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Abstract

Fair exchange between mutually distrusted parties has been recognized as an important issue in electronic commerce.
Ž . Ž .However, the correctness fairness of the existing fair exchange protocols that use a Trusted Third Party TTP is based on

the assumption that during an exchange there are no failures at any of the local systems involved in the exchange, which is
Ž . Ž .too strong in many situations. This paper points out that 1 system failures may cause loss of fairness, and 2 most of the

existing fair exchange protocols that use a TTP cannot ensure fairness in presence of system failures. This paper presents
two categories of techniques, transaction-based approaches and message-logging-based approaches, to help develop data
exchange systems that can recover from system failures without losing fairness. q 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Experience with electronic commerce has shown
that an exchange of one data item for another be-
tween mutually distrusted parties is usually the crux

w xof an electronic transaction 6,10,11,18 . A desirable
requirement for exchange is fairness. An exchange is
fair if at the end of the exchange, either each player
receives the item it expects or neither player receives
any additional information about the other’s item.
Fair data exchange has been used in many applica-
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tions such as non-repudiation of message transmis-
w x w x w xsion 18 , certified mail 11 , contract signing 6 , and

w xelectronic payment systems 10 .
Fair data exchange protocols in the literature can

be broken into two categories: third party protocols,
Ž .which use a trusted third party TTP and gradual

w xexchange protocols 6 where the probability of cor-
rectness is gradually increased over several rounds of
communications. A third party is trusted if it will
neither misbehave on its own, nor conspire with
either of the players. Gradual exchange protocols do
not need a TTP, but they can cause substantial
communication and computation overhead. Although
as network bandwidth and computation power in-
crease, gradual exchange protocols can expect more
real world applications. This paper will focus on
third party protocols, which have already been widely
used in many applications, especially e-commerce.

0167-9236r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
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Although many practical third party protocols have
w xbeen proposed 2–4,10,12,18 , most of these proto-

cols depend on certain strong assumptions about the
communication channels and the local systems.
Specifically, most of them assume that during an
exchange, no failures will happen at the local sys-
tems of either the players or the TTP. Although all of
these protocols can achieve certain degree of fairness
under these assumptions, most of them cannot ensure
fairness in presence of system failures, which will
happen from time to time in real computer systems.
This implies that most of the existing third party
protocols cannot be directly implemented to really
achieve fair data exchange. The goal of this paper is
to present techniques that can enable a data exchange
system to survive system failures without losing
fairness.

In the following, we use an example to clarify our
motivation. The example will also be used through-
out the paper to help illustrate our solutions. Con-
sider the following fair non-repudiation protocol,

w xwhich is adapted from Ref. 18 , an efficient non-re-
pudiation protocol that can ensure fairness when
there are no system failures. Relevant notations of
the protocol are summarized in Fig. 1. The protocol
consists of five messages. Note that messages 4 and
5 are interchangeable. The protocol is to guarantee
that when a message is transmitted from the sender
A to the receiver B, if B has successfully received
the message, then neither can B repudiate having
received the message, nor can A repudiate having
sent the message. In particular, the purpose of this
protocol is for A to exchange a message together

Ž .with a non-repudiation of origin NRO token, de-
� Ž Ž ..4noted m, S B, m.id, E m , for a non-repudiationA k

Ž . � Žof receipt NRR token from B, denoted S A, m.id,B
Ž .. Ž .4E m , S A, B, m.id, k . The rational is that ifk TTP

the exchange is fair then non-repudiation can be

Fig. 1. Notation.

achieved. Note that the protocol is slightly different
w xfrom that presented in Ref. 18 where messages 4

and 5 are retrieved by A and B instead of being
delivered by the TTP. The impact of this difference
on fairness is addressed in Section 4.

Ž . Ž Ž ..1. A™B: B, m.id, E m , S B, m.id, E mk A k
Ž Ž ..2. B™A: A, m.id, S A, m.id, E mB k

Ž .3. A™TTP: B, m.id, k, S B, m.id, kA
Ž .4. TTP™B: A, B, m.id, k, S A, B, m.id, kTTP

Ž .5. TTP™A: A, B, m.id, S A, B, m.id, kTTP

Based on the assumption that there are no local
system failures, and the assumption that each com-
munication channel is reliable, that is, the messages
inserted into the channel by the sender can always be
received by the recipient within a known, constant
time interval, fairness of the protocol can be proved

w xin a way similar to Ref. 18 . However, system
failures, e.g., process crashes, can cause loss of
fairness. To illustrate this, consider an exchange

Ž .instance during which no player process stores any
data item into the stable storage, if the process on
behalf of player B crashes after message 2 is sent
out, then message 1, which has been delivered to the
process, is lost. As a result, when the protocol
terminates, A will get the expected item, but B
cannot, even if the process on behalf of B restarts
instantly after the failure and gets message 4. Similar
problems can also be caused by failures at the local
systems of player A and the TTP.

This example raises several questions on how to
survive system failures without losing fairness in
data exchange, which to the best of our knowledge
have not yet been clearly answered. We believe that
answering these questions is important because it
gives developers a much clearer understanding of the

Ž .relationship between security fairness and fault tol-
Ž .erance recoverability in data exchange, which will

not only help to develop secure and fault tolerant fair
exchange systems, but also help to develop other
kinds of secure and fault tolerant electronic com-
merce applications.

v Besides the problem identified in the example
above, how many kinds of security problems caused
by local system failures are with current fair data
exchange protocols?
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v Can traditional fault tolerance mechanisms for
distributed computing, such as transaction processing
and message logging, be directly applied to fair
exchange systems to avoid the fairness loss caused
by system failures? How can they be applied to the
fair exchange problem in a better way?

v What are the fault tolerance requirements for
fair exchange systems?

