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Two major challenges to enabling secure interoperation among web-information sources are resolv-
ing semantic heterogeneity across websites and maintaining the privacy of the data and metadata
of organizations owning the websites. In this paper, we propose SACE, a novel, implemented mid-
dleware toolkit that enables privacy-preserving secure semantic access control and allows queries
to be answered across websites despite their heterogeneity. SACE implements role-based access
control after accounting for differences in roles across organizations. The novelty of SACE lies
in its architecture that routes data and queries through different encrypted channels and reduces
hacking vulnerabilities to a minimum. Although a middleware-based solution, in order to pre-
serve the privacy of the metadata, SACE discloses minimum information to even the mediator
encrypted ontologies, encrypted ontology-mapping tables and conversion functions, encrypted role
hierarchies and encrypted queries. The toolkit also requires minimal changes to existing websites
or their underlying databases. We show that despite using encrypted query and encrypted data
translations, the toolkit provides acceptable performance.
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1. INTRODUCTION

The world-wide-web enables easy communications like never before. Although the
potential benefits of information sharing over the web can be significant, secure
information sharing among diverse organizations faces two fundamental challenges:

(1) How to automatically resolve the semantic heterogeneity among information
sources in a scalable way (in terms of the number of sources) such that the need
for human involvement can be minimized, and lower cost and higher efficiency
can be achieved.

(2) How to handle the corresponding privacy concerns of the organizations involved
in information sharing. (We will illustrate such privacy concerns shortly.)
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To the best of our knowledge, there exists no work that handles both these chal-
lenges satisfactorily.

Based on how the semantic heterogeneity among information sources is resolved,
we can classify existing information sharing schemes as either syntactic-level infor-
mation sharing or semantic level information sharing. To illustrate, let us assume
that two organizations A and B have two different information sources about the
same subject domain (e.g., intelligence against terrorism). In most cases, if not
all, the data schema of the two sources are (quite) different, since (a) the same
attribute (of an entity) can be given different names by Organizations A and B
(e.g., an attribute named ‘salary’ in Organization A may be named ‘stipend’ in B);
(b) the same attribute name used by both A and B may mean different things (e.g.,
having different semantic scopes); (¢) the same attribute used by A and B can use
different measurement units (like ‘dollar’ and ‘euro’). We denote such differences
as “semantic heterogeneity” in general.

Syntactic-level information sharing resolves these semantic heterogeneity by a
syntactic symbol-level mapping relation (usually implemented as a table) that ex-
plicitly tells which attribute symbol(s) used by A should be replaced by which
attribute symbol(s) used by B when an employee of B wants to access some in-
formation from A, and vice versa. Syntactic-level information sharing can neither
handle Challenge 1 well nor handle Challenge 2 well, although role mediation tech-
nology [Ahn and Mohan 2004] makes the (role-based) inter-organization access
control job simpler. Since substantial human intervention is involved in mapping
schemas, syntactic-level information sharing is not only expensive but also error
prone, especially when an information sharing system involves a number of orga-
nizations. Furthermore, existing syntactic-level information sharing schemes may
seriously jeopardize the privacy of the organizations involved; and such privacy
concerns (and risks) may yield too many disincentives to make information sharing
rewarding.

Here, the major privacy concern that an organization has is about the privacy
of such sensitive metadata (or meta information) as how data are organized in the
organization (e.g., data schema), how accesses are controlled in the organization
(e.g., the internal access control policy and role hierarchy), and the semantics of
the data used in the organization (e.g., the ontology). If a mediator trusted by
both A and B generates and stores the schema mapping, this may cause substantial
privacy loss especially if the mediator is compromised or is malicious.

To minimize the involvement of human beings, Dawson, Qian, and Samarati
proposed the idea of mediator-based information sharing [Dawson et al. 2000]. Their
work is based on manually-generated query-folding rules that are used to translate
queries to resolve the semantic heterogeneity among sources. However, semantic
level mediation does not inherently remove privacy vulnerabilities. In their system,
although the data access is controlled using database access control policies, the
information about the queries, the schemas of the databases, and the role lattices of
the two organizations are all exposed to the mediator and any intruder that breaks
into the mediator or a communication link of the system.

Preserving the privacy of the metadata enumerated above is important since
these metadata may disclose substantial business secrets of an organization; and
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may make it much easier for an attacker to infer unauthorized information (based
on the information he is authorized to access and the metadata). Furthermore,
preserving the privacy of the metadata enables an organization to gain more privacy.
For example, this privacy enables organizations to expose aggregate information (of
her data) while still preserving the confidentiality of the granularity of the stored
data, i.e., whether just the average is stored or the entire data.

As indicated by the above discussion, existing information sharing schemes rely
on a fully trusted and highly secure mediator to preserve the privacy of organiza-
tions. However, such an approach is not (very) practical, since (a) building a highly
secure mediator is not only very expensive but also very difficult, if not impossible,
because almost every host providing services could be hacked; (b) from the trust
management point of view, such a continuous high trust requirement is very diffi-
cult to be satisfied and as a result such a mediator (third party) is very difficult
to be recruited. (Fundamentally, the more trust you assume, the more vulnerable
the system.) Nevertheless, the above discussion shows that preserving the privacy
of the metadata while enabling semantic interoperation is a difficult problem, be-
cause, often, the technologies proposed for enabling semantic interoperation depend
heavily on mediation based on the metadata.

In this work, we present SACE — Semantic Access Control Enabler — a novel
semantic-level information sharing system. SACE is a secure and robust system
that addresses the two challenges mentioned above. SACE, to our best knowledge,
is the first framework that can address the two fundamental challenges.

SACE has several unique features, which are as follows:

® SACE performs semantic access control. We refer to access control performed
along with semantic translations of roles, queries, and data across information
sources as semantic access control in the rest of the paper. Compared with [Dawson
et al. 2000] in which manually generated rules are used, SACE is more automatic
because it leverages the pre-defined semantics of constructs in ontologies, like class-
subclass relationships, to establish semantic access control. The impact of SACE
lies in enabling immediate and seamless access of data from remote sources to users
of one organization, while satisfying the requirements and access policies of a second
organization, without involving any human intervention at the time of processing
queries.

© SACE preserves privacy of metadata. Minimizing the trust requirements on
the mediator is the key to make the information sharing system more resilient to
(privacy) attacks. In SACE, even the mediator only gets encrypted queries and en-
crypted metadata tables and encrypted matching rules and functions to enable the
semantic translation of the queries. This minimizes the trust requirements on the
mediator. SACE uses a trusted expert initially to establish the semantic-mapping
rules, but does not require the mediator, involved in the day-to-day mediation of
queries, to be trusted (not to disclose information). Nevertheless, the unique “en-
crypted” query-mediation protocol of SACE ensures that each mediator can still
correctly enforce the information sharing policy and resolve the semantic hetero-
geneity. To the best of our knowledge, SACE is the first system that can handle
both of the two fundamental challenges (i.e., how to automatically resolve semantic
heterogeneity and how to preserve privacy) satisfactorily.
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® SACE has a scalable middleware-based architecture. SACE has a scalable
architecture. It scales seamlessly when additional sources are added. The only
performance bottleneck might be that SACE deploys a single mediator, however,
the mediator can easily be replicated to remove that impediment. Our experimental
results show that the overhead of enabling secure interoperation is minimal and we
achieved high throughput of the queries while using SACE.

The rest of the paper is organized as follows. In Section 2, we discuss a few
preliminaries and assumptions that SACE is based upon. In Section 3, we show the
system architecture of our system. We discuss the core techniques that SACE uses
to achieve secure interoperation in Section 4. In Section 5, we analyze the security
and privacy of SACE. In Section 6, we outline the related work and conclude in
Section 7.

2. PRELIMINARIES

In this section, we introduce the setting where our solution can be employed and
the assumptions that SACE operates under.

We assume that an end-user can use a browser client to access multiple web-
sites maintained by different organizations. The websites sharing information with
each other use the Internet (e.g., using VPN) to communicate with each other.
These websites provide the information only to authorized users typically using dy-
namically generated webpages. The end-user has to login to the site belonging to
the end-user’s “home” organization — local organization where the user has direct
access — by using some means of authentication like an username and a password.

Each organization enforces its own RBAC policy. A website has an associated
ontology, a role-lattice showing the lattice of roles of users authorized to access the
website, and a table listing authorized users and their access permissions.

2.1 Private Ontologies Expressing Metadata

We assume that associated with each information source is an ontology that specifies
the relationships among the terms used in the database underlying a website. All
terms used in the database schemas — table names and column names — are
included in the ontology associated with the database. Organizations might want
to keep their associated ontologies confidential and not publish them.

A requestor of data can interpret the data returned only by using metadata
elements. For example, given a table or a column of data, the requestor needs
to know what data the table or column corresponds to and what the semantics
of the data is. However, in our setting, the metadata can be used only within
the organization but cannot be disclosed to other organizations. This is a major
challenge that SACE overcomes by translating queries and translating data so that
they conform to local schemas and other metadata.

2.2 Information Sharing and Access Control

Before an organization can share information with another, it must set up a policy
on what information can be shared and with whom. We refer to this policy as the
information sharing policy of the organization.

In order to enforce access control according to an organization’s information
sharing policy, each underlying database has access control rules stored in an au-
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thorization table. Current databases use several access control methods. One of
the most popular access control methods is RBAC (Role-based Access Control)
[Ferraiolo and Kuhn 1992]. A database administrator assigns each user a set of
roles and grants each role permissions to a set of tables or columns of tables. Typ-
ically roles correspond to sets of users with similar characteristics or functions. We
assume that each organization enforces its own RBAC policy. The organization
uses an authorization table to maintain the organization’s syntactic access control
policy, where each syntactic authorization is a 3-tuple (subject, object, authority).
Here, a subject is a role identifier; an object is a table or column identifier; and an
authority can be a combination of read, write or delete. The users of organization
A (B) know the schema of A (B)’s databases, but do not know the schema of B
(A)’s databases.

For the current discussion, we assume that there are no negative rules and all
the rules are positive. However, our framework can still operate in the presence of
negative access control rules by blocking access to data at the website responding
to a data request.

2.3  Our Middleware-based Solution

Objective: The objective of SACE is to enable users of organization A to access B’s
data using queries written against A’s database schema without violating B’s access
control policies and without exposing the schemas and the data of the databases.
Solution: In this work, we take a middleware-based approach. For simplicity, we
assume each information sharing policy only concerns two organizations, although
multi-organization information sharing policies are certainly possible.

3. SYSTEM ARCHITECTURE

We present two alternative architectures for SACE: the middleware-centric archi-
tecture is shown in Figure 1; the mini-middleware architecture is shown in Figure
2. Here, (a) each architecture has two aspects: the online aspect, which shows how
an inter-organization query is processed in runtime, and the offline aspect — the
initial processing that takes place in preparation for the online aspect. (b) Also,
for simplicity, we show the offline aspect in the mini-middleware architecture. (c)
In both architectures any component not belonging to any organization belongs to
the Mediator (where the middleware is running) which is located at the partially
trusted third party’s site. (d) For clarity the communication links between the
Mediator and the two organizations are not drawn.

