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Abstract

Traditional database security mechanisms are very lim-
ited in defending successful data attacks. Authorized but
malicious transactions can make a database useless by im-
pairing its integrity and availability. This paper presents the
design of a real-time data attack isolation system, denoted
DAIS. DAIS isolates likely suspicious actions before a defi-
nite determination of intrusion is reported. In this way, the
database can be immunized from many malicious transac-
tions. DAIS is a COTS-DBMS-specific implementation of a
general isolation algorithm that we developed in [19]. In
this paper, the design of the first DAIS prototype, which is
for Oracle Server 8.1.6, is discussed. DAIS uses triggers
and transaction profiles to keep track of the items read and
written by transactions, isolates attacks by rewriting user
SQL statements, and is transparent to end users. The DAIS
design is very general. In addition to Oracle, it can be easily
adapted to support many other database application plat-
forms such as Microsoft SQL Server, Sybase, and Informix.

Keywords: Isolation, Intrusion Tolerance, Database Secu-
rity

1 Introduction

Database security concerns the confidentiality, integrity,
and availability of data stored in a database. A broad span of
research from authorization [9, 28, 14], to inference control
[1], to multilevel secure databases [33, 31], and to multi-
level secure transaction processing [3], addresses primarily
how to protect the security of a database, especially its con-
fidentiality. However, very limited research has been done
on how to survive successful database attacks, which can
seriously impair the integrity and availability of a database.
Experience with data-intensive applications such as credit
card billing, banking, air traffic control, logistics manage-
ment, inventory tracking, and online stock trading, has
shown that a variety of attacks do succeed to fool traditional
database protection mechanisms. In fact, we must recognize

that not all attacks – even obvious ones – can be averted at
their outset. Attacks that succeed, to some degree at least,
are unavoidable. With cyber attacks on data-intensive in-
ternet applications, i.e., e-commerce systems, becoming an
ever more serious threat to our economy, society, and every-
day lives, attack resistant database systems that can survive
malicious attacks are a significant concern.

One critical step towards attack resistant database sys-
tems is intrusion detection, which has attracted many re-
searchers [7, 21, 13, 10, 23, 26, 22, 17, 18]. Intrusion
detection systems monitor system or network activity to
discover attempts to disrupt or gain illicit access to sys-
tems. The methodology of intrusion detection can be
roughly classed as being either based on statistical profiles
[15, 16, 30] or on known patterns of attacks, called signa-
tures [11, 8, 27, 12, 32]. Intrusion detection can supplement
protection of network and information systems by reject-
ing the future access of detected attackers and by provid-
ing useful hints on how to strengthen the defense. How-
ever, intrusion detection has several inherent limitations:
(a) Intrusion detection makes the system attack-aware but
not attack-resistant, that is, intrusion detection itself cannot
maintain the integrity and availability of the database in face
of attacks. (b) Achieving accurate detection is usually dif-
ficult or expensive. The false alarm rate is high in many
cases. (c) The average detection latency in many cases is
too long to effectively confine the damage.

To overcome the limitations of intrusion detection, a
broader perspective is introduced, saying that in addition to
detecting attacks, countermeasures to these successful at-
tacks should be planned and deployed in advance. In the lit-
erature, this is referred to as survivability or intrusion toler-
ance. In this paper, we will address an useful technique for
database intrusion tolerance, namely attack isolation, and
present the design of a practical system which can do attack
isolation.

1.1 The Problem

The merit of attack isolation can only be clearly ex-
plained in the context of an intrusion tolerant database sys-
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tem. Database intrusion tolerance can mainly be enforced at
two possible levels: operating system (OS) level and trans-
action level. Although transaction level methods cannot
handle OS level attacks, it is shown that in many applica-
tions where attacks are enforced mainly through malicious
transactions transaction level methods can tolerate intru-
sions in a much more effective and efficient way. Moreover,
it is shown that OS level intrusion tolerance techniques such
as those proposed in [23, 22, 24, 25, 4], can be directly in-
tegrated into a transaction level intrusion tolerance frame-
work to complement it with the ability to tolerate OS level
attacks. This paper will focus on transaction level intrusion
tolerance, and our presentation will be based on the intru-
sion tolerant database system architecture shown in Figure
1.

The architecture is built on top of a traditional COTS
(Commercial-Of-The-Shelf) DBMS. Within the frame-
work, the Intrusion Detector identifies malicious transac-
tions based on the history kept (mainly) in the log. The
Damage Assessor locates the damage caused by the de-
tected transactions. The Damage Repairer repairs the lo-
cated damage using some specific cleaning transactions.
The Damage Confinement Manager restricts the access to
the objects that have been identified by the Damage Asses-
sor as damaged, and unconfines an object after it is cleaned.
The Policy Enforcement Manager (PEM) (a) functions as a
proxy for normal user transactions and those cleaning trans-
actions, and (b) is responsible for enforcing system-wide in-
trusion tolerant policies. For example, a policy may require
the PEM to reject every new transaction submitted by an
user as soon as the Intrusion Detector finds that a malicious
transaction is submitted by the user. It should be noticed
that the framework is designed to do all the intrusion toler-
ance work on-the-fly without the need to periodically halt
normal transaction processing.