In this paper, we present a systematic way to
develop such data exchange systems that can recover
from system failures without losing fairness. We
identify a new design goal for fair exchange systems,
i.e., surviving local system failures without losing
fairness. We formalize a data exchange system as a
specific distributed system and identify a set of
security risks caused by system failures. We present
two categories of techniques, namely, transaction-
based approaches and message-logging-based ap-
proaches, to immunize a data exchange system from
the security risks caused by system failures. Our
techniques are application independent; thus, they
can be enforced in all kinds of data exchange appli-
cations that use trusted third parties.

The remainder of this paper is organized as fol-
lows. Section 2 identifies the set of security risks
caused by system failures. Section 3 investigates
transaction-based approaches. In Section 4, a mes-
sage-logging-based approach is presented. Section 5
concludes the paper.

2. Loss of fairness due to failures

2.1. Fair data exchange systems

Fair data exchange systems are implementations
of a fair data exchange protocol. Existing third party
protocols can be modeled by Fig. 2, where two
players, A and B, and two communication channels
between A and B, the normal channel and the trusted
channel, are involved in an exchange. The normal
channel models the direct communication between A
and B. Since A and B mutually distrust each other,
exchange solely dependent on this channel cannot be
assured to be fair. The trusted channel between A
and B is therefore established with the help of a TTP
Ž w xA semi-trusted TTP is allowed in Ref. 12 , where

Fig. 2. Fair data exchange using a TTP.

the third party may misbehave on its own but will
.not conspire with either of the players . Items sent

via the trusted channel are first sent to the TTP and
then forwarded by the TTP to the recipient. Ex-
change performed in the trusted channel can be
considered fair because of the mediation of the TTP.
Note that A and B are interchangeable in this model.

Although exchanging items using the trusted
channel is fair, it is usually undesirable since the
TTP will then become the performance bottleneck
and the main target of attacks. Due to this considera-
tion, one of the design goals for fair exchange proto-
cols is to minimize use of the TTP. There are also

Ž .some other design goals identified: 1 Tolerating
temporary communication failures without losing

w x Ž .fairness 3 ; 2 Relaxing the extent to which the
w x Ž .TTP can be trusted without losing fairness 12 ; 3

Relaxing the fairness requirement to further reduce
w xthe overhead of the TTP 3 . Note that these goals

may conflict with each other; thus, trade-offs are
needed in some situations.

Third party protocols can be classified into two
categories in terms of how the TTP is exploited.

v Exchange with on-line TTPs. An exchange can-
not be completed without using the trusted channel,

Ževen if both players play honestly A player plays
honestly if he or she will send his or her own item

.even after he or she receives the other party’s item .
Semi-trusted TTPs can be supported in some cases
w x w x12 . Protocols proposed in Refs. 10,12,18 fall into
this class.

v Exchange with off-line TTPs. An exchange can
be completed without interference of the TTP if the
two players play honestly. If one player realizes that
they cannot fairly exchange the items as expected,
another exchange will be carried out in the trusted

w xchannel. Protocols proposed in Refs. 2–4 fall into
this class. In some cases, only weak fairness can be
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achieved. That is, in some cases the players will
have to use some specific affidavits in an external
dispute resolution system, such as a court, to achieve
fairness.

2.1.1. Exchange with on-line TTPs
Fair exchange protocols with on-line TTPs can be

modeled by Fig. 3a where player A exchanges an
item X for an item Y from player B. Each player
splits its item into two parts: one is to be sent via the
trusted channel, and the other via the normal chan-

Ž .nel. The item should be split in such a way that 1
from only the part sent via the normal channel the
other player cannot figure out any information about

Ž .the other part, and 2 the part sent via the normal
channel is valueless to the other player without being
combined with the other part. In the model, Xs
Ž . Ž .f X , X and Ysg Y , Y , and no information1 2 1 2

Ž . Ž .about X Y can be derived from X Y . Here, f2 2 1 1

and g are two functions that are determined by
specific exchange protocols. For better performance,
the part sent via the trusted channel should be as
small as possible. As a result, the exchange of X for
Y is split into two exchanges: the exchange of X1

for Y via the normal channel followed by the1

exchange of X for Y via the trusted channel. The2 2

fairness of the exchange is ensured by the fairness of
the TTP in forwarding X and Y . Sometimes, Y2 2 2

w xcan be generated by the TTP 18 . This situation is
shown in Fig. 3b. Note that the example specified in
Section 1 falls into this class. Sometimes, forwarding
Y from players B to A can be handled by the TTP2

without any message passing. For example, in Net-
w xBill 10 , each player has an account maintained at

the TTP, namely, the NetBill server, and forwarding
money from players B to A is done by transferring
money from Bs account to As. This situation is
shown in Fig. 3c. To be more concrete, a protocol
modeled by Fig. 3a is specified as follows. A proto-

col modeled by Fig. 3b or c can be specified in
similar ways.

