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ABSTRACT
Today, many applications require users from one organiza-
tion to access data belonging to organizations. While tra-
ditional solutions offered for the federated and mediated
databases facilitate this by sharing metadata, this may not
be acceptable for certain organizations due to privacy con-
cerns. In this paper, we propose a novel solution – Privacy-
preserving Access Control Toolkit (PACT) – that enables
privacy-preserving secure semantic access control and al-
lows sharing of data among heterogeneous databases with-
out having to share metadata. PACT uses encrypted on-
tologies, encrypted ontology-mapping tables and conversion
functions, encrypted role hierarchies and encrypted queries.
The encrypted results of queries are sent directly from the
responding system to the requesting system, bypassing the
mediator to further improve the security of the system. PACT
provides semantic access control using ontologies and seman-
tically expanded authorization tables at the mediator. One
of the distinguishing features of the PACT is that it requires
very little changes to underlying databases. Despite using
encrypted queries and encrypted mediation, we demonstrate
that PACT provides acceptable performance.

1. INTRODUCTION
Today, more and more applications involve information

access across databases (information sources) owned by dif-
ferent organizations. The most two common approaches to
accomplish this are solutions offered in the area of federated
databases and solutions employing mediators.1 Although
these can handle issues such as data type differences, value
differences, semantic differences and missing values, these
are extremely limited in handling the increasing need of pro-
tecting the privacy and confidentiality of the metadata while
allowing such information accesses.2

1Here, we assume data from several sources are not stored
in a single database or data warehouse.
2Here, confidentiality concerns disclosing information about
the metadata to an outsider who is not involved in the in-
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Federated database systems implement one-to-one con-
nections between all pairs of databases that need to talk to
each other. These connections allow one database system
D1 (or employees of one organization or entity E1) to query
another D2 (owned by another organization E2) in terms
that D2 can understand. Federated database systems inher-
ently require that D1 and D2 reveal their data schema (and
the associated semantics), a main type of metadata, to each
other. However, this requirement may raise serious privacy
concerns when “there is an increasing need for sharing in-
formation across autonomous organizations in such a way
that no information apart from the answer to the query is
revealed” [4]. For example, organizations like FBI and CIA
may never want to reveal their metadata and divulge cru-
cial information about what information is stored in their
sources. Moreover, storing the schema on more systems
obviously increases the threat to the confidentiality of the
schema.

When mediator-based systems are used to support infor-
mation access across heterogeneous databases 3, a mediator
trusted by E1 and E2 generates and stores a mapping be-
tween the schemas of D1 and D2 to resolve the semantic
heterogeneity. Essentially, mediators know data schemas.
Although a privacy control policy can be enforced by the
mediators, such a solution has to rely on fully trusted and
highly secure mediators to preserve the privacy and confi-
dentiality of metadata. And such an approach is not (very)
practical, since (a) building a highly secure mediator is not
only very expensive but also very difficult, if not impossi-
ble, because almost every host providing services could be
hacked; (b) from the trust management point of view, such
a continuous high trust requirement is very difficult to be
satisfied, and as a result, such a mediator (third party) is
unlikely to be deployed. (Fundamentally, the more trust
you assume, the more vulnerable the system.) Nevertheless,
the above discussion shows that preserving the privacy of
metadata while enabling semantic interoperation is a diffi-
cult problem, since, often, the technologies proposed for en-
abling semantic interoperation depend heavily on insecure
mediation based on the metadata.

In this work, we present PACT – Privacy-preserving Ac-
cess Control Toolkit – a new mediation solution for infor-
mation access across heterogeneous databases. PACT seeks

formation sharing setting, while privacy concerns disclosing
information about the metadata to a party who is legiti-
mately involved in the information sharing setting.
3Mediators are also used for information integration [10],
but the integration aspect is out of the scope of this paper.



to solve the aforementioned problem. To the best of our
knowledge, PACT is the first framework that can preserve
the privacy of metadata while enabling semantic interoper-
ation. Besides preserving the privacy of metadata, another
key contribution of PACT is semantic access control which
we will explain shortly.

It is important to note that PACT is very different from
secure multi-party computation originated by Yao [22], and
(relational) database specific secure multi-party computa-
tion solutions proposed in [4, 14]. While the focus of this
research is on how to allow E1 and E2 to integrate their data
in such a way that a function f(x, y), where x ∈ D1 and
y ∈ D2, can be computed by both E1 and E2 without any-
thing else about x or y being revealed. In contrast, PACT
focuses on metadata instead of data; and PACT focuses on
information access instead of information integration.

PACT has several unique properties:
� PACT achieves ‘blind’ mediation using encrypted meta-
data. All the metadata used by a mediator are encrypted
and the mediation algorithm does not require any decryp-
tion, yet semantic mediation can be correctly done without
any human intervention (in runtime). In this way, PACT
preserves privacy of metadata.
� PACT greatly reduces the trust requirements on the me-
diator. E1 and E2 no longer need to trust that the media-
tor will not disclose their metadata (without authorization).
The mediator is not required to be highly secure either. This
property makes PACT a semi-trusted third party approach
to information sharing instead of a trusted third party ap-
proach.4 This makes PACT a very practical solution.
� PACT exploits semantic mediation to enhance privacy.
As we mentioned above, mediation typically compromises
privacy, however, in PACT, mediation is exploited to yield
more privacy. This is achieved via a novel schema obfusca-
tion technique we will present shortly in Section 4, where
synonyms in ontologies are used to ‘obfuscate’ attributes in
schemas and other metadata. This property means that the
terms in a database are never shared outside the database
but secure interoperation can be achieved without having to
share any metadata with other organizations.
� PACT ‘outsources’ access control to the mediator. As a
result, if a query from E1 will be denied by E2, the query
can be denied much earlier at the mediator. In this way,
PACT enhances the performance of the system by avoiding
a roundtrip to the responding database for queries that will
be eventually denied or that need to be rewritten because the
responding database allows only partial access to the data
being requested. This is achieved via a novel semantic access
control scheme that allows PACT to seamlessly integrate
semantic mediation and access control. We will present this
scheme in Section 4.
� Despite the costs of key management and encryption, our
experiments show that the overhead of enabling secure inter-
operation is quite small and we achieved high throughput of
the queries while using PACT. The overhead of symmetric
encryption is negligible; and many if not most PACT medi-
ation operations can be directly performed using the map-
ping tables stored at the Mediator. The only performance
bottleneck might be that PACT deploys a single mediator,
however, the mediator can easily be replicated to remove

4Note that PACT assumes that the software at the mediator
has not been tampered and it runs the mediation algorithm
faithfully.

that impediment.

2. PRELIMINARIES
In this section, we introduce some preliminary concepts

used in the rest of the paper.