The complexity of the framework is mainly caused by a
phenomenon denoted damage spreading. In a database, the
results of one transaction can affect the execution of some
other transactions. Informally, when a transaction T i reads
an object x updated by another transaction T j , Ti is directly
affected by Tj . If a third transaction Tk is affected by Ti,
but not directly affected by Tj , Tk is indirectly affected by
Tj . It is easy to see that when a (relatively old) transaction
Bi that updates x is identified malicious, the damage on x

can spread to every object updated by a transaction that is
affected by Bi, directly or indirectly. The job of the Dam-
age Assessor and the Damage Repairer is to locate each
affected transaction and recover the database from the dam-
age caused on the objects updated by the transaction. In
particular, when an affected transaction is located, the Dam-
age Repairer builds a specific cleaning transaction to clean
each object updated by the transaction (and not cleaned yet).
Cleaning an object is simply done by restoring the value of
the object to its latest undamaged version. This job gets
even more difficult as the execution of new transactions con-
tinues because the damage can spread to new transactions
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Figure 1. An Intrusion Tolerant Database Sys-
tem without Isolation

and cleaned objects can be re-damaged by new transactions.
Therefore, the main objective of this framework is to guar-
antee that damage spreading is (dynamically) controlled in
such a way that the database will not be damaged to a degree
that is unacceptable or useless.

The limitation of this architecture is mainly due to the
fact that the effectiveness of the framework is heavily de-
pendent on the performance of the Intrusion Detector (For
example, the framework cannot handle the malicious trans-
actions not captured by the Intrusion Detector), and the fact
that for accuracy a (relatively) long detection latency is usu-
ally caused, especially when anomaly detection is enforced.
One main reason for the latency is that intrusion detection
has to make a tradeoff between meeting the requirement
of reporting an intrusion accurately (i.e., low false alarm
rates) and the requirement of detecting as many intrusions
as possible (i.e., high detection rates), which can often re-
sult in conflicting design goals. For example, in anomaly
detection, for detection accuracy the anomaly threshold for
reporting must be high, thus many intrusions with gradual
anomaly cannot be identified; on the other hand, in order
to capture more intrusions, the threshold should instead be
lower, thus the false alarm rate would increase and many
legitimate transactions can be mistaken for malicious and
suffer denial-of-service. To resolve this dilemma, extend-
ing the monitoring time window is one feasible solution. By
collecting and investigating more proofs about a suspicious
activity, usually more accuracy can be achieved. For exam-
ple, [20] shows that when using system call trails to identify
sendmail attacks, synthesizing the anomaly scores of a se-
quence of system calls (longer than 6) can achieve much
better accuracy than based on single system calls. More-
over, in many real world examples, i.e., fraud credit card
usage detection, human intervention is needed, which can
make the detection latency even longer.
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Significant detection latency can cause serious damage
spreading in many cases. As a result, the main objective
of this framework can be seriously jeopardized. Therefore,
how to overcome this limitation is a critical issue.

1.2 Our Approach and Contribution

In [19], isolation is proposed as an effective approach
to solve the above problem, and a general algorithm to do
isolation in the context of database systems is presented.
In this approach, when a suspicious user S is discovered,
although more investigation is still needed for accurate de-
tection, S’s access will be isolated transparently into a sep-
arate environment that still appears to S to be the actual
system. In this way, S’s activities are allowed to be kept
under (possibly more careful) surveillance without risking
further harm to the system. Compared with fishbowling,
a general technique for isolation, this approach isolates at-
tacks without consuming duplicate resources to construct
an entirely separate environment, allows options for partial
interaction across the isolation boundary, and provides al-
gorithms for smoothly merging S’s work back into the real
system should S prove innocent.

This paper presents the design of a real-time data attack
isolation system, denoted DAIS. DAIS is a COTS-DBMS-
specific implementation of the general isolation algorithm,
which is based on an abstract database model. In particular,
the design of the first DAIS prototype, which is for Oracle
Server 8.1.6, is discussed. DAIS uses triggers and transac-
tion profiles to keep track of the items read and written by
transactions, isolates attacks by rewriting user SQL state-
ments, and is transparent to end users. The DAIS design is
very general. In addition to Oracle, it can be easily adapted
to support many other database application platforms such
as Microsoft SQL Server, Sybase, and Informix.

The rest of the paper is organized as follows. In Section
2, we summarize the general isolation algorithm. In Section
3, we present the design of DAIS. We address some perfor-
mance issues in Section 4. In Section 5, we conclude the
paper.

2 The General Isolation Algorithm

2.1 The Model

[19] views a database is a collection of data items (or
objects). The database state is determined by the values of
these data items. Data items are operated by transactions.
A transaction is a partial order of read and write operations
that either commits or aborts. Two operations conflict if one
is write. The execution of a set of transactions is modeled
by a history, which is a partial order (

P
; <H), where

P

is the set of all operations executed by these transactions,
and <H indicates the execution order of those operations.
Two histories are equivalent if (1) they are defined over the

same set of transactions and have the same operations, and
(2) they order conflicting operations of nonaborted transac-
tions in the same way. A history H is serial if, for any two
transactions Ti and Tj that appear in H , either all operations
of Ti appear before those of Tj or vice versa. A history H
is serializable if its committed projection is equivalent to a
serial history [5]. [19] assumes that every history is serial-
izable, and (for simplicity) that the read set of a transaction
always contains its write set.

In the model, isolation is enforced in terms of users,
when an user is identified suspicious, every transaction ex-
ecuted by the user is simply marked suspicious. A straight-
forward way is using a separate database, which contains a
copy of every item in the real database, to isolate each sus-
picious user. When an user is isolated, every transaction of
the user will be executed within the isolated database built
for the user. As a result, at time t, if there are n suspi-
cious users, then there are n + 1 databases, a real database
for all trustworthy users and an isolated database for each
suspicious user. However, the naive approach has two lim-
itations: (1) for a large database many items may never be
read or updated by a suspicious user, and maintaining these
items in isolated databases is a waste of resources; (2) new
updates by trustworthy transactions after a suspicious user
is isolated are not visible to the isolated user.