1. A™B: X1

2. B™A: Y1

3. A™TTP: X ; B™TTP: Y2 2

4. TTP™A: Y ; TTP™B: X2 2

In practice, messages can be passed in different
ways from what is shown in Fig. 3 to reduce over-

w xhead of the TTP. For example, in Ref. 18 , X and2

Y are retrieved by A and B instead of being deliv-2
w xered by the TTP. In Ref. 10 , after being signed by

the TTP, X is forwarded by A to B.2

It is beneficial to distinguish the two possible
ways in which the context of an exchange is handled
by TTPs. TTPs in some exchange protocols have a
property that is usually called stateless. Stateless
TTPs forget an exchange as soon as it is done, that
is, they keep no context information about the ex-
change. For example, the TTP in the basic protocol

w xpresented in Ref. 12 is stateless, whereas the TTPs
w xin Refs. 18,10 are not stateless. Making TTPs

stateless reduces the overhead of TTPs; however, as
we show below, it may make an exchange protocol
more vulnerable to failures.

In a fair data exchange system, each party usually
has an agent, i.e., a process, running on his or her
behalf. We use P , P , and P , to denote theA B TTP

agents that are running on behalf of player A, player
B, and the TTP, respectively. During each exchange,
P and P should first do the exchange according toA B

a specific exchange protocol, then they can output
the items they get to players A and B in a proper
way, such as showing the item on the screen and
sending the item to a printer.

2.1.2. Exchange with off-line TTPs
Fair exchange protocols with off-line TTPs can be

w xmodeled by Fig. 4a 2,3 . For simplicity, only the

Fig. 3. Fair data exchange with on-line TTPs.
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Fig. 4. Fair data exchange with off-line TTPs.

normal exchange procedure is specified. If players A
and B play honestly, then they can exchange fairly
without the interference of the TTP. Otherwise, if
player A cannot get Y after X is sent to player B,

Ž . Ž .then messages 3 X and 4 Y will be re-exchanged
Ž .under the supervision of the TTP. The weak fair-

ness is ensured by the following property:

Ž x y.' f such that f C , C s1 indicates that PA

plays honestly; and
Ž x .'g such that g C , X s1 indicates that X is

Ž y .valid; g C , Y s1 indicates that Y is valid.

Ž x .Sometimes, message 1 C need not be sent and
the re-exchange of X and Y can be avoided even if
P does not play honestly, instead, P can extractB TTP

Y from C y for P but P cannot do this by itselfA A
w x4 . This situation is shown in Fig. 4b. However, in
order to ensure fairness, the following property must
be satisfied:

Ž y.'g such that g X, C s1 indicates that PA

plays honestly; and
Ž y .' f such that f C , K sY. Here, K is theTTP TTP

private key of TTP.

2.2. Failures

To study the impact of failures on fairness, we
must first specify what kinds of failures we are
trying to overcome. We consider two categories of
failures in a fair data exchange system: communica-
tion failures and system failures. We consider two
types of communication failures: transmission fail-
ures that happen when a message is corrupted or lost,

and channel breaks that happen when a communica-
tion link is broken for a while.

The simplest system failure model is the crash
model. In the model, the only kind of failure is that a
processor may suddenly halt and kill all the pro-
cesses that are executing there. We say these pro-
cesses crash. Operational processes never perform
incorrect actions, nor do they fail to perform correct
actions. Moreover, all operational processes can de-
tect the failure of a processor. For the rest of the
paper, we assume process crashes are the only kind
of system failures that can occur. There are a couple
of reasons for restricting our attention to crash fail-
ures. First, the abstraction of crash failures can be
implemented on top of a system subject to more
complex failures by running an appropriate software

w xprotocol 8 . Second, techniques are available to
automatically translate a protocol that tolerates crash
failures into protocols that tolerate larger classes of

w xfailures 15 .

2.3. Fairness loss owing to failures

Process crashes can cause the following types of
fairness loss in a fair exchange protocol modeled by
Fig. 3. Here, we assume that no data item is stored to
the stable storage during an exchange. Although an
exchange protocol with an off-line TTP is quite
different from a protocol with an on-line TTP, they
suffer from similar types of fairness loss risks. How-
ever, it should be noticed that protocols with off-line
TTPs will not suffer from fairness loss caused by
TTP failures because the re-exchange process under
the supervision of TTPs can be reenforced after PTTP

crashes. Identifying the types of fairness loss for
protocols modeled by Fig. 4 is omitted here for space
reason.

v Type 0. In a fair data exchange system, the fact
that an agent successfully gets an item does not
guarantee that the player that the agent works for
will get the item. Failures during the output process
can cause loss of fairness for players, although not

Ž .for agents. In particular, if P P crashes after itA B
Ž . Ž .gets Y X , but before it outputs Y X , then2 2
Ž . Ž . Ž .player A B cannot get Y X but player B A may

Ž .have already got X Y , thus fairness is lost. This
type of fairness loss is common to all exchange
protocols.
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v The following two types are specific to the
protocols modeled by Fig. 3a.

Ž . Ž .Type 1.1. If P P crashes after X Y is sentA B 2 2
Ž . Ž . Ž .out, then P P could get X Y , but P PB A A B
Ž . Ž .cannot get Y X since Y X is lost.1 1

Ž .Type 1.2. If P crashes after it delivers X Y ,TTP 2 2
Ž . Ž .but before it delivers Y X , then P P could2 2 B A

Ž . Ž . Ž .get X Y , but P P cannot get Y X since YA B 2
Ž . Ž .X is lost. P is unable to force P P to2 TTP A B

Ž .provide X Y again in many cases. For exam-2 2
Ž . Ž .ple, P P may lie that it has not got Y XA B 2 2

and it wants to abort the exchange.

v The following three types are specific to the
protocols modeled by Fig. 3b.

