
How Your Phone Camera Can Be Used to Stealthily Spy on
You: Transplantation Attacks against Android Camera

Service

Zhongwen Zhang 1 3, Peng Liu 2, Ji Xiang 1, Jiwu Jing 1, Lingguang Lei 1

1Institute of Information Engineering, CAS, Beijing, China
2Pennsylvania State University, University Park, PA, US

3University of Chinese Academy of Sciences, Beijing, China
1zwzhang@lois.cn 2pliu@ist.psu.edu 1(jixiang, jing, lglei)@lois.cn

ABSTRACT
Based on the observations that spy-on-user attacks by call-
ing Android APIs will be detected out by Android API
auditing, we studied the possibility of a “transplantation
attack”, through which a malicious app can take privacy-
harming pictures to spy on users without the Android API
auditing being aware of it. Usually, to take a picture, apps
need to call APIs of Android Camera Service which runs in
mediaserver process. Transplantation attack is to transplant
the picture taking code from mediaserver process to a mali-
cious app process, and the malicious app can call this code to
take a picture in its own address space without any IPC. As
a result, the API auditing can be evaded. Our experiments
confirm that transplantation attack indeed exists. Also, the
transplantation attack makes the spy-on-user attack much
more stealthy. The evaluation result shows that nearly a
half of 69 smartphones (manufactured by 8 vendors) test-
ed let the transplantation attack discovered by us succeed.
Moreover, the attack can evade 7 Antivirus detectors, and
Android Device Administration which is a set of APIs that
can be used to carry out mobile device management in en-
terprise environments. The transplantation attack inspires
us to uncover a subtle design/implementation deficiency of
the Android security.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; K.4
[Computers and Society]: Privacy

Keywords
Android, Spy on Users, Transportation Attack, Android Cam-
era Service

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CODASPY’15, March 2–4, 2015, San Antonio, Texas, USA.
Copyright c© 2015 ACM 978-1-4503-3191-3/15/03 ...$15.00.
http://dx.doi.org/10.1145/2699026.2699103.

1. INTRODUCTION
In May, 2014, a news feature story from the USAToday

Newspaper reported that users’ phone camera can be used to
spy on them [11]. “One segment was particularly troubling.
In it, Snowden described how a hacker could potentially hi-
jack the camera in William’s pre-paid smartphone and use it
to capture photos, video, and audio without his knowledge.”
With this news, that the camera can be used to spy on users
becomes well known.

Regarding how the Camera device in a smartphone can
be hijacked, a typical way is as follows.

Motivation example. To achieve stealthiness, the at-
tacker can use a QR-code scanner app to spy on users. QR-
code scanner can be used in many places, such as comparing
price when shopping, downloading a coupon or an app, get-
ting other users’ business card. Because the Camera device
is used when scanning, the scanner app should have the
CAMERA permission. To misuse this app to spy on user-
s, the attacker can maliciously repackage this app to take
pictures. According to [36], 86% malware are repackaged
version of legitimate apps.

Motivation. This work is motivated by a key observation
in launching spy-on-user attacks, which is that getting the
CAMERA permission does not address all the concerns of
the attacker. Even with the CAMERA permission, the at-
tack is still concern with what the defences can do. Because
the repackaged scanner app has to use Android APIs to take
a picture, the Framework code of Android, e.g., PackageM-
anager Service, Camera Service, can be extended to do at
least 2 things. First, it can do API auditing. API audit-
ing will give users substantial awareness and alerting. For
example, one day, users only use the QR-code scanner dur-
ing 5pm to 6 pm to compare price when shopping, but the
audit record shows the camera usage APIs are called every
30 minutes all day. That is a big alerting, and users will
gain full awareness of being spied by attackers. Second, a
simple image processor can be added (to Camera Service)
to verify whether the picture just token is QR-code. If not,
the Framework code (Camera Service) can reject returning
the picture back. This will fail the attack.

To avoid the second defence, the attacker could use a s-
tandard picture-taking app instead of QR-code scanner app
to add spy-on-user code. However, even if using a standard
picture-taking app cannot confront the first defence.

Our goal is to enable the spy-on-user attack to achieve
superb stealthiness. By superb stealthiness, we mean that
neither the first nor the second defence way will deter the
spy-on-user attack. Through the proposed transplantation
attack, the attacker can spy on users without calling any
Android API.

On Android phones, to capture a picture, attackers could
call picture taking APIs provided by Android SDK. Howev-
er, from the attackers’ point of view, this kind of spy-on-user
attack is not stealthy. It cannot evade the Android API
auditing detection, which records when and which API is
called.

Android API auditing is important to both enterprise
environments and individual users. In enterprise environ-
ments, employees can fulfill their job responsibilities on their
Android phones anywhere. Even with permission controls,
abuse (by attackers) or misuse (by employees) of apps can
still bring security risk to companies. Therefore, as impor-
tant as Windows/Linux audit in PC world, it is critical to
deploy API auditing on employee phones. No matter it is
a COPE (Corporate Owned, Personally Enable) phone or a
BYOD (Bring You Own Device) phone, the company must
deploy Android API auditing before the phone can be used
to do any business.

Besides enterprise environments, individual users face se-
curity risk as well. The news feature story indicates that
users’ smartphone camera could be turned on without their
knowledge. Such spy-on-user news will make individual s-
martphone users increasingly concerned about their privacy.
Therefore, more and more individual users should do API
auditing on their phones.

Android API auditing helps defend the spy-on-user attack
in at least three ways. First, it offers awareness to users.
Company administrators and individual users can look in-
to the audit files to check if there are camera-access APIs
been called. Second, it can do intrusion detection. The API
auditing can automatically do intrusion detection according
to some (user-provided) detection rules. Third, based on
the intrusion detection results, company administrators and
individual users can uninstall the malicious apps.

Moreover, either employee phones or individual phones
may contain Antivirus (AVs). One of the functionalities of
AVs is antispyware, which is used to protect the user’s phone
from being turned into a voice or video recorder or to see
what the phone’s camera sees by malicious code. Regularly
calling the picture taking APIs will face the threat of being
detected by AVs.

In enterprise environments, besides API auditing and AVs,
the MDM (Mobile Device Management) is another safety
measure, which can control the usage of picture taking APIs.
MDM apps can enable or disable Camera Service. Once the
Camera Service is disabled, the picture taking APIs cannot
work. As a result, the spy-on-user goal cannot be achieved,
either.

Problem Statement. Security measures like API au-
diting, AVs, MDM hinder the existing spy-on-user attacks
which relying on picture taking APIs. Motivated by this key
observation, in this paper, we focus on a new spy-on-user at-
tack, i.e. how to take pictures without calling any picture
taking APIs.

Besides API auditing, log auditing is another way to de-
tect abnormal behavior. However, on Android system, pic-
ture taking logs are only generated after picture taking APIs

are called. As no picture taking APIs will be called in the
new attack, picture taking logs will not be generated. There-
fore, this new attack can also evade log auditing.

We have the following insights about this attack. (1)
When an app takes a picture, the app will send a request to
the mediaserver process, in which the Camera Service run-
s, via Binder IPC (Inter-process Communication). Then,
the mediaserver process sends a request to the systemserver
process, in which API auditing can be done. (2) The pic-
ture taking code of Camera Service run in the mediaserver
process, and they exist in the form of .so libraries. (3) The
camera driver could be directly accessed by the .so libraries
without the app having any Binder IPC.