3.1 Middleware-Centric Architecture

First, we show how the architecture works. Second, we overview its privacy pre-
serving features. To make our presentation clear, we separate the semantic access
control aspect and the privacy preserving aspect, although the implementations of
these two aspects are actually seamlessly integrated with each other. Third, we
talk about the pros and cons of this architecture.

SACE is a middleware system that requires almost no changes to be done on
the legacy systems of any organizations involved. SACE can typically be imple-
mented as a web service (i.e., the Mediator) hosted by a partially trusted third
party. The goal of the offline procedure of SACE is to translate the syntactic access
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Fig. 2. The Minimum Middleware Architecture of SACE

control policy of each organization to a semantic access control policy against the
organization’s ontology and role lattice.

The online aspect of SACE shows how a data access request across websites
is automatically mediated in a way transparent to both websites. To illustrate,
let us assume an employee of Organization A needs some information from B. In
this section, we outline the steps SACE takes to answer queries across websites
and discuss the core techniques in detail in the next section. In Step 1, since the
employee does not know B’s database schema, the employee’s SQL query is written
against A’s schema. In Step 2, a SQL parser is used to “decompose” the query into
several syntactic access requests that will be automatically translated into some
semantic access requests in Step 3 via the syntactic to semantic request translation
procedure. In Step 4, these semantic requests are checked against A’s semantic
access control policy (to make sure that no employee can get some external data
that violate the local access control policy). Note that this semantic policy is
prepared offline.

However, at this stage these requests are expressed with A’s ontology and role
lattice, and they cannot be directly processed by Organization B. Hence, in Step 5
these requests are translated into several semantic accesses requests expressed with
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B’s ontology and B’s role lattice via an algorithm called semantic request mediation.
This algorithm uses mapping rules between terms in A’s ontology and terms in B’s
ontology and the mapping between roles in A’s role lattice and those in B’s role
lattice. In Step 6, these requests are checked against B’s semantic access control
policy. In Step 7, the filtered yet authorized semantic requests will be translated
into some syntactic access requests against B’s schema, so that in Step 8 the access
requests can be restored to a SQL query again (by the SQL Composer). In Step 9,
the SQL query is processed by B’s DBMS without any security checking. However,
the query results cannot be directly returned to A because they are not expressed
against A’s schema and the end-user in A can be confused about the meaning of the
results. To make the results understandable to the user in A, and to ensure that
the user in A will not know anything about B’s schema (note that this is one of B’s
privacy concerns), and to minimize the Mediator’s overhead, the query results will
be “split” into two parts: the schema part and the data part. And the data part
will be directly transmitted to Organization A, while the schema part will be sent
to the Mediator so that the schema mediation algorithm can translate the schema
of the returned results from B’s schema to A’s.

From the privacy preserving perspective, a key feature of SACE is that all the
metadata stored and used at the Mediator, which include the database schemas and
ontologies of both organizations, the ontology-mapping table and the role mapping
table, are encrypted and the Mediator cannot decrypt them. In this way, SACE
removes the requirement that the Mediator must be trusted not to disclose any sen-
sitive metadata, and good privacy can be preserved even if the Mediator is hacked.
Another important privacy preserving feature is that both the cross-organization
queries and the results are encrypted in an end-to-end manner. Nevertheless, as we
will show shortly in Section 4, the Mediator can still correctly enforce the access
control policies and resolve the semantic heterogeneity.

Compared with the minimum-middleware architecture which we will present
next, the pros of this approach are that this architecture is more transparent to
each organization, and nothing special is needed when an organization issues an
across-organization data access request. The cons are that (a) this architecture is
more vulnerable to schema inference attacks, as we will show shortly in Section
5; (b) the Mediator may be so heavily loaded that it could become a performance
bottleneck, especially when multiple organizations are served by one mediator.

Finally, it should be noticed that only the simplest cross-organization information
sharing scenario is mentioned above. More complicated scenarios such as those
involving data translation will be discussed in detail in Section 4.

3.2 Minimum Middleware Architecture

To make the presentation concise, we only address the differences from the middleware-
centric architecture. First, the task of SQL parsing and the task of syntactic to
semantic request translation are now done by a stub at Organization A. On the
other end, the job of SQL composition and the job of semantic to syntactic request
translation are now done by a stub at Organization B. Second, when the query
results are returned, exact schema mediation is done in the middleware-centric ar-
chitecture, but obfuscated schema mediation is done in the minimum middleware
architecture. Accordingly, the data schema splitting module at Organization B and
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the data schema binding module at Organization A need also be different.

In particular, to provide more privacy,
the minimum-middleware architecture does schema obfuscation, which works as
follows. When the query results are returned (from B to A) and when the schema
part and the data part are split, the schema part will be “obfuscated” first in such
a way that each schema term will be blended with a couple of “equivalent” terms
in B’s ontology. As a result, when the Mediator receives the obfuscated terms, it
can only perform mediation using the obfuscated schema, and accordingly, A will
receive obfuscated terms against A’s ontology. Next, the Data Scheme Binding
component uses A’s database schema to de-obfuscate the schema part.

From the privacy preserving perspective, since database schema information is
no longer stored or used at the Mediator and since schema obfuscation is performed
during the process of schema mediation, the hacker breaking into the Mediator can
no longer precisely correlate (encrypted) ontologies and database schemas. As a
result, even if the hacker can infer some terms in the ontology, he could not know
exactly which term is part of a schema.

Compared with the middleware-centric architecture, the pros are that there is
more privacy and the Mediator is more efficient. The cons are that this architecture
is less transparent to each organization, and each organization needs to handle some
business of semantic access control.

In summary, we treat the two architectures above as two alternative architectures
that tradeoff primarily between privacy and transparency (to organizations).

4. CORE TECHNIQUES

In this section, we present the set of core techniques for the SACE system and
demonstrate their uniqueness and merits.

4.1 Mapping Roles

The first task before semantic access control can be enabled is to map roles from one
organization to another. Initially the security officer in an organization, say Org-
A, decides manually which roles in a remote organization, say OrgB, can access its
data and what permissions should be granted to those roles. Using this information,
the security officer maps the roles in a remote organization are mapped to roles in
OrgA’s role lattice. For example, a role Investigative_Agent in the FBI role lattice
can be mapped to the role Field_Agent in the CIA role lattice. If a role from OrgB
cannot be directly mapped to OrgA’s role lattice, OrgA’s role lattice is augmented
by adding new roles such that OrgB’s roles can be mapped to it. By connecting Org-
B’s roles to OrgA’s roles lattice, the advantages of RBAC are afforded to permitted
users from OrgB.

We assume that the role mapping is consistent. A consistent role mapping is
such that if it maps a role A in role lattice RI to a role B in role lattice R2, then
any descendant role C of role A in role lattice R1 must not be mapped to a role
D in role lattice R2 that is an ancestor of B. For example, we get an inconsistent
mapping if we map Controller to Field_Agent and Investigative_Agent to Supervisor
in the CIA role lattice for obvious reasons. In SACE, access permissions are not
transitively transferred. That is, if a role, W1.R1, is mapped to W2.R2 and W2.R2
is mapped to W3.R3, where W1, W2, and W3 are three different websites with
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separate access control policies, role W1.R1 does not automatically gets mapped to
W3.R3 and would not automatically be granted access to the resources accessible
by W3.R3.

After the security-officer has created the role-mappings, the mediator performs
the following pre-processing to augment the role-mapping table. Consider the case
where a role A in an organization does not have a matching role in another organi-
zation. However, recall that a role has access to all resources to which its sub-roles
have access. Therefore, the mediator augments the role-mapping table by following
all paths down the lattice starting at A. For each path the mediator chooses the
role, X, highest on the path such that X has a mapping to a role Y in the other
organization, and adds a mapping from A to Y.

4.2 Semantic Mapping Rules

Other than role mapping, the other task that must be accomplished before seman-
tic query answering across organizations can be enabled is establishing semantic
mapping rules. Each pair of organizations employ a trusted expert who establishes
the mapping rules between the ontologies of the two websites. The expert provides
three types of mapping rules: (1) Binary Mapping Rules: These rules are contained
in mapping tables containing triples. Each triple lists two concepts from two differ-
ent ontologies and specifies the relationships among them. For example, an entry
in a table may be the triple

(O1.Vehicle, 02.Automobile, OWL.SubClassOf ) indicating

02.Automobile is a SubClass (as defined in the namespace OWL) of O1.Vehicle.
(2) Mapping Functions: These functions are used to convert data values. For exam-
ple, a conversion function between Dollar and Pound— Sterling. Another example
is when one organization may keep first_name and last_-name as two attributes,
but the other keeps both of them in a single attribute called Full Name. (3)
Complex Mapping Rules: These rules show how a concept in one ontology repre-
senting a table can be expressed as a SQL query using concepts in another ontology.
Complex Mapping rules have the following components: (i) A SQL Query using
the terms in the responding organization’s ontology: the requestor’s query will be
translated into this SQL query or its variant, (ii) A Table, T, in the requesting or-
ganization’s ontology and used in the requestor’s query, and, (iii) Binary Mapping
Rules mapping all the results of the SQL query (in (i)) to attributes in table T. For
example, a complex mapping rule is as follows:

Table: 01.LuxuryCar

Query: SELECT c.CarID, c.Make, c.Model, c.Year
FROM car c, prices p
WHERE c.ID = p.ID AND

p.Price > 40,000

Mapping: 01.LuxuryCar.VehID = 02.Car.CarID
01.LuxuryCar.Mk = 02.Car.Make
01.LuxuryCar.Md = 02.Car.Model
01.LuxuryCar.Yr = 02.Car.Year

indicates a table LuzuryCar in a database associated with organization 1, can be
expressed as a join between the tables car and prices in the database associated
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with organization 2. Note that the attributes from the tables O2.car and O2.price
may not be the same in the table OI.LuzuryCar. In reality, the attributes in the
table LuzuryCar may be named CarID, Mk, MD, Yr. The correspondence between
the attributes CarID, Mk, MD, Yr in the table O1.LuzuryCar and the attributes
CarlD, Make, Model, Year in the table O2.Car respectively must also be stated as
entries in the mapping table for the rule to be correctly interpreted.

Expanding Mapping Tables Like in the role-mapping tables, after an auto-
mated mapping tool or an expert has expressed the mapping table, the mediator
performs some pre-processing to “complete” it by adding the ”inferable” relation-
ships. We show two such inference rules below:

Mapping\_Table(A,B,R) ,Equivalent(A,C)
=> Mapping\_Table(C,A,R)

Mapping\_Table(B,A, ¢ ‘SubClass0f") ,SubClass0f (A,C)
=> Mapping\_Table(B,C, ¢ ‘SubClass0f")

Note that these rules are inferable using the semantics of “Equivalent” and “Sub-
ClassOf’. For example, if “O1.Vehicle” maps to “O2.Conveyance”, and “O1.Vehicle”
is equivalent to “O1.transportVehicle”, but no relationship has been established be-
tween “Ol.transportVehicle” — perhaps due to errors of omission by the expert —
the mediator establishes an entry in the mapping table between “O1.transportVehicle”
and “O2.Conveyance”.