Type 2.1. If P crashes after Y is sent out, thenB 1

P could get Y, but P cannot get X. Note thatA B

the fairness loss identified in the example speci-
fied in Section 1 is of this type.
Type 2.2. If P crashes after X is sent out, thenA 2

P can get X, but P cannot get Y. Type 2.2 is aB A

special case of Type 1.1.
Type 2.3. If P crashes after Y is delivered,TTP 2

but before X is delivered, then P could get Y,2 A

but P cannot get X. Note that no loss of fairnessB

will be caused when P crashes after X isTTP 2

delivered but before Y is delivered because P2 A

can get Y later on by resending X to restarted2 2

P .TTP

v The following types are specific to the protocols
modeled by Fig. 3c.

Type 2.1 can also apply here.
Type 3.1. If P crashes during transferring YTTP 2

Ž .from B’s item-store i.e., an account to A’s, then
it is possible for P to repeatedly transfer Y ifTTP 2

Ž .the atomicity i.e., all-or-nothing of the transfer
operation does not hold. As a result, fairness could
be lost.

Channel breaks can also cause fairness loss. It is
w xshown in Ref. 3 that channel breaks can destroy the

fairness for the originator in some exchange proto-
w xcols with off-line TTPs such as Ref. 2 . We found

that in some exchange protocols with on-line TTPs,

w xsuch as Ref. 18 , channel breaks can cause fairness
loss as well. In both cases, the main reason is that in
practice the TTP usually would not allow an ex-
change to last for an arbitrary period of time before
reaching a termination for a couple of reasons, i.e.,
saving resources, or enabling each player to know
the exact final state of the exchange within a con-
stant time interval. As a result, the TTP in some
protocols will set up an overall time limit parameter
and reject to serve an exchange after the specified
time limit. For example, in a protocol modeled by
Fig. 3, if the channel between player A and the TTP
breaks when P forwards Y to P , then PTTP 2 A TTP

could stop trying to connect to P and forget theA

exchange after the specified time limit. As a result,
the fairness for player A will be lost if player B gets

w xX. In Ref. 18 , X and Y are retrieved by A and B2 2
Žinstead of being delivered by the TTP thus, the TTP

.needs not to keep on trying to connect to a player ;
however, since a time limit is set up for the TTP to
maintain X and Y , channel breaks can also cause2 2

fairness loss in a similar way.
It should be noticed that transmission failures

usually do not cause more fairness loss. Since trans-
mission failures typically happen occasionally and
can be overcome by a couple of retransmissions,
transmission failures usually will not cause the types
of fairness loss caused by channel breaks. Moreover,
since requests in fair exchange protocols are typi-
cally idempotent, replayed messages that may be
caused by transmission failures will not gain any
more profits to either of the two players.

It should also be noticed that it is easy to show
that concurrent failures will not cause more fairness
loss. On the contrary, in some situations, concurrent
failures can even avoid loss of fairness. For example,
in a protocol modeled by Fig. 3a, when P crashesA

after X is sent out, if there is a communication2

failure between player A and the TTP, or if PTTP

crashes when receiving X , then P , thus P , will2 TTP B

not get X . Therefore, Type 1.1 fairness loss can be2

avoided in this situation.
In the above discussion, we assume that stateless

TTPs are used. In practice, many TTPs are not
w xstateless 18,10 , and it is beneficial to notice that

these TTPs can help to avoid fairness loss caused by
failures with the context information they maintained

w xfor an exchange. For example, in Ref. 18 where X2
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and Y are first saved to stable storage by the TTP2

before being retrieved by A and B, Type 1.2 and
Type 2.3 fairness loss can be avoided, because even
if P crashes after X is retrieved by P butTTP 2 B

before Y is retrieved, P is still able to retrieve Y2 A 2

after P restarts.TTP

2.4. Possible solutions

The fact that failures can cause fairness loss in
most of the existing fair data exchange protocols
indicates that specific techniques are required to
remove the negative impact of failures on fairness
when implementing these fair data exchange proto-
cols. In the following, we will present two categories
of techniques, namely, transaction-based approaches
and message-logging-based approaches, to help de-
velop such data exchange systems that can recover
from failures without losing fairness. Their advan-
tages and disadvantages will also be discussed. To
focus on these specific implementing techniques, we
assume in the rest of the article that there are no
channel breaks. Note that whether a fair data ex-
change system will suffer from fairness loss caused
by channel breaks is primarily dependent on the
underlying exchange protocol itself instead of how

w xwe implement the protocol. For example, Ref. 3
shows that changing an exchange protocol from syn-
chronous to asynchronous can immunize the protocol
from fairness loss caused by channel breaks.

3. Transaction-based approaches

Transactions have been widely used in database
systems and distributed computing to provide relia-

w xbility, availability, and performance 7,13 . A trans-
action can be considered a sequence of system-
state-changing operations with the ACID properties,
namely, atomicity, consistency, isolation, and dura-
bility. Atomicity allows us to run a transaction as a
single unit, that is, when a transaction is executed,
atomicity can ensure that either all the operations
involved in the transaction are executed or none of
them are. Therefore, atomicity can mask all the
failures that may happen during the execution of a
transaction. In this section, we study if transactions

can be used as a mechanism to immunize a data
exchange system from fairness loss risks caused by
failures.

