
The Design and Implementation of a Self-Healing Database System�

Peng Liu Jiwu Jing, Pramote Luenam, Ying Wang

Lunquan Li, Supawadee Ingsriswang

School of Info Sciences and Technology Department of Information Systems

Pennsylvania State University UMBC

University Park, PA 16802 Baltimore, MD 21250

pliu@ist.psu.edu

Abstract

In this paper, we present the design and implementation of ITDB, a self-healing or intrusion-tolerant

database prototype system. While traditional secure database systems rely on preventive controls and are

very limited in surviving malicious attacks, ITDB can detect intrusions, isolate attacks, contain, assess, and

repair the damage caused by intrusions in a timely manner such that sustained, self-stabilized levels of data

integrity and availability can be provided to applications in the face of attacks. ITDB is implemented on

top of a COTS DBMS. We have evaluated the cost-effectiveness of ITDB using several micro-benchmarks.

Preliminary testing measurements suggest that when the accuracy of intrusion detection is satisfactory,

ITDB can effectively locate and repair the damage on-the-fly with reasonable (database) performance

penalty.

Keywords: Security, Survivability, Self-Healing Database Systems

1 Introduction

Despite authentication and access control, data contained in a database can be corrupted by authorized insiders

due to operation mistakes or malicious intent, or outside attackers who have assumed an insider’s identity.

Data objects contained in a database are accessed by a transaction for correctness and reliability. A data

object is corrupted or damaged if its value is changed from a correct one to a wrong one. Data corruption is

a serious security problem in both commercial and military data applications, since corrupted data could lead

to wrong decisions and disarsterous actions. Data corruption is not only a data integrity issue, but also a data

�This work is supported by DARPA (OASIS) and Air Force Research Laboratory, Air Force Material Command, USAF, under

agreement number F30602-00-2-0575, by DARPA and AFRL, AFMC, USAF, under award number F20602-02-1-0216, and by NSF

CCR-TC-0233324.

2

availability issue. Many critical real world data applications shut down the whole database when they realize

that the database could have been seriously corrupted. The execution of new transactions can be resumed only

after the database is recovered for sure. In some cases, the real purpose of a data corruption attacker could be

denail-of-service to good users.

Besides preventive controls, a self-healing or intrusion tolerant database system can detect such data

corruption attacks (i.e., intrusions), isolate such attacks, contain, assess, and repair the damage caused by such

intrusions. This approach contrasts with traditional database security techniques such as authorization [17, 44,

22], inference control [1], multilevel secure databases [52, 46], and multilevel secure transaction processing

[4] where the focus is on preventing users from gaining access beyond their authorities. Such a preventive

approach is very limited to handle successful data corruption attacks, which can seriously jeopardize the

integrity and availability of databases. A self-healing database system, on the other hand, arms a prevention-

centric secure database system with the ability to survive intrusions, hence it evolves a prevention-centric

secure database system into an attack resilient database system.

Four factors motivate our work on intrusion tolerant database systems: the expanding cyber attacks, the

security limitations of prevention-centric database systems, the pressure brought by the advance of trusted

database systems and trusted computing, and the opportunity provided by intrusion detection technologies.

Experience with data-intensive applications such as credit card billing, banking, air traffic control, in-

ventory tracking, and online stock trading, has shown that a variety of attacks do succeed to fool traditional

database protection mechanisms. A database attack can be enforced at four possible levels: processor (or

instruction) level, OS level, DBMS level, and transaction (or application) level. And in general, malicious

insiders tend to attack at the transaction level and outsiders tend to attack at the other three levels. A study

performed in [8] shows that most attacks are from insiders. As web-based applications (e.g., e-business)

evolve, people have seen (and will see) more and more cyber attacks for a couple of reasons. For example,

more critical and valuable information is now processed through the web, which is world-wide accessible.

Expanding (successful) cyber attacks pressure applications to not only prevent unauthorized access, but also

tolerate intrusions.

Unfortunately, current database security techniques are very limited in tolerating data corruption intru-

sions, although access controls, integrity constraints, concurrency control, replication, active databases, and

recovery mechanisms deal well with many kinds of mistakes and errors. For example, access controls can

be subverted by the inside attacker or the outside attacker who has assumed an insider’s identity. Integrity

constraints are weak at prohibiting plausible but incorrect data. Concurrency control mechanisms cannot

distinguish an attacker’s transaction from any other transaction. Automatic replication facilities and active

database triggers can serve to spread the damage introduced by an attacker at one site to many sites. Recovery

mechanisms ensure that committed transactions appear in stable storage and provide means of rolling back a

database, but no attention is given to distinguishing legitimate activity from malicious activity.