We now proceed to explain the main tasks that must be accomplished in order
to answer queries across organizations.

4.3 Schema Obfuscation and Semantic Translation

As indicated before, we assume that associated with each website, there exists an
ontology. All the terms used in a database, associated with a website, to name
tables and attributes must have a term that it is mapped to in the ontology. After,
an end-user logs on to his local website and poses a query in SQL using the local
schema, the query must be sent to the mediator for forwarding to the responding
database. The requestor may not want to send the responding database the query
as posed using the terms used in the requestor’s database nor might the requestor
know the schema terms in the responder’s database. Recall that the mediator
contains the ontology mapping table based on the requestor’s and the responder’s
published ontologies and can only accept queries that use terms from the requestor’s
ontologies. Therefore, the requestor has to translate the term used in the local
schema to a term in the requestor’s ontology.
This query translation step provides for two advantages:

(1) Privacy: The terms used in an organization’s database are not transmitted in
any query.

(2) Extensibility and Maintenance: The requestor has the freedom to add any new
terms without requiring a change in the encrypted mediated ontology table.

The first advantage preserves the privacy of the metadata even when the transmit-

ted query may be intercepted by a hacker and decrypted. The second advantage
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provides an enormous advantage related to the maintenance of the encrypted ontol-
ogy tables and autonomy and extensibility of the requestor’s database. As long as
the newly added term can be mapped to the requestor’s published ontology, there
is no need for any change in the encrypted mediated ontology. Recall that the sys-
tem is the most vulnerable when the encrypted ontology mapping tables are being
constructed because at that point the expert has to examine the ontologies in their
clear-text format. The mapping between the terms used in the requestor’s database
and those in the requestor’s ontology and establishing the translation rules among
them is handled within the organization and can be performed securely without
any information leak unless the requestor’s organization has been infiltrated by an
insider personnel in which case a lot more than the metadata is compromised.

For example, given a query select price from ourAutos; where ourAutos is
the table in organization A, the client-side SACE stub, performs a semantic trans-
lation, by looking up an internal ontology that indicates that the term ourAutos
maps to the term Automobiles in the external ontology that is published to the
mediator. Therefore, the query is rewritten to select price from Automobiles;
and sent to the mediator.

4.4  Query Processing at the Mediator

After the query has been rewritten by using the terms in the requestor’s ontology,
the rewritten query is sent to the mediator. The mediator parses the query, identi-
fies the tables, and attributes in the query. It tags the attributes with the tablename
of the table in which the attribute appears. Attribute tagging is necessary to dis-
ambiguate between two attributes that have the same name but appear in two
different tables. For example, given a query select price from Vehicle;, SACE
parses the query and extracts the schema elements Vehicle and Vehicle.price.

4.4.1 Translation Using Binary Mapping Rules. The mediator then performs
query translation. We use a modified version of the query folding algorithm initially
proposed by Qian et al [?]. It looks up the mapping table to find a mapping table
entry for Vehicle and Vehicle.price. Let us say the following entries are found:
(Vehicle, Car, SubClass), (Vehicle, Boat, SubClass),

(Vehicle, Conveyance, Equivalent),

(Vehicle.price, Conveyance. M SRP, Equivalent),

(Vehicle.price, Car.M S RP, Equivalent), and

(Vehicle.price, Boat.M SRP, Equivalent). If equivalent terms for the terms in the
query are found in the mapping table, the mediator uses each equivalent term to
create a rewritten query. In our example, the rewritten query is: select MSRP
from Conveyance;.

4.4.2  Translation Using Mapping Functions. For attributes that must be con-
verted before the data can be sent to the requestor, the mediator rewrites the
query by using the expert-provided functions. For example, the requestor sends
the query select Price from rentalPrice; where the rentalPrice is sought in
US Dollars, and the renting agency that quotes the renting price in UK Pound-
Sterling. Assume that Price matches to Pr in the responding database’s ontology,
02 and rental Price matches to the table priceOfRental and the expert provided
the function D2P() that converts prices quoted in PoundSterling to Dollars. The
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query is rewritten as select D2P(Pr) from priceOfRental;. Similarly, if one or-
ganization has an attribute called Name, and another has two attributes termed
FirstName and LastName, and the expert provided a function concatenateName
that concatenates FlirstName and LastName to derive a Name, the query
select Name from employee;

will be rewritten to

select concatenateName(FirstName,LastName) from emp; assuming that the
matching table for employee is emp in the responding organization’s ontology.

4.4.3 Translation Using Compler Mapping Rules. In this case, the algorithm
first maps the terms representing tables in the query to tables in the complex map-
ping rules. Then, the query is rewritten using the SQL query present in the complex
mapping rule and the binary mapping rules between the results of the query and
the attributes. For example, given the query select Mk, Md from LuxuryCar;
sent by organization 1, and the complex mapping rule indicated above, we see that
LuzuryCar matches the table in the complex rule. The attributes Mk and Md
have equivalent terms returned by the query. The mediator translates these two
attributes to car.Make and car.Model. Then, the query can be rewritten and is
translated to:

Query: SELECT c.Make, c.Model
FROM car c, prices p

WHERE c.ID = p.ID AND

p.Price > 40,000

This translated query can now be sent to organization 2.

4.4.4  Specializing Terms in Queries. After the mediator translates query, it also
translates the roles to replace the role of the requestor with a role having equivalent
permissions in the responder’s role lattice by looking up the role-mapping table.
The query now needs to be checked to see if the requestor has access to the tables
and attributes that are needed to answer the query. This checking can be done at
two places:

—Responder: The query can be sent to the responder and the responder can try
to run the query and check that the role asking the query has permissions to the
requested tables and attributes.

—DMediator: All organizations send their role-based access-control tables in the
encrypted form to the mediator. The mediator checks to determine if the role
asking query has permissions to the requested tables and attributes.

The two methods correspond to the minimum-middleware and the middleware-
centric architectures. In the first method, consider the case where the query is not
answered because the requestor does not have permissions to access data required
to answer the query. In this case, the responder-side stub of SACE must refine
the query by replacing a term T to which the user posing the query does not
have access rights by the subclasses of T to see if the user posing the query has
rights to the subclasses of T. This process of refinement is repeated until the
user has access rights to the terms in the refined query or until the query cannot
be no further refined because the T does not have any subclasses because it is a

ACM Journal Name, Vol. V, No. N, February 2005.



Privacy-preserving Semantic Interoperation of Heterogeneous Databases : 13

leaf node in the ontology. In case the query can no longer be refined, an access
error is sent to the requestor of the query. For example, if the requestor’s role
is not allowed access to the table Conveyance, the mediator would then rewrite
the query select MSRP from Conveyance; as select MSRP from Car; select
MSRP from Boat and resend these queries for authentication. If the access-control
check is achieved at the responder’s site (minimum-middleware architecture), the
responder-side stub of SACE might have to and forth several times as the mediator
walks down the ontologies and tries to see if the requestor has access to subclasses
of the query terms.

To prevent these round-trips, in the second method, in the centralized-middleware
architecture, the mediator keeps an encrypted copy of the role-based access control
table for each organization. It checks this table to verify access control and keeps
refining the query by rewriting it using subclasses until a query that has access
permissions is generated. This final query is then send to the requestor saving
several roundtrips. However, in this scenario, the drawbacks are as follows: (1) an
organization may not want to share its access control tables with the mediator even
if it is encrypted, and (2) everytime the organization has to make changes to its
access-control tables, the mediator has to be informed about the updates.

Now, we discuss another scenario: when the equivalent term for Vehicle was not
present in the mapping table. In this case, too, the query would also be rewritten
as: select MSRP from Car; select MSRP from Boat
In the example above, we showed query rewriting using only the mapping table.
However, as discussed earlier, a query can also be rewritten using complex mapping
rules using a variant of the query folding [Dawson et al. 2000] algorithm. Also,
if data values appear in the query, e.g., the WHERE clause of a query contains
price > $50,000, the data value 50,000 may need to be translated using the expert-
provided conversion functions (e.g., Dollar to Euro) if the responding organization
maintains prices in Furo’s.

After the process of semantic translation and role translation, if either process
fails to find a valid entry in the corresponding mapping tables, the query is not
forwarded to the responder and sent back to the requestor with an error message
indicating that access was denied.

We now show the algorithm for the minimum-middleware architecture in Algo-
rithm 1.

We now describe the semantic expansion performed by the SACE mediator below.
Given a query, for each term (table or attribute name) in the query, the mediator
first expands the term by adding the synonyms of the term. Then, the the mediator
looks up the ontology-mapping table for any of the terms in the expanded term-list.
If multiple matching rules are found all the matches are used to generate different
rewritings of the query. We use the query-folding algorithm designed by Qian to
perform the query rewritings. If no matching entry is found in the ontology-mapping
table, the mediator replaces each term in the synonym list with all the subclasses of
the term as indicated by the ontology hierarchy and repeats the process until there
are no subclasses left. We refer to this process as the narrowing of semantic scope.
We use the term semantic scope to refer to the real-world meaning or the extent
of the semantics of the term. The semantics of a table is defined by the semantics
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Algorithm 1: The Minimum Middleware Algorithm
Input : Query Q, User_Role R, Source S, Destination D
Output: Ack A
begin

Parse query @ to identify the tables and attributes

for each attribute a in Q do
Tag a with the source-id S and the table-name T where a is the name
of an attribute in T

Ontology_Table OT « lookup the ontology-table between S and D

Obtain rewritings of @) using binary mapping rules obtained from O7:
(i) by replacing all tables in @ with mapping table-names, and
(ii) by replacing all attributes in @ with mapping attribute-names

if any attribute in QQ needs conversion then
Retrieve the appropriate conversion function from O7
| Modify the rewritten query by using the conversion function

if a complex mapping rule contains any table, T in Q, and mapping for
all attributes of T used in (Q then

Obtain rewritings of @ using the SQL query that is part of the
complex mapping rule

Modify the SQL query to select (the mapping attributes of) only
those attributes that are in )

Role Mapping:
while a mapping for the user_role R has not been found do
Lookup the role-mapping table for an entry containing R
if a matching entry does not exist then
L R < Subclasses of R in role lattice of S

if any term in Q could not be rewritten because of lack of mapping rules
then
return “Failure”
L return error messages obtained from D

else
L return “Success”

end

Algorithm 1: The Minimum Middleware Algorithm

of the data items present in the table and the semantics of an attribute name is
defined by the data values in the column representing that attribute.

