Malware C2 Communication #

# [H]: FTP attempt # #[H]:  SSH attempt # # [H]: HTTP attempt#

#[O]:  inside->outside #

#[H] Malicious activity over SMB) #

#[O]:  inside->outside # #[O]:  inside->outside #

#[O]: IDS alerts about SMB null session # #[O]: IDS alerts about SMB overflow attempts #

 
Figure 7 Extracting themes from the text of an answer to 
EVTS 

CTA Data in Traces Complement Each Other 
There are two types of CTA data in traces: the 
automatically captured CTA data and the self-reported CTA 
data. Take the trace item in Table 2 as an example. The 
“FILTER” operation belongs to the automated-captured 
CTA data because ARSCA recorded this filtering action 
automatically. In the 30 traces, there are balanced number 
of automatically captured items and self-reports: 151 items 
are collected by automated capture (mean=5.59, SD=3.05), 
and 180 are collected by self-reports (mean=6.67, SD=5.07).   

In the previous two cases, the automatically captured CTA 
data are represented by rectangles, and the self-reported 
CTA data are represented by ellipses. The automatically 
captured and self-reported CTA data are complementary in 
the following ways, which enables us gain deep 
understanding of the participants’ cognitive processes based 
on the traces.   

Automatically Captured Action Describes Automatically 
Captured Observation: In Case 1, the participant first 
filtered the IDS alerts based on the condition "Port = 6667" 
at time t1, and then he selected a set of filtered alerts as his 
new observation at time t2. The filtering action implies that 
the selected alerts satisfy the filtering condition (“Port = 
6667”). Therefore, the action at t1 provides us more 
information about the observation at t2. Without the first 
action, we would not be sure about the feature of the 
captured observation. The same cases are the action and 
observation at t5 and t6 in Case 1, t3 and t4, t6 and t7 in 
Case 2. 

Automatically Captured Observation Provides the 
Contextual Information for Self-Reported Hypothesis: 
When analyzing the trace of Case 1, we learn that the 
participant confirmed his hypothesis about IRC network 

connections and reported this finding (H4) after finding the 
evidence in both IDS alerts (A2, O2) and Firewall logs (A3, 
O3). These actions and observations, which are 
automatically captured, provide the contextual information 
of the self-reported hypothesis, so that we can know under 
what situation the participant confirmed his hypothesis. The 
role of observation is also confirmed by the participant’s 
comment in the post-task questionnaire: 

“Sometimes when exploring multiple thought processes I 
would add to a small bit of information to confirm a 
hypothesis (find initial IRC traffic, then later expand on 
that).” 

Other actions and observations succeeded by a self-reported 
hypothesis in Case 1 and Case 2 also have the same role.  

Self-Reported Hypothesis Explains the Motivation of the 
Subsequent Automatically Captured Action: In Case 1, the 
participant switched his focus form IDS alerts to the 
firewall logs and filtered the firewall logs based on the 
same condition as he did in IDS alerts (A3). The self-
reported hypothesis (H2) between action A2 and A3 
explains the motivation of A3, which is to find supporting 
evidence. The role of the in-between hypothesis is more 
significant in Case 2. The hypothesis H1 explains how the 
participant came up with the insight to investigate FTP 
network connections (A2) via port 21 when he gained the 
observation of IRC connections (O1). Without H1 reported 
by the participant, it would be hard for us to guess the 
reason why he performed the following action.  

Trace-Stimulated Recall 
To check whether our understanding of the participants’ 
cognitive processes based on their traces is close to their 
original ones, we conducted a follow-up trace-based 
stimulated recall interview [27] by inviting participants to 
recall their previous cognitive processes with the aid of 
their traces.  The procedure of trace-stimulated recall is as 
follows: we ask a participant to go through his/her trace by 
explaining each operation as what we taken before. After 
obtaining his/her self-explanation, we confirm our original 
understanding of his/her analysis process.  

At this stage, only the professional participants are required 
to take the recall interview for the reason the their cognitive 
processes are more typical of the real cyber-attack analysis 
processes than the doctoral ones. However, it’s not feasible 
for us to invite all the 10 professional analysts, because the 
recall interview requires much more time compared with 
the experiment we did. Therefore, we chose one 
representative, P1, from the professional analysts who have 
participated in our experiment. P1 is invited because he 
successfully identified all the attack events in the task and 
his trace is more representative than other professional 
analysts.  