3

We are glad to see that the recent introduction of trusted platforms provides possible solutions to processor

level, OS level, and DBMS level intrusion tolerance. Such a platform employs a hardware package containing

a processor, memory, and tamper-detecting circuitry [49], or various techniques for software protection [5, 11].

For instance, in [40] a trusted database system built on untrusted storage is proposed where a trusted DBMS

running in a trusted processing environment, and a small amount of trusted storage are used to protect a

scalable amount of untrusted storage such that every unauthorized read is disabled (by encryption), and every

unauthorized data modification can be detected (using hashes, signatures, and tamper-resistant counters) and

recovered. These advances pressure database systems to provide transaction-level intrusion tolerance, which

is the focus of this work. Note that trusted platforms cannot be used to tolerate transaction-level intrusions,

which are instead authorized.

Moreover, the recent advances in intrusion detection (ID) technologies enable intrusion tolerance by pro-

viding the ability to effectively identify intrusions [39, 43, 26, 28, 27]. Although our self-healing database

system is designed to live with not-so-good intrusion detectors, extremely poor intrusion detection could make

a self-healing database system not cost-effective, and shorter detection latency and higher detection accuracy

can certainly improve the overall cost-effectiveness of self-healing database systems. These advances make it

more feasible than ever to build a cost-effective, self-healing database system on top of existing intrusion de-

tection techniques. (Of course, we expect to see much better intrusion detection techniques in the near future,

and such techniques will make our self-healing database systems more feasible and attractive.) For example,

DARPA 1998 ID evaluation shows that cutting-edge ID techniques can achieve a detection rate around 70%

for misuse detection [29]. Although the effectiveness of existing anomaly detection systems could be seriously

compromised by high false alarm rate, we have seen more and more technology breakthroughs in anomaly

detection [27, 47], and for some specific applications existing anomaly detection techniques are already good

enough to build cost-effective intrusion-tolerant systems. For example, [51] shows that using typical clas-

sification rule induction tools such as RIPPER [10], fraud credit card transactions can be identified with a

detection rate around 80% and a false alarm rate less than 17%.

In contrast to prevention-centric secure database systems, our objective is to build a self-healing database

system - one that can survive attacks. In contrast to trusted database systems, our objective is to build a

transaction-level intrusion-tolerant database systems using “off-the-shelf” components. We have designed

and implemented ITDB, a prototype intrusion tolerant database system, to investigate this goal. ITDB il-

lustrates intrusion tolerance design principles in four ways: (1) using multiple intrusion tolerance phases to

achieve defense-in-depth; (2) using isolation and multi-phase damage containment to live with a not-so-good

intrusion detector; (3) on-the-fly intrusion tolerance transparent to applications; (4) using adaptive reconfig-

uration to achieve self-stabilized levels of data integrity and availability. Although built upon “off-the-shelf”

components, ITDB (currently) cannot defend against processor, OS, or DBMS-level attacks, when the lower-

level attacks are not so serious and when most attacks are from malicious transactions, ITDB can still be very

4

effective. Moreover, ITDB can be easily extended to build itself upon a trusted database system such as TDB

[40], or to integrate a set of lower-level intrusion-tolerance facilities into itself.

ITDB makes three sets of contributions. First, ITDB synthesizes a number of recent innovations that,

taken together, provide a basis for transaction-level intrusion-tolerant database system design. ITDB relies

on previous work in areas such as intrusion detection, isolation [33], and trusted recovery [2, 31]. Second,

in addition to borrowing techniques developed in other projects, we have refined them to work well in our

intrusion tolerant system. For instance, we have extended existing ID techniques to support application-aware,

transaction-level ID. We have also developed novel techniques to implement the general isolation algorithm

proposed in [33], and the general attack recovery algorithm proposed in [2]. Third, we have developed a set

of new intrusion-tolerance techniques, such as the multiphase damage containment technique [32] and the

rule-based adaptive intrusion-tolerance techniques [36].