To overcome these two limitations, [19] uses data ver-
sions to give the illusion of isolated databases, and allows
isolated users to read new updates of trustworthy users if
needed. In particular, a data item x has one trustworthy ver-
sion and may have multiple suspicious versions. One and
only one suspicious version of x is produced for each sus-
picious user that has updated x. If x has never been updated
by a suspicious user, it has no suspicious versions. So the
number of suspicious versions is usually much smaller than
the number of trustworthy versions. The suspicious ver-
sions maintained for a suspicious user Si, together with the
trustworthy versions of the items that do not have a suspi-
cious version for Si, comprise the virtual isolated database
for Si.

Isolation is achieved by controlling the access of trans-
actions to versions. In particular, in the algorithm one-way
isolation strategy is used, where (a) trustworthy transactions
can only read and update trustworthy versions, and (b) sus-
picious transactions can read but not update trustworthy ver-
sions. In particular, transactions of a suspicious user S i can
only update the suspicious versions produced for S i, and
when a transaction of Si wants to read a data item x, if a
suspicious version of x has not been produced for S i, then
the trustworthy version of x is read. Otherwise, the sus-
picious version is read. Note that in addition to one-way
isolation other isolation strategies may also be useful. For
example, in some cases, some updates of suspicious users
may be able to be disclosed to trustworthy users.
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2.2 The Algorithm

The algorithm has three parts: a version control algo-
rithm that controls the access of suspicious users to ver-
sions, a conflict identification and resolution algorithm that
identifies and resolves the inconsistency between the real
database and an isolated database when the corresponding
(isolated) user is proved innocent, and a merging algorithm
that merges the updates of an isolated user back into the real
database. Note that here multiple suspicious users could be
simultaneously isolated. Note also that when the updates of
an isolated user are to be merged back into the real database,
the updates of another isolated user may have already been
merged back into the real database.

Part I: Version Control Algorithm

� Before a database system starts to run transactions,
each data item x has only one version which is asso-
ciated with the same version number MAIN, denoted
x[MAIN].

� When a trustworthy transaction T wants to read or up-
date x, x[MAIN] is given to T .

� When a transaction submitted by a suspicious user S i
wants to update x,

– If x has only the MAIN version, then first
an additional version of x, which is associated
with a unique version number, e.g., the time
stamp (denoted ti) generated when Si was found
suspicious, is created by copying the value of
x[MAIN]. The ti version is then given to Si to
do updates.

– Otherwise, the ti version must exist, and it is
given.

� When a transaction submitted by a suspicious user S i
wants to read x, if there is a ti version of x, then the
ti version is given. Otherwise, the MAIN version is
given.

When an isolated user is proved malicious, all the sus-
picious versions maintained for the user are discarded and
the real database is not harmed. When an isolated user is
proved innocent, we need to merge the updates of the user
back into the real database. Since a data item can be in-
dependently updated by both a trustworthy transaction and
a suspicious transaction, the real database and the isolated
database can be inconsistent. The conflict identification and
resolution algorithm, which is specified as follows, uses a
specific graph, denoted precedence graph, to identify and
resolve the inconsistencies. [19] shows that if the prece-
dence graph is acyclic, then the real database and the iso-
lated database are consistent.

Part II: Conflict Identification and Resolution Algo-
rithm

� Assume the history of the isolated user is Hs; assume
the suffix of the real database history after the user is
isolated is Hm

� The precedence graph, denotedG(Hm; Hs), is built as
follows

– Let Ti and Tj be two suspicious transactions or
two trustworthy transactions that perform con-
flicting operations on a data item. There is a di-
rected edge Ti ! Tj if Ti precedes Tj .

– If an update of a trustworthy transaction Tg was
disclosed to a suspicious transaction Ts during
the isolation, then there is a directed edge Tg !
Ts. This type of edge is called a read edge.
We add read edges to the traditional precedence
graph to support one-way isolation.

– Let Tg be a trustworthy transaction that reads a
data item that has been updated by a suspicious
transaction Ts, and there is no path from Tg to
Ts, then there is a directed edge Tg ! Ts.

– Let Ts be a suspicious transaction that reads a
data item that has been updated by a trustworthy
transaction Tg, and there is no path from Tg and
Ts that includes a read edge, then there is a di-
rected edge Ts ! Tg.

� If G(Hm; Hs) is acyclic, then the algorithm ends. If
G(Hm; Hs) has cycles, then first break all the cycle by
backing out some transactions, then end the algorithm.
Although it is shown in [6] that just finding the opti-
mal back out strategy is NP-complete, the simulation
results of [6] show that in many cases, several back out
strategies, in particular breaking two-cycles optimally,
can achieve good performance.

� For each transaction Tg that is backed out from Hm,
locate every active suspicious history which has a read
edge from Tg, and for each such read edge, denoted
Tg ! Ts, back out Ts and every transaction that is
affected by Ts.

After the inconsistency between the real database and the
isolated database is resolved, we can use the following al-
gorithm to merge the (left) updates of the isolated user back
into the database. [19] shows that given Hg and Hs, the
precedence graph G(Hm; Hs) is acyclic if and only if there
is an equivalent merged serializable history H that can gen-
erate the same database state as generated by the merging
algorithm.