Base on the above insights, we could transplant the need-
ed .so libraries from mediaserver process to a malicious app
process, and let the malicious app access camera drivers to
take pictures, directly. We denote this attack as trans-
plantation attack. To make this happen, the malicious
app should be able to access camera drivers. If a camera
driver is globally accessible (i.e. has a Linux permission of
666 or 777), the malicious app can directly access it. Other-
wise, the malicious app should become a member of camera
group, which can be achieved by applying CAMERA per-
mission 1. In this case, the transplantation attack needs
CAMERA permission as well. Our survey reveals that a-
mong the top 758 apps gotten from Google Play, 24.27% of
them request the CAMERA permission. These apps pro-
vide a lot of chances to make transplantation attack become
a real-world threat (e.g., by repackaging).

Going through a series of failures, we have finally con-
structed a novel spy-on-user attack. Accordingly, this spy-
on-user attack has the following characteristics: 1) A mali-
cious app can take a (potentially privacy-harming) picture
at anytime without calling any picture taking APIs. 2) No
Binder IPC is involved when the malicious app is taking
pictures. 3) The transplantation attack can evade the An-
droid API auditing. 4) The transplantation attack, when
being applied to the Camera Service, results in stealthiest
and unnoticed picture taking. That is, privacy-harming pic-
tures can be taken by the malware without the Android API
auditing being aware of it.

Research Contributions. The main contributions of
this paper are listed as follows.

• To the best of our knowledge, this work is the first one
on the transplantation attack. We have searched the
CVE (Common Vulnerabilities and Exposures) list [2].
Among the 448 CVE entries that match the keyword
Android, we found there was no such kind of attack
happened before.

• We have conducted a set of real world experiments on
69 phones. 46.38% of the smartphones (manufactured
by 8 vendors) tested by us let the transplantation at-
tack succeed. We have also evaluated the evasiveness
of the transplantation attack against 7 Antivirus de-
tectors, and Android Device Administration (mainly
used to do MDM). The evaluation results show that
the transplantation attack can evade all of these de-
fenses.

1
That is because, Android will automatically put an app with CAM-

ERA permission to camera group, which will be discussed in Section
4.1

• Transplantation attack indicates a design deficiency of
the Android security. Android will automatically put
an app with CAMERA permission into camera group,
which is the primary reason that transplantation at-
tack happens. However, our experiment shows that do-
ing this is not necessary. Therefore, we believe putting
an app into camera group is a design deficiency.

The remaining part of this paper is organized as follows.
Section 2 gives attack overview. Section 3 describes the
workflow of the Camera Service. Section 4 shows construc-
tion of transplantation attack. Section 5 shows the evalua-
tion result. Section 6 shows the discussion. Section 7 shows
related works. Section 8 shows our conclusion.

2. ATTACK OVERVIEW
In real world, camera drivers on most phones cannot be

globally accessed, instead, they are assigned with a Linux
permission of 660. Therefore, in most cases, the transplan-
tation attack needs to apply CAMERA permission (to be
put in the camera group).

To initiate transplantation attack, attackers can simply
write an app with CAMERA permission. However, attack-
ing through this app has limited coverage if this app is not
downloaded by many phones. To maximize the coverage,
re-packaging a wildly downloaded app is an effective way.
According to [34], 5% to 13% apps in the third party mar-
kets are repackaged. According to [36], 86% malware are
repackaged versions of legitimate apps. Therefore, it is quite
likely that innocent users will download a repackaged app.

Our survey reveals that among the top 758 apps gotten
from Google Play, 24.27% of them request the CAMERA
permission. Stowaway [13] reveals that among the 940 apps
getting from Google Play, 6% of them require the CAMERA
permission but not use it. We also collect 19 phones from
our labmates, an average of 35.3% apps on each phone have
the CAMERA permission. These apps either in the wild or
is widely distributed on users’ phones give attackers a lot of
opportunities to exploit these apps to spy on users.

We assume attackers would repackage an app that already
has CAMERA permission. Therefore, our attack goal has
nothing to do with obtaining the CAMERA permission. The
malicious repackaging can work as flows.

First, the repackaging does not need to modify any exist-
ing functionalities, including functionalities using the Cam-
era Service to take pictures, or to scan QR-codes. Second,
attackers only need to add the malicious code to spy on user-
s. In Section 4, we will tell how to construct the malicious
code. Third, after repackaging is done, attackers should re-
sign the app using jarsigner. At last, attackers can submit
the repackaged app(s) to, e.g., third party markets to dis-
tribute it. Of course, the repackaged app can be submitted
to any markets. Even the official Android Market has 1% of
repackaged apps [33].

When repackaged apps are running, users’ experience is
exactly the same as before. User-initiated camera usage will
be audited by the API auditing and appears in the audit.
However, the attack goal is that the spy-on-user part of ac-
cessing the camera hardware will not appear in the audit,
which is a stealthy way. Exploiting this stealthy way of
accessing the camera hardware, attackers can spy on users
without being detected.

3. WORKING MECHANISM OF CAMERA
SERVICE

Camera Service provides the functions of using the cam-
era device to, e.g., take a picture, record a video, etc. The
workflow of Camera Service is quite different between 2.x
and 4.x. In this section, we will analyze the working mech-
anism of the Camera Service based on Android 4.x, which
according to Google’s survey [16] becomes the main stream
Android version nowadays.

3.1 Camera Service Workflow
Android system is running on top of a Linux kernel. The

Android system is essentially a set of processes (address s-
paces), including daemon processes, the mediaserver pro-
cess, the systemserver process, the servicemanager process,
and the Android application processes.

3.1.1 Overview.
Camera Service belongs to mediaserver process, which is

a native process. The Camera Service’s workflow is shown in
Figure 1. The workflow is illustrated using a client process
and the mediaserver process.

 Java code

Android API

libcameraservice.so

CameraService

CameraHardware
Interface

libhardware.so

libcamera.so

Camera Driver

Application Layer

Framework Layer

Application Runtime
&

System Library Layer

Hardware Abstract
Layer

Linux Kernel Layer

Checking permission
in the systemserver

process

Camera Driver

Checking whether the
process belongs to
the camera group

Client process (before)

Mediaserver process

libcamera_client.so

Camera Client

DVM

Figure 1: The workflow of the Camera Service

The client represents any app using the Camera Service.
The client process has a standard 5-layer structure, which
includes Application layer, Framework layer, Android Appli-
cation Runtime layer (Runtime layer), Hardware Abstract
Layer (HAL), and Linux Kernel layer. The Application lay-
er and the Framework layer are written by Java code. The
Runtime layer contains a Dalvik Virtual Machine (DVM)
to execute Java code. This layer also includes certain na-
tive libraries to take care of the IPC needs, e.g. libcamer-
a client.so. In the HAL layer, since the client process does
not need to directly interact with Camera device, this lay-
er does not contain any code talking with camera driver.
Regarding the Linux kernel layer, since the memory pages
containing the kernel code are shared by every process, the
client address space also contains the camera driver code.

The mediaserver process is a native process. Native pro-
cesses do not contain Java code, therefore the mediaserver
process does not need the DVM. The mediaserver process
only has 3 layers (see Figure 1). The top layer only con-
tains system libraries written in native code (.so libraries),
therefore, we call this layer as System Library layer. The

System Library layer .so libraries are used to handle the re-
quest coming from a client, forward the request to the HAL
layer, get the response from the HAL layer, and forward the
response to the client. The HAL layer also contains .so li-
braries. Different from the System Library layer, libraries in
this layer are used to talk with the camera driver. The HAL
layer is doing most of the work assigned to the mediaserver
process. The mediaserver process’s Linux kernel layer also
contains the camera diver.