3.1. Limitations of transactions

As a distributed system with specific goals, i.e.,
achieving fairness in exchanges, fair data exchange
systems can surely use transactions to help improve
reliability. However, we found that although transac-
tions can effectively mask the failures that may
happen during an exchange, they cannot guarantee
fairness, since fault tolerance does not always ensure
fairness.

To illustrate, consider a protocol modeled by Fig.
3a, it is easy to see that if delivering X and Y is2 2

atomic, then Type 1.2 fairness loss can be avoided.
Grouping these two message delivering operations
into a single distributed transaction can technically
provide such atomicity. In particular, according to

Ž .the 2PC two phase commit protocol, a standard
mechanism to ensure the atomicity of distributed
transactions, the transaction commits only if both PA

and P get the item they want and vote YES; ifB

P crashes during message delivery, the transac-TTP
Žtion will abort, and P and P will discard orA B

.return whatever they have received and stop.
However, in an environment where the agents

involved in a transaction do not mutually trust each
other, this type of atomicity is not enough to ensure
fairness. In the above example, when the transaction

Ž .aborts, that both P and P will discard or returnA B

whatever they have received does not mean that the
items they have received will be kept confidential to
the players they are working for before the abort. In

Ž .fact, before a received item is discarded or returned ,
players A or B may have already had a look of the
item or even have made a copy of the item if they do
not play honestly, because they have the ability to
check the memory spaces of their agents whenever
they want. As a result, although the atomicity in
terms of delivering messages to agents is achieved,
the atomicity in terms of delivering messages to
players is lost and thus the fairness is lost. Based on
similar reasoning, we can see that Type 2.1 fairness
loss can not be avoided either by grouping multiple
exchange protocol operations into a single transac-
tion.
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The above discussion indicates that technical
atomicity in terms of agents cannot guarantee fair-
ness, and high level atomicities in terms of players,
such as the atomicity of delivering messages to
players, are required for data exchange systems. For

w xexample, in Ref. 17 , Tygar identifies three levels of
atomicity requirements for payment systems, namely,
money atomicity, goods atomicity, and certified de-
livery. However, it should be noticed that these high
level atomicity requirements usually cannot be satis-
fied by normal transaction processing.

Sometimes fairness can be lost even if a transac-
tion commits. For example, in an exchange system
modeled by Fig. 3a, sending X to P and receiving1 B

Y from P can be grouped into a single transaction1 B

to ensure the atomicity of the exchange performed
on the normal channel. But if P crashes after theA

transaction commits and X is sent out and before2

Y is received, the reply Y may still be lost, be-2 1

cause that a distributed transaction commits means
that the changes to every local system state involved
in the transaction will be recoverable, but does not
mean that every received message will be recover-
able.

3.2. Usefulness of transactions

Although atomicity in terms of agents cannot
guarantee fairness, transactions can still be very use-
ful in many aspects of fair exchange systems. First,
transactions can easily ensure the atomicity of a
sequence of operations within the TTP. As a result,
Type 3.1 fairness loss can be avoided if a transaction
is used to transfer Y from B’s item-store to A’s.2

Second, transactions can make each player not
ambiguous about the current state of an exchange. In
a protocol modeled by Fig. 3a, after X is success-2

fully sent to TTP, player A is committed to the
exchange and must be prepared to accept Y. We
informally denote this special state as the point-of-
no-return for A. However, if a failure happens during
transmitting Y, then player A may be unable to
determine whether he or she has really passed his or
her point-of-no-return, because if P does notTTP

receive X correctly then A has not passed his or her2

point-of-no-return, but if P does receive X cor-TTP 2

rectly but the acknowledge to P is lost, then A has.A

This ambiguity can be avoided by using a transaction

to transmit X . Since TTP is trusted, atomicity of the2

transaction can enable A to unambiguously deter-
mine whether or not he or she has entered his or her
point-of-no-return.

Third, in distributed transaction processing, a TP
monitor is set up on each site involved in a dis-
tributed transaction to manage the context of the
transaction. We found that the context information
maintained by TP monitors can help avoid fairness
loss. For example, a TP monitor typically maintains
a queue to buffer incoming and outgoing messages.

Ž .Thus, in a protocol modeled by Fig. 3a, after X Y1 1
Ž .arrives at B A , the corresponding TP monitor will

first enqueue X , then P can dequeue X and1 B 1

process it. Although, if P crashes after sending outB

Y , the fairness will still be lost because the de-2

queued X is lost, if we make the incoming queue1

transactional then the fairness loss can be avoided.
w xTransactional queues 13 , also called persistent

queues, make messages recoverable even after being
dequeued by logging each enqueue operation to sta-
ble storage.

The major drawback of using distributed transac-
tions in fair exchange systems is that significant
extra costs and performance penalty can be caused.
Running a distributed transaction needs a TP moni-
tor, a transaction manager, and a log manager for
each participant involved in the transaction. More-
over, the 2PC protocol needs a coordinator and two
rounds of message interactions between the coordi-
nator and each participant. These costs can be well
rewarded for the distributed applications where the
ACID properties are critical. However, for a fair
exchange system many of these costs could be wasted
because the success of an exchange is not dependent
on the ACID properties. In some cases, using trans-
actions can even cause extra performance penalty.
Reconsider the situation where a transaction is used
to make delivering X and Y atomic. Since atomic-2 2

ity can not guarantee fairness, the corresponding
transaction management costs are wasted, and the
transaction rollback action caused by transmission
failures during the delivery can cause more delay
than simple retransmissions. Although we can avoid
Type 1.2 fairness loss by maintaining a persistent
incoming queue on the TTP, the corresponding cost
is still more than simply logging X and Y as soon2 2

as they are received by P .TTP
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4. Message-logging-based approaches

Message logging is the standard method in the
literature of distributed systems to achieve recover-
ability. In this section, we study the application of
message logging to fair exchange protocols, trying to
use the technique in an appropriate way. Compared
with transaction-based approaches, message logging
can be cheaper.