For each table or attribute in the query, even after semantic expansion, if no entry
in the ontology-mapping table matches any term in the semantically expanded list
of synonyms, then the list is modifying by replacing each term in the list with all
its subclasses in the otnology. The mediator then repeats this process until all
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table-names or attribute-names have been matched, or the list cannot be expanded
or replaced anymore. of searching for an entry in the ontology-mapping table
searches for the terms in the responder’s process of finding matching terms in the
responder’s ontology is For example, say, a query select price from Vehicle
has been expanded by using the synonyms of Vehicle in the source ontology to
{ Vehicle, transportVehicle}. If neither Vehicle, nor transportVehicle appears in
ontology-mapping table, the list is expanded to include the subclasses of Vehicle
and transportVehicle, say, to the set {land Vehicle, water Vehicle}. If land Vehicle or
water Vehicle have entries in the ontology-mapping table, (e.g., mapping land Vehicle
to Automobile and mapping water Vehicle to Boat), they are used to rewrite the
query as select price from Automobile; select price from Boat;
We now give an example to illustrate our query rewriting algorithm:

EXAMPLE 1. Consider a query posed by the user “Bob” in “FBI”. The requestor-
side component of SACE looks up the roles of “Bob” in the “FBI”’s user-role-
assignment table. The clien-side component then sends the query and the role in-
formation to the mediator. For example, if the query is:

select x frompersonnel

and the role of “Bob” is “Field_Agent”. The mediator then semantically expands
“personnel”. Say the ontology says that “personnel” has a synonym “employee”.

The mediator the information in the query as:[Data=Personnel, Employee Role=F'ieldusing
the terminology used in the remote website.

4.5 Role Translation

Now that the query has been rewritten, the mediator proceeds to translate the role
of the requestor and map it to a role in the responding organization. The mediator
looks up the role of the requestor of the query in the role-mapping table. If an
entry is found, the mediator replaces the requestor’s role with the equivalent role
obtained from the role-mapping table. If an entry is not found in the role mapping
table corresponding to the requestor’s role, the mediator replaces the requestor’s
role with all roles that are descendants of the role in the requestor’s role lattice
and repeats the process of looking up the role-mapping table to find an equivalent
role. If an entry is found, the mediator replaces the requestor’s role with this newly
found role.

For example, if the query is sent by a Controller in the FBI, the mediator looks up
the mapping-table and replaces it with the role Supervisor in the CIA. space It may
be recalled that by agreeing to allow the Controller and Supervisor to be matched,
the CIA had indicated that the two roles should have the same permissions with
respect to the CIA’s data. However, if the mapping between Controller and any
role in the CIA’s role lattice does not exist, the mediator replaces Controller by
its sub-roles Investigative_Agent and Criminal_Agent. The guiding principle is that
a role higher up in the lattice has all the permissions granted to a role that is
its descendant. Now, if the role-mapping table contains an entry equating FBI’s
Investigative_Agent to CIA’s Field_Agent, the query posed by the an user with the
role F'BI.Controller can be sent to the CIA with the role CIA.Field_Agent.

Similar to semantic expansion and narrowing of semantic scope for terms in
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queries, the translated role may need to be modified. In case the translated role
does not have access to all elements sought by the queries, the mediator traverses
the role lattice of the organization serving the data.

4.6 Answering Queries at the Responder Site

Note that the responder now gets a query that conforms to its own ontology. Fur-
thermore, the role that poses the query is also from the responder’s role hierarchy.
Recall, at the requestor site, the query underwent semantic expansion to arrive at
the query select price from Automobile;. Assume, that O1l.Automobile was
translated to O2.Conveyance. Similarly, at the responder site the query is rewritten
by replacing Conveyance with Transporter, where Conveyance appears in the on-
tology of the responding organization, but the actual database is named Transporter
and the internal ontology of the responding organization indicates that Conveyance
and Transporter are synonymous. The query now becomes select price from
Transporter;. The reason for such an expansion is that the ontology-mapping
table might contain a rule for Conveyance, however, the schema of the database
contains a table by the name Transporter and the responder’s ontology indicates
that Conveyance and Transporter are synonymous. In the centralized-middleware
architecture, the access control has already been done. In the medium-middleware
architecture, the the responder-side stub checks to see if the role, say Supervisor, is
permitted to access the table Transporter and access the attributes in the table it
seeks. Transporter.price. If the access control check succeeds the result is processed
(described in the next subsection) and sent back to the user. If access is denied, the
responder-side stub narrows Transporter by replacing it with its descendants in the
ontology and checks again to see if the role Supervisor has access to its descendants.

4.6.1 Data Translation. In the general case, the attributes in matching tables
might be different. To handle this case, we need data translations. Data trans-
lations may be performed at the mediator or at the responder using hints sent
by the mediator. Data translations may be of two types:(1) the mediator gets
the responder-side attributes that match the query attributes from the mapping
table narrowing the query attributes if a matching attribute is not found in the
mapping table. (2) if complex-mappings or conversion functions exists, use the
expert-provided function to perform the data conversion.

For example, the CIA might have an entry called M SRP and the FBI has an
entry called Price and the mapping table has an entry that says that the two are
equivalent. If instead of the CIA and the FBI, it was the CIA and Scotland Yard,
SACE would use an expert-provided conversion function to convert the currency
before sending the data back.

We omit the details of the query translation and the data translation algorithm
because of space limitations. The full version of these algorithms can be found in
[Liu et al. 2004a].

4.7 Multi-site Join Queries

In information integration and interoperation scenarios, one needs to compose in-
formation from multiple sites. Therefore, these systems must support the execu-
tion of queries that require information to be retrieved from different sites and
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composed. We refer queries that require information from multiple information
sources as multi-site join queries. The problem of optimizing and executing queries
that require information from multiple sources has been studied extensively in the
context of distributed databases. We consider some of the known techniques and
evaluate them not only based on their response times but also based on the privacy-
preserving qualities of the algorithms. The latter analysis is an original contribution
of our work.

4.8 Where to Perform the Join?

In existing works on distributed databases, there are predominantly three paradigms:

(1) Query Shipping: In this case, the query is shipped from the requestor to the
responder of the query and the results of the query are shipped back from the
responder to the requestor.

(2) Data Shipping: In this case, the requestor asks the responder to send the data
from multiple tables or parts of tables to the receiver. The requestor then
caches the data at the requestor’s site and performs the query execution there.

(3) Hybrid: In this case, some subqueries of the requestor’s query can be answered
using query shipping, that is, they are sent to the responder and only the
results of these subqueries sent back to the requestor. On the other hand,
other subqueries are answered using data shipping. That is, the data needed
to answer these subqueries are brought into the requestor’s cache if the data is
not already present, and then the subquery is evaluated on the shipped data
at the requestor’s site. The two sets of results are then put together at the
requestor’s site to answer the query.

In SACE, we can opt to implement multi-site joins in any of these three ways.
Typically, in distributed databases, a hybrid strategy has been found to work best.
The following are the advantages and disadvantages of query and data shipping:

(1) If we seek to optimize the time taken to execute a single query once, query
shipping gives the best response time.

(2) Data shipping is advantageous when the data can be cached and reused for
future queries and when communication costs are significant. In this case,
we save the communication costs from the requestor or the mediator to the
responder.

(3) Even when future queries can use data shipping, the response time may be less
while using query shipping in some scenarios. For example, if the requestor
has a slow machine while the responder has a high-capacity server, the query
processing at the responder combined with the communication time may be
less than the query processing time at the requestor.

In our scenario, apart from the requestor and the responders of a query, we have
the mediator in the middle. Therefore, we can have the following choices:

(1) Middleware-based Join: In this method, the requestor uses query shipping and
wants the results of the query returned to it. In this situation, we have the
following sub-cases:
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(a)

(b)
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The mediator uses query shipping to ship the subqueries to the responders
and computes the results to the original query from the responses to the
sub-queries.

The mediator uses data shipping and asks the responders to send it the
data required to answer the query. The mediator then caches this data,
computes the answer to the query and returns the final answer to the
requestor. The cached data can be used to answer future queries without
requiring to go the sources provided the data is still valid.

(2) Requestor-based Join: This case also has the following sub-cases:

(a)

In this case the requestor essentially wants to use data shipping. However,
since the requestor does not know the corresponding table and attribute
names at the responder, the requersot cannot simply request the data to
be shipped to it. Instead, it forwards the query to the mediator indicating
that it wants the data to be shipped directly back to the requestor. The
mediator rewrites the requestor’s query and forwards the query to the re-
sponders asking them to send the data back directly to the requestor. All
the responders send data back directly to the requestor of the query.

In this case, the requestor wants to use query shipping, the mediator per-
forms the query rewriting and breaks up the query into appropriate sub-
queries, but the results of the subqueries are sent back directly to the
requestor. In both these sub-cases, the requestor joins the data to arrive at
the final result. The middleware may optionally send the requestor a rule
stating how that data should be joined at the requestor or the requestor
may figure that out itself.

(3) Responder-based Join: In this case, the mediator generates a plan where the

data is not returned to the mediator but forwarded from one responder to
another with partially computed join results. A responder receives a partially
computed join, joins its own data to it, and forwards it to another responder.
The last responder forwards the result to the requestor.

The disadvantages of the join methods with respect to query response time is
listed below. A disadvantage of one method that is not a disadvantage for a second
method can be considered an advantage fo r the second method.

(1) The mediator-based join algorithms are all routed through the mediator. There-

(2)

3)

fore, the mediator can be a performance bottleneck. A solution is to replicate
and have multiple mediators serving the clients.

If the data is cached at the mediator instead of the requestor’s, less data may
be cached. Also, by caching data at the requestor, the requestor has a choice
to cache data that is of higher priority to it, whereas even if the mediator is
augmented to consider priority of the cached data, it will consider the overall
priority of the data with regards to multiple requestors instead of the priority
of the data for one requestor.

In the case where the requestor joins the data, and data shipping is used, a
large amount of data might need to be communicated through the network
bringing down the network performance.
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The advantages and disadvantages of the different join methods with respect to
privacy and security of the metadata and the data are listed below:

(1) Requestor-based Join:

(a) An apparent disadvantage of the requestor-based join method is that the
requestor may see the data obtained from all the responders. However, if
the requestor has the rights to run a query on the data, the requestor must
have select rights on the data anyway.

(b) The advantage of the requestor-based join method is that the data is sent
directly from the responder to the requestor using a secure channel and
does not pass through any intermediate nodes.

(2) Middleware-based Join:

(a) The middleware-based join methods are susceptible to denial of service
attacks and become a single-point of failure. Replication can alleviate the
problem to some extent.

(b) The major drawback of a middleware-based join is that if an intruder hacks
into the mediator the intruder has access to all the data. Even if the data
is encrypted, by collecting and analyzing the data passing through the
middleware, the intruder may be able to infer valuable information about
the data stored in the different organizations.

(3) Responder-based Join: The disadvantage of performing a responder-based join
is that the data is forwarded from one responder to another. In this scenario,
an unauthorized user in one responder can easily examine the forwarded data
that it might not have the rights to access. Therefore, we do not implement
this method in SACE.

We studied the three join strategies and choose the requestor-based join method
since it conforms to our principle of separate query and data channels. Recall that
separating query and data channels provides the maximum privacy and security by
reducing the bottleneck and the vulnerability on the mediator. The choice of which
sub-strategy to employ — query shipping or data shipping — is an optimization
question depending upon whether the same query will be rerun or not. For example,
conside the following case. While running a query using query shipping, it involves
30 units of data being shipped to the requestor, and running data shipping results
in 50 units of data being brought to the requestor. If the query is run two times or
more and the data does not change rapidly, data shipping will be preferred, because
if SACE uses query shipping, it will involve 2230 = 60 units of data being brought
to the requestor, whereas if the data is cached at the requestor and can be reused,
data shipping results in 50 units of data being communicated. Lastly, the third
strategy is difficult to implement and involves partial disclosures of schemas.