We have built a prototype that demonstrates the key features of ITDB, including transaction proxying,

intrusion detection, damage assessment, repair, attack isolation, damage containment, and self-stabilization

(or adaptive reconfiguration). We have developed two micro-benchmarks to evaluate quantitatively the cost-

effectiveness of ITDB. As Section 10 details, however, some ITDB components are not fully coded, and some

components are still not quantitatively evaluated. The results in this paper should thus be viewed as evi-

dence that the ITDB approach is promising, not as “proof” that it will succeed. We present a few preliminary

measurements of the prototype. They show that when the effectiveness of the intrusion detector is satisfac-

tory, ITDB can effectively locate and repair the damage on-the-fly with reasonable (database) performance

overhead. A comprehensive evaluation of ITDB is now in progress.

The rest of this paper discusses these issues in more detail. Section 2 addresses some related work. Section

3 provides an overview of ITDB. Section 4 outlines ITDB’s approach to detect intrusions. Section 5 explains

how ITDB assesses and repairs damage. Section 6 explains how ITDB isolates suspicious users. Section 7

outlines ITDB’s approach to contain damage. Section 8 outlines ITDB’s approach to provide self-stabilized

levels of data integrity and availability. Section 9 addresses the security and survivability of ITDB. We describe

our prototype in Section 10, including initial testing measurements. Section 11 concludes the paper.

2 Related Work

ITDB builds itself upon several recent and ongoing research efforts to achieve its goal of transaction-level in-

trusion tolerance. First, ITDB exploits the recent advances in (database) intrusion detection. Second, several

ideas of ITDB are motivated by the recent advances in survivability and intrusion tolerance. Finally, ITDB

builds upon our previous work on database survivability.

5

Intrusion detection. One critical step towards intrusion-tolerant database systems is intrusion detection

(ID), which has attracted many researchers [13, 37, 21, 18, 39, 43, 38, 26, 28]. The existing methodology of ID

can be roughly classed as anomaly detection, which is based on profiles of normal behaviors [23, 45, 27, 47],

and misuse detection, which is based on known patterns of attacks, called signatures [19, 14, 48]. However,

current ID research focuses on identifying attacks on OS and computer networks. Although ITDB needs to

apply the existing anomaly detection algorithms, existing ID systems for OS and networks cannot be directly

used to detect malicious transactions. Although there are some works on database ID [9, 51], these methods

are neither application aware nor at transaction-level, which are the two major design requirements of the ID

component of ITDB.

Survivability and intrusion tolerance. The need for intrusion tolerance, or survivability, has been rec-

ognized by many researchers in such contexts as information warfare [15]. Recently, extensive research has

been done in general principles of survivability [24], survivable software architectures [50], survivability of

networks [42], survivable storage systems [53], etc. These research is helpful for database survivability, but

the techniques cannot be directly applied to build intrusion tolerant database systems.

Some research has been done in database survivability. In [3], a fault tolerant approach is taken to survive

database attacks where (a) several phases are suggested to be useful, such as attack detection, damage assess-

ment and repair, and fault treatment, but no concrete mechanisms are proposed for these phases; (b) a color

scheme for marking damage (and repair) and a notion of integrity suitable for partially damaged databases

are used to develop a mechanism by which databases under attack could still be safely used. This scheme can

be viewed as a special damage containment mechanism. However, it assumes that each data object has an

(accurate) initial damage mark, our approach does not. In fact, our approach focuses on how to automatically

mark (and contain) the damage, and how to deal with the negative impact of inaccurate damage marks.

There are also some work on OS-level database survivability. In [41] a technique is proposed to detect

storage jamming, malicious modification of data, using a set of special detect objects which are indistinguish-

able to the jammer from normal objects. Modification on detect objects indicates a storage jamming attack.

In [6], checksums are smartly used to detect data corruption. Similar to trusted database system technologies,

both detect objects and checksums can be used to make ITDB more resistant to OS level attacks.

Our previous work. In [2, 31], we have proposed a set of transaction-level trusted recovery algorithms.

ITDB has actually implemented the on-the-fly damage assessment and repair algorithm proposed in [2]. In

[33], we have proposed a general isolation algorithm. However, this algorithm cannot be directly implemented

on top of an “off-the-shelf” DBMS. ITDB has developed a novel SQL rewriting approach to implement the

algorithm. Finally, although the design and implementation of almost every key ITDB component have been

described in detail in our previous publications [32, 35, 30, 34, 36], this paper is the first paper to (a) present

a comprehensive view of ITDB and the fundamental design and implementation issues of intrusion-tolerant

database systems, and (b) describe (in detail) how the set of individual ITDB components interact with each

6

other, and why these components can be integrated into one intrusion-tolerant database system.