Part III: Merging Algorithm

� For every data item that has a suspicious version main-
tained for the isolated user, replace its trustworthy ver-
sion (value) with its suspicious version (value), and
then remove the suspicious version.
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2.3 An Example

We illustrate the algorithm by an example.

Example 1 Consider the five transactions given below:

READSET (Tg1) = WRITESET (Tg1) = fd1; d3g
READSET (Tg2) = WRITESET (Tg2) = fd1; d4g
READSET (Tg3) = fd2; d4; d5g, WRITESET (Tg3) = fd5g
READSET (Ts1) = WRITESET (Ts1) = fd7g
READSET (Ts2) = fd1; d2; d3; d7g, WRITESET (Ts2) =
fd2; d3g
READSET (Ts3) = fd3; d6g, WRITESET (Ts3) = fd6g

Assume that the real database history is Hg =
Tg1 Tg2 Tg3 and the suspicious history is Hs = Ts1 Ts2 Ts3.
Assume the commit time order is Ts1 Tg1 Ts2 Tg2 Ts3 Tg3.
It is clear the first version for the isolated user is created
when Ts1 updates d7. Ts2 will read the updates of Tg1 on
d1 and d3, and read the update of Ts1 on d7. After Ts2 is
executed there are three suspicious versions for the isolated
user, namely, d2, d3, and d7. However, Tg3 cannot read
the update of Ts2 on d2 according to the one-way isolation
strategy. After Ts3 is executed there is one more suspicious
version (for d6). Since every item has a trustworthy ver-
sion, any corruption on these suspicious versions will not
harm the real database.

If the isolated user is proved innocent, the precedence
graph G(Hg ; Hs) shown in Figure 2 can be used to identify
and resolve the conflicts between Hg and Hs. Since the
graph has a cycle, conflicts exist among the transactions.
For example, since Ts2 reads item d1, which is updated by
Tg2, Ts2 should precede Tg2; since Tg2 should precede Tg3,
Ts2 should precede Tg3; however, since Tg3 reads item d2,
which is updated by Ts2, Tg3 should precede Ts2, yielding
a contradiction.

The inconsistency between the real database and the iso-
lated database can be resolved by breaking this cycle. For
example, if Tg3 is backed out, then the merged database can
be generated by equivalent historyH = Ts1 Tg1 Ts2 Tg2 Ts3.
If Ts2 is backed out, then Ts3 has to be backed out because
it is affected by Ts2, and the merged database can be gener-
ated by equivalent history H = Ts1 Tg1 Tg2 Tg3.
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3 DAIS

The major components of DAIS are shown in Figure
3. In general, the Intrusion Detector informs DAIS which
users are suspicious and should be isolated. The Media-
tor, which has three components, proxies every user trans-
action and SQL statement (or command). The triggers, the
SQL Statement Logger, and the Read Extractor are respon-
sible for keeping track of the read and write operations of
transactions, which are necessary to build the precedence
graph when a merging should be done. The SQL Statement
Rewriter and Redirector (SRR) is responsible for enforcing
the Version Control Algorithm. The Read Edge Manager
helps to maintain read edges. The Merger is responsible for
enforcing Conflict Identification and Resolution Algorithm
and the Merging Algorithm. The On-the-fly Isolation Con-
troller enables new user transactions to continue executing
without jeopardizing the correctness of merging processes.

3.1 Intrusion Detector

The Intrusion Detector informs DAIS which users should
be isolated. The Intrusion Detector does anomaly detec-
tion in terms of each transaction and each user. For each
transaction of a user, the Intrusion Detector will generate
an anomaly degree (based on the transaction’s behavior),
which indicates how abnormal (or suspicious) the transac-
tion is. Then the anomaly degrees of the transactions sub-
mitted by the user (within a session) will be synthesized to
generate the anomaly degree of the user. If the anomaly de-
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gree is above a specific threshold, the user will be reported
to the SRR as suspicious. The threshold is adaptively de-
termined by the SSO and the Intrusion Detector based on
the probability that a suspicious transaction turns out to be
malicious, which can be indicated, to some extent, by the
detection history. Readers can refer to [29] for more details
about this detector.

3.2 Triggers

Oracle Redo logs record every write operation, however,
unfortunately its structure is confidential, so getting infor-
mation about writes from Oracle Redo logs is very difficult.
This is also why we use triggers to keep track of writes.

Triggers can capture the write operations associated with
a Update, Delete, or Insert statement. We use triggers
to keep track of the writes of both trustworthy and suspi-
cious transactions. To illustrate, consider a simple bank-
ing database that has two tables: the the Account ta-
ble that keeps the current balance of each customer ac-
count, and the Money Transaction table that keeps the trails
of every deposit or withdraw. The Account table has
two fields: Account ID that is the primary key, and Bal-
ance. The Money Transaction table has four fields: (1)
Money Transaction ID, the primary key; (2) Account ID;
(3) Amount; (4) Date; and (5) Teller ID. When a user de-
posits $500 to his account, we assume the database trans-
action inserts a new money transaction record into the
Money Transaction table and updates his account balance.
After this transaction, the new records added by the triggers
associated with these two tables to the Write Log are shown
in the following table:

Transaction ID Table Name Key OP Type
4.91.6240 Money Transaction 2833 Insert
4.91.6240 Account 1591766 Update

Note that Oracle uses a unique seven digit Transaction ID
to identify each (database) transaction. Note also that here
for simplicity we log writes at record level where each data
item represents a record. Logging writes at field level can
achieve finer isolation control, however, it causes more re-
sources.