2.1 Data Schema and Ontologies
We denote the data schema for an organization as {T1, T2,

..., Tm}, where Ti is a table (or relation) denoted as Ti(ai1, ai2,

..., aik). Each aij is an attribute of Ti.
We assume that associated with each information source is

an ontology that specifies the relationships among the terms
used in the information source. We use the Web Ontol-
ogy Language(OWL) [6] to express our ontologies. In our
model, an ontology is a set of concepts or terms (denoted
C1, C2, ..., CL) that have three types of relation among
them: {equivalentClass, subClassOf, differentFrom}. Two
classes related by equivalentClass “have the same instances” [6].
The relation subClassOf(Ci, Cj) means that the semantic
scope of Ci is narrower than that of Cj , or Cj is broader
than Ci. The relationship differentFrom is used to indicate
that two classes or individuals are different. Among the
3 relations, equivalentClass and subClassOf are transitive,
but differentFrom is not. We use the terms “concepts” and
“terms” interchangeably in the rest of the treatise.

To enable information access across heterogeneous infor-
mation sources, within each organization, an in-house pro-
cess generates (semantic) mappings between its database
(i.e., table names and attribute names in the database schema)
and its ontology – using a toolkit deploying existing schema
and ontology mapping techniques (see [19] for a survey)
– and stores this database-ontology mapping for future use.
Due to this mapping, attributes in data tables are not nec-
essarily always part of an ontology.

We assume each organization E has a set of employees or
users. Each user is authorized to access part of E’s database,
so the user usually knows only part of E’s schema. Similarly,
we assume each user U uses a specific user ontology which
corresponds to the part of E’s ontology that U can access.
Due to privacy protection, we assume the employees of one
organization never know the schema of another organization.

2.2 Role-based Access Control
PACT uses role-based access control (RBAC). We assume

that each database enforces its own RBAC policy. An user
must be associated with at least a home organization which
identifies the user and assigns the user one or more roles.
We denote an access control policy as {R, R → P}, where
R is a role hierarchy, P is the set of privileges, and R → P
is a mapping from R to P . A privilege pi is denoted as
{object, action, sign}. We assume the object be an attribute
of the table Ti.aij or a table Ti; the action is select, up-
date, insert and delete; and sign ∈ {+,−}. ‘+’ means
a positive privilege (allow access) and ‘-’ means negative
(deny access). Each role can be mapped to multiple priv-
ileges. Each organization maintains the following tables in
its database: (a) a subject-role assignment table, (b) a priv-
ileges table, and (c) a role-privileges assignment table. The
subject-role assignment table lists users and their roles, e.g.,
(Bob, manager) indicates that the user Bob has the role of
“manager”. The role-privileges assignment table lists tu-
ples of the form (role, pi), e.g., (manager, pi(employeeTab,
select, +)) indicates that the role “manager” have select



access to the table “employeeTab”.
For clarity, in the next two sections we assume that there

are no negative privileges. Nevertheless, note that our frame-
work can be easily extended to support negative privileges.

3. SYSTEM ARCHITECTURE
The architecture of PACT is shown in Figure 1. PACT

has two phases: the offline phase – the initial processing
that takes place before any query is processed; and the on-
line phase, which shows how an inter-organization query is
processed in runtime.

PACT is a middleware system that requires very few changes
to be done on the legacy systems of any organizations in-
volved. The offline procedure of PACT is to (1) translate
the (syntactic) access control policy of each organization to
a semantic access control policy against the organization’s
ontology, and (2) prepare the other metadata used by the
mediator.

To illustrate the online aspect of PACT, suppose an em-
ployee of Organization A needs some information from or-
ganization B. In Step 1, since the user does not know B’s
data schema, the user’s SQL query is written against the
user’s user ontology. In this way, the actual column and
table names used in the query will be ‘obfuscated’ by A’s
ontology. Then the obfuscated query will be encrypted.

In Step 2, a SQL parser is used to “decompose” the query
into several column-level or table-level access requests. How-
ever, at this stage these requests are expressed with A’s on-
tology and role lattice, and they cannot be directly processed
by Organization B. Hence, in Step 3, the mediator trans-
lates these requests into several semantic accesses requests
expressed with B’s ontology and role lattice via an algorithm
called semantic request mediation. This algorithm uses en-
crypted mappings between terms in A’s ontology and B’s
ontology and the mapping between roles in A’s role lattice
and B’s role lattice. In Step 4, these requests are checked
against B’s semantic access control policy. In Step 5, the
filtered yet authorized semantic requests will be decrypted
and translated into some syntactic access requests against
B’s schema, In Step 6, the SQL query is processed by B’s
DBMS. The DBMS may forgo the security checking since
it has already been done. However, the query results can-
not be directly returned to A because they are not expressed
against A’s ontology and the user can be confused about the
meaning of the results. In Step 7, the responder translates
the data and sends it back to the user.

From the privacy preserving perspective, a key feature of
PACT is that all the metadata stored and used at the me-
diator, which include the ontologies of both organizations,
the ontology-mapping table and the role-mapping table, are
encrypted and the mediator cannot decrypt them. In this
way, PACT removes the requirement that the mediator must
be trusted not to disclose any sensitive metadata, and good
privacy and confidentiality can be preserved even if the me-
diator is hacked.

Remark. Although the Access Controller may be moved
into organization B to further enhance the privacy of access
control policies, outsourcing access control to the mediator
may substantially improve the system’s performance, as we
will explain shortly in Section 4.

4. CORE TECHNIQUES
In this section, we present the set of core techniques used

by the PACT system and demonstrate their uniqueness and
merits. First, we discuss the offline operations of PACT. Sec-
ond, we discuss the runtime operations of PACT. Although
for clarity we only address the scenario with two organiza-
tions, PACT can easily handle multiple organizations with
one or more mediators.

4.1 Offline Processing
In this section, we show how each piece of the metadata

used by the mediator (shown in Figure 1) is prepared. First,
organization A’s ontology (B’s ontology) is prepared by an
in-house process to include the terms used in DA (DB), in
the way we mentioned in Section 2. Then A’s ontology (B’s
ontology) will be encrypted by organization A (B) using a
specific master key denoted KA (KB) as follows 5: all and
only the terms are encrypted, none relation among them is.
Note that in a PACT system a master key (e.g., KA) is only
known to it owner (e.g., organization A), no one else. The
encrypted version of A’s ontology is the version stored at
the mediator.

Second, the ontology-mapping table may be generated in
either a semi-automated way or a totally automated way.
In the first case, an ontology matcher (i.e., a human expert
trusted by both organization A and B) will be able to ac-
cess both A’s ontology and B’s ontology in cleartext. He
understands the semantics of both ontologies; he will use
specific ontology mapping techniques [19] to map; and he
will generate certain entries or rules in the mapping table
which we will explain shortly. Then the resulted mapping
table will be encrypted as follows: for each entry, all and
only the terms from A’s ontology are encrypted using KA;
all and only the terms from B’s ontology are encrypted us-
ing KB . The encrypted version of this mapping table is the
version stored at the mediator. It is important to note that
(1) the human expert has nothing to do with the mediator
(software); they are totally different entities; (2) the expert
can instantly “forget” the mapping table once it is generated
because runtime mediation does not need the expert at all.