3.1.2 Request Sending Workflow.
To communicate with the Camera Service, the client should

firstly query the servicemanager process for the Camera Ser-
vice’s reference through binder IPC. The servicemanager is
a native process managing a list of registered system services
and their references. Querying servicemanager for the Cam-
era Service’s reference is a quite common IPC transaction,
therefore it is not shown in the figure.

After the reference of the Camera Service is obtained, the
general workflow of the Camera Service can be described
as follows. If the client wants to, for example, take a pic-
ture, it should get connected with the Camera Service first.
After the connection is established, the client could use al-
l functions provided by the Camera Service. To get con-
nected, the client first calls an Android API from its Java
code. The Android API, through a system library (libcam-
era client.so), sends the CONNECT binder request to the
mediaserver process.

When the binder request is received by mediaserver pro-
cess, the CameraService part (see Figure 1) of the System
Library layer will parse the request type from binder data
structure. If the request type is CONNECT, the CameraSer-
vice part will let the systemserver process check the client’s
permission first. This step can be used to do API auditing,
which will be discussed in Section 3.2. Only after the client
passes permission check, the CameraService part will call
the CameraHardwareInterface part of the System Library
layer to initialize the camera device. The functions in the
CameraHardwareInterface part will call the functions in the
HAL layer to interact with the camera driver in the Linux
kernel.

3.1.3 Image Data Transfer Workflow.
After a picture is taken, the picture (a frame of image

data) will be transferred back (see the –. flow in Figure 1).
In the HAL layer, there is a notification thread that keeps

listening on the camera driver and waits for camera events,
such as Camera has focused, or focus has moved. When the
camera device finishes taking a picture, the camera driver
will send an event to the notification thread. After the noti-
fication thread receives the event, it will transfer the image
data back to the System Library layer of the mediaserver
process from the bottom up by calling the callback func-
tions. The image data has already been compressed (by the
camera driver) to a certain picture format (e.g. jpeg); the
CameraService part could directly forward the image data
to the client process via Binder IPC.

In the client process, after the image data is received by
the CameraClient in the Runtime layer, it will be forwarded
to the Framework layer. Then, the Framework layer posts
the image data to the screen and the user will see. The image
data could be saved as a picture file in the Application layer,
which could be done by developers.

3.2 Android API auditing
Android provides various APIs to access phone hardware

(e.g., camera), Wifi and networks, user data, and phone set-
tings. Some of those APIs are protected by permissions.
These APIs are implemented either in framework code or
in system libraries. When a protected API is called, the
implementation code of the API will send a request to the
systemserver process to check the caller’s permission.

The request is sent to the PackageManager thread of the
systemserver process via Binder IPC, particularly. This
thread can know when and which API is called, and can get
the caller’s UID (user ID) and PID (process ID). Therefore,
through this thread, Android API auditing can be easily
done. Through the audit record, intrusion detection can be
done as well.

In Camera Service, when a picture-taking request is re-
ceived, the mediaserver process will send a request to the
PackageManager thread to check the caller’s permission. In
the meanwhile, the picture taking API can be audited.

4. CONSTRUCTION OF THE TRANSPLAN-
TATION ATTACK

In this work, our goal is to take a picture without be-
ing audited by the API auditing, which should not have
IPC with the mediaserver process. We assume an attacker
would use a repackaged app with CAMERA permission to
start transplantation attack. The repackaging should add
the malicious code described in this Section.

4.1 First Idea
The first idea of transplantation is to transplant the code

both in the System Library layer and the HAL layer from the
mediaserver ’s address space to the malicious app’s address
space directly. The code in the two layers exist in the form
of .so libraries. It should be noticed that the camera-related
.so libraries in the mediaserver process do not exist in any
normal Android app’s address space in the real world.

Java code

DVM

bridge.so

libcameraservice.so

libhardware.so

libcamera.so

Camera Driver

Client process (after)

Application Layer

Framework Layer

Application Runtime
&

System Library Layer

Hardware Abstract
Layer

Linux Kernel Layer

Figure 2: The address space of the malicious app

If the .so libraries in the mediaserver process can be suc-
cessfully loaded into the malicious app’s address space, the
result will look like the one shown in Figure 2 without the
bridge.so part. The Java code in the Application layer could
get through the Framework layer and access the transplant-
ed .so libraries in the Runtime layer. Then functions in the
Runtime layer call the functions in the HAL layer to talk

with the camera driver in the Linux kernel layer. The ex-
ecution flow of taking a picture goes from top to bottom
within the malicious app’s address space. The image da-
ta is transferred back from the bottom up inside the app’s
address space as well.

To make the above workflow work, three steps are needed.
The first step is to get the capability of accessing the camera
driver in the Linux kernel layer. Camera is a device file, who
is assigned to the camera group. To get the access capabil-
ity, the malicious app could become a member of camera
group. In Android system, apps granted the CAMERA per-
mission will be automatically put into the camera group 2.
Therefore, attackers should choose an app with CAMER-
A permission to repackage, then the repackaged malicious
app will be put into camera group and can access camer-
a drivers. On the condition that vendors have mistakenly
configured the file access permission of camera driver as rw-
rw-rw- (666) [35], camera driver can be globally accessed.
In this case, the malicious app does not need to become a
member of camera group. That is to say, the malicious app
does not need to apply the CAMERA permission. We will
discuss this case in the related work section.

The second step is to load the .so libraries into the mali-
cious app’s address space. There are two ways to load the
system .so libraries into a process’s address space in An-
droid. The first one is loading all the required .so libraries
when the process is created. This way needs the header files
of the .so libraries. The other one is loading the required .so
libraries when they are accessed. Using this way should call
the dlopen and dlsym function, which are special functions
provided by Android NDK. We have verified that both of
the two ways are workable in loading .so libraries.

The third step is to enable the Java code in the Applica-
tion layer to call the transplanted .so libraries in the Run-
time and HAL layer. We know that Android provides Java
Native Interface (JNI) for Java code to inter-operate with
native code through DVM. Taking advantage of JNI pro-
gramming, we can use native code as a bridge to connect
the Java code and the transplanted .so libraries. The native
code will be compiled to a .so file, and we name the .so file
as bridge.so, which is shown in Figure 2.

The first and second step are easy to achieve, however,
the third step is complicated. We meet several challenges
in constructing the bridge.so: choosing a reasonable start
point, setting up the execution context, and obtaining image
data and save it as a picture file, which will be talked in the
following sections.

4.2 Choose the Start Point of Transplantation
In step three, when we construct the transplantation at-

tack and when we write the native code, a primary thing is
to determine the start point of transplantation, i.e., which
function of the transplanted .so library to be first called.

In the Runtime layer, the .so library we transplanted from
the mediaserver process is the libcameraservice.so. We ob-
served that after API auditing is finished, the first function
of the libcameraservice.so library executed is the connect
function. So, we try to start transplantation at this func-
tion. Before calling this function, the bridge.so also need to

2
Android has bound several permissions to some group IDs in a meta-

data file named platform.xml. In the file, CAMERA permission has
been bound to camera group

first call several constructor code to generate some variables
needed by the connect function.

Till now, the native code contains the constructor code
and the connect function. Then, we try to compile the na-
tive code. Unfortunately, the compilation fails. That is
because some parameters, global variables, as well as con-
structor code used in the connect function are implemented
as private in Object Oriented Programming. They cannot
be used outside their definition class. Therefore, starting at
the connect function does not work, and we should look for
another start point.