3 Transaction Level Intrusion Tolerance

3.1 ITDB Overview

ITDB focuses on the intrusions enforced by authorized but malicious transactions. ITDB views a database as

a set of data objects. At a moment, the state of the database is determined by the values of these objects. The

database is accessed by transactions for the ACID properties. A transaction is a partial order of read and write

operations that either commits or aborts. The execution of a transaction usually transforms the database for

one state to another. For simplicity, ITDB assumes that every object written by a transaction will be read first,

although ITDB can be easily extended to handle blind writes in an optimized way. Moreover, ITDB models

the (usually concurrent) execution of a set of transactions by a structure called a history. ITDB assumes that

strict two-phase locking (2PL) is used to produce serializable histories where the commit order indicates the

serial order among transactions [7].

ITDB focuses on the damage caused by malicious, committed transactions. Since an active, malicious

transaction will not cause any damage before it commits (due to the atomicity property), it is theoretically

true that if we can detect every malicious transaction before it commits, then we can roll back the transaction

before it causes any damage. However, this “perfect” solution is not practical for two reasons. First, transac-

tion execution is, in general, much quicker than detection, and slowing down transaction execution can cause

very serious denial-of-service. For example, Microsoft SQL Server can execute over 1000 (TPC-C) transac-

tions within one second, while the average anomaly detection latency is typically in the scale of minutes or

seconds. Detection is much slower since (1) in may cases detection needs human intervention; (2) to reduce

false alarms, in many cases a sequence of actions should be analyzed. For example, [27] shows that when

using system call trails to identify sendmail attacks, synthesizing the anomaly scores of a sequence of system

calls (longer than 6) can achieve much better accuracy than based on single system calls. Second, it is very

difficult, if not impossible, for an anomaly detector to have a 100% detection rate with reasonable false alarm

rate and detection latency, since some malicious transactions can (accidentally) behave just like a legitimate

transaction.

Hence ITDB is motivated by the following practical goal: “After the database is damaged, locate the dam-

aged part and repair it as soon as possible, so that the database can continue being useful in the face of attacks.”

In other words, ITDB wants to provide sustained levels of data integrity and availability to applications in the

face of attacks. The major components of ITDB are shown in Figure 1(a). Note that all operations of ITDB

are on-the-fly without blocking the execution of (most) normal user transactions. The job of the Intrusion

Detector is to identify malicious transactions. In the rest of this section, we give an overview of the jobs that

the other ITDB components do.

7

The complexity of ITDB is mainly caused by a phenomenon called damage spreading. In a database, the

results of one transaction can affect the execution of some other transactions. Informally, when a transaction

�� reads an object � updated by another transaction �� , �� is directly affected by �� . If a third transaction ��

is affected by ��, but not directly affected by �� , �� is indirectly affected by �� . It is easy to see that when

a (relatively old) transaction �� that updates � is identified malicious, the damage on � can spread to every

object updated by a good transaction that is affected by ��, directly or indirectly. The job of the Damage

Assessor is to identify every affected good transaction. The job of the Damage Repairer is to recover the

database from the damage caused on the objects updated by malicious transactions as well as affected good

transactions. In particular, when an affected transaction is located, the Damage Repairer builds a specific

cleaning transaction to clean each object updated by the transaction (and not cleaned yet). Cleaning an object

is simply done by restoring the value of the object to its latest undamaged version. This job gets even more

difficult as the execution of new transactions continues because the damage can spread to new transactions

and cleaned objects can be re-damaged. Therefore, the main objective of ITDB is to guarantee that damage

spreading is (dynamically) controlled in such a way that the database will not be damaged to a degree that is

useless.

We believe the single most challenging problem in developing practical, cost-effective self-healing database

systems (e.g., ITDB) is that during the detection latency, a tremendous amount of damage spreading can be

caused. This is because of the fact that intrusion detection is in general much slower than transaction pro-

cessing. So when a malicious transaction is detected, a lot of affected transactions may have already been

committed. Therefore, a practical, cost-effective self-healing database system must be able to live with a very

long detection latency relative to transaction processing.