Compared with the semi-automatic method, totally au-
tomatic ontology-mapping table generation does not need
a trusted human expert, so it achieves more privacy, al-
though sometimes it may not achieve perfect accuracy (of
mapping). Automatic ontology-mapping techniques are well
studied [19]. In particular, in [16] we developed a privacy-
preserving ontology-mapping scheme where two encrypted
ontologies can be automatically matched through a peer-to-
peer protocol without (a) revealing the terms of any ontology
or (b) involvement of any third parties. (The main idea is
to leverage commutative encryption techniques.)

It should be noticed that ontology-mapping is not schema-
mapping. To enhance privacy, we do not map A’s schema to
B’s schema directly. Hence the terms used in the ontology-
mapping table are typically just a synonym of a schema
term. This obfuscation technique will be further addressed
in Section 4.2.

Finally, the role-mapping table, which maps organization
A’s role hierarchy to B’s role hierarchy (and vice versa), can
be generated in a similar way.
Encrypted ontology mapping rules. The ontology-map-

5Note that we use symmetric key cryptography.
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ping rules used in our system are of three forms:
(1) Binary Mapping Rules: A binary mapping rule is a triple
listing two concepts from two different ontologies and the re-
lationship among them. For example, an entry in the map-
ping table may be the triple:

(O1.EK1(Vehicle), O2.EK2(Automobile), OWL.subClassOf)

Here, O1 (O2) denotes the ontology of organization 1 (2),
and K1 (K2) is the master key of organization 1 (2). This
entry indicates that O2.Automobile is a subClassOf (as de-
fined in the namespace OWL [6]) of O1.Vehicle.
(2) Split/Merge Attribute Rules: Consider the example, where
Organization 1 uses an attribute Name and that is split into
two attributes-names FirstName and LastName in the in-
formation system of Organization 2. To capture such rules,
we use the “split/merge attribute” rules, e.g.,

(O1.EK1(Name),

Merge(O2.Ek2(FirstName), O2.Ek2(LastName))).

(3) Mapping Functions: These functions are used to convert
data values. For example, a conversion function between
Dollar and PoundSterling, Metre and Feet, etc.
(4) Complex Mapping Rules: These rules show how a con-
cept in one ontology representing a table can be expressed
as a SQL query using concepts in another ontology. Com-
plex mapping rules have the following components: (i) A
SQL query using the terms in the responding organization’s
ontology: the requesting organization’s query will be trans-
lated into this SQL query or its variant; (ii) A table, T, in
the requestor’s ontology and used in the requestor’s query,
and, (iii) Binary Mapping rules, Split/Merge Attribute rules
or Mapping Functions mapping all the results of the SQL
query (in (i)) to attributes in table T.

Example 1. A complex mapping rule is of the following
form:

Concept in O1: EK1(LuxuryCar)
Mapped to query: select c.Ek2(CarID), c.Ek2(Make),
c.Ek2(Model), c.Ek2(Year), p.Ek2(Price) from Ek2(Car) c,
Ek2(Prices) p where c.Ek2(ID) = p.Ek2(ID) and p.Ek2(Price)
> 40,000
Mapping details:
O1.Ek1(LuxuryCar).Ek1(VehID) = O2.Ek2(Car).Ek2(CarID)
O1.Ek1(LuxuryCar).Ek1(Mk) = O2.Ek2(Car).Ek2(Make)
O1.Ek1(LuxuryCar).Ek1(Md) = O2.Ek2(Car).Ek2(Model)

O1.Ek1(LuxuryCar).Ek1(Yr) = O2.Ek2(Car).Ek2(Year)
O1.Ek1(LuxuryCar).Ek1(Pr) =

ConvertEuro2Dollar(O2.Ek2(Prices).Ek2(Price))

This rule indicates that a table LuxuryCar in a database associ-
ated with organization 1, can be expressed as a join between the
tables car and prices in the database associated with organization
2. Note that the attributes from the tables O2.car and O2.price
may not be the same in the table O1.LuxuryCar. In reality, the
attributes in the table LuxuryCar may be named CarID, Mk,
MD, Yr. The correspondence between the attributes CarID, Mk,
MD, Yr in the table O1.LuxuryCar and the attributes CarID,
Make, Model, Year in the table O2.Car respectively must also be
stated as entries in the mapping table for the rule to be correctly
interpreted. We also show that the attribute O2.Prices.Price
needs currency conversion using a provided function.

Finally, we postpone the discussion on how syntactic to
semantic access control policy translation is done to the next
section.

4.2 Realtime Query Processing
We now show how a query from the requestor organization

is mediated and then answered by the responder organiza-
tion in PACT.

Step 1: Schema Obfuscation and Query Encryption
When a query is issued by an employee of the requestor or-
ganization, the query is written against the employee’s user
ontology instead of the requestor’s schema. In this way, the
requestor’s schema is kept private. We refer to this process
as schema obfuscation. Conceptually, schema obfuscation
replaces a schema term in the query with a randomly chosen
synonym in the user ontology.

Besides enhancing privacy, schema obfuscation has some
side benefits. (1) It increases the extensibility and maintain-
ability of the system, because the database and its schema
may be changed and new terms can be added without re-
quiring a change in the ontology-mapping table used by the
mediator, as long as the newly added database term can be
mapped to a term in the existing ontology. (2) Avoiding
the tasks to update the ontology-mapping table yields more
security because the system is the most vulnerable when the
human expert is involved.

Similar to schema obfuscation, PACT also performs role
obfuscation.

After the query is “obfuscated”, it will be encrypted using
two keys: (a) the requestor’s master key; and (b) a specific



session key (denoted Ks) negotiated by the requestor and
the responder sometime before 6.
Example 2. Say an user at FBI poses a query:

select name, salary, address from employee where salary
> 70000;

She wants information from the CIA database. This query
is posed using the terms salary, name, address and employee
from FBI’s ontology. Note that the ontologies of both FBI
and CIA are shown in Appendix A.
Query encryption: The FBI-side PACT stub encrypts all
the obfuscated schema terms (e.g., employee and salary) in
the query using FBI’s master key, denoted KFBI , and all the
values (i.e., 70000) in the query using Ks, the session key,
to derive the query below. Note that Ks cannot be used
to encrypt the terms in the query because otherwise the re-
sponder can know the requestor’s terms after he eavesdrops
the query.

select EKF BI (name), EKF BI (salary), EKF BI (address) from
EKF BI (employee) where EKF BI (salary) > EKs(70000).