Check Trace-based Explanation with Self-Explanation 
The result of the trace-stimulated recall with P1 shows that 
his self-explanation is consistent with our finding. The 



following is an example of his comments on his decision-
making in filtering IDS alerts (which is illustrated at t! in 
Figure 4): 

“I saw strings within the IDS alerts that meant IRC 
communication/traffic that was based on my prior 
experience this is a default port for IRC . I usually start with 
large chunk of port communications and it happened to be 
port 6667. I also wanted to see if there was one or more 
hosts communicating.”  

It indicates that P1’s filtering activity was based on his 
domain knowledge and his observation of a large amount of 
alerts with port 6667 (which are represented in the dotted 
boxes in Figure 4).  

Moreover, it is founded that the cognitive process of the 
participants can be inferred from the successive operations 
in the trace. For instance: 

One part of P1’s trace indicates that he generated a new 
hypothesis about DNS attack by self-reporting: “Some 
malware attacks on DNS from inner network, need further 
exploration”. Right after making the hypothesis, he 
switched his focus of attention to another hypothesis, which 
was generated previously with the note: “Suspicious IRC 
connections from outside”. The following part of the trace 
shows that P1 never went back to the previous hypothesis 
about DNS attack. In the recall study, P1 gave the reason 
why he didn’t further explore this hypothesis: this 
hypothesis is not generated on his serious thinking and 
therefore he quickly gave up this hypothesis after a second 
thought but he failed to inform the tracing tool. This finding 
indicates that traces may not record all the thoughts 
emerged in the analysts’ mind. Although it is impossible to 
capture every thought occurred in the participant's cognitive 
process, traces at least can provide some clues and 
enlightenments for interpretation which are also useful for 
further analysis. 

DISCUSSION 
Our preliminary trace analysis reveals the feasibility of 
understanding the analysts’ cognitive process by analyzing 
the traces. We show that the traces not only capture the key 
cognitive activities but also may imply analysts’ knowledge 
and experience. Besides, traces have the reliability in that 
the automated-captured and self-reports CTA data in traces 
can confirm and complement each other. 

This work has several limitations. Firstly, some subtle 
thoughts occurred in a participant’s mind (e.g. quickly-
denied thought) might fail to be captured in the traces 
(implicit thoughts), which may add additional difficulty to 
researchers in explaining the successive operations in the 
traces. Regardless of it, some clues of implicit thoughts 
recorded in traces can enable the researchers to make an 
educated guess/inference on them. 

Secondly, there is always a trade-off between CTA data 
collection (i.e. capturing traces) and CTA data analysis (i.e. 
analyzing traces). Considering the tight schedule of cyber-

attack analysts, we try to minimize analysts’ work load in 
our CTA data collection study, however, further efforts on 
trace analysis are needed as the interpretation of the 
operations in traces is also a complex cognitive process. 
Fortunately, based on our preliminary trace analysis, we’ve 
observed some common patterns of sequential operations in 
traces. Therefore, it is highly likely to generate some 
guidelines or a procedure, even an automated tool for trace 
analysis.  

Furthermore, we only confirmed our understanding of one 
participant’s trace in the stimulated recall interview, which 
is not enough to conclude that the understanding gained 
from trace is similar to the original cognitive processes. We 
definitely need to conduct more recall study. However, at 
least we know the key cognitive activities are captured in 
the traces. Based on our analysis of other traces of both 
professional analysts and doctoral students, we did observe 
that there is a diversity of the strategies used by the 
participants for data exploration and hypothesis generation. 
In the future, we can identify and categorize these strategies 
and compare them across the participants. It will not only 
contribute to elicitation of procedure knowledge but also 
help us understand the difference between experts and 
novices and develop tools to assist or train analysts.  

CONCLUSION 
We proposed an integrated computer-aided CTA data 
collection method and conducted an experiment to capture 
the traces of participants’ fine-grained cognitive processes 
in accomplishing a cyber-attack analysis task. The results of 
our preliminary trace analysis indicate that this method may 
be a feasible way to gain understanding of how analysts 
perform cyber-attack analysis tasks, and it may have such 
promising contribution to analysts’ as self-reflection, 
elicitation of their procedure knowledge or new tool 
development. 
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