If we move the start point upstream of the workflow, the
malicious app will cannot evade API auditing, which fail-
s our goal. In addition, we noticed that functions really
working are at the downstream of the workflow and these
functions are not private. Therefore, moving the start point
downstream of the workflow is an option.

We find that, logically, the libcameraservice.so library can
be broken into two parts: the CameraService part and the
CameraHardwareInterface part. The primary duty of the
CameraService part is handling Binder request; and it is
the CameraHardwareInterface part really processing the re-
quest by calling functions in the HAL layer. The spy-on-user
goal is to take pictures without using any IPC, so, we just
need to jump over the CameraService part and start at the
CameraHardwareInterface part, instead.

Although starting at the HAL layer also can call the cam-
era accessing functions, it will encounter more incompati-
bility problems than starting at the CameraHardwareInter-
face part. That is because, the HAL layer is more close-
ly linked with the driver than the CameraHardwareInter-
face part. According to [35], making hardware work is the
primary reason for vendors to customize Android system.
Therefore, the closer to the driver, the possible the code will
be modified. Another reason to start at the CameraHard-
wareInterface part is that the number of functions in this
part is much less than that of the HAL layer.

Starting at the CameraHardwareInterface part does not
change the address space shown in Figure 2. We still need to
transplant the libcameraservice.so into the malicious app’s
Runtime layer. The difference is that the CameraService
part is no longer executed in the malicious app’s address
space.

4.3 Set up the Execution Context of Picture
Taking

Without proper execution context, the function of taking
a picture cannot be executed. CameraService part plays a
significant role in setting up the execution context needed by
the functions in the CameraHardwareInterface part. That
the CameraService part will not be executed will lead to
missing of execution context. As a consequence, functions
in the CameraHardwareInterface part cannot be executed.

To take a picture, the bridge.so at least needs to cal-
l the initialize function (to initialize camera driver) and the
takePicture function (to take a picture). The execution con-
text needed by the initialize function is a data structure
hw module t, which contains a set of camera metadata and
a set of function pointers pointing to the functions in the
HAL layer. To get this data structure, we need to call the
hw get module function of the libhardware.so. After success-
fully obtain the data structure, the bridge.so can call the
initialize function to initialize camera driver.

Although the camera device is initialized, the execution
context needed by the takePicture function is still missing.
We notice that before taking a picture, it should start a
preview first. The execution context of preview should be
gotten from a data structure transferred by binder. Since
there is no IPC in the malicious app’s workflow, there is no
binder data to use.

The execution context needed by preview is a native win-
dow variable, which is created by using a Java parameter
obtained from a binder data structure. The Java parameter
(Surface object) is created in the Application layer of the
workflow shown in Figure 1. Noticing this, we could create
the Java parameter using Java code and let the native code
get the Java parameter by programming with JNI.

After the native window variable is created, we first start
a preview, and try to take a picture two seconds later. As
expected, the preview is successfully shown on the screen.
And, two seconds later, the preview window is successfully
frozen, which means the takePicture function is successfully
executed.

4.4 Store Image Data as Picture File
Although picture/image data can be shown on the screen,

it does not mean the picture files have been generated. We
need to get the picture/image data and store the data as a
picture file.

As we mentioned in Section 3.1.3, the image data is trans-
ferred through callback functions. The CameraHardwareIn-
terface part also provides the setCallbacks function to set
up callback functions. There are three callback functions:
notifyCallback, dataCallback, and dataCallbackTimestamp.
Their usage can be inferred from the function’s name. The
notifyCallback function tells user such things as the Cam-
era has focused or the focus has moved. In this attack, we
do not want the user to receive those notifications. Instead,
we want to stealthily take a picture and send the picture
to someone else. Therefore, we focus on getting the image
data, which needs to implement the dataCallback function.

After the dataCallback function being added to the bridge.so,
we rerun the malicious app. Out of our expectation, the
dataCallback function is not called. As a result, the picture
cannot be obtained.

The possible reasons are analyzed as below. First, An-
droid may restrict that the image data only can be trans-
ferred to the mediaserver process only. However, since we
already succeed in previewing the image data on the screen,
the malicious app can receive the image data coming from
camera driver. Therefore, this reason is not valid.

Second, the image data may exist in the kernel space since
the camera driver runs in the Linux kernel, and native code
running in the user space cannot get the data. However, all
transplanted code is also executed in the user space of the
mediaserver process. Since the image data can be gotten in
the mediaserver ’s user space, it also should be gotten from
malicious app’s process. This reason is not valid, either.

Third, there may be other missing steps in our transplan-
tation. In the mediaserver process, the callback functions
are set in the CameraService part, whose code is 3.67 times
as much as the code of the CameraHardwareInterface part3.
The CameraService part is not executed in the malicious ap-
p’s address space, which may lead to other execution context
not being set up or some functions not being executed.

3
The comparison is between the .cpp files on Android 4.1.2 version.

To see if this reason is valid, we do a dynamical analy-
sis. We take advantage of the log mechanism provided by
Android to print the names of the functions executed in a
picture taking workflow. To see if there are missing steps, we
compare the functions executed in the mediaserver process
and the malicious app process by analyzing the logs. The
result shows that several functions in the HAL layer are not
called in the malicious app’s address space. For example,
functions used to detect users’ face, to play shutter sound,
and to enable/disable an event message type to get/drop a
notification are not called.

We care about the functions about notification, whose
names are enableMsgType and disableMsgType. They are
used in pairs. There are several message types enabled in
the mediaserver process when taking a picture. What really
matters is the event message type CAMERA MSG COMPRE-

SSED IMAGE. Enabling this message type will make the dat-
aCallback function be called. Motivated by this special trig-
ger condition, we let the native code call the enableMsgType
and disableMsgType functions provided by the CameraHard-
wareInterface part. In addition, we let the native code call
the stopPreview function to stop the preview and the release
function to close the camera device. These steps make the
malicious code clean and tidy.

After all the above functions are added into the malicious
app’s native code, we rerun the app. The good news is
the dataCallback function is called, however, the image data
remains not received. To diagnose, we do a static anal-
ysis, and we find the image data is transferred back by
the notification thread (see Section 3.1). The notification
thread needs to wait for image data coming from the cam-
era driver, which is time consuming. To the contrary, the
native code is executed in another thread, which takes much
less time. The two threads are not synchronized. There-
fore, before the image data is transferred back, the CAMER-

A MSG COMPRESSED IMAGE message type may be disabled
or the camera may be closed.

Based on this observation, we add synchronization for the
two threads. This time, we successfully get the image data
transferred by the dataCallback function in the native code.
Moreover, the image data is successfully stored to a picture
file in the dataCallback function.

4.5 How to Hide
To make the spy-on-user attack be stealthily carried out,

we assume the attacker would need the following require-
ments when executing the malicious code of picture taking.

Hiding the user interface. As an app, the attacker’s Java
code should be implemented in the form of Android com-
ponents. Among the four kinds of components (Activity,
Service, Content Provider, and Broadcast Receiver), we pre-
fer the Service component to hold the malicious Java code
of creating the Java parameter needed in preview and call-
ing the malicious native code. It is because this component
does not contain a user interface and runs in the background.
When the Service component is running, users will not feel
any abnormal things on the screen.

Hiding the preview window. At the meanwhile of hiding
user interface, we need a window view (window variable) to
preview when taking a picture. A view occupies a rectan-
gular area on the screen, which could be seen by the user.
We have two ways to hide the preview window. The first
one is minimizing the window view’s size to such as 1 pixel

× 1 pixel, so that it cannot be seen by humans’ eyes. What
worth mentioning is that the size of the preview window
does not affect the size of the picture. The other way to
hide the preview window is not transferring the image data
to the window view when previewing. As there is no im-
age data received, the window view cannot be seen on the
screen. However, the view still stays on the screen. If co-
incidentally the malicious app is taking a picture and users
touch the window view area, e.g., to launch a new app, there
will be no response happens, which will make users suspi-
cious. Therefore, we prefer the first way to hide the preview
window.