Step 2: SQL Query Parsing. When an encrypted query
arrives at the mediator, it is parsed and all the table and col-
umn names are extracted. The mediator expands wildcards
(like select *) by replacing the wildcard character using the
encrypted attributes associated with the table in the query.

Step 3: Encrypted Query Rewriting
This “decomposed” query is then sent to the mediator along
with the role of the user, say EKF BI (Agent), posing the
query. Now, the mediation algorithm (shown in Algorithm
1) is used to rewrite the query so that the semantic hetero-
geneity between organization A’s schema and B’s schema
can be resolved. Note that Algorithm 1 calls the function
RewriteTerms in Algorithm 2 to rewrite terms in a query.
Note also that the mediation algorithm does not need any
decryption.

To illustrate, let’s revisit Example 2. First, the mediator
searches for an equivalent table of the table EKF BI (employee).
Let us assume that this search fails. Next, the algorithm
tries to find mapping rules with tables in the responder’s
ontology that have been established as subClassOf the ta-
ble EKF BI (employee). Say, the tables EKCIA(manager) and
EKCIA(staff) have been matched to be subClassOf
EKF BI (employee). Furthermore, an attribute merge/split
rule specifies that EKF BI (name) is the merge of the at-
tributes EKCIA(firstName) and EKCIA(lastName) found in
both tables EKCIA(manager) and EKCIA(staff). Another
binary mapping rule indicates the equivalence of EKF BI (salary)
and the attribute EKCIA(comp) in table EKCIA(manager)
and the attribute EKCIA(pay) in table EKCIA(staff). Fur-
thermore, assume FBI and CIA were agencies from differ-
ent continents and EKCIA(pay) has units in Dollars and
EKF BI (salary) is expressed in Euros and a conversion func-
tion EuroToDollar and its inverse DollarToEuro is provided
by the expert. The attribute EKF BI (address) does not ap-
pear in any of the CIA tables and is thus dropped from the
query and the mediator informs the requestor of this elimi-
nation. The mediator rewrites the input query as the union
of the two queries:

(1) select Merge(EKCIA(firstName), EKCIA(lastName)),
DollarToEuro(EKCIA(comp)) from EKCIA(manager) where

6A variety of key distribution protocols can be used here.

Algorithm 1: The Mediator Algorithm

Func Mediate
Input : Query Q, User Role R, Source S, Destination

D
Output : Ack A

begin
{Rewrite the Queries }
Ontology Table OT ← lookup the
ontology-mapping table between S and D

{Rewrite the Roles }
MappingRoles R′ ← retrieve an Equivalent
mapping role for R from the role-mapping table
if retrieval failed then

Retrieve all roles R′ such that any role r’ in R′

is subClassOf R

{Rewrite the Query }
Parse query Q to identify the tables and attributes
in Q
Using mapping rules from OT construct all
possible rewritings of Q by replacing each table
and attribute in Q by calling ReplaceTerms

{Access Control Check }
for each rewritten query Q’ do

for each role R’ in R′ do
Check access( Q’, R’ )
if access failed then

Refine Q’ by replacing each term in Q’
by its subclasses and check for access
if access succeeded then

Insert refined query into
AcceptedQueryList

{Handle Splitting/Merging of Attributes }
for each attribute a and data value d in a rewritten
query Q’ that needs conversion or split/merge do

annotate the attribute in Q’ with the
conversion function or the split/merge function

{ Error Handling and Return }
Set all bits in MissingAttributesBitMap B to 1
if any table or selected-attribute in Q could not be
rewritten because of lack of mapping rules or access
control then

return “Failure”

else
if any where-clause-attribute in Q could not be
rewritten because of lack of mapping rules or
access control then

Set the corresponding bit in
MissingAttributesBitMap B to 0

send AcceptedQueryList to D
send B to S
return “Success”

end

EKCIA(comp) > EuroToDollar(EKs(70000));

(2) select Merge(EKCIA(firstName), EKCIA(lastName)),
DollarToEuro(EKCIA(pay)) from EKCIA(staff) where
EKCIA(pay) > EuroToDollar(EKs(70000));

Note that the functions Merge, EuroToDollar and Dollar-
ToEuro are not evaluated at the mediator but just inserted
into the query-text as shown above and the mediator sends
the responder the executables of those functions. As indi-
cated later, these functions are used by the responder to



Algorithm 2: Term Rewriting and Attribute Rewriting
Function Handling a Single Table in the Query and its
Attributes

Func ReplaceTerms
Input : Table T, OntologyMappingTable OT, Query

Q

Output : Ack A

begin
{Using Binary Mapping Rules }
tableCounter ← 0
tableNames[tableCounter] ← Lookup OT for
table-names T’ equivalent to T
if lookup fails then

for each table T’ that are SubClassOf T do
tableNames[tableCounter] ← T’
tableCounter ← tableCounter + 1

for each table T’ in tableNames do
Reset attributeNames to null
for each attribute a in T that appears in Q do

Insert into attributeNames the attributes of
T’ that are equivalent to a
if equivalent attributes to a are not
available then

Insert into attributeNames the
attributes of T’ that are subclassOf a

Lookup split/merge attribute rules R
Insert into attributeNames the attributes of
T’ in R mapping to a

tableNames[tableCounter].attributeNames ←
attributeNames
tableCounter ← tableCounter + 1

{Using Complex Mapping Rules }
for each complex mapping rule r that contains T
in Q do

tableNames[tableCounter] ← the SQL query in
r
tableNames[tableCounter].attributeNames ←
mapping attributes in r for those attributes
that are in T and Q
tableCounter ← tableCounter + 1

return (tableNames, attributeNames)

end

perform data translation before sending the results back to
the requestor.
Role Refinement: For our example, let us also assume
that while performing role-translation, role EKF BI (Agent)
gets translated to an equivalent CIA role EKCIA(field agent).
If Agent did not have an equivalent CIA role, the mediator
would then look for CIA roles that are subclass of Agent. If
such subclass roles are also not available, then the mediator
would perform a breadth-first search down the FBI role-
lattice to identify all subclasses of Agent and rewrites the
subclass-roles with equivalent (preferred) or subclass roles
(if equivalent not available) from the CIA role-lattice. For
subclasses that do not have a mapping role, the search pro-
ceeds further down the role-lattice till there are no further
subclass-roles. The mediator checks each rewritten query
under each of these rewritten roles. If no subclass of Agent
exists that has an equivalent or subclass role in the CIA role-
lattice, the query is rejected. This process of role-refinement
is similar to term-refinement shown in the next section.

Step 4: Semantic Access Control

After a query has been rewritten, PACT checks to verify if
the translated role has the permissions to access the tables
and columns in the rewritten queries. A novelty of PACT
is that it does semantic access control at the mediator. The
advantage is that the queries that are rejected are not sent
to the responder. This aspect of PACT results in the follow-
ing advantages: (1) Increased throughput because rejected
queries are rejected early. (2) Reduced network traffic due
to some queries not being forwarded to the responder. (3)
Reduced denial-of-service attacks because only valid queries
are forwarded to the responder. (4) Reduced processing load
at the responder.