We view an exchange as a set of interactions
among three processes: P , P and P . ProcessesA B TTP

interact by sending and receiving messages. Each
process has a local state and performs computation
based on the current state, which is kept in the
volatile storage. For example, during an exchange
modeled by Fig. 3a, the actions which P will takeA

after receiving a message from P or P areB TTP

dependent on the state variable indicating which
phase P is currently in the exchange.A

Processes execute events, including send events,
w xreceiÕe events, and local events 1 . Each event

transforms one process state to another. Therefore, a
process can be viewed as an interleaved sequence of
events and states. A local event is deterministic, if

Žbased on the same current process state and the
.same message used in the event , the event does the

same state transformation and outputs the same mes-
Ž .sage to the following send event if there is any . An

exchange system is deterministic if the local events
of P , P , or P are all deterministic. Note thatA B TTP

fair exchange protocols modeled by Fig. 3 can be
implemented by a deterministic exchange system.

Ž .One may doubt that the event of splitting X Y into
Ž . Ž .X Y and X Y is nondeterministic, since an1 1 2 2

item is usually split using a randomly chosen crypto-
graphic key to make the split unpredictable. How-
ever, the split event is deterministic if we consider
the random key as a message.

4.1. Traditional message-logging approaches and
their limitations

A message is logged if both its content and
sequence number have been saved on stable storage.
Assuming that each local event executed by a pro-
cess is deterministic, it is then always possible to
reconstruct the current process state from the set of
messages delivered. Occasionally, a process takes a

checkpoint, a snapshot of it local state, and writes it
to the stable storage to reduce recovery time. A
process state is recoÕerable if every message deliv-
ered after the latest checkpoint is logged.

In our model, a global state S of an exchange
system is a collection of three process states: s , sA B

and s , one for each process. Viewing processesTTP

as sequences of events and states, a global exchange
system state S can also be viewed as the collection

Ž .of three subsequences: 1 the subsequence of PA
Ž .ended with s ; 2 the subsequence of P endedA B

Ž .with s ; and 3 the subsequence of P endedB TTP

with s . A global exchange system state S isTTP

consistent if and only if every message received via
a receive event of S has been sent out via a sent
event of S. A consistent global exchange system
state S is recoverable if s , s and s are allA B TTP

recoverable.
A naive approach to achieve recoverability of a

fair exchange protocol is to use pessimistic message
logging, which has been applied in many systems to
support transparent, application-independent recov-

w xery 5,9 . The mechanism is pessimistic because it
never rolls back process computations. The applica-
tion of pessimistic message logging to fair exchange
is straightforward. In a data exchange system mod-
eled by Fig. 3, a message m is always first logged
before being delivered to another agent.

It is easy to show that for a deterministic data
exchange system pessimistic message logging not
only ensures that the current global state is always
recoverable, but also ensures that all types of fairness

Žloss risks excluding Type 3.1 risks and the risks
.caused by channel breaks we have previously iden-

tified can be avoided because no messages will be
lost any more when a process crashes. To illustrate,
in the example specified in Section 1, since message
1 will be logged before being delivered to P , soB

even if P crashes after message 2 is sent out, PB B
Ž .can still get message 1 from the log after being

restarted.
The advantage of pessimistic message logging is

the absence of cascading rollback, since there always
exists a consistent system state constructible from
the most recent checkpoint and the logged messages.
However, the writing time for a message to be
logged before processing can be significant, com-
pared with the computation. This is unacceptable in
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an environment where a large number of messages
are exchanged. This results in the optimistic mes-

w xsage-logging approach 14,16 . Optimistic message
logging allows messages to be processed indepen-
dent of when they are logged, in an asynchronous
manner. In the absence of failure, the only overhead
is the asynchronous logging of messages.

Optimistic message logging ensures that a maxi-
mal recoverable system state is reconstructible after

Ž w xa failure. Readers can refer to Ref. 14 for the
definition of maximal recoverable system states and
the algorithm to compute such states. Details are

.omitted here for space reason. However, this kind of
recoverability does not ensure fairness. Consider the
example shown in Fig. 5 where P denotes an0

external process that generates inputs for P , P ,A B

and P . We view these inputs as the first messagesTTP

delivered to P , P , and P , respectively. And weA B TTP

assume that only the input delivered to each process
is logged but all the other messages are not. Fig. 5
depicts the message interactions of an exchange
modeled by Fig. 3a. When P crashes after PA TTP

sends X to P , according to optimistic message2 B

logging, all volatile messages delivered to P andB

P will be logged. At this time, although state STTP 4

is the current system state, it is not recoverable
because the second message delivered to P is lost.A

In fact, the maximal recoverable state is S . How-1

ever, the ability to find the maximal recoverable state

does not imply the ability to ensure fairness. In
particular, before we roll back the system state to S1

the fairness may already be lost because after getting
X, P may reject to continue the exchange processB

from state S .1

4.2. Semantics-based message logging

Pessimistic message logging can ensure fairness
in fair data exchange but may result in unacceptable
performance, while optimistic message logging can-
not even ensure fairness. Moreover, in both pes-
simistic and optimistic message logging, messages
are logged regardless whether they contribute to the
fairness of an exchange or not. This will inevitably
result in extra performance penalty, especially when
most of the logged messages are unnecessary to
ensure the fairness.