A unique technical contribution of ITDB is that it can live with long detection latency without suffering

serious damage spreading. Allowing long detection latency not only lowers ITDB’s requirement on detection

agility, but also indirectly lowers ITDB’s requirements on detection rate and false alarm rate, because in many

cases, longer detection latency can lead to higher detection rate and lower false alarm rate. Nevertheless, it

should be noticed that in ITDB, a malicious transaction may not be detected and repaired (since the detection

rate is usually not 100%), and a good transaction could be mistakenly identified as a “malicious” transaction

and repaired in a wrong way (since the detection rate is usually not 0%), although allowing a longer detection

latency usually can reduce the number of such problematic transactions.

To live with a long detection latency is not an easy task. In ITDB, the impact of detection latency is three

folds: (1) during the detection latency, the damage can spread to many objects; (2) a significant assessment

latency can be caused, and during the assessment latency the damage can further spread to many more objects;

(3) significant assessment latency can cause ineffective - to some degree at least - damage containment. These

three aspects of impact can cause the database to be too damaged to be useful. The job of the Isolation

Manager and the Damage Container is to mitigate this impact.

8

It is easy to see that if every malicious transaction can be identified just after it commits, then very little

damage can spread, and damage assessment could be done quickly. However, with a significant detection

latency, when a malicious transaction �� is identified, in the history there can already be a lot of good transac-

tions following �� and many of them may have already been affected, directly or indirectly, by ��. Damage

assessment at this situation will certainly cause a significant delay, since as shown in [2], damage assess-

ment itself can spend substantial computation time to scan a long sub-history log for identifying the affected

transactions.

Significant assessment latency could cause ineffective damage confinement. At the first glance, it seems

that in order to prevent the damage from spreading during damage repair, containing the damage that is located

by the Damage Assessor is a good idea. However, in this approach damage will not be contained until an object

is reported by the Damage Assessor as damaged. Hence damage containment depends on damage assessment.

As a result, when there is a significant latency in locating a damaged object �, during the latency many new

transactions may read � and spread the damage on � to the objects updated by them. As a result, when �

is confined many other objects may have already been damaged, and the situation can feed upon itself and

become worse because as the damage spreads the assessment latency could become even longer. This clearly

contradicts with our original motivation of damage containment.

ITDB tackles the three challenges through two novel techniques: attack isolation and multiphase damage

containment. Although working towards the same goal, the Isolation Manager and the Damage Container

take two very different approaches. And these two approaches compensate each other. In particular, Damage

Container takes a novel multi-phase damage containment approach which first instantly contains the damage

that might have been caused by an intrusion as soon as the intrusion is identified, then tries to uncontain

the objects that are previously contained by mistake. Multi-phase damage containment can ensure that no

damage will spread during the assessment latency, although with some availability lost. However, Damage

Container can do nothing to reduce the damage caused during the detection latency. In contrast, the Isolate

Manager can reduce the damage caused during the detection latency (thus it indirectly reduces the damage

caused during the assessment latency) by isolating the execution of a suspicious transaction that is very likely

to cause damage later on. Isolation immunizes the database from the damage caused by the set of suspicious

transactions without sacrificing substantial availability, since if an isolated user turns out to be innocent, most

- if not all - of his or her updates can be merged back to the real database.

Finally, the job of the Self-Stabilization Manager (SSM) is to dynamically reconfigure the other ITDB

components based on (a) the current attacks, (b) the current workload, (c) the current system state, and (d) the

current defense behavior of ITDB, in such a way that stabilized levels of data integrity and availability can

be provided to applications in a cost-effective way. We call factors (a), (b), and (c) the environment of ITDB.

More details of the SSM can be found in Section 8. And the job of the Policy Enforcement Manager (PEM) is

to (a) proxy user transactions; and (b) enforce system-wide intrusion tolerance policies. For example, a policy

9

Applications

Intrusion Detector

Policy Enforcement

Manager

Damage
Assessor

Self-stabilization
Manager

Real Database

Isolated Data Versions
for Suspicious User 1

Manager
Isolation

... ...

Isolated Data Versions
for Suspicious User n

Damage Container

transactions

Trail Collector

Trail Collector

Trail Collector

Database Server

Damage
Repairer

(a) ITDB Architecture

Damage
Assessor

Damage
Repairer

Damage
Container

Isolation
Manager

Database
Server

Self-Stabilization
Manager

Intrusion
Detector

Firewall

PEM

Collectors
Trail

Network

ORB

(b) One ITDB Installation

Figure 1: ITDB

may require the PEM to reject every new transaction submitted by an user as soon as the Intrusion Detector

finds that a malicious transaction is executed by the user.