A main security concern in developing this access con-
trol scheme is whether it will violate our trust assumptions.
The level of trust we assume in the mediator w.r.t metadata
management and the level of trust we assume in the me-
diator w.r.t access control enforcement must be consistent,
otherwise our claim that PACT greatly reduces the trust
requirements on the mediator will not hold. To make our
trust assumptions consistent, we have done the following:

• We do not trust that the mediator will always pre-
serve the privacy and confidentiality of metadata. Cor-
respondingly, we do not trust that the mediator will
always preserve the privacy and confidentiality of ac-
cess control policies. To achieve this aspect of consis-
tency, (a) PACT lets the mediator use encrypted access
control policies to do access control without knowing
anything about the policies. The mediator does not
know the encryption key used by the responder to
“distribute” her policy to the mediator. (b) Due to
schema obfuscation, the mediator does not have the
actual schema terms in the access control table.

• We assume that the mediator will not purposely cor-
rupt the encrypted ontology mapping table or the role
mapping table (unless it is broken). Correspondingly,
we assume the mediator will not purposely corrupt the
encrypted access control policies.

• We assume that the mediator will not purposely dis-
tort the term mapping and query rewriting process
(unless it is broken). Correspondingly, we assume the
mediator will not collude with any organization A to
get unauthorized access of data owned by organiza-
tion B. Nevertheless, we assume that the mediator
may abuse the way it enforces access control so that
it can infer more information about the metadata of
an organization. It should be noticed that the above
assumption is not unrealistic, and such assumptions
are often made in secure protocols that involve a third
party (For example, in fair exhange protocols a semi-
trusted thrid party can do bad things but he does not
collude with any other parties). To protect organiza-
tions from mediator abuses, (1) PACT suggests the
responder to selectively double-check the authorities
of an incoming query. (2) PACT suggests auditing at
each end. Both methods can effectively detect media-
tor abuses and greatly discourage the mediator to do
“bad” things. For example, when a query does not
pass authority double-checking, we know the mediator
probably did something bad. Finally, note that au-
diting is a standard thing that every organization will
usually do no matter it will help detect mediator mis-
ues or not. Also note that selective double-checking



of authorities is a light-weight procedure, especially
when the responder is able to tolerate a small amount
of confidentiality/privacy loss.

As indicated above, due to schema obfuscation, the me-
diator does not have the actual access control table from
the responding database. Instead it has an access control
table where the objects are the synonyms of the table or col-
umn names from the database, and the roles are the equiva-
lent roles from the role-hierarchy used in the database. We
refer such an access control table as the semantic access
control table. For example, say, CIA’s database-ontology
mapping table indicates that the ontology term staff is syn-
onymous to the database table-name adminpersonnel. Also,
the corresponding role-table indicates the ontology role field-
agent is synonymous with the database role secretagent. Let
the role-privilege assignment table in the database initially
contain the entry (secretagent, pi(adminpersonnel, select,
+)) indicating that the secretagent has select access to the
table adminpersonnel. The semantic authorization table
constructed and encrypted by CIA, and made available to
the mediator will contain the semantically equivalent en-
try (EKCIA(fieldagent), pi(EKCIA(staff), select, +)), which
means that EKCIA(fieldagent) has read access to the at-
tributes EKCIA(pay), EKCIA(firstName), and EKCIA(last-
Name) of the table EKCIA(staff). So the second rewritten
query shown in Step 3 can be provided access. Upon suc-
cessful access control check, the mediator forwards the query
to the responder 7.

Now, let us assume that the responder does not allow
access to the EKCIA(manager) table for an user with the
role EKCIA(fieldagent). The mediator will then perform a
breadth-first search on the CIA ontology to identify subClass-
es of EKCIA(manager) and check to see if the role EKCIA(field-
agent) has access to them. If the access-control check suc-
ceeds for one or more subclasses, the search stops checking
the subtree of these subclasses anymore. All queries for
which the access control check succeeded are forwarded to
the responder. Say, EKCIA(manager) has two subclasses,
EKCIA(firstLevelManager) and EKCIA(ExecutiveManager)
and the access-control table allows EKCIA(fieldagent) to ac-
cess the table EKCIA(firstLevelManager) but not
EKCIA(ExecutiveManager). The mediator will refine the
first rewritten query to:

select Merge(EKCIA(firstName), EKCIA(lastName)),
DollarToEuro(EKCIA(comp)) from EKCIA(firstLevelManager)
where EKCIA(comp) > EuroToDollar(EKs(70000));

Assuming that the attribute names are the same in the ta-
bles EKCIA(firstLevelManager) and EKCIA(manager) and
sends it to the responder. The mediator continues walking
down the subclass-hierarchy of the term EKCIA(Executive-
Manager). If there are no more subclasses of EKCIA(Executive-
Manager), the query refinement process is complete.

For the complex ontology-mapping rules, PACT replaces
each table in the query by the SQL query given in the com-
plex mapping rule and the attributes in that table are re-
placed using the attribute mapping rules associated with the
complex mapping rule.
Example 3. Consider the query:

select EKF BI (name), EKF BI (Mk) from EKF BI (employee),

7See [15] for more details about our semantic access control
scheme.

EKF BI (LuxuryCar) where EKF BI (employee.VehID) =
EKF BI (LuxuryCar.VehID);

Using the complex mapping shown in Example 1, and the
binary mappings used to rewrite Example 2, PACT will
rewrite this query to the following query:

select Merge(EKCIA(firstName), EKCIA(lastName)),
EKCIA(Make) from EKCIA(managers), EKCIA(Car),
EKCIA(Prices) where EKCIA(managers.VehID) =
EKCIA(Car.VehID) and EKCIA(Car.ID) = EKCIA(Prices.ID)
and EKCIA(Prices).EKCIA(Price) > DollarToEuro(40,000);

Note that this query is obtained by replacing FBI.employee
by its subClass CIA.managers and by replacing FBI.LuxuryCar
by the SQL query in its complex rule in Example 1. A simi-
lar query is obtained by replacing FBI.employee by its other
subClass CIA.staff.

After the mediator rewrites the query and the roles and
tries all possible refinements of the query by walking down
the ontology tree, if the process fails to find an equivalent
or contained query that is accessible to the given role, the
query is not forwarded to the responder and sent back to
the requestor with an error message indicating that access
was denied. If a table or an attribute in a where clause
does not have a mapping table in the responder, the query
is rejected. If an attribute whose values are being selected
does not have a mapping attribute in the responder, that
attribute is dropped from the rewritten query and the rest
of the query is forwarded to the responder. The mediator
assigns an unique identifier to each rewritten query. For each
rewritten query, the mediator sends an (identifier, bitmap)
pair to the requestor. The bitmap indicates which attributes
of the original query were dropped in the rewritten queries.