3.3 SQL Statement Logger

Although triggers can capture every write, triggers are
generally not able to capture the reads by SQL statements.
Although every record that is updated or deleted is also a
record that is read, a Delete, Insert, or Update statement
can cause more reads especially when they contain nested
Select statements, which we will show shortly.

In order to capture reads, we take an approach to extract
reads from SQL statement profiles and transaction input ar-
guments. The job of the SQL Statement Logger is to keep
every SQL statement as well as its arguments in the SQL
Statement Table. To illustrate, Table 1 shows the corre-
sponding SQL statements kept by this component for the

example transaction introduced in Section 3.2. Here the
Seq No fields indicate the execution order of SQL state-
ments within a transaction.

3.4 Read Extractor

Triggers can capture every write operation, however, no
COTS DBMS logs read operations and triggers cannot cap-
ture reads. DAIS takes the approach of extracting reads
from SQL statement texts. In particular, the Read Extrac-
tor uses the SQL Statement Table and the Read Set Tem-
plate Table to extract read operations of transactions. We
assume each user transaction belongs to a specific transac-
tion type, and the transaction profile (or program) for each
transaction type is known. DAIS cannot automatically ex-
tract reads from ad-hoc transactions without a known pro-
file. The Read Set Template Table, which keeps the read
set template for each transaction type, is extracted from the
profiles of these transaction types. The reads of a specific
transaction T is restored by materializing the read set tem-
plate of T ’s transaction type with the input arguments of T ,
which are kept in the SQL Statement Table. We use a sim-
ple example to show the idea. Consider again the example
transaction introduced in Section 3.2, assume it belongs to
the Deposit transaction type, then the read set template of
Deposit transactions is shown in the following table:

Trans Type Table Name Identifier
Deposit Account AccID

Here the Identifier field sometimes may contain only a part
of a primary key (In this case, an identifier could identify
multiple records). Note that the Insert statement causes no
reads.

The read set template tells us which table is read, but
does not tell us which records are read. In order to figure
out which records are read, we need to materialize the Iden-
tifier fields. For this purpose, we use the following input
argument extraction table:

Trans Type Identifier Var S Pattern After Before
Deposit AccID ‘UPDATE’ ‘Account ID =’ ‘;’

This table says that for a Deposit transaction the value of the
Identifier variable AccID is the number after the string “Ac-
count ID =” and before the char “;” within the SQL state-
ment that starts with ”UPDATE”. Using this table and Ta-
ble 1, we can easily figure out that for transaction 4.91.6240
the Identifier variable AccID is 1591766 (Note that since a
transaction could execute different sets of statements based
on different input arguments and database states, Seq No
sometimes can identify a wrong statement). Then based
on the previous Template table, we can know the transac-
tion has read only one record, which can be denoted as Ac-
count.1591766. Then this read operation will be inserted
into the Read Log, as shown in the following table:

Transaction ID Table Name Primary Key
4.91.6240 Account 1591766

In the above example, we assume the type of transaction
4.91.6240 is known. However, the Read Extractor in fact
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Trans ID SQL Type Statement Seq No
4.91.6240 INSERT INSERT INTO Money Transaction (Money Transaction ID, 1

Account ID, Amount, Date, Teller ID)
VALUES (2833, 1591766, 500, ‘21-Mar-00’, ‘Teller-1’);

4.91.6240 UPDATE UPDATE Account SET Balance = Balance+500 2
WHERE Account ID = 1591766;

Table 1. Example SQL Statements Kept in the SQL Statement Table

does not know the type of transaction 4.91.6240 when Ta-
ble 1 is scanned. DAIS uses an additional table (called the
Transaction Pattern Table), which stores the profile pattern
of each transaction type, to identify the type of a transaction.
For example, the profile pattern for Deposit transactions can
say that each transaction has two statements and the first
one starts with “INSERT INTO Money Transaction”. By
matching the real statements executed by a transaction with
the Transaction Pattern Table, we can figure out the type of
a transaction.

Our study has shown that for most real world Select, In-
sert, and Delete statements that have a simple structure, the
above method can work very well. However, it should be
noticed that for many complex SQL statements that con-
tain nested Select statements, extracting reads is not a easy
job. In [2], some general guidelines are given for extract-
ing reads from nested statements. Moreover, it should be
noticed that the method of extracting reads from transac-
tion profiles sometimes may only restore an approximation
of the real read set of a transaction because the complexi-
ties of transactions can result in such read set templates that
make exact materialization impossible. In order to guaran-
tee that approximate read sets will not affect the correctness
of DAIS, we need to enforce the following constraint during
the process of extracting read set templates:

Containment Rule: Whenever a read set template is ex-
tracted from a transaction profile, any transaction T

of that type, when executed, must have a real read set
contained by the materialized read set template.

3.5 SQL Statement Rewriter and Redirector

To save resources, DAIS does not use completely repli-
cated databases to do isolation, instead, DAIS maintains ex-
tra data versions only for the items that are updated (includ-
ing item creation) by an isolated transaction. In particular,
when a suspicious user is isolated, for each (real database)
table Ri that the user wants to write, DAIS maintains one
extra table with the same structure, called a suspicious ver-
sion of Ri (denoted Si), only during the isolation period. S i

keeps all and only the writes of the user on R i. Hence, the
size of Si should be much smaller than Ri in most cases.