The limitations of traditional message-logging ap-
proaches are due to the ignorance of the semantics of
fair exchange protocols. In this section, we identify
the semantics of fair exchange protocols that can be
exploited to ensure both fairness and good perfor-
mance.

Ž .Definition 1. A state of player process P P isA B
Ž . Ž .called the point-of-no-return of P P if P PA B B A

Ž .can get X Y without further information provided

Fig. 5. Recoverable state with loss of fairness.
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Ž . Ž .by P P after P P enters the state, and thereA B A B
Ž .are no other such states, which P P can enterA B

before it enters the state.

Intuitively, the point-of-no-return of a player in a
data exchange represents the stage after which the
player cannot take back his data item even if the
exchange is stopped. Thus, in order to avoid losing
the fairness due to process crashes, the player pro-
cess must remember what has happened so that it
can continue the exchange even after a crash. Seman-
tics of points-of-no-return has been mentioned in

w xsome specific exchange protocols such as Ref. 10 .
It is easy to see that fair exchange protocols

modeled by Fig. 3 have the following points-of-no-
Ž .return: 1 for Type 1 protocols, the point-of-no-re-

turn of P is the state that P enters by sending outA A

X ; the point-of-no-return of P is the state that P2 B B
Ž .enters by sending out Y ; 2 for Type 2 protocols,2

the point-of-no-return of P is the state that PA A

enters by sending out X ; the point-of-no-return of2
Ž .P is the state that P enters by sending out Y ; 3B B 1

for Type 3 protocols, the points-of-no-return are the
same as for Type 2 protocols. Similarly, in protocols
modeled by Fig. 4, sending out X let P enter itsA

point-of-no-return, and sending out Y let P enterB

its point-of-no-return. Finally, it is easy to see that in
the example specified in Section 1 sending out mes-
sage 2 let P enter its point-of-no-return, and send-B

ing out message 3 let P enter its point-of-no-return.A

Similar to the two player systems, there is also a
critical state for P , which is defined as follows. ItTTP

is easy to see that in a protocol modeled by Fig. 3, if
all the messages that have already been delivered to
P are logged when P enters its point-of-fair-TTP TTP

delivery, then Type 1.2 and Type 2.3 fairness loss
can be immunized. Note that the agents for protocols
with off-line TTPs have no points-of-fair-delivery.

Definition 2. A state of process P is called theTTP

point-of-fair-delivery of P if after P entersTTP TTP

the state only X or Y is delivered but not both, and2 2

there are no other such states that P can enterTTP

before it enters the state.

Based on the notions of points-of-no-return and
points-of-fair-delivery, we can define a correctness

criteria for fault-tolerant fair data exchange systems
as follows. See that the correctness of pessimistic
message logging can also be justified by the fact that
it achieves fairness–lossless recoverability.

Definition 3. In a fair exchange system where P ,A

P or P may crash concurrently, a global ex-B TTP

change system state S is fairness–lossless recover-
able if whenever a crash happens,

v Ž .If P P has entered its point-of-no-return, thenA B
Ž .all the messages delivered to P P before PA B A

Ž .P entered its point-of-no-return are logged, andB
v If P has entered its point-of-fair-delivery, thenTTP

all the messages delivered to P before PTTP TTP

entered its point-of-fair-delivery are logged.

Based on our discussion on traditional message-
logging approaches, it should be easy to show that
fairness–lossless recoverability can generally ensure
the fairness of deterministic fair exchange systems in
presence of failures. In particular, if a data exchange
system modeled by Fig. 3 is deterministic and fair-
ness–lossless recoverable, then the system is immu-
nized from all types of fairness loss caused by
process crashes except for Type 0 and Type 3.1.

There can be several solutions for immunizing the
system from Type 0 fairness loss risks. For example,
Ž . Ž . Ž .1 letting P P output Y X before acknowl-A B 2 2

Ž . Ž . Ž .edging receiving Y X , or 2 letting P P log2 2 A B
Ž . Ž .Y X before acknowledging receiving Y X . In2 2 2 2

both methods, P will continue to be active unlessTTP
Ž . Ž .player A B is assured to get Y X .

Type 3.1 fairness loss risks can not be avoided by
message-logging approaches because they are not
caused by unrecoverable messages. Instead, as we
have shown, using transactions inside TTP is a sound
and desirable solution to avoid Type 3.1 risks. This

Ž .also shows that 1 transaction-based approaches and
message-logging-based approaches are usually com-

Ž .plementary to each other, and 2 the approaches
needed to immunize a data exchange system from
fairness loss caused by failures are usually hybrid.

It should also be easy to show that fairness–loss-
less recoverability can also generally ensure fairness
in exchanges with off-line TTPs. The difference is
that since agents for off-line TTPs have no points-
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of-fair-delivery, there is no recoverability require-
ments for P .TTP

Although reducing the overhead of TTPs is criti-
cal to the overall performance of a data exchange
system, logging messages cannot be avoided in ex-
change systems with on-line TTPs in order to ensure
fairness. However, the overall performance of a data
exchange system can be improved by optimizing the
ways we do message logging at the TTP. For exam-

w xple, in Ref. 18 , after messages are logged, they are
retrieved by players instead of being delivered by the
TTP. In this way, P is relieved from sendingTTP

messages directly to players, which can be very
resource consuming when many communication fail-

w x Ž .ures happen. In Ref. 10 see Fig. 3c , after X is2

logged by the TTP, it will be signed and returned to
player A, which will then forward it to player B. In
this way, P does not need to open a new connec-TTP

tion to P . Nevertheless, it should be noticed thatB

generally data exchange systems with off-line TTPs
have better performance than those with on-line
TTPs, not only because TTPs are not involved in
many exchanges, but also because even if a TTP is
involved in a exchange it is not required to log
messages.