Step 5: Semantic to Syntactic Query Translation
At the responder, a semantic query is translated to a syntac-
tic query by replacing ontology terms in the query with their
equivalent terms that appear in the responder’s database.
For example, as indicated above, if the CIA database con-
tains a table named adminpersonnel (equivalent to the ontol-
ogy term staff) that has database attributes fname, lname,
and compensation equivalent to the ontology terms first-
Name, lastName, and pay respectively, then the query:

select Merge(EKCIA(firstName), EKCIA(lastName)),
DollarToEuro(EKCIA(pay)) from EKCIA(staff) where
EKCIA(pay) > EuroToDollar(EKs(70000));

is decrypted and translated to:

select Merge(fname,lname), DollarToEuro(compensation)
from adminpersonnel where compensation > EuroToDol-
lar(70000);

Here, in order to preserve the simplicity of the example, we
showed one-to-one binary mappings between database terms
and ontology terms. However, PACT does not require the
mappings between database terms and ontology terms to be
one-to-one. In general, the database-ontology mappings can
be any of the four types of mappings used by the mediator.
However, note that if there are no database tables equivalent
to the ontology tables, and instead we use database table
terms that are subClassOf the ontology tables, the rewritten
query is not equivalent to the original query but is contained
in the original query.

Step 6: Query Evaluation. The query is then evaluated
at the database and the results returned to the requestor.



Step 7: Returning the Results. The results of the
query are sent back to the requestor after the data is trans-
lated using the split-merge attribute rules and the conver-
sion functions. The data is sent back directly from the re-
sponder to the requestor bypassing the mediator. Conse-
quently, the result of a query needs to be reformulated into
the schema of the requestor before the results can be sent
back to the requestor 8. As shown above, the mediator sent
the responder a query attached with hints on how to refor-
mulate the data results using the merge/split attribute rules
and data conversion functions. The responder applies the
Merge function to merge the attribute values of the columns
firstName and lastName and the function DollarToEuro to
the columns pay and comp respectively from the two tables
before sending out the results to the requestor.

We chose to send the data back via a secure and direct
data channel because this choice provides maximum secu-
rity. If all data goes via the mediator, the mediator becomes
a bottleneck. Besides, any intruder who is able to record the
history of all communication with the mediator or capture
the mediator can infer characteristics of the data. Having
separate secure data channels reduces the chances of such
intrusion and avoids the capture of all the data by compro-
mising one channel or one entity.

4.3 Correctness and Maintenance Issues
Soundness & completeness: The mediation algorithm
(i.e., Algorithm 1) attempts to find all answers to the query
posed by the end-user. If it fails to find an equivalent an-
swer, the algorithm derives the maximally contained set of
answers that are available.

Theorem 4.1. Given a query Q and target information
sources T, the Mediator Algorithm used by PACT generates
a sound and complete set of answers to Q for which the user
posing Q has access permissions at any source in T.

Due to lack of space, we omit the proof of the theorem.
Maintenance: Here, we address the overhead implied by
metadata updates, when an update to the database schema
or roles occurs. First, PACT works seamlessly in the pres-
ence of changes to data because PACT does not materialize
any views at the mediator. Second, when an element is
removed from the database schema, no update to the en-
crypted ontology mapping table or the ontologies (used by
the Mediator) is needed.

Third, when a new element is added to the database
schema, if the ontology mapping table only contains the syn-
onyms of schema terms, the corresponding term (of the new
element) needs to be added to the table. Nevertheless, to
add this new term, light-weight incremental maintenance
is enough (in both automated ways and semi-automated
ways), and we do not need to redo the whole ontology-
matching process. Moreover, to achieve more obfuscation,
people may want to put additional term-mapping rules be-
yond schema terms into the ontology mapping table. In this
case, if the new schema element is already covered by the
additional term-mapping rules, no maintenance is needed.

Fourth, changes to the access-control policy at an infor-
mation source mandates updates at the mediator but we
expect such changes to be fewer than changes to the data
and the schema of information sources. Finally, note that

8Note that in Step 3 the mediator already compiled the
matched terms into the results’ schema (see Figure 1.).

an organization may periodically refresh her master key for
more privacy.

5. SECURITY AND PRIVACY ANALYSIS
In this section, we analyze the extent to which PACT can

protect the privacy & confidentiality of metadata. Since
both privacy and confidentiality of metadata are threatened
by the attempts or attacks to infer the encrypted metadata
stored on a mediator, we do the analysis in an uniform way.
(Note that we have already investigated whether PACT’s
semantic access control scheme can allow unauthorized ac-
cesses in [15]).

We assume the attacker’s goal is to infer 4 types of in-
formation: [High sensitivity] the data schemas; [Medium
sensitivity] the access control policies; [Low sensitivity] the
ontology and role hierarchy of each organization. We also
assume the attacker uses a dictionary of size N to infer the
above information.

Accordingly, we are interested in 3 representative types of
inference attacks: [Mode A: ] The attacker breaks into the
Mediator without any prior knowledge about the two orga-
nizations. [Mode B: ] The attacker breaks into the Mediator
with a history (log) of the queries mediated by the Mediator
some prior knowledge about the two organizations. [Mode
C: ] Besides Mode B, the attacker breaks into one of the two
organizations as well. Note that the case where the Media-
tor infers the 4 types of sensitive information is equivalent
to Mode A.

In the following, we show that PACT can provide very
good privacy. For simplicity, we assume the attacker’s dic-
tionary contains every term embedded in the 4 types of
metadata together with many other terms.

Mode A. In Mode A, since no key is known by the Me-
diator and no key is used during any mediation procedure
– we assume a secure key distribution protocol is used –
decrypting the 4 types of metadata stored on the Mediator
is almost impossible. Since the attacker does not have any
prior knowledge about the two organizations, he can only
rely on his dictionary.

First, one possible inference attack is to exploit the equi-
valentClass and subClassOf relations among encrypted
concepts to infer an ontology. Although concepts are en-
crypted in every ontology, their relationships are not. Hence,
a graph with the encrypted concepts as a node and the
equivalentClass and subClassOf relationships as an edge
can be constructed for one ontology or two ontologies “con-
nected” by a mapping table. Similarly, such graphs can be
constructed among the cleartext concepts in the attacker’s
dictionary. Then the attacker can match these two types of
graphs and the matches can give the attacker better knowl-
edge about the encrypted ontologies.