4.9 Additional Optimizations

Additionally, we use blocking and multi-threading to enable pipelining of the query
processing. Pipelining the query processing enhances the performance of multi-
source joins.

Consider the case where two responders A and B run two sub-queries and on
the results returned by them C, the requestor, performs a join. If either A or B
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has a sub-query that takes a long time to run and waits for the entire sub-query to
run before returning the data all at once to C, then C has to wait for those results
before it can start computing the join. An alternative is for A and B to return rows
belonging to the results-set of the subqueries they are executing to C as soon as the
rows become available. However, sending a large number of messages with a few
number of rows is also not very cost effective, due to the latency and costs involved
in processing the numerous small messages. Therefore, SACE requires responders
to allow result-sets of subqueries to be retrieved in blocks, the size of which can be
set using a configuration parameter.

On the requestor-side, the inherent parallelism scheme of executing subqueries at
multiple sites and joining the data at the requestor can only be fully utilized if the
requestor can receive the data (and then process them) from several sites simulta-
neously. In order to enable parallel receiving of results and data from responding
sites, the SACE stub at the requestor uses multiple threads each of which receives
data from one site.

4.10 Privacy Preserving Features

In this sub-section, we outline the privacy-preserving features of SACE.

4.10.1 Preserving the Confidentiality of Metadata. First, all the metadata stored
at the mediator are encrypted, but the mediator does not know the decryption
key. All the database schema elements and the data elements in the query are en-
crypted. A’s ontology, role hierarchy, and database schema are encrypted by a key
only known to A, called the master key of A. Accordingly, the ontology-mapping
rules encrypted by two keys: all the terms belonging to A’s ontology are encrypted
by A’s master key; all the terms belonging to B’s ontology are encrypted by B’s
master key. For example, consider the query sent by requestor, A, to the medi-
ator cited above: select Price from rentalPrice Here Price and rental Price
will be encrypted using the master key of A. The rewritten query, R, is select
D2P(Pr) from priceOfRental. In R, Pr and priceO fRental will be encrypted
using the master key of the responding organization B. Similarly, for the complex
mapping rule shown above, the terms in the SQL query is encrypted using the key
of the responding organization B, and the table O1.LuzuryCar is enrypted using
the key of the requesting organization A. The mapping rules relating the attributes
of LuzuryCar with the results returned by the SQL query are encrypted using
both the master keys of A and B, i.e., the left-hand-side containing terms from
O1 are encrypted using A’s master key and the right-hand-side containing terms
from the SQL query are encrypted using B’s master key. The role-mapping table
is encrypted in a similar manner.

In our scenario, we have minimum trust in the mediator. We envision that the two
organizations will employ a mutually trusted expert to establish an encrypted set of
ontology-mapping rules that the mediator can use. If the expert is an automated
tool, the tool is evoked for a short period, establishes the ontology-mapping rules,
and is then killed. An expert is considered ”killed” if it maintains no history of
the ontologies passed to it or of the intermediate or final results of the ontology
mapping process. (The expert is trusted not to disclose any information.) After
establishing the rules, the expert encrypts them using the master keys of the two
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organizations and sends the ontology-mapping rules to the mediator.

4.10.2 Preserving the Confidentiality of Queries and Data. Second, the confi-
dentiality of the queries and the data is maintained by encrypting the queries and
the data using several encryption keys.

The requestor encrypts the queries and sends them to the mediator. The mediator
does not accept any query with a wild-card character, (select * from) since the
mediator does not know the attributes of the tables and cannot rewrite the query.
The requestor-side application must expand the query with the wild-card character
by replacing the wild-card character with all the attributes in the source table
before sending the query to the mediator.

Using the encrypted ontology-mapping rules, the mediator can translate the
queries without decrypting the schema elements in the requestor’s query. The
encrypted data values in the queries are translated and transformed to equivalent
data values encrypted using the data encryption key of the responder. This en-
cryption is done with a transformation function provided by the expert and does
not require the mediator to decrypt the data values.

4.10.3 Privacy Preserving Data Translation. Third, the query results are en-
crypted first before being transmitted to the requestor via the data channel. Simi-
larly, note that when the results are returned, the schema part (i.e., the attribute
names) will be encrypted by a key only

Before the data can be sent, as discussed above, data translation may be required.
Data translation may cause additional privacy-related vulnerabilities. Data transla-
tion can be handled in various ways in SACE, however, they have different resilience
to privacy attacks.

A naive approach is to let the mediator translate the data. However, it is quite
difficult for the mediator to do data translation based on encrypted values. Finally,
when the query results are returned, since some data translation needs to be done
by the mediator, these results cannot bypass the mediator; and as a result, more
confidentiality breaches can occur. An added disadvantage is that the mediator
becomes a bottleneck since all traffic is routed through the mediator.

The privacy problems of the naive approach clearly indicate that a better ap-
proach may be to let organizations translate the data. However, if we let organi-
zation B know exactly how A’s database schema is different from B’s, B can infer
substantial information about A’s schema and this can be a big privacy concern to
many organizations. To remove this privacy concern, we propose two novel schemes
to handle data translation.

Scheme 1: ontology-based data translation. During initialization of SACE, A
and B send the trusted expert their schemas S, and Sp. Next, the expert proposes
a third ontology (denoted O3) that contains a mediating term only those terms val-
ues need translation between S, and Sp. For privacy and efficiency, O3 should be
minimum. Next, the expert returns Os, a mapping table MappingTable(Sa,O3)
that captures the data translation requirements, and the corresponding data trans-
action functions to A; Os,

MappingTable(Sp,O3) and the corresponding data translation functions to B.

During run time, when a query is issued by A, e.g.,
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select * from personnel where salary > $50K, if term ‘salary’ is not in MappingTable(S 4, Os),
the query is encrypted and sent to the mediator as usual. Otherwise, ‘salary’ will be

replaced by the equivalent term in Os (e.g., ‘stipend’) and the corresponding data

translation function will be applied to change $50K to 45K Euro. Next, the query

will be encrypted and sent to the mediator. The mediator needs to do nothing

different (except that no term in Os should be changed), since ‘stipend’ should be

in O4. So the access control part will not be affected.

Then, the filtered query will be sent to B. B will first decrypt the query, then
find that ‘stipend’ is in
MappingTable(Sg,03), then ‘stipend’ will be will be replace by the equivalent
term in Sp (e.g., ‘wage’), then the corresponding data translation function will
be applied to translate 45K Euro to 32K Pounds. Now, B’s database server can
correctly execute this query.

After obtaining the results, B will use MappingTable(Sp,03) to translate the
format of the results from Pounds to Euro. Then, the data part of the results
will be transmitted back through the data channel, while the schema part will be
mediated by the mediator. Once A receives the results, A will use
MappingTable(S 4, O3) to translate the format of the results from Euro to dollars.

In summary, scheme 1 has very good privacy. Os provides a middle layer that

blocks the schema inference attacks; no decryption is needed at the mediator; and
no clear text is available during mediation.
Scheme 2: privacy preserving data translation without Os. Scheme 1 has
very good privacy, but it needs O3, two translations on the way from A to B, and
two more translations on the way from B to A. The goal of Scheme 2 is to remove
the needs of O3 and maximize the efficiency (the stubs on A and B are thinner).
Scheme 2 works as follows.

First, during initialization the trusted expert identifies all the data translation
needs. For each such need from A to B, a specific conversion function is produced
and specified as: { E(table_name, A’s master key), E(attribute_name, A’s master
key), E(Function, B’s master key) }. The expert will do the same thing for the needs
from B to A. Next, the expert will forward all the conversion function specifications
to the mediator.

During run time, when the mediator receives an encrypted query, if an encrypted
attribute matches any of the conversion function, the mediator will use the ontology
mapping table to rewrite the attribute as { E(Op_attribute_name, B’s master key),
E(Function, B’s master key)}.

When B receives the query, B will first decrypt the query and the function, then
apply the function to the value associated with the attribute before the query is
submitted to B’s database server. Once the results are generated by the database,
the value associated with the specific attribute will again, be processed by the
function in the reverse way (note that the function is a two-way function).

A problem with this method is that when the tables have attributes that need to
be converted, say split, the mediator has to keep a list of all problematic attributes
that need to be converted (in either direction) and all the corresponding conversion
functions. Finally, compared with Scheme 1, scheme 2 has less privacy since B
knows the exact data value (and measurement units) that A uses, although the
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attacker does not know anything about this information.

5. SECURITY AND PRIVACY ANALYSIS

SACE tackles both security and privacy issues of inter-organization information
sharing. SACE’s primary security concern is whether unauthorized accesses can
be caused and whether data confidentiality can be compromised. SACE’s primary
privacy concern is whether the sensitive metadata stored on a mediator can be
inferred by the attacker.

In general, since the queries and the data are encrypted using different keys and
pass through different channels and since each data channel is encrypted using dif-
ferent keys and only the answer to one query passes through one data channel, the
chances of the entire system being compromised is reduced. However, there are
questions about whether SACE’s semantic access control scheme can allow unau-
thorized accesses, and whether the privacy preserving features can prevent SACE
from achieving “correct” information sharing. We have investigated these questions
carefully, and our study shows that SACE’s semantic access control scheme is “cor-
rect” (or secure) and SACE’s privacy preserving features will not cause incorrect
information sharing. Nevertheless, due to space limitations, we could not provide
the correctness proof of SACE here, and we would refer the interested readers to

[?].

In this section, first, we analyze the amount of privacy that can be achieved
when SACE is under various inference attacks. We show why SACE can achieve
much more privacy than existing information sharing solutions. In addition, we
compare the middleware-centric architecture and the minimum-middleware archi-
tecture from the perspective of privacy preserving. Second, we analyze how SACE
is resilient to the attacks that may cause unauthorized accesses. Note that it is
easy to see that our key management scheme is secure and data confidentiality can
be ensured.

5.1 Correctness of the Semantic Access Control Scheme

In this section, we only address the security of SACE in terms of the semantics
of our semantic access control scheme. We assume there are no (active) attacks
against SACE.

To see whether our semantic access control scheme is secure, we must first define
“security” for semantic access control. Our definition has two aspects: (a) within a
single organization and (b) across organizations. First, within a single organization,
a syntactic access control scheme is secure if a data object z can only be accessed by
those who have authorizations to access x. In contrast, the corresponding semantic
access control scheme (built on top of the syntactic authorizations) is secure if for
any user (or role), whenever a semantic access request is authorized, there exists
a syntactic access request that can allow the user to access the same data and
will be authorized by the syntactic access controller. Moreover, if every request
authorized by the syntactic access controller will be authorized by the semantic
access controller, we say the semantic access control is tight. Note that when the
semantic access control is not tight, some availability may be lost.