Hiding the flashlight and shutter sound. The flashlight and
shutter sound can be controlled by the bridge.so. To min-
imize the picture taking signs, we prefer not to use them.
At daytime, the nature light is enough for taking a picture.
While at night, the evening light is not suitable for pho-
tographs without flashlight. Therefore, the attack should
choose not to take pictures after 8pm. Without flashlight
and sound, the user can hardly feel the signs of picture tak-
ing. It may be considered that a camera indicator light may
be shown when taking pictures. However, all the experiment
phones used by our labmates (see Table 3) do not show it.
Further, provided the camera indicator light is shown, the
nature light will make it hardly be noticed.

Stealthily sending the picture out. There are several ways
that can be used to send pictures out, such as MMS (mul-
timedia message), Bluetooth, 3G, and Wifi. To achieve the
stealth goal, we should not cost the user’s money, leave any
audit records, or light on any icon on the desktop. User-
s care about the MMS they send, as these will cost their
money, so we should not use them to send pictures. Sending
data out through the Bluetooth has the shortcomings that it
will leave an audit record and does not fit for long distance
transfer, so we do not use it, either. Since 3G and Wifi do
not suffer the two shortcomings as Bluetooth, we prefer to
use them to send pictures out. To avoid lighting on their
icon on the screen, we let the malicious app send pictures
out after the 3G/Wifi is turned on by the user. Nowadays,
3G traffic is quite cheap and has no toplimit; it is not a big
concern of users any more.

Do not drain the battery too quickly. If the malicious app
takes pictures too frequently, the battery may be drained
too quickly, which will make the user suspicious. To de-
termine the frequency of picture taking, we measured the
power consumption of taking ten pictures, playing Angry
bird and Sudoku for ten minutes respectively on the same
phone using PowerTutor. The result shows that the power
consumed by playing 10 minutes of Angry bird can support
taking 41.7 pictures, while playing 10 minutes of Sudoku can
support taking 30.2 pictures. So, taking 36 pictures every
day will not be perceived by the user. Further, we do not
take pictures at night because the flashlight cannot be used,
this will also save energy. To make the balance between the
battery consumption and the frequency of picture taking,
the attacker could set the malicious app to take a picture
every 20 minutes during 8am to 8pm (36 pictures in total).

4.6 Other Things That Attackers Should Do
In the real world, the first step to launch the transplanta-

tion attack is to choose an app with CAMERA permission to
repackage. For example, scan-QR-code apps need CAMER-
A permission to open camera and scan QR code, attackers

can choose this kind of apps to repackage. A great number
of scan-QR-code apps can be found on Google Play, Ama-
zon, or other markets. Attackers can easily choose a wide-
ly downloaded one on Google Play to repackage, and then
attackers could submit the repackaged app to third party
markets to distribute. Also, the target app can be chosen
on third party markets and submit to Google Play.

Assuming that the malicious repackaged app has been
successfully installed into the user’s phone, the next step
is letting the app obtain the CPU cycles to run itself. At-
tackers would like that the malicious app is able to get the
CPU cycles every 20 minutes. A possible way is letting the
malicious app be started immediately after the phone has
been booted up. To do this, the malicious app should re-
ceive a BOOT COMPLETED broadcast, which is sent by
the Android system when the system has been boot up. The
stealthy picture taking functionality can be implemented as
a service, which can be denoted as picture taking service.
In the broadcast receiver, the attacker put a piece of code
that denoted as timer and let the timer to start the picture
taking service every 20 minutes.

Some Antivirus allow users to block apps from receiv-
ing the BOOT COMPLETED broadcast. In this case, the
stealthy picture taking can be trigged by motion sensors,
such as accelerometer sensor, orientation sensor. There are
plenty of open sources towards how to use motion sensors
to infer position of smartphones publicly available on many
websites. Therefore, attackers can easily get those code and
add them into the repackaged app to make the stealthy pic-
ture taking triggered by motion sensors. Using motion sen-
sors does not need any permission.

To send pictures out, the malicious app needs to apply the
INTERNET permission. According to [19], there are 88%
apps with the INTERNET permission. Most of apps use
INTERNET permission to fulfill the advertisement needs.
It is not a strange thing that a scan-QR-code app to apply
this permission, e.g, to show advertisements.

Front and Rear Camera Nowadays, most smartphones
shipped with front and rear Cameras. Sometimes, attackers
want to see users’ expression, and sometimes, attackers want
to see the environment where users stay in. This can be
archived by specifying the camera ID of front Camera or rear
Camera in the bridge.so. Usually, the ID of front Camera is
0, and the other one is 1, which is true on the successful ones
of 69 phones (See Section 5). Still, there exists a possibility
that vendors may change their Camera IDs. In this case,
analyzing the phone logs or brute force may be help to find
the IDs.

5. EVALUATION
We evaluate the transplantation attack in the aspects of

success rate on real phones, detection rate of Antivirus (AVs),
and the Android Device Administration, respectively.

5.1 Success Rate
To know the effectiveness of the transplantation attack,

we run the malicious app on different phones shipped with
different Android versions in the real world. We choose 8 d-
ifferent vendors, 69 different phones, and 7 different Android
versions. The result is shown in Table 1 and Table 2.

Among the tested phones, 14 of them are collected from
our labmates, 62 of them are achieved from Baidu app test
platform [1]. 7 of 62 phones have the same model and the

same Android version with some of the 14 ones. So, the
total number of different phones is 69. On the Baidu app
test platform, all phones used to test apps are real phones
not emulators.

On our labmates’ phones, we test all functionalities of
the malicious app, including picture taking, preview window
hiding, and picture sending. We let the malicious app send
the stealthily taken pictures to another phone. If the receiver
can successfully open and view the pictures, we regard the
attack as successful. As long as the Wifi is available, if the
malicious app can take a picture, it can always send the
picture out.

On the phones provided by Baidu test platform, because
we cannot physically access those phones, we only test the
picture taking functionality on the test platform phones. For
the convenience of test, we let the malicious app show the
preview window on the screen. Therefore, to check whether
a phone’s screenshots (generated by the test platform) con-
tain the preview window or not, we can verify whether the
picture taking is successful or not.

As shown in Table 1, for version 4.1.1 phones from 5 ven-
dors, the success rate of transplantation attack is 100%.
For version 4.1.2 phones from 5 vendors, the success rate
of transplantation attack is 75%. We also measure the suc-
cess rate per vendor. As shown in Table 2, the success rate
for Samsung phones is 52% (25 phones in total). The suc-
cess rate for Huawei phones is 54.55% (11 phones in total).
Overall, among the 69 phones, the overall success rate is
46.38%. This means nearly a half of the phone in real world
would possibly suffer from this spy-on-user attack.