Nevertheless, since N (the size of the attacker’s dictio-
nary) is typically much larger than L (the size of an ontol-
ogy), the False Guess Probability (the probability that the
attacker makes a wrong guess about the ontology) is typi-
cally very high. Assume the graph built from an encrypted
ontology matches X graphs built from the dictionary, the
False Guess Probability is: Pfg = 1 − 1/X. Here X is a

number between 1 and

„
N
L

«
. Note that X is usually a

large number.
Using the ontology mapping table to correlate or “merge”

the two ontologies for Organizations A and B before the



matching may help reduce Pfg by decreasing the upper bound

of X to

„
N

LA + LB

«
. However, the attacker would have

difficulty in telling which concepts belong to which ontology
when a good match is obtained.

Second, a role hierarchy can be inferred in a similar way
because an encrypted role hierarchy tells the true relation-
ships among encrypted roles.

Third, the probability that the attacker can guess a per-
mission pi (of an access control policy) correctly is depen-
dent upon the probability that he can guess an ontology
correctly, namely 1− Pfg.

Finally, the probability that the attacker can guess an at-
tribute of the database schema of an organization correctly
is: Pds = (1 − Pfg) × Pso. Here 1 − Pfg is the probability
that the attacker can guess the organization’s ontology cor-
rectly. However, due to schema obfuscation, even if the at-
tacker guesses the ontology correctly, he still needs to guess
the “real” schema attribute involved in the original query
among a set of equivalent terms (or concepts) that are used
to obfuscate the attribute; and 1 − Pso is the correspond-
ing false guess probability. Assume the average size of an
equivalence class (of concepts) in an ontology is K, then
Pso = 1/K.

Mode B. In Mode B, we assume the attacker knows the
identity of each organization. Furthermore, the attacker has
good pre-knowledge about the role hierarchy and ontology
of the organization. In addition, we assume the attacker has
a log of the previous queries.

Now, inferring an ontology (or a role hierarchy) is much
easier not only because the attacker’s pre-knowledge can al-
low him to do better ontology graph matching, but also
because the attacker can do frequency-based attacks. By
monitoring a history of requests across organizations, the
attacker knows the most frequently used terms (though en-
crypted) and roles, among others. Such frequencies can be
matched against the attacker’s pre-knowledge about term
(or role) usage frequencies to infer the cleartext of an en-
crypted term. After a couple of key terms are inferred, the
whole ontology (graph) can be inferred with good accuracy,
since the conditional inference probability of a term based
on some known, relevant terms is typically much higher than
Pfg in Mode A.

Moreover, even after the ontologies (and role hierarchies)
are disclosed, it is still difficult to infer the database schema
because of schema obfuscation. Every request arriving at
the Mediator must have been obfuscated by the requestor;
and all results schema are in the obfuscated format. Hence
the attackers false guess probability will be 1− 1/K.

Mode C. In Mode C, after breaking into organization
A and the Mediator, the attacker knows all the metadata
about A and his goal is to infer the metadata about organi-
zation B. Frequency-based attacks are still effective so that
B’s ontology (and role hierarchy) can be inferred with good
accuracy. In addition, inferring B’s access control policy is
possible because the attacker can know if a request is au-
thorized or denied. However, due to schema obfuscation, it
is still difficult for the attacker to infer the syntactic access
control policy of B. Similarly, the false guess probability in
inferring B’s database schema is still 1− 1/K (the same as
Mode B).

6. EXPERIMENTS AND RESULTS
We have implemented a prototype of PACT. We pro-

grammed PACT prototype in Java; and Jena 2 Semantic
Web Framework is applied to handle the ontology files. In
particular, the prototype is implemented with Sun Java Web
Service Developer Pack 1.5 with Apache Tomcat 5.0.19 Web
Container. The Java Virtual Machine used is Sun JDK ver-
sion 1.5.0-b64. We performed several experiments on the
FBI-CIA information sharing scenario, where both FBI and
CIA have an individual organizational database managed by
MySQL DBMS version 4.1.8. Moreover, three Web services
are running in three computers (connected by a 100 Mbps
LAN switch) on behalf of FBI, CIA, and the mediator, re-
spectively. The detailed specifications of the experimental
testbed are in Table 1. Each computer is equipped with an
IDE hard drive with about 45 MB/second sequential read
throughput.

The communications among software components are im-
plemented by JAX-RPC. There are three types of imple-
mentation to create JAX-RPC clients: static stub, dynamic
proxy, and dynamic invocation interface (DII). Clients use
either static stub or dynamic relied on pre-generated imple-
mentation-specific classes. Therefore, in our implementa-
tion, we use dynamic invocation interface for flexible system
design and easy deployment.

Metadata and data sets: We generated the database
schema and data sets for both FBI and CIA databases based
an information sharing scenario. In general, each table con-
tains 50 to 10000 records depending on its functionality, and
the corresponding access control rules are stored in a sepa-
rate authorization table.

We designed the organizational ontology for each organi-
zation. Each ontology has about 20 classes and about 300
triples if they are represented in N-TRIPLE format [1]. Each
organization has 5 roles. Each role has different privileges
to access the tables in database.

Our evaluation benchmark consists of four types of queries.
We generated 25 queries for each type. Each query is exe-
cuted 10 times and we calculate the mean execution time for
each. Finally, the query result data size ranges from 0.31KB
to 1,359KB.

The four types of queries are:
(1) Basic query: These queries only involve semantic trans-
lations. For example, when an FBI agent poses a remote
query (using FBI’s ontology):

select username, passwd from Person where username =’john031’;.

After the mediator performs a semantic translation, it be-
comes:

select userid, pwd from Personnel where userid =’john031’;.

(2) Query using complex mapping rules: These queries in-
volve query folding. For example, an FBI agent’s across-

Table 1: System specifications
Tier FBI Middleware CIA

CPU (GHz) P4 2.53 Dual Xeon 1.8 P4 2.4
RAM 768MB 512MB 512MB

Linux Kernel 2.6.9 2.6.9 2.6.8
Database tables 15 - 18

Roles 5 - 5
Ontology (triples) 289 - 325



organization query can be originally written as:

select phonenumber from PersonDescription where ID =
101;

After semantic translation and expansion by the mediator,
the query becomes:

select number from PersonProfile, Cell where PersonPro-
file.ID = Cell.ID and PersonProfile.ID = 101;

(3)Query with data conversion: These queries contain values
or columns that PACT needs to translate. For example,
when a FBI agent issues the following query:

select ID from PersonDescription where height > 5.9;

Since in FBI the metric for height is in feet, but the height
in CIA is in centimeter, the translated query will be:

select ID from PersonProfile where height > 179.83;

(4) Query using complex mapping rules and data conversion:
These queries need to be translated using complex mapping
rules and data must be converted using mapping functions.
For example, the query:

select fullname, phonenumber from PersonDescription where
height > 5.9;

will be translated to:

select firstname, lastname, number from PersonProfile, Cell
where PersonProfile.ID = Cell.ID and height > 179.83;

6.1 End-to-End Response Time
The mean end-to-end response time is determined by the

average time used to process a cross-organization query when
multiple such queries are processed. We measure the re-
sponse time as the time elapsed since a user requested a
query until she got the response to the query from PACT.
The response time includes both computation and commu-
nication costs. encryption and decryption are also required.