Now we can define the security of semantic access control across organizations
in a similar way. We assume a cross-organization semantic access control scheme
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is always developed to enforce a specific syntactic cross-organization access control
policy. Given a sound (i.e., the policy is consistent) and complete (i.e., every request
is either authorized or denied) syntactic cross-organization access control policy,
the corresponding cross-organization semantic access control scheme is secure if
whenever the semantic scheme allows a user to access a data object, there exists
a syntactic cross-organization access request that will allow the user to access the
data object and will be authorized by the syntactic cross-organization access control
policy.

In the following, we show that SACE’s semantic access control scheme is secure.
For this purpose, we need to introduce a notation called semantic scope. We assume
each term e in an ontology has a specific semantic scope, denoted SC(e), which
indicates how broad the terms semantics can cover. For example, the semantic
scope of “horse” is broader than “race-horse” but narrower than “animal”, denoted
SC(“race — horse”) C SC(“horse”) C SC(“animal”). Moreover, we assume each
column or attribute (name) of a table has a specific semantic scope, and a tables
semantic scope is the union of the semantic scopes of all of its columns. Finally,
we assume semantic scopes can be compared with each other universally across
organizations. The relation between two semantic scopes is of four types: equivalent,
broader, narrower, or intersecting.

Now we make two more assumptions about SACE. First, we assume that role
mapping in SACE will never map a role in Organization A to a more powerful role
in Organization B. Second, we assume the (underlying) syntactic cross-organization
access control policy will never allow an employee of A to get a piece of information
from B’s source which he is not authorized to access (that type of information) in A.
This assumption implies that a semantic access control scheme across organizations
is secure only if for each user or role, the union of the semantic scopes of the
accessible data objects (a table or a column) from any foreign organization is a
subset of the union of the semantic scopes of the data objects accessible within the
home organization.

To show that SACE’s semantic access control scheme is secure, we need only to
show that no access request denied by the syntactic cross-organization access control
policy will be authorized by the semantic scheme. For this purpose, consider the
scenario when an employee of Organization A wants to get some data from B, we
first show that when the request is checked against B’s semantic access control
policy (after the semantic mediation step), it will be denied if it is not authorized
by the syntactic access control policy. This is true since when we translate B’s
syntactic access control policy to a semantic policy offline, we make sure that the
‘object’ term will never have a broader semantic scope than the corresponding
syntactic object (e.g., a column) in the syntactic policy. Hence, when the employee’s
request is checked against B’s semantic policy, no access to an term that has a
broader semantic scope than the columns in the syntactic policy will be authorized.
Moreover, when the filtered semantic request is translated to a syntactic request
against B’s schema, we ensure that the semantic scope of the resulted syntactic
request will never be broader than the semantic request. This means that the
syntactic request will never violate the syntactic policy.

Second, we show that the employee will never get data from B that violate A’s
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syntactic access control policy. To show this is true, we just need to show that after
the employee’s request is checked against A’s semantic policy, the filtered request
when being processed by SACE will never violate A’s syntactic policy, since it
is easy to see that any request violating A’s syntactic policy will be filtered out
during the check. This statement is true since (1) when this request later on goes
through the semantic request mediation process, SACE ensures that the semantic
scope of the resulted request against B’s ontology will never be broader than that
of this request; (2) according to the way the resulted request is checked aginst B’s
(semantic and syntactic) policy, the request will never be able to get data that have
a broader semantic scope than the request.

5.2 Privacy Analysis of SACE

For two organizations using SACE to share information with each other, the pri-
mary privacy concerns of the organizations are as follows. (Note that due to the
middleware-based architecture, SACE makes it very difficult, if not impossible, for
one organization to infer the other organization’s database schema, ontology and
role hierarchy.)

® Whether the Mediator can infer the sensitive metadata stored on the mediator,
though all the metadata are encrypted.

® Whether an outside attacker can infer the sensitive metadata after he successfully
breaks into some components of the SACE system.

Accordingly, our threat model focuses on four attack modes:
©® (A) An outside attacker breaks into the mediator and infers metadata, but the
attacker does not maintain history of queries (and responses);
©® (B) The same as Mode A except that the attacker maintains a complete history
of queries (and responses).
©® (C) The mediator infers the metadata,;
©® (D) The attacker breaks into the mediator as well as an organization.

In the following, we show that SACE can provide very good privacy to the organi-
zations involved. Note that since the privacy issues associated with data translation
are already addressed in Section 4, they will not be mentioned here.

In Mode A, some representative privacy attacks are:
©® Based on some specific statistics of the metadata associated with an organization,
such as the size (or “shape”) of her ontology and database schema, the attacker
guesses who the organization it. SACE makes this attack difficult to succeed since
all the ontologies are encrypted and two ontologies with similar statistics may belong
to two very different organizations.
® The attacker tries to figure out the meaning of each encrypted term in an ontol-
ogy. Moreover, the attacker exploits the (equivalent, broader, narrower, irrelevant)
relation among the encrypted terms to help him. However, precisely guessing the
meaning of encrypted terms based on only some use statistics is difficult, especially
when the organization identities are also kept private by SACE. Moreover, even
after some terms are disclosed, it is still very difficult for the attacker to guess the
database schema.
® The attacker tries to figure out the meaning of each encrypted attribute in a
database schema. This attack is similar to the above one, but breaking a database
schema can cause much more damage than breaking an ontology. For this reason,
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in the minimum-middleware architecture, database schemas are no longer stored at
the Mediator. Moreover, all the schema information that the Mediator can see is
obfuscated. In this way, SACE may provide maximum privacy.

® Based on the encrypted role mapping table and access control policies and the
relationships among the encrypted terms, the attacker may be able to infer some-
thing about the role hierarchy of an organization, such as knowing that one role is
more “powerful” than another role, etc.. However, SACE makes this attack very
difficult to succeed since (a) no role hierarchy is stored on the mediator; (b) know-
ing which roles are more powerful does not disclose much information of the role
hierarchy (when the attacker does not know the clear text version); (c¢) note that
the minimum-middleware architecture no longer keeps access control policies on the
mediator, which makes this attack even harder.

In Mode B, some representative privacy attacks are as follows.
® Based on the history observed by the attacker, the ontology mapping table and
the role-mapping table, the attacker could reconstruct the (encrypted) ontologies
and access control policies. Hence, obfuscating the ontologies and policies stored
on the Mediator do not help much. Nevertheless, the ability to reconstruct en-
crypted ontologies and policies does not significantly improve the attacker’s ability
in inferring them.
® By monitoring the frequencies of requests across organizations, the attacker may
infer which organization is popular, and which pair of organizations is a gang, etc..
This attack can allow the attacker to get more information about the organization
identifies than Mode A attacks, but this attack is still difficult to succeed if the
attacker does not know who the set of organizations are. Although we may use
dummy requests to obfuscate the attacker, this could cause denial of service and
may bring down the middleware.
® Since a lot history data are available, histogram-based privacy analysis and infer-
ence are possible. To counter this attack, a unique design feature of SACE is that
we make no data available to the Mediator and all inference can only be based on
encrypted schema and terms. Although the value part of each query is encrypted,
such cipher text is useless to the attacker. Therefore, SACE is very resilient to such
inference attacks.

In particular, we decouple semantic level mediation from (query result) data
transmission. The middleware will only be involved in the mediation tasks, and the
result data will be encrypted and transmitted to the requestor through a separate
channel that will never be touched by the middleware, although to make the result
data meaningful to the requestor, the schema part of the results will still need to
be blindly mediated by the middleware in cipher text.

In terms of Mode C, this mode is actually a special case of Mode A and Mode
B, so no more discussion is needed.

In Mode D, when the attacker breaks into an organization (e.g. FBI) and assumes
an authorized account (not necessarily the root), he will get (clear-text) access to
all the data, database schema, role hierarchy and ontology accessible to the account
as well as the other organizations’ data that the account is authorized to access.
Now the question is whether he can figure out the encrypted ontology mapping
table, and the metadata of the other organizations (e.g., CIA). Although now the
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attacker can compose special probing queries to do this job, it should be noticed
that since the corresponding security loss (data confidentiality and integrity) is
already much more significant than the inference problem, the organization should
instead work hard to block this attacker rather than making the middleware more
private preserving.

Finally, of course we can assume such attack modes as the attacker breaking
into both of the two organizations (and the Mediator) and the attacker stealing
the authorization of the DBA of an organization. Of course, such attack modes
will allow the attacker to gain more information about the metadata, but as we
argued above, in such modes the attacker can cause much more damage by directly
attacking the system instead of just inferring the metadata.

5.3 On Attacks that May Cause Unauthorized Accesses

Now we address how active attacks can cause unauthorized accesses in SACE. We
found that in general such attacks could be handled by some existing security
mechanisms. For example, the attacker may change some records of the ontology
mapping table in such a way that he can allow an organization to access some data
that the organization is not authorized to access.

To tackle this problem, first, we can deploy some integrity protection techniques.
For example, we may assume the Mediator will sign each query authorized; assume
the Mediator’s signing key is in tamper-resistant storage; assume the Mediator’s
program will be certified and can be verified whenever being loaded for execution.
Second, a time-stamped checksum of the metadata may be firstly signed with the
private key of the security expert before being stored at the Mediator. During
runtime, the Mediator may periodically verify this signature before checking any
access control.

For another example, denial-of-service may be caused, but DOS attacks do not
cause unauthorized accesses. To tackle this problem, the Mediator can be repli-
cated across the network, or several different mediators can serve the same pair of
organizations.

6. EXPERIMENTS AND RESULTS

We have implemented a prototype of SACE based primarily on minimum-middleware
architecture. In this section, we present the evaluation results and show that
SACE’s performance is in general good. The evaluation focuses on comparing
the performance of SACE with the non-encrypted version of SACE and a direct
query system in terms of a set of system parameters such as the number of data
requesters and the result data size.

To assess the performance of SACE, we programmed SACE prototype in Java;
and Jena 2 Semantic Web Framework is applied to handle the ontology files. In
particular, the prototype is implemented with Sun Java Web Service Developer
Pack 1.5 with Apache Tomcat 5.0.19 Web Container. The Java Virtual Machine
used is Sun JDK version 1.5.0-b64. We performed several experiments on the FBI-
CIA information sharing scenario, where both FBI and CIA have an individual
organizational database managed by MySQL DBMS version 4.1.8. Moreover, three
Web services are running in three computers (connected by a 100 Mbps LAN switch)
on behalf of FBI, CIA, and the mediator, respectively. The detailed specifications
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Tier FBI Middleware CIA
CPU Pentium 4 2.53GHz | Dual Xeon 1.8GHz | Pentium 4 2.4GHz
RAM 768MB 512MB 512MB
OS Linux 2.6.9 Linux 2.6.9 Linux 2.6.8
Database tables 15 - 18
Role hierarchy nodes 5 - 5
Ontology 289 triples - 325 triples

Table I.  System specifications

of the experimental testbed are in Table I. Each computer is equipped with an IDE
hard drive with about 45 MB/second sequential read throughput.