In addition to maintaining suspicious data versions, the
SQL Statement Rewriter and Redirector (SRR) maintains

the information about each suspicious transaction in the Iso-
lated Transaction Table whose structure is shown as follows.

User ID Trans ID Status

Here the Status field of a record indicates the corresponding
transaction commits, aborts, or is still active.

The key challenge of DAIS is how to enforce one-way
isolation. When an isolated user issues a SQL statement to
access a table Ri, according to one-way isolation, a record
r in Ri can be read only if r does not have a version in
Si, and only Si can be modified. To achieve this, changing
the way SQL statements are executed, i.e., using templates,
can cause substantial overhead, however, executing the SQL
statement solely on Si can generate invalid results, so the
only practical way is to rewrite the SQL statement.

To rewrite and redirect user SQL statements, we have to
proxy user transactions. DAIS assumes every Application
uses OCI calls, a standard interface for Oracle, to access
the database. To proxy user transactions, DAIS proxies ev-
ery OCI call by providing the Applications with a pseudo
OCI interface, which forwards each OCI call to the Medi-
ator instead of the Oracle Server. Note that although cur-
rently DAIS only supports the applications that use OCI
calls, the Mediator can be extended to support a variety of
other Oracle interfaces such as ODBC, JDBC, Pro*C, and
SQL*NET.

In Oracle database applications, a user can read a table
through four kinds of SQL statements, namely, Select, In-
sert, Update, or Delete (Note that when a Delete or Insert
statement has one or more Select statements nested, it can
cause reads), and a user can write a table through the four
kinds of SQL statements except Selects. Hence, in order
to enforce the Version Control Algorithm, DAIS may need
to rewrite and redirect every kind of SQL statements. The
SQL statement rewriting and redirecting algorithm is speci-
fied as follows. In general, the rewriting algorithm for each
kind of SQL statements has three steps: (1) build the virtual
database for the isolated user; (2) execute the statement; (3)
restore the real database.

Algorithm 1 SQL Statement Rewriting and Redirecting Algo-
rithm
while TRUE

if a new SQL statement wants to be executed
if the SQL statement is for a trustworthy user

. forward the SQL statement to the Oracle server

7



without any changes;
else ifthe SQL statement is a Select and assume it wants
to query tables Rj1, Rj2, ..., Rjn

. for each Rjk that has some records that are deleted
from Sjk , delete these records from Rjk and keeps
these records in memory. We can query the Write Log
to know which records have been deleted from Sjk;
. for each Sjk that has some records that are not in
Rjk , insert these records into Rjk;
. rewrite the SQL statement (denoted orig stat) as
the following sequence of statements: (selj1,
updj1, selj2, updj2, ..., seljn, updjn, orig stat,
resj1, resj2, ..., resjn). Within the sequence, seljk
is “SELECT * INTO :k FROM Rjk WHERE
Rjk .primary key IN (SELECT Sjk.primary key
FROM Sjk) FOR UPDATE;”. Here :k is a bind
array to tentatively keep all the rows that are selected.
The FOR UPDATE clause ensures that no other users
can lock or update these rows until this transaction
ends. updjk is “UPDATE Rjk a SET (all fields) =
(SELECT * FROM Sjk b WHERE a.primary key =
b.primary key) WHERE Rjk.primary key IN
(SELECT Sjk.primary key FROM Sjk);”.
resjk is “UPDATE Rjk SET (all fields) =
(the corresponding record of :k) WHERE
Rjk .primary key IN :k;”;
/* See Comment A*/
. forward these statements to the Oracle server
for execution;
. delete every record that has been inserted into
Rj1, ..., Rjn;
. for the records that have been deleted from
Rj1, ..., Rjn, re-insert them into these tables;

else ifthe SQL statement is a Delete and assume it does
not handle any nested tables and its WHERE clause
accesses tables Rj1, ..., Rjn

. for each Rjk that has some records that are deleted
from Sjk , delete these records from Rjk and keeps
these records in memory;
. for each Sjk that has some records that are not in
Rjk , insert these records into Rjk;
. rewrite the Delete statement in such a way that the
key word “DELETE” is replaced with “SELECT *”;
. rewrite the Select statement (generated from the
previous step) as (selj1, updj1, selj2, updj2, ...,
seljn, updjn, orig stat, resj1, resj2, ..., resjn).
Here orig stat is the Select statement. Every other
statement is composed in the same way as
we (previously) did for Select statements;
. if the statement is the first statement of the
transaction it belongs to and the transaction is not the
first transaction of the user that submits it

. wait until a FINISH message for the user arrives;
/* See Comment B*/

. forward the sequence to the Oracle server for
execution, assume the result is denoted To Delete;
. delete every record that has been inserted into
Rj1, ..., Rjn;
. for the records that have been deleted from
Rj1, ..., Rjn, re-insert them into these tables;
. for each record in To Delete, if it is in the

corresponding Sjk, then delete it from Sjk. If it is
not in the corresponding Sjk , insert a Delete operation
to the Write Log which says this record is deleted from
Sjk , although this operation is not really done;

else if the SQL statement is an Insert
if the table (denoted Ri) the SQL statement wants to
insert data into has not a suspicious version (denoted
Si) for the suspicious user

. create Si;
if the SQL statement has no subqueries in the
values clause

. rewrite the Insert statement in such a way that
Ri is replaced by Si;
. if the statement is the first statement of the
transaction it belongs to and the transaction is not
the first transaction of the user that submits it

. wait until a FINISH message for the user
arrives;