In the following, we propose an algorithm to
achieve fairness–lossless recoverability for fair ex-
change systems using on-line TTPs. Note that the
algorithm can be directly extended to exchange sys-
tems with off-line TTPs except that P needs noTTP

Ž .recovery services. We assume that 1 there is a
recovery manager, a process responsible for logging,

Ž .at each player’s local system, and 2 whenever a
message is delivered to a player it is also delivered
to the recovery manager. We augment traditional
optimistic message-logging systems with a specific
facility called message filter, a process responsible
for detecting points-of-no-return or points-of-fair-de-
livery, at each local system. We assume that every
message sent out by an agent is forwarded by a
message filter to communication channels.

Ž .Algorithm 1 Semantics-based message logging .
For a data exchange system modeled by Fig. 3.
Ž .1 Before the data exchange system starts to func-
tion, each player registers its point-of-no-return with
its Message Filter. The TTP registers its point-of-
fair-delivery with its Message Filter.

Ž . Ž .2 When an agent P , P , or P is sending outA B TTP

a message, its Message Filter checks if sending out
the message will make the agent enter its point-of-
no-return or point-of-fair-delivery. If the answer is
YES, the Message Filter will inform the Recovery
Manager to log all the messages that have already
been delivered to the agent. The message will not be
sent out to the channel until the Recovery Manager
succeeds. If the answer is NO, the message will be
forwarded to the channel.
Ž .3 The recovery actions taken by the system when a
set of messages are logged, the method to compute
the maximal recoverable state after a crash, and the
rolling back process are the same as those performed
in a normal optimistic message logging system such

w xas Ref. 14 .
Ž .4 After a crash, each agent rolls its state back to the
corresponding one specified in the maximal recover-
able system state and continues its computation.

Similar to pessimistic message logging, the se-
mantics-based approach is application independent.
The only information that a data exchange protocol
needs to inform the recovery system is the point-of-
no-return of each player and the point-of-fair-de-
livery of the TTP. Since this interaction is finished
by an off-line registration process, the codes of the
protocol need not be tailored. As a result, recovery
facility can be provided by the system and transpar-
ent to the fair exchange protocols. With almost no
modifications, existing fair exchange protocols,
which assume no system failures, can be directly
performed on a platform where semantics-based
message logging is enforced to avoid the fairness
loss risks caused by process crashes.

Algorithm 1 can cause two kinds of overheads:
failure-free overhead and recovery overhead.
Failure-free overhead is the fixed overhead imposed
on the system even when there is no failure. Recov-
ery overhead is the cost paid to restart the system
from a certain state. Each kind of overheads can be
broken down into three parts: disk IrO overhead,
message overhead, and computation overhead. As-
suming computation is much faster than communica-
tion and disk IrO, we can concentrate on the disk
IrO overhead and the message overhead. In particu-
lar, the overhead of Algorithm 1 when being applied
to a data exchange system modeled by Fig. 3a can be
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summarized as follows. We call the messages of the
underlying data exchange protocol application mes-
sages and the messages of Algorithm 1 recoÕery
messages.

v The maximum failure-free overhead of Algo-
rithm 1 is six disk IrO operations and six recovery
messages. The minimum failure-free overhead is

Žthree disk IrO operations. Note that each disk IrO
.operation can handle more than one messages and

three recovery messages.
v The maximum recovery overhead of Algorithm

1 is four disk IrO operations and five recovery
messages. The minimum recovery overhead is zero
disk IrO operations and zero recovery messages.

4.3. Application specific approaches

Although having the advantage of being transpar-
ent, application-independent methods usually cannot
achieve optimal performance in terms of the amount
of computing resources used. Better performance is
usually achievable by incorporating recovery seman-
tics directly into fair exchange system code. Con-
sider the example specified in Section 1, before PB

enters its point-of-no-return in step 2, it may log only
Ž Ž ..the NRO token, namely, S B, m.id, E m , insteadA k

of the whole message 1 after verifying the token.
ŽSimilarly, P can only log the data item S A, m.id,A B

Ž ..E m instead of the whole message 2. In this way,k

the IrO cost can be reduced. The drawback of
application specific approaches is that the developing
cost and the possibility of incurring faults can be
substantially increased. It should be noticed that no
general application specific approaches can be pre-
sented here because they are dependent on applica-
tion semantics and thus may be different from one
application to another.

5. Conclusion

In this paper, we systematically identified and
studied the negative impact of failures on the fair-
ness of fair exchange systems. We investigated the
application of two categories of techniques, namely,
transaction-based approaches and message logging,

to tackle the impact. Although transactions can be
very useful in such aspects of fair exchange systems
as enabling players to unambiguously determine
whether or not they have passed their points-of-no-
return, atomicity of transactions can not guarantee
fairness. Message logging is a cheaper approach;
however, traditional message-logging approaches are
limited in achieving both fairness and good perfor-
mance. We proposed a semantics-based approach
that can exploit exchange protocol semantics to
achieve these goals.
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