The communications among software components are implemented by JAX-RPC.
There are three types of implementation to create JAX-RPC clients: static stub,
dynamic proxy, and dynamic invocation interface (DII). Clients use either static
stub or dynamic relied on pre-generated implementation-specific classes. Therefore,
in our implementation, we use dynamic invocation interface for flexible system
design and easy deployment.

6.1 Metadata and Data Sets

We generated the database schema and data sets for both FBI and CIA databases
based on the information sharing scenario. In general, each table contains 50 to
10000 records depend on its functionality, and the corresponding access control
rules are stored in a separate authorization table. The database schema is shown
in Table II.

We designed the organizational ontology for each organization. Each ontology
has about 20 classes and about 300 triples if they are represented in N-TRIPLE
format [rdf 1999]. The ontology covered all concepts used in the database. The
syntactic database schema can be mapped to semantic concepts defined in ontology
using a syntactic-semantic mapping table. We show the complete ontology used in
the FBI-CIA scenario in [Liu et al. 2004b]. Regarding role-based access control,
each organization has 5 roles as shown in Fig. 3. Each role has diffrent privileges
to access the tables in database. Parent roles have all the privileges their children
roles have. Finally, the mapping table in the mediator was designed for information
mapping between the FBI and CIA databases.

Our evaluation benchmark consists of four types of queries. We generated 25
queries for each type. Each query is executed 10 times and we calculate the mean
execution time for each. Finally, the query result data size ranges from 0.31KB to
1,359KB. The four types of queries are:

(1) Basic type query: These queries only involve semantic translations. For exam-
ple, when an FBI agent wants to get some data from the CIA database, his
query, that is originally written against FBI’s schema, can be:

SELECT username, passwd FROM Person WHERE username =’john031’.
After the mediator performs a semantic translation, it becomes:

SELECT userid, pwd FROM Personnel WHERE userid =’john031’.
Notice that although the query in the given example is valid in both organiza-
tions, the result retrieved from CIA may not be the desired information for the

ACM Journal Name, Vol. V, No. N, February 2005.



Privacy-preserving Semantic Interoperation of Heterogeneous Databases : 29

Schema of FBI database:

Number of records  Schema

50 Person (ID, username, passwd, orglD)

100 Organization(ID, parentOrganization, locationID, name)

500 LocationArea(ID, building, city, state, country)

50 PersonDescription(ID, fullname, agerange, complexion, height, build,
hair, sex, driving, phonenumber, clothing)

1000 Event(ID, analysis, reporterID, activityID, note, predecessor, type)

10000 ActivityTable(ID, person, organization, vehicle, location, duration,
TimeFrame, resultedIn, willresultIn, frequency, rationale)

10000 TimeFrame(ID, minute, hour, day, month, year)

1000 Vehicle(ID, make, model, color, status, plate)

Schema of CIA database:

Number of records  Schema

50 Personnel(ID, userid, pwd, description, location, organization)

100 Suspect(ID, firstname, lastname, location, note)

500 Cell(ID, number, establishedIn)

1000 Note(ID, comment, Time)

50 TerroristOrganization(ID, parentOrganization, locationlD, estab-
lished)

10000 Location(ID, building, city, province, country)

50 PersonalProfile(ID, name, cell, age, height, ethnicity, address)

10000 Events(ID, owner, activity, noteID, predecessor, eventType)

10000 ActivityInformation(ID, suspect, automobilelD, location, startTime,
endTime, result)

10000 Time(ID, h, d, m, y)

2000 Automobile(ID, model, manufactory, color, size, condition, registra-

tion)

Table II. Database schema and the number of records for each table in the databases

user in FBI. For example, the users’ password should not be released to any
other organizations. We can prevent this problem by a proper design of the
mapping table.

Query with semantic expansion: These queries involve query folding. For ex-
ample, an FBI agent’s across-organization query can be originally written as:
SELECT fullname, phonenumber FROM PersonDescription WHERE full-
name =’John Peterson’.

After semantic translation and expansion by the mediator, the query becomes:
SELECT firstname, lastname, number FROM PersonProfile, Cell WHERE
PersonProfile.ID = Cell.ID AND PersonProfile.firstname = John” AND Per-
sonProfile.lastname = ’Peterson’.

Query with data translation: These queries contain values or columns that
SACE needs to translate. For example, when a FBI agent issues the following
query:

SELECT ID FROM PersonDescription WHERE height > 5.9.

Since in FBI the metric for height is in feet, but the height in CIA is in cen-
timeter, the value (i.e., 5.9) will be converted to centimeter, and the translated
query will be:

SELECT ID FROM PersonProfile WHERE height > 179.85.
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Fig. 3. Role hierarchy

(4) Hybrid type: Translation Using Complex Mapping Rules and Mapping Func-
tions. For example, the query:
SELECT fullname, phonenumber FROM PersonDescription WHERE height
> 5.9
will be translated to:
SELECT firstname, lastname, number FROM PersonProfile, Cell WHERE
PersonProfile.ID = Cell.ID AND height > 179.83.

6.2 End-to-End Response Time

The mean end-to-end response time is determined by the average time used to
process a cross-organization query when multiple such queries are processed. We
measure the response time as the time elapsed since a user’s request a query until
she got the response to the query from SACE. The response time includes both com-
putation and communication costs. In particular, to process a query request, the
system performs query parsing, semantics translation, data tanslation, and access
control check. In the encrypted version of SACE, data and metadata encryption
and decryption are also required. We used both symmetric and asymmetric en-
cryption algorithms in our system. We assume each organization has one master
key for symmetric encryption and a RSA keypair for asymmetric encryption. They
length of the master key is 112 bits, while the length of RSA keypair is 1024 bits.
The subject and object in each 3-tuple was encrypted by Triple DES [des | with
a master key for each organization. The ontology files (.owl) were translated to
N-TRIPLE format. Subject, predicate and object terms are encrypted separately
using the master key. For each query request, the requesting organization has to
exchange a session key with the responding organization, the requesting stub will
parse the SQL statement and encrypt every non-keyword term using the session
key. They keep the SQL keyword non-encrypted, so the mediator is able to parse
the request and decompose the request into encrypted syntactic access requests.
By encrypting Data and meta data, SACE can provide uncompromising privacy
preservation. However, we have to pay extra computation costs to accomplish the
security requirements.

To compare the overhead of SACE processing, we have implemented a simple di-
rect query system using the same architecture as SACE but without semantic access
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Fig. 4. End-to-end response time of SACE, non-encrypted SACE, and the direct query system.
(a) The effects of result data size on response time. (b) The effects of number of users on response
time at peak traffic. (c) The effects of query types on response time.
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control. The requesting organization sends a query request to the mediator, then
the mediator bypass this request to the responding organization. Access control is
done by the responding organization by checking the role’s privilege. The query
result will be sent to the requesting stub directly. Also, the users in the requesting
organization need to know the database schema in the responding organization.

6.2.1 The Result Data Size. To evaluate the impact of the result data size, we
generate one request to FBI to query the CIA’s database using the query sets de-
scribed in the previous section. The results in Fig. 4(a) show that, in general, when
the result data size increased, the response time of SACE increases. This is easy to
understand considering the amount of data to be transfered and processed. Larger
result sets require not only longer transfer time, but also need more computation
time to encrypt or decrypt. To compare the encrypted SACE and the non-encrypted
SACE, the encrypted SACE requires more time than the non-encrypted SACE to
complete a query request when the result data size increased. In particular, the en-
crypted SACE requires 15 percent to 20 percent more in mean response time when
the number of user is larger than 10. Closer inspection reveals that the response
time of SACE is roughly double as the direct query system in our experiment.
Also, the mean response time of the non-encryption SACE increases roughly linear,
while the mean response time of SACE increases slightly worse than linear. This
can be explained considering that the encryption algorithms are non-linear algo-
rithms. Second, we compare SACE and the direct query system. The results in
Fig. 4(a) show that SACE requires two to two and half time more than the direct
query system. More specifically, when the result data size is less than 500KB, data
encryption causes about 35 percent more in mean response time. As the result data
size increases, the overhead of encryption keep increasing. When the result data
size is 1359.73KB, the overhead of mean response time is about 60 percent for the
encrypted SACE. Recall that the simple direct query system involves only minimal
computation and has roughly the same communication costs if the result data size
are equal. Its results show the lower bound of the response time of the web services
architecture in the information sharing scenario. Also, the mean response times of
both the non-encrypted SACE and the direct query system increase roughly lin-
ear. The difference of the mean response times between the non-encrypted SACE
and the direct query system is around 0.5 seconds for most tested queries. The
results show that without the encryption, SACE only add a small overhead during
the query processing and the impact on the mean response time is nearly a linear
function of result data size. Furthermore, the encryption computation dominated
the overall process time, and the overhead caused by semantic-level access control
check is relatively small.

6.2.2 The Number of Users. To evaluate the impact of the number of users, we
create multiple query traffic loads to the system, and we fix the size of each query
result at about 100KB. That is about 50 to 100 records in our database depending on
which tables are queried. For most frequent cross-organization queries, for example,
to query the suspects list from the CIA’s database, the rows of result set is usually
is usually less than 100KB. Fig. 4(b) shows the average response time when the
number of user in the system increases response time in all systems increases. In
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general, users in encrypted SACE will expect longer response time, because of
the encryption and decryption computation costs. But compared to the results
in Fig. 4(a), the difference between the encrypted system and the non-encrypted
system (or direct query system) in multi-user environment is smaller than singal
user testing. This can be explained as follows: When a query from a user sent
to the middleware, the request will be blocked and waited the result until it has
received a response from the middleware. During the waiting time, the request will
not use CPU resource, therefore, the CPU can process other queries. However, in
the non-encrypted system, although the queries do not need as much time as the
encrypted system to be processed, the requests still need to be blocked due to the
network delay and JAX-RPC’s overhead. This result shows that SACE has good
scalability in a multi-user environment.

6.2.3 The Size of Database and Ontology. We also evaluated the impact of the
database size and the size of the ontology files. Results in both Fig. 4(a) and Fig.
4(b) show that by doubling the database size, the affect of response time is very
small can be neglected. It is because SACE is a information sharing layer above the
physical data storage (database systems). Therefore, SACE will not handle how
data is stored and indexed. This design philosophy keeps SACE not only platform
independent, but also database independent. Ideally, SACE should be able to
use any database management system. However, different database management
system may have some special features and extensions that may cause difficulty
processing the queries. In our implementation, the SQL parser we used followed
the standard ANSI SQL-92 specification. Hence, any non-standard SQL statements
will be rejected. Also, changing the size of ontology files for both organizations
will not change the response time significantly. The reason is if the additional
relationship in the ontology will not affect the concepts used to process queries, it
is obvious the response time will not change. Even when we changed the relationship
between the concepts used to process queries, the computation time required for
the inference processes is relatively small. Furthermore, since the filtered stub
generated by the mediator will be stored as a hash table, the changes of response
time due to changing the access control rules during the on-line process is negligible.
The results show that SACE can easily be extended to large database systems in
practical applications.