. forward the rewritten Insert statement to the
Oracle Server;

elseassume the subquery of the SQL statement
accesses tables Rj1, ..., Rjn

. for each Rjk that has some records that are
deleted from Sjk, delete these records from Rjk

and keeps these records in memory;
. for each Sjk that has some records that are
not in Rjk, insert these records into Rjk;
. rewrite the Insert statement in such a way that
the string “INSERT INTO table name” is
removed;
. rewrite the Select statement (generated from the
previous step) as (selj1, updj1, selj2,
updj2, ..., seljn, updjn, orig stat, resj1,
resj2, ..., resjn). Here orig stat is the Select
statement. Every other statement is composed in
the same way as we (previously) did for
Select statements;
. if the statement is the first statement of the
transaction it belongs to and the transaction is not
the first transaction of the user that submits it

. wait until a FINISH message for the user
arrives;

. forward the sequence to the Oracle server for
execution, assume the result is denoted To Insert;
. delete every record that has been inserted into
Rj1, ..., Rjn;
. for the records that have been deleted from
Rj1, ..., Rjn, re-insert them into these tables;
. for each record in To Insert, insert it into the
corresponding Sjk;

else if the SQL statement is an Update
. assume the nested queries of the Update statement
access tables Rj1, ..., Rjn

. for each Rjk that has some records that are
deleted from Sjk, delete these records from Rjk

and keeps these records in memory;
. for each Sjk that has some records that are not
in Rjk , insert these records into Rjk;
. rewrite the Update statement as
(selj1, updj1, selj2, updj2, ..., seljn, updjn,
orig stat, resj1, resj2, ..., resjn). Here
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orig stat is the Update statement with the string
“UPDATE Ri” rewritten as the string
“UPDATE Si”.
Every other statement is composed in the same
way as we (previously) did for Select statements;
. if the Update statement is the first statement of
the transaction it belongs to and the transaction is
not the first transaction of the user that submits it

. wait until a FINISH message for the user
arrives;
. forward the sequence to the Oracle server for
execution;
. delete every record that has been inserted into
Rj1, ..., Rjn;
. for the records that have been deleted from
Rj1, ..., Rjn, re-insert them into these tables;

end while

Comments

A. A record kept in a trustworthy table Rjk can be in-
dependently updated by the isolated user within S jk .
For such records the isolated user should read the ver-
sions kept in Sjk instead of Rjk. For this purpose,
for each such table Rjk, the seljk statement keeps the
trustworthy versions of such records, the updjk state-
ment replaces these trustworthy versions with the cor-
responding suspicious versions kept in Sjk, and the
resjk statement restores these trustworthy versions af-
ter the SELECT statement is done.

B. In order to ensure the correctness of the Read Edge
Maintenance Algorithm presented in the next section,
namely, Algorithm 2, we need some synchronization
between the SRR and the Read Edge Manager (REM).
In particular, the REM gathers read edges caused by a
suspicious transaction Ti by checking whether or not
a data item is read by the transaction from the real
database instead of a suspicious table. To enable the
checking, the REM has to query the suspicious tables
accessed by the transaction. However, if before the
checking another transaction Tj of the user that sub-
mits Ti is executed, then the writes of Tj could make
the checking report wrong information.

3.6 Read Edge Manager

The Read Edge Manager (REM) uses the Read Edge Ta-
ble, whose structure is shown as follows, to keep read edges.

User ID From To

In particular, each record of the table represents a read edge,
the From and To fields represent the identifiers of the two
transactions that comprise the read edge. The algorithm of
the REM is as follows. Here we assume that whenever a
suspicious transaction commits, the SRR will send an ISO-
TRANS-COMMIT message to the REM.

Algorithm 2 Read Edge Maintenance Algorithm
while TRUE

if a new ISO-TRANS-COMMIT message arrives
. query the Read Log to get the read set of the transaction

(indicated by the message);
. for each record in the read set:

if the record is in the corresponding suspicious
table Sjk

. update the Read Log table such that the
Table Name field of the record is replaced by
the name of Sjk;

else ifthe record is deleted by the transaction from Sjk
. update the Read Log table such that the

Table Name field of the record is replaced
by the name of Sjk;

else
. search the Write Log table to find the latest
trustworthy transaction that updates the record;

if the result is empty
. do nothing;

else
. insert into the Read Edge

Table the read edge from the isolated
transaction to the trustworthy transaction
if the same read edge has not been inserted;

. send a FINISH message, which contains the identifier of
the transaction, to the SRR;

end while

3.7 Merger

The information kept in the Read Log, the Write Log,
the Read Edge Table, and the Isolated Transaction Table is
enough for the Merger to perform the Conflict Identification
and Resolution Algorithm in almost the same way as we
specified in Section 2. In particular, when a suspicious user
turns out to be innocent, from the Isolated Transaction Table
we know the history of the user, from the Isolated Transac-
tion Table and the Write Log we know the history of trust-
worthy transactions, from the Read Log and the Write Log
we know the read and write sets of each transaction, from
the Read Edge Table we know all the relevant read edges. In
addition, to back out a transaction T , the Merger will com-
pose a specific Back-Out transaction, which restores every
data item x updated by T to the latest value before x was
updated, and submit the Back-Out transaction to the Media-
tor. To forward updates, at the end of a merging, the Merger
will compose a specific Update-Forward transaction, which
forwards all the remained updates (of the once isolated user)
to the real database, and submit the Update-Forward trans-
action to the Mediator.