Table 1: Success rate of different Android versions

Android Version Vender Number Success Rate
HTC 4

Android 4.0.3 Huawei 3 0
LG 1

Google 1
Samsung 4

Android 4.0.4 HTC 5 12.5%
Huawei 1
Sony 1
Moto 4

Google 1
Samsung 1

Android 4.1.1 HTC 4 100%
Huawei 2
Meizu 2
Google 2

Samsung 16
Android 4.1.2 HTC 1 75%

Huawei 3
Sony 2

Android 4.2.1 Samsung 1 0
Huawei 1

Android 4.2.2 Sony 3 40%
LG 1

Samsung 3
Android 4.3 HTC 1 0

Huawei 1
Total 8 69 46.38%

Table 2: Success rate of different vendors

Vendor Google Samsung HTC Huawei
Success Rate 75% 52% 33.33% 54.55%

Vendor Sony Meizu LG Moto
Success Rate 33.33% 100% 50% 0

5.2 Look into the phones where the attack is
not successful

The experiment on version 4.0.3 is very confusing, so we
analyze this version’s picture taking workflow, and we find
there is no difference between this version and other 4.x
versions. All 4.0.3 version of phones are provided by Baidu.
Since we cannot get the failure info (adb log) of phones from
Baidu test platform, we cannot figure out the failure reason
on version 4.0.3 as well as version 4.2.1 phones. However,
we believe this is a side benefit of customization according
to the failure reasons of the phones used by our labmates,
which will be analyzed as follows.

Table 3: Experiment result on our labmates phones
Vender Model Version Result

Nexus S 4.0.4
√

Nexus S 4.1.2
√

Google Nexus 4G 4.1.1
√

Galaxy Nexus 4.1.2 ×
SHV-E160S (Galaxy Note) 4.0.4 ×

GT-I8268 4.1.2
√

GT-I9300 (Galaxy S3) 4.1.2
√

Samsung SCH-I879 4.1.2 ×
SCH-I959 (Galaxy S4) 4.2.2 ×

SCH-N719 (Galaxy NoteII) 4.3 ×
HTC T528t (One ST) 4.0.4 ×
Sony LT29i (Xperia TX) 4.1.2

√

MeiZu M040 (MX2) 4.1.1
√

Huawei P6-C00 (Ascend P6) 4.2.2
√

We only analyze the failure reason phones used by our
labmates. The experiment result is shown in Table 3.

The transplantation attack does not succeed on 6 phones.
The failure reasons are different for each phone. To analyze
each phone’s failure reason, we obtain their adb log of taking
a picture generated by the Camera app shipped on the test
phone and by the malicious app. Here, we summarize our
findings.

For Google Galaxy Nexus, we analyze its source code of
picture taking workflow since this phone support AOSP (An-
droid Open Source Project). We find that before opening
the camera device, the mediaserver process will open the
device /dev/rproc user first, which belongs to the drmrpc
group. Unlike the camera group ID, the drmrpc group ID
cannot be obtained by apps. Therefore, as apps cannot be-
come a member of the drmrpc group, they cannot open the
/dev/rproc user device. As a result, the attack fails.

For Samsung SHV-E160S, the difference between the Cam-
era app and the malicious app is that the malicious app is
“unable to find matching camera info” for the given camer-
a ID, but the Camera app can. As a result, the malicious
app cannot open the camera, and the error number is -1,
which means “operation not permitted”. As we cannot get
the source code of this phone, we could only infer that it
may be the vendor has modified the workflow of opening
the camera device.

For Samsung SCH-I879, the error message and error num-
ber are the same as Samsung SHV-E160S, which still is “op-
eration not permitted”. Since Samsung SCH-I879’s Android
version is the same as Samsung GT-I8268 and Samsung GT-
I9300, we compare the adb logs obtained from the three
phones. However, as they use different hardware and differ-
ent internal logic of picture taking, the comparison between
the three phones does not help.

For Samsung SCH-I959, the log shows that the camera
device is successfully initialized. But taking pictures on this
phone needs to write a file (CameraID.txt) into the data par-

tition. Otherwise, the preview cannot successfully start. As
a result, the takePicture function fails, whose error number
is -38. This error number is not defined by the AOSP, and
we believe it is defined by the vendor. Since the malicious
app does not have privilege to write the data partition, the
transplantation attack cannot succeed.

For Samsung SCH-N719, when initializing the camera de-
vice, it should open the device /dev/video0, which belongs
to the camera group. As the malicious app is already set
as a member of the camera group. Theoretically, it could
access the device. Surprisingly, the experiment fails. To di-
agnose, we analyze the adb log and a metadata file (uevent-
d.smdk4x12.rc), and we find the camera hardware of Sam-
sung SCH-N719 is the same as Samsung GT-I9300 on which
phone the attack is successful. The difference between the
two phones is that Samsung SCH-N719’s Android version
is 4.3 and the SEAndroid is enabled. We will discuss the
SEAndroid in Section 6.

The last one is HTC-T528t, whose error message is “can-
not open OpenMAX registry file /tmp/.omxregister”. The
failure reason is like the Samsung SCH-I959, and this one
is the malicious app does not have privilege to access the
registry file. But the error number is different. On HTC-
T528t, the error number is 0x80001000, which we believe is
defined by the vendor as well.

Among the 6 failed phones, 3 of them (Galaxy Nexus,
Samsung SCH-I959, and HTC-T528t) fail because extra de-
vice and files are involved in their picture taking workflow.
We wonder if the malicious app can access the device and
files, could the transplantation attack succeed? To answer
this question, we do an experiment on the Galaxy Nexus
phone, also because this phone supports AOSP.

We know the failure reason of this phone is that the ma-
licious app cannot be assigned the drmrpc group ID. Learn-
ing from the binding between the CAMERA permission and
camera group ID, we make the drmrpc group ID available
to apps by binding it to a permission, e.g., binding it to
the CAMERA permission. Binding them needs to modify
a metadata file (platform.xml), which needs root privilege.
After binding, the malicious app can get the drmrpc group
ID. Then, we rerun the malicious app, and this time the
malicious app succeeds in taking a picture and sending the
picture out.

According to this experiment, we can infer that if the
malicious app can access to the devices and files, the success
rate of transplantation attack will be increased from 57.14%
to 78.57% in Table 3.

5.3 Evading Antivirus
Employee phones or individual phones may be installed

Antivirus (AVs). To test whether the malicious app could
evade detection under AVs monitoring, we choose the top
7 free AVs according to the [28]’s comparison result. A-
mong the protections they provide, we care about the Scans
Phone Apps protection, the Real-Time Protection (discover
harmful threads immediately), the Antispyware protection
(protect users from being spied), and the Quarantine Section
protection (store the suspicious thread in an isolation area).
These protections could be classified into two categories: the
installation time protection and the runtime protection.

In order to know whether the malicious app could evade
detection at installation time, we first install the 7 AVs into
3 experiment phones, then install the malicious app. The 7

AVs’ scanning result claims the app is clean, as a result, the
app is successfully installed into the 3 phones. Then we run
the app under the 7 AVs’ monitoring to test whether the
app could evade runtime detection. As expected, none of
the 7 AVs detect the malicious app out. The result is shown
in Table 4.

The result shows that the malicious app can successfully
evade detection at both installation time and runtime. Two
possible reasons are as follows. The first one is that the
installation time scanning only scans the signature of an app.
As the malicious app is new, it does not have signatures,
yet. In addition, the AVs do not regard loading external
.so libraries is malicious. Therefore, when the native code
thread is running, the AVs do not regard the running thread
as evil, either.

5.4 Evading Enterprise Device Administration
Device Administration is usually enforced in the enter-

prise, in which the phones are owned by companies or orga-
nizations. Android framework provides several special An-
droid APIs, which are called Device Administration APIs.
They could be used by device admin apps to configure a
phone. Administrators could install the admin app on the
employee’s phones to, for example, disable or enable the
camera device. It is designed that once the camera device
is disabled by the Device Administration APIs, apps cannot
access the camera device anymore.