6.2.4 Types of Queries. Finlay, we compare different query types and evaluate
the mediating process. The impact of different query types on end-to-end response
time is evaluated by sending 25 queries from each type of query and calculating the
mean response time for each query. As shown in Fig. 4(c), the mean response time
of type 1 and type 2 (or type 3 and type 4) query are very close. The closeness of
the response times indicates that the impact of semantic expansion on the system
is very small. However, the overhead of data translation increases with the size
of the result data. Type 3 and type 4 queries involve data translation in one
column of integer type. Data in this column needs translation four times during
the transaction. This explained why the response time for type 3 and type 4 queries
are higher than type 1 and type 2. According to the results, the data translation
is linearly dependent on the rows of the result data table. It is easy to understand
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Fig. 5. Component throughput of SACE and non-encrypted SACE. (a) The effects of result data
size on the throughputs of FBI, CIA and mediator. (b) The effects of number of users on the
throughputs of FBI, CIA and mediator at peak traffic.

considering the operation is applied on each row of data. If the result table is
small, the effect of data translation is not significant. When the size of result data
is larger than about 200 kB, the effect gets stronger. The difference of response
time to retrieve a 1,145 KB data set for a type 1 and a type 3 query is about 1,800
ms. That is about 30 percent overhead caused by data translation. For the non-
encrypted system, the difference between type 1 and type 3 (or type 2 and type
4) is smaller than in the encrypted system. Since no encryption and decryption
are needed, the response times for all the types are less than that in the encrypted
system.

6.3 Component Throughput

In this section, we focus on the performance of the three key components of SACE,
namely the information-sharing stub at the requesting organization, the middle-
ware at the mediator, and the stub at the responding organization. We measure
the throughputs (in terms of queries per second) of the three components as follows.
First, for each component, we take into account the time consumed by every opera-
tion performed by the component during the life-time of a query. In particular, the
main operations are as follows. At the requesting organization, each SQL statement
is parsed and translated into a semantic query. Data conversions are involved if
necessary. The translated query is then encrypted and sent to the mediator. If the
query is authorized, it is translated to a semantic query against the responder’s
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Fig. 6. Mediator performance evaluated by access control rules

ontology. Subsequently, the translated query is sent to CIA. Once CIA gets the
query, it first decrypts the query and converts some values if necessary. Then, the
translated semantic query is translated into a syntactic query against CIA’s schema.
Finally, the query results are encrypted and returned, and the requesting organi-
zation will decrypt the results. Second, we get the throughput measurements, we
inject 40 queries on behalf of FBI agents (where the four query types are mixed,
each type has 10 queries), then we measure the total processing time (i.e., both the
time consumed in processing the request and the time consumed in processing the
results are counted) consumed by each component. For example, if in total it takes
t seconds for the mediator to process n queries, the mediator’s throughput is n/t.
The comparison between the encrypted SACE and the non-encrypted SACE sys-
tems will be shown in our results. Note that here SACE implementation is slightly
different from the minimum-middleware architecture.

6.3.1 The Result Data Size and The Number of Users. In Fig. 5(a), the non-
encrypted system outperform then encrypted system. When the query result size
is less than 100KB, the non-encrypted system could be 5 times faster in both re-
questing and responding stubs. Even when the result size is larger than 1MB, the
non-encrypted system is still 3 to 4 times faster. Note that there is neither encryp-
tion nor decryption computation needed in mediator. The mediator can process
both encrypted and non-encrypted query. Therefore, the performance of mediator
in both systems are close. As the result data size increased, the throughputs for
both organizations drop. The mediator, however, is unaffected by the result data
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size because it will not process the result data. Fig. 5(b) shows the impact of the
number of user on the throughput of each component. When the users in the system
increases from 5 to 50, the throughput of FBI dropped from 9.71 queries per second
to 1.34 queries per second; the throughput of CIA dropped from 9.96 queries per
second to 1.23 queries per second in the encrypted SACE system. Comparing to the
throughput of FBI dropped from 188.32 queries per second to 149.54 queries per
second and the throughput of CIA dropped from 81.9 queries per second to 63.53
queries per second, the difference between the performance of encrypted SACE and
non-encrypted SACE of the requesting stub and responding stub is huge. Notice
that, in both FBI and CIA, the throughputs are roughly the same when the number
of user is less than ten. That is because the system can handle small number of
users very quickly, there is almost no congestion due to those users simultaneously
submit requests. However, the throughput of mediators in both systems are very
close. Therefore, the mediator becomes the bottleneck in the non-encrypted SACE
system. Since SACE is a very flexible system, we can add more mediators to the
system to improve the overall performance. Here we only test one mediator and two
organizations. But the architecture can be easily extended to multi-organization
and multi-mediator architecture. For mediators, more organizations means more
users, more ontologies and more entries in mapping tables. Load balancing can be
applied when there are multiple mediators are available.

6.3.2 The Mediator. Fig. 6(a) shows the impact of the number of access control
rules on the mediator’s performance. The processing time increases linearly as the
number of the access control rules increases. It is because the mediation process
is a linear algorithm. We also performed the same test on the mediator to process
non-encrypted data. As expected, the mediator is not significantly affected where
processing encrypted data. Finally, we use RDQL in the Jena toolkit to query the
ontology files, and our experiments show that the size of ontology files has almost
no impact on the processing time of the mediator as we doubled the ontology size.

7. RELATED WORK

To the best of our knowledge, there exists no prior research that enables semantic
access control across heterogeneous information sources based on ontologies while
preserving the privacy of the metadata of the information sources. Qin and Atluri
introduced concept-level semantic access control for the semantic web [Qin and
Atluri 2003]. Their work deals with how terms naming resources (whose access
is being controlled) can be rewritten using other terms subject to logical rules
expressed using OWL (Web Ontology Language) [Bechhofer et al. ]. Qu, et al.
[Qu et al. 2004], have presented an ontology-based rights expression language built
on top of OWL to express access rights of resources. Damiani, et al. [Damiani et al.
2004] have discussed how policy languages can be extended for the semantic web.
Agarwal and Sprick [Agarwal and Sprick 2004; Agarwal et al. 2004], and Yague
and Troya [Yague and Troya 2002; Yague et al. 2003] have presented frameworks
for access control policies for semantic web services.

There is a rich literature on access-control in information interoperation systems.
We mention a selected few that are the most closely related to our work. Gong and
Qian [Gong and Qian 1996; 1994] have discussed the complexity and composabil-
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ity issues in secure interoperation. Ahn and Mohan [Ahn and Mohan 2004] have
implemented RBAC-based information sharing on a syntactic level. De Capitani di
Vimercati, and Samarati have shown how authorization specification and enforce-
ment can be implemented in federated database systems [De Capitani di Vimercati
and Samarati 1997].

Dawson, Qian, and Samarati, discuss how security can be provided while en-
abling interoperation of heterogeneous systems [Dawson et al. 2000]. They use
query folding to resolve the semantic heterogeneity of the information sources. The
rules that the query folding is based on is manually expressed. Furthermore, their
system does not have provisions to preserve the confidentiality of the metadata of
the information sources. SACE uses ontologies that are used to expand queries
semantically by considering the synonyms of terms. First, when an immediate
match does not exist between terms in the two ontologies, we allow the narrowing
of the semantic scope of a term. Second, SACE pursues similar narrowing when a
role in one organization does not have a direct counterpart in another organization
from which data is being sought. Third, SACE has robust privacy-preserving fea-
tures and allows for the complete confidentiality of the metadata of the information
sources.

8. CONCLUSION

In this work, we have demonstrated SACE — a semantic access control enabling
system. SACE provides maximum privacy and security for data, queries and meta-
data and enables interoperation among heterogeneous information sources. SACE
incurs only a minor performance degradation in comparison to non-secure interop-
eration systems. We show that SACE is easy to setup without requiring any major
modification of existing websites and their underlying database systems and that
it scales seamlessly.

REFERENCES

Data encryption standard (DES). FIPS PUB 46-3.

1999. Resource description framework(rdf) model and syntax specification, w3c recommendation
http://www.w3.org/tr/rec-rdf-syntax.

AGARWAL, S. AND SPRICK, B. 2004. Access control for semantic web services. In International
Conference on Web Services (ICWS ’04). IEEE Computer Society Press.

AGARWAL, S., SPRICK, B., AND WORTMANN, S. 2004. Credential based access control for seman-
tic web services. In 2004 American Association for Artificial Intelligence Spring Symposium
Series.

AnN, G.-J. AND MOHAN, B. 2004. Secure sharing role-based delegation. Journal of Network and
Computer Applications.

BECHHOFER, S., VAN HARMELEN, F., HENDLER, J., HORROCKS, I., MCGUINNESS, D., PATEL-
SCHNEIDER, P., AND STEIN, L. Owl web ontology language reference. Tech. rep., W3C.

DamiaNI, E., DE CAPITANI DI VIMERCATI, S., FUGAZzA, C., AND SAMARATI, P. 2004. Extending
policy languages to the semantic web. In ICWE. 330—343.

DAwsSON, S., QIAN, S., AND SAMARATI, P. 2000. Providing security and interoperation of hetero-
geneous systems. Distribute Parallel Databases 8, 1 (January), 119—145.

DE CAPITANI DI VIMERCATI, S. AND SAMARATI, P. 1997. Authorization specification and enforce-
ment in federated database systems. Journal of Computer Security 5, 2, 155—188.

FERRAIOLO, D. AND KUHN, D. 1992. Role based access control. In 15th National Computer
Security Conference. Available from hitp://csre.nist.gov/rbac/ on Aug. 30th, 2004.

ACM Journal Name, Vol. V, No. N, February 2005.



38 : Peng Liu, et al.

GoNgG, L. AND QIAN, X. 1994. The complexity and composability of secure interoperation. In
IEEE Symp. Security and Privacy.

GoNg, L. AND QIAN, X. 1996. Computational issues in secure interoperation. IEEE Transactions
Software Engineering 22, 1, 43—52.

Liu, P., MiTrA, P., AND PAN, C.-C. 2004a. Privacy-preserving semantic access control across
heterogeneous information sources. Tech. rep., School of Information Sciences and Technology,
The Pennsylvania State University. November.

Liu, P., MITRA, P., AND PAN, C.-C. November 2004b. Privacy-preserving semantic access con-
trol across heterogeneous information sources. Tech. rep., School of Information Sciences and
Technology.

QIN, L. AND ATLURI, V. 2003. Concept-level access control for the semantic web. In Work-
shop on XML Security, held in conjunction with the 10th ACM Conference on Computer and
Communications Security.

Qu, Y., ZHANG, X., AND L1, H. 2004. An ontology-based rights expression language. In 13th
international World Wide Web conference on Alternate track papers & posters Poster, (WWW,
Alt. 04). ACM Press, New York, NY, USA, 324—325.

YAGUE, M., MANA, A., J., L., AND TROYA, J. M. 2003. Applying the semantic web layers to
access control. In Web Semantic Workshop, DEXA 2003 Conference. IEEE Computer Society
Press.

YAGUE, M. AND TROYA, J. 2002. A semantic approach for access control in web services. In
Euroweb 2002 Conference. The Web and the GRID: from e-science to e-business, British
Computer Society, World Wide Web Consortium. 483—494.

ACM Journal Name, Vol. V, No. N, February 2005.