One key challenge of the Merger is how to enable mul-
tiple users to be simultaneously isolated, and how to handle
the impact of one merging on other isolated histories. For
this purpose, the Merger does the following things:

� For simplicity, the Merger never back out trustworthy
transactions when doing a merging. Although in this
way more back-out cost could be caused, after each
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merging we need not to check the impact of a back-out
trustworthy transaction on each (still) isolated history
and back out each isolated transaction that is affected
by the trustworthy transaction, which could cost more.

� After a merging, if there are still some users being iso-
lated, the merged history will be maintained so that
the next (possible) merging can be done based on the
merged history. The merged history can be maintained
in the form of a dependency graph [2].

� After a merging, if there is no user being isolated,
the maintained merged history will be discarded, and
when a new user is later on isolated, the part of the
trustworthy history that will participate in each further
merging will be respecified, which will only cover the
trustworthy transactions that commit after the user is
isolated. In this way, the processing load on the Merger
for the next merging can be dramatically decreased.

3.8 On-the-fly Isolation Controller

Doing a merging can take a while. Disallowing every
user transaction to run during a merging could cause seri-
ous denial-of-service. However, allowing user transactions
to continue being executed without any restriction as the
merging is processed can jeopardize the correctness of the
merging. To ensure that the correctness of merging will not
be jeopardized, the On-the-fly Isolation Controller (OIC)
works as follows. Note that the drawback (of the OIC algo-
rithm) is that (1) during a merging, (almost) no new trans-
action of the once isolated user can be executed, and (2)
the locked part of the real database can block the execution
of some new user transactions, although many other user
transactions that do not access the locked tables can still be
executed.

� When the Intrusion Detector tells the SRR that an iso-
lated user turns out to be innocent, the SRR sends an
INNOCENT message to the OIC.

� When the OIC receives an INNOCENT message, the
OIC will lock every suspicious table Sjk that is created
for the user and the correspondingR jk table.

4 Performance Issues

The merit of DAIS is that it causes no extra delay for
trustworthy transactions. Although the Mediator does cause
some delay for every transaction, this delay is unavoid-
able even if we do not do isolation because we still need
to mediate (or proxy) transactions for the purpose of dam-
age assessment and repair. The limitation of DAIS is that
rewriting SQL statements could make the isolated user suf-
fer some delay, although in most cases this delay can be
significantly reduced by concurrent SQL rewriting and redi-
recting. For example, for a deposit transaction, rewriting of

the UPDATE statement could be finished during the period
of time when the INSERT statement is executed, thus the
delay for the UPDATE statement is reduced to zero (if the
UPDATE statement should be executed after the INSERT
statement).

DAIS can be further optimized to improve performance
in the following ways:

� Although extracting reads from transaction profile is
efficient, this method can only get an approximate read
set in some cases. This could cause many innocent
transactions to be mistakenly backed out. To reduce
the number of mistakenly backed-out transactions, we
can let the Mediator to inform the Read Extractor some
results of some SQL statements. Since these results
indicate exactly which items are read, they can help
the Read Extractor to get more accurate read sets.

� Although Algorithm 1 can handle any kind of SQL
statements, for the SQL statements that only access the
records kept in the real database, the Algorithm can
cause too much extra cost. To reduce the extra cost,
we could optimize Algorithm 1 as follows: for a suspi-
cious SQL statement, for every tableRjk that the state-
ment wants to access, we first check if the intersection
of its (intended) reads on Rjk and Sjk is empty (Note
that here the reads can be extracted from SQL state-
ment texts). If the intersection is empty, we can exe-
cute the SQL statement directly on Rjk without losing
the correctness.

5 Conclusion

In this paper, we present the design of DAIS, a practical
real-time data attack isolation system for intrusion tolerant
commercial database applications. By transparently isolat-
ing suspicious transactions, DAIS allows suspicious activ-
ities to be kept under surveillance without risking further
harm to the system or causing denial-of-service to benign
transactions. Built on top of Oracle Server 8.1.6, DAIS
uses triggers and transaction profiles to keep track of the
data items read and written by transactions, and isolates
attacks by rewriting and redirecting user SQL statements.
Compared with fishbowling, the extra resources consumed
by DAIS are much less. To our best knowledge, DAIS is
the first tool which can do real-time cost-effective data at-
tack isolation for commercial database applications. DAIS
design is very general. In addition to Oracle, it can be
easily adapted to support many other database application
platforms such as Microsoft SQL Server, Sybase, and In-
formix. By designing DAIS the conceptual soundness, the
functional capabilities, the feasibility, and the practicality of
the general isolation approach can be better validated.

There are some future works for DAIS. First, currently
after the DAIS tool is started, there is no other input to
DAIS except the set of suspicious users (from the Intrusion
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Detector) and the trails of transactions. Another module
can be added to DAIS to provide more interactions between
the SSO and DAIS. One desirable feature of this interface
would be the capability of showing the SSO the users that
are being isolated and the execution of their transactions.
Second, the security of DAIS is not addressed in the pro-
totype design. However, successful attacks on DAIS can
cause some benign users to be isolated, can cause some ma-
licious users to stay at large, and can cause incorrect merg-
ing, which will jeopardize the consistency of the database.
For one example, if the messages from the Intrusion Detec-
tor to the SRR can be successfully faked, DAIS can isolated
benign users. For another example, if the read set templates
are maliciously modified then some cycles in a precedence
graph may not be able to be identified, and some transac-
tions that cause inconsistency may be mistakenly merged.
Therefore, the security of DAIS is a significant concern.
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