To compare the overhead of PACT processing, we have
implemented a simple direct query system using the same
architecture as PACT where the requestor sends a query
to the responder via the mediator but does not perform
semantic mediation and access control because the requestor
uses the database schema of the responding organization.
Access control is done by the responding organization by
checking the role’s privilege.

Result data size: The results in Fig. 2(a) show that,
in general, when the result size increases, the response time
of PACT increases. In this figure and in the rest of the fig-
ures in this paper, we refer to PACT’s algorithm as SACE
(semantic access control enabling algorithm). The results
show that in the absence of encryption, PACT only adds
a small overhead during the query processing and the im-
pact on the mean response time is nearly a linear function
of result data size. Furthermore, the encryption computa-
tion dominated the overall process time, and the overhead
caused by semantic-level access control check is relatively
small. However, despite the overhead of key management
and encryption, we show that the performance of PACT
was not seriously degraded and we believe that the response
times we observed are acceptable given the security benefits.

The Number of users: We fix the size of each query’s
result to about 100KB. That is about 50 to 100 records in
our database depending on which tables are queried. Fig.
2(b) shows the average response time when the number of
users in the system, we see that in this case, the increases

response time in all systems increases. This result shows
that PACT has good scalability in a multi-user environment.

The size of database and ontology: The results in
both Fig. 2(a) and Fig. 2(b) show that the effect of doubling
the database size on the response time is very small and can
be neglected. The results show that PACT can easily be
extended to large database systems in practical applications.

Types of queries: Finally, we compare different query
types and evaluate the mediating process. The impact of dif-
ferent query types on end-to-end response time is evaluated
by sending 25 queries from each type of query and calcu-
lating the mean response time for each query. As shown in
Fig. 2(c), the mean response time of type 1 and type 2 (or
type 3 and type 4) query are very close. The closeness of
the response times indicates that the impact of semantic ex-
pansion on the system is very small. However, the overhead
of data conversion increases with the size of the result data.
This explains why the response time for type 3 and type 4
queries are higher than type 1 and type 2.

6.2 Component Throughput
In this section, we focus on the performance of the three

key components of PACT, namely the information-sharing
stub at the requesting organization, the middleware at the
mediator, and the stub at the responding organization. We
measure the throughputs (in terms of queries per second)
of the three components as follows. We get the through-
put measurements by injecting 40 queries on behalf of FBI
agents (where the four query types are mixed, each type has
10 queries), then we measure the total processing time (i.e.,
both the time consumed in processing the request and the
time consumed in processing the results are counted) con-
sumed by each component. For example, if in total it takes t
seconds for the mediator to process n queries, the mediator’s
throughput is n/t.

Result data size and number of users: In Fig. 3(a),
the non-encrypted system outperforms the encrypted sys-
tem. Fig. 3(b) shows the impact of the number of users on
the throughput of each component. The throughput of me-
diators in both systems are very close. Because encryption
takes significant time, the mediator becomes the bottleneck
in the non-encrypted PACT system. Since PACT is a very
flexible system, we can add more mediators to the system
to improve the overall performance. Load balancing can be
applied when there are multiple mediators are available.

The number of access control rules: Fig. 3(c) shows
the impact of the number of access control rules on the medi-
ator’s performance. The processing time increases linearly
as the number of the access control rules increases. It is
because the mediation process is a linear algorithm. We
also performed the same test on the mediator to process
non-encrypted data. As expected, the mediator is not sig-
nificantly affected where processing encrypted data. Finally,
we use RDQL in the Jena toolkit to query the ontology files,
and our experiments show that the size of ontology files has
almost no impact on the processing time of the mediator as
we doubled the ontology size.

7. RELATED WORK
There is a rich literature on access-control in informa-

tion interoperation systems. For example, Gong and Qian
[12, 11] have discussed the complexity and composability is-
sues in secure interoperation. Ahn and Mohan [5] have im-
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Figure 2: End-to-end response time of PACT, non-encrypted PACT, and the direct query system. (a) The
effects of result data size on response time. (b) The effects of number of users on response time at peak
traffic. (c) The effects of query types on response time.
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Figure 3: Component throughput of PACT and non-encrypted PACT. (a) The effects of result data size on
the throughputs of FBI, CIA and mediator. (b) The effects of number of users on the throughputs of FBI,
CIA and mediator at peak traffic. (c) Mediator performance evaluated by access control rules.

plemented RBAC-based information sharing on a syntactic
level. De Capitani di Vimercati, and Samarati have shown
how authorization specification and enforcement can be im-
plemented in federated database systems [9]. Dawson, Qian,
and Samarati, discuss how security can be provided while
enabling interoperation of heterogeneous systems [8]. How-
ever, their system does not have provisions to preserve the
privacy & confidentiality of the metadata of the information
sources.

There has been substantial work on querying databases
with encrypted data [13]. They tackle data inference at-
tacks while PACT tackles metadata inference attacks. They
are complimentary to PACT since we can simply plug in a
database with encrypted data in the PACT infrastructure,
and enable interoperation in such a setting with simple mod-
ifications.

Regarding semantic access control, Qin and Atluri intro-
duced concept-level semantic access control for the semantic
web [17]. Their work deals with how terms naming resources
(whose access is being controlled) can be rewritten using
other terms subject to logical rules expressed using OWL.
Qu, et al. [18], have presented an ontology-based rights
expression language built on top of OWL. Damiani, et al.
[7] have discussed how policy languages can be extended for

the semantic web. Agarwal and Sprick [2, 3], and Yague and
Troya [21, 20] have presented frameworks for access control
policies for semantic web services.

8. CONCLUSION
In this work, we outline PACT, a novel mediation based

solution to provide maximum privacy and confidentiality for
metadata, queries and data while enabling interoperation
among heterogeneous databases. PACT incurs only a minor
performance degradation in comparison to existing interop-
eration systems.
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APPENDIX
A. FBI AND CIA ONTOLOGIES

FBI-Ontology:

Class: employee
Type: Table
Prop: name
Prop: salary
Prop: address
Prop: VehID

Class: LuxuryCar
Type: Table
Prop: Mk
Prop: VehID

CIA-Ontology:

Class: manager
Type: Table
subClass: executiveManager
subClass: firstLevelManager
Prop: firstName
Prop: lastName
Prop: comp
Prop: VehID

Class: staff
Type: Table
Prop: firstName
Prop: lastName
Prop: pay
Prop: VehID

Class: car
Type: Table
Prop: Make
Prop: VehID
Prop: PriceID

Class: prices
Prop: ID
Prop: Price

Metadata:

comp and pay are in Dollars

car.PriceID is the foreign key to the

primary key Prices.ID

(Equivalent CIA-ontology.Staff CIA-DB.adminpersonnel)