To understand whether the transplantation attack could
sustain the camera device disabling, we run the Camera app
and the malicious app after the camera device is disabled,
respectively. As expected, the Camera app fails in taking
a picture after the camera device is disabled. However, the
malicious app sustains the disabling and successfully takes
a picture.

That is because the Camera app relies on the mediaserv-
er process to take pictures. When the camera device is
disabled, the value of a flag (sys.secpolicy.camera.disabled)
is set to 1 (true). Once the flag’s value is 1, the mediaserv-
er process will reject any request of accessing the camera
device. What is to say, all picture taking APIs cannot be
called. In the transplantation attack, the malicious app does
not rely on the mediaserver process, does not need to cal-
l those APIs, and does not execute the flag checking code
in its address space, either. Therefore, the transplantation
attack can evade the Device Administration as well.

6. DISCUSSION

6.1 Design Deficiency
The transplantation attack indicates that there is a subtle

design/implementation deficiency of Android security man-
agement.

Since it is the mediaserver process in charge of talking
with the camera driver, and since an app does not, we won-
der whether it is necessary for Android system to put an
app into the camera group. To answer this question, we did
an experiment by removing the apps with CAMERA per-
mission from the camera group. We found that the Camera
app as well as apps relying on it (by sending an Intent) can
take pictures even if they are not running with the camera
group ID. The result shows that binding the CAMERA per-

Table 4: Antivirus Testing Result````````Protections
AVs

Lookout McAfee Kaspersky ESET Trend F-Secure NetQin

Scan Phone Apps
√ √ √ √ √ √ √

Real-Time
√ √ √ √ √ √ √

Antispyware
√ √ √

NA NA
√ √

Quarantine Section
√

NA
√ √

NA
√

NA

mission with the camera group could be a design deficiency,
since this will allow the transplantation attack to succeed.

6.2 How to Defend
There may be several ways to defend the transplantation

attack, but some of them may not work out. For example,
forbidding the usage of system libraries may sound a good
idea to defend the attack. However, as apps can ship their
own copy of the required system library, this way may not
work out. Here, we discuss two possible ways as follows.

6.2.1 Break the Binding Between Permissions and
Group IDs.

To start transplantation attack, a malicious app should
get the capability of accessing a hardware device. To gain
this capability, the malicious app should be assigned with
the hardware’s group ID by applying corresponding permis-
sion. Noticing this, a defence is that we could break the
binding between permission strings and group IDs. Taking
Camera device as an example, breaking the binding between
CAMERA permission and camera group ID will not affect
the normal apps to take pictures. That is because Camera
device has a daemon process (mediaserver process, in which
Camera Service runs) in charge of taking pictures. Apps
just need to send request to the daemon process, and the
process will handle the picture taking work.

One weakness of this defence is that when the hardware
has zero daemon process (e.g., there is no daemon process
for Sdcard) or more than one daemon processes, it is possible
to result in denying of services.

6.2.2 Using SEAndroid Policy.
SEAndroid enforces mandatory access control to every

process (user) under a fine-grained access control policy. Ev-
ery process belongs to a domain (type). Here, third-party
apps are classified into the untrusted app domain, which will
be blocked when directly access the camera driver.

Although SEAndroid can block accessing the camera driv-
er, it has a rather limited enforcement range. SEAndroid
[27] is merged into AOSP since version 4.3 and enforced
since version 4.4. According to Google’s survey [16], the
phones shipped with version 4.3 and 4.4 each accounts for
8.5% of the total at the beginning of May, 2014. That a
phone shipped with 4.3 version of Android does not mean
that the SEAndroid is enforced. So, nearly 90% of the An-
droid phones in the wild are however not protected by SE-
Android. Among the phones used by our labmates, 93% of
them without SEAndroid. It may take a long period of time
before SEAndroid can be widely deployed in the wild. Dur-
ing this period of time, many many users may suffer from
the spy-on-user attack.

Besides the distribution range limitation, SEAndroid has
weakness as well. Pau Oliva shows 3 weaknesses of SEAn-
droid and gives out 4 ways to bypass SEAndroid [29]. We

did an experiment, in which we change SEAndroid from en-
force mode to permissive mode via PC terminals. The same
principle could be applied to apps. The experiment shows
that SEAndroid can indeed be bypassed.

7. RELATED WORKS
A Similar Attack. Xiaoyong et. al. [35] illustrate an

end-to-end attack similar to transplantation attack. Their
attack can take a picture without applying CAMERA per-
mission, and can evade API auditing as well. However, their
attack has a critical premise that the camera device node
(/dev/video) should be set as publicly readable and writable
(a Linux permission of 666), which means the phone is mis-
takenly configured. Otherwise, their attack cannot succeed.
In case of fulfilling the premise, the transplantation attack
can succeed without applying CAMERA permission, too. In
addition, transplantation attack can work on nearly a half
of well configured phones.

Xiaoyong et. al. have implemented the whole HAL lay-
er within their app, which is quite different from us. We
just implemented a bridge.so, and let the bridge.so call the
transplanted .so libraries of System Library layer and HAL
layer. Our attack and their attack are constructed in very
different ways. Obviously, our attack has much less lines of
code.

Xiaoyong’s work and our work share different focus, too.
They mainly focus on understanding security risks in ven-
dors’ customization process; and their attack is inspired by
a security flaw that vendors have mistakenly configured the
camera device node with permission of 666. However, at the
beginning, our focus is to construct a transplantation attack
to evade API auditing.

Other Spy-on-user Attacks. Besides Camera, many
ways can be applied to spy on user. TouchLogger [7], Ta-
pLogger [31], TapPrints [20], ACCessory [24], ACComplice
[18], Soundcomber [26], and Screenmilker use motion sensor
readings, microphone, screenshots, to work as a keylogger
to spy on users’ input, location hacker to trace users’ driv-
ing, or sound trojan to infer users’ credit card accounts,
etc. Stealthy Video Capturer [30] stealthily record video
to compromise users’ privacy. Besides the side channels on
smartphones, physical side channels like shoulder surfing, re-
flection of the screen from sunglass [25], and oil fingerprint
[32] [4] also can be used to spy on users.

Although these works also focus on spying on user, none
of their methods is carried out by transplantation attack,
and they may be faced the risk of being detected out by
API auditing.

Permission Escalation Attacks. Another well studied
attack of Android system is permission escalation attack. To
detect whether an app has unprotected interfaces that can
be exploited to escalate permissions, a number of detection
tools have been proposed [8] [12] [13] [3] [15]. These static
analysis tools are likely to be incomplete, as they cannot

completely predict the actual permission escalation attack
occurring at runtime. To address this issue, some framework
extension solutions [14] [10] [6] [17] [5] have been proposed.

Root Exploits Attacks. According to [36], attacks ex-
ploiting root privilege play a significant role in compromising
Android security. Among the root exploiting malware, the
DroidKungFu [22] is a typical example. Attacks exploiting
root privilege could break the boundary of Android sandbox
and could access resources without applying permissions.
The root exploits attacks could be blocked by SEAndroid
[27]. By introducing SEAndroid, processes even running
with root privilege cannot access the protected files and de-
vices.

Framework Enhancements. A large number of solu-
tions [21] [37] [23] [9] focus on enhancing runtime permission
control to restrict app’s permission at runtime. These solu-
tions aim at providing a fine-grained access control for IPC.
However, the transplantation attack does not involve IPC.
Therefore, the attack fails these solutions.

8. CONCLUSION
In this paper, we propose the transplantation attack, an

attack which enables a malicious app to take (potentially
privacy-harming) pictures at anytime without being audited
by the Android API auditing. The transplantation attack,
when being applied to achieve the spy-on-user goal, results
in stealthiest and unnoticed picture taking. We have con-
ducted a set of real world attacking experiments. 46.38% of
the 69 smartphones (manufactured by 8 vendors) tested by
us let the transplantation attack succeed. The transplan-
tation attack also uncovers a subtle design/implementation
deficiency of the Android system. Our recent analysis re-
veals that although on AOSP version 4.4 the deficiency is
fixed, most of vendors have not fix this problem yet.

9. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their

valuable comments. This work is supported by Strategy
Pilot Project of Chinese Academy of Sciences under Grant
XDA06010702; National High Technology Research and De-
velopment Program of China (863 Program) under Grant
2013AA01A214, 2012AA013104. Peng Liu is supported by
Army Research Office W911NF-09-1-0525, W911NF-13-1-
0421; National Science Foundation CCF-1320605, SBE-1422215.

10. REFERENCES
[1] Baidu Mobile Test Center. Available at

http://mtc.baidu.com/.

[2] Common vulnerabilities and exposures.
http://cve.mitre.org/.

[3] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie.
Pscout: analyzing the android permission
specification. In ACM CCS, 2012.

[4] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and
J. M. Smith. Smudge attacks on smartphone touch
screens. In Proceedings of the 4th USENIX Conference
on Offensive Technologies, WOOT’10, pages 1–7,
Berkeley, CA, USA, 2010. USENIX Association.

[5] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and
A.-R. Sadeghi. XMandroid: a new android evolution
to mitigate privilege escalation attacks. Technische
Universität Darmstadt, Technical Report TR-2011-04.

[6] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R.
Sadeghi, and B. Shastry. Towards taming privilege-
escalation attacks on android. In 19th NDSS, 2012.

[7] L. Cai and H. Chen. Touchlogger: Inferring keystrokes
on touch screen from smartphone motion. In
Proceedings of the 6th USENIX Conference on Hot
Topics in Security, HotSec’11, pages 9–9, Berkeley,
CA, USA, 2011. USENIX Association.

[8] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in android.
In 9th MobiSys, 2011.

[9] M. Conti, V. T. N. Nguyen, and B. Crispo. Crepe:
Context-related policy enforcement for android. In
Information Security. 2011.

[10] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S.
Wallach. Quire: Lightweight provenance for smart
phone operating systems. In USENIX Security, 2011.

[11] T. Donegan. How your phone camera can be used to
spy on you. http://cameras.reviewed.com/features/
how-your-smartphone-camera-can-be-used-to-spy-on-you,
5 2014.

[12] W. Enck, M. Ongtang, and P. McDaniel. On
lightweight mobile phone application certification. In
16th ACM CCS, pages 235–245. ACM, 2009.

[13] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified. In 18th
ACM CCS, pages 627–638. ACM, 2011.

[14] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission re-delegation: Attacks and
defenses. In USENIX Security Symposium, 2011.

[15] A. P. Fuchs, A. Chaudhuri, and J. S. Foster.
Scandroid: Automated security certification of android
applications. Manuscript, Univ. of Maryland, 2009.

[16] Google. Dashboards.
http://developer.android.com/about/dashboards/

index.html?utm_source=ausdroid.net\#Platform,
2014.03.

[17] M. Grace, Y. Zhou, Z. Wang, and X. Jiang.
Systematic detection of capability leaks in stock
android smartphones. In 19th NDSS, 2012.

[18] J. Han, E. Owusu, L. Nguyen, A. Perrig, and
J. Zhang. Accomplice: Location inference using
accelerometers on smartphones. In Communication
Systems and Networks (COMSNETS), 2012 Fourth
International Conference on, pages 1–9, Jan 2012.

[19] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. These aren’t the droids you’re looking
for: retrofitting android to protect data from
imperious applications. In 18th ACM CCS, 2011.

[20] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R.
Choudhury. Tapprints: Your finger taps have
fingerprints. In Proceedings of the 10th International
Conference on Mobile Systems, Applications, and
Services, MobiSys ’12, pages 323–336, New York, NY,
USA, 2012. ACM.

[21] M. Nauman, S. Khan, and X. Zhang. Apex: extending
android permission model and enforcement with
user-defined runtime constraints. In 5th ACM CCS,
2010.

[22] NC State University. Security alert: New sophisticated
android malware droidkungfu found in alternative

chinese app markets. Available at http://www.csc.

ncsu.edu/faculty/jiang/DroidKungFu.html, 2011.

[23] M. Ongtang, S. McLaughlin, W. Enck, and
P. McDaniel. Semantically rich application-centric
security in android. Security and Communication
Networks, 2012.

[24] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang.
Accessory: Password inference using accelerometers on
smartphones. In Proceedings of the Twelfth Workshop
on Mobile Computing Systems & Applications,
HotMobile ’12, pages 9:1–9:6, New York, NY, USA,
2012. ACM.

[25] R. Raguram, A. M. W. 0002, D. Goswami,
F. Monrose, and J.-M. Frahm. ispy: automatic
reconstruction of typed input from compromising
reflections. In Y. Chen, G. Danezis, and V. Shmatikov,
editors, ACM Conference on Computer and
Communications Security, pages 527–536. ACM, 2011.

[26] R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala,
A. Kapadia, and X. Wang. Soundcomber: A stealthy
and context-aware sound trojan for smartphones. In
NDSS, volume 11, pages 17–33, 2011.

[27] S. Smalley and R. Craig. Security Enhanced (SE)
Android: Bringing Flexible MAC to Android. In
NDSS, 2013.

[28] Toptenreviews. 2014 Best Mobile Security Software
Comparisons and Reviews. Available at
http://mobile-security-software-review.

toptenreviews.com/, 2014.

[29] viaForensics. Defeating SEAndroid ĺC DEFCON 21
Presentation. Available at
https://viaforensics.com/mobile-security/

implementing-seandroid-defcon-21-presentation.

html, 8/3/2013.

[30] N. Xu, F. Zhang, Y. Luo, W. Jia, D. Xuan, and
J. Teng. Stealthy video capturer: A new video-based
spyware in 3g smartphones. In Proceedings of the
Second ACM Conference on Wireless Network
Security, WiSec ’09, pages 69–78, New York, NY,
USA, 2009. ACM.

[31] Z. Xu, K. Bai, and S. Zhu. Taplogger: Inferring user
inputs on smartphone touchscreens using on-board
motion sensors. In Proceedings of the Fifth ACM
Conference on Security and Privacy in Wireless and
Mobile Networks, WISEC ’12, pages 113–124, New
York, NY, USA, 2012. ACM.

[32] Y. Zhang, P. Xia, J. Luo, Z. Ling, B. Liu, and X. Fu.
Fingerprint attack against touch-enabled devices. In
Proceedings of the Second ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices,
SPSM ’12, pages 57–68, New York, NY, USA, 2012.
ACM.

[33] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou.
Fast, scalable detection of ”piggybacked” mobile
applications. In 3rd CODASPY, 2013.

[34] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting
repackaged smartphone applications in third-party
android marketplaces. In 2nd CODASPY, pages
317–326. ACM, 2012.

[35] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang.
The peril of fragmentation: Security hazards in
android device driver customizations. In IEEE
Symposium on Security and Privacy, 2014.

[36] Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In Security and
Privacy (SP), pages 95–109. IEEE, 2012.

[37] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh.
Taming information-stealing smartphone applications
(on android). In Trust and Trustworthy Computing.
2011.