A real-world ITDB system is shown in Figure 1(b). For load balancing (or efficiency), self-resilience, and

reducing the overhead on the database server, ITDB distributes its components across a high-speed switching

LAN and uses an ORB to support network-transparent message interactions among these components, and to

provide an open interface for (future) integration with third party intrusion-tolerance components. In general,

any component can be located at any node except that the Trail Collectors should stay with the Database

Server, and the Damage Repairer should stay with the Damage Assessor. Here the firewall is used to hide

ITDB from applications and to protect ITDB from outside attacks.

3.2 Key Data Structures

Table 1 contains a summary of the major on-disk data structures used by ITDB to solve the above problems;

the data structures are discussed in detail in later sections of the paper. In ITDB, all the data structures are just

tables stored at the Database Server.

3.3 System Operation

ITDB is a concurrent system triggered by a set of specific events. The major events are as follows. (1) When

a user transaction � is submitted by an application, the PEM will proxy each SQL statement and transaction

processing call of � , and keep useful information about � and these SQL statements in the Transaction

List table and the Statement List table. (2) When a SQL statement is executed, the Trail Collectors will

log the corresponding writes in the Write Log, the corresponding reads will instead be extracted from the

statement text into the Read Log, and the Intrusion Detector will assess the suspicion level of the corresponding

10

Data Structure Purpose Maintained by Who? Section

Write Log Logs every write operation Trail Collectors 4

Read Log Logs every read operation The Read Extractor 5

Rule Base Keeps the rules for ID The Intrusion Detector 4

Function Table Registers the functions used in a detection rule The Intrusion Detector 4

Transaction List Contains status information about transactions The PEM 4

Statement List Records each SQL statement of a transaction The PEM 4

Transaction Type Table Helps identify the type of a transaction The PEM 5

Read and Write Set Helps extract read operations

Templates Table from SQL statement texts The PEM 5

Isolated Transaction Contains status information

Table about suspicious transactions The Isolation Manager 6

Time Stamp Columns Keeps the time stamps for each The PEM and

write operation at the record level the Damage Container 7

Uncontainment Set Maintains the set of objects that should be The Damage Container

uncontained and the Assessor 7

Table 1: Summary of the major data structures of ITDB

transaction and session using the trails kept in the Write Log (and possibly some other audit tables). (3) When

the Intrusion Detector identifies a suspicious user, the PEM will notify the Isolation Manager to start isolating

the user. (4) When the Intrusion Detector identifies a malicious transaction, the Damage Assessor will start

to locate the damage caused by the transaction, and the PEM and the Damage Container will start the multi-

phase damage containment process (if needed). (5) When the damage caused by a malicious or affected

transaction is located, the Damage Repairer will compose and submit a specific cleaning transaction to repair

the damage. (6) When the Damage Assessor finds an unaffected transaction, when the Damage Container

identifies an undamaged object, or when a cleaning transaction commits, some objects will be reported to

the PEM to do uncontainment. (7) When the Intrusion Detector finds that a suspicious user is malicious,

the Isolation Manager will discard the isolated data versions maintained for the user. (8)When the Intrusion

Detector finds that a suspicious user is actually innocent, the isolation manager will merge the work of the user

back into the real database by composing and submitting some specific back-out and/or update forwarding

transactions (to the PEM). (9) When the Self-Stabilization Manager receives a report about the environment

some reconfiguration commands could be generated and sent to some other ITDB components.

11

4 Intrusion Detection

The ID component of ITDB distinguishes itself from other ID systems in four aspects. (a) It is a database

intrusion detection system. (b) It is application aware. (c) It is at transaction level. (d) Instead of devel-

oping new ID techniques, ITDB applies existing anomaly detection techniques, and instead focuses on the

system support for flexible application-aware transaction-level database ID, and seamless integration of the

ID component into the ITDB prototype.

One big difference of database anomaly detection from OS or network anomaly detection is that applica-

tion semantics are much more critical to the accuracy of ID. In many cases, application-semantics-independent

metrics for transactions (and users), such as table access statistics, data file access statistics, session statistics,

and database schema semantics (enforced by foreign key constraints) are not enough to identify abnormal be-

haviors, and application (and domain) semantics have to be incorporated and evaluated. For example, when a

corrupted accountant raises the salary of a professor by $18,000 instead of $3,000, which is the right number,

the application-semantics-independent metrics will find nothing abnormal. However, the amount of salary

raise, namely $18,000, is clearly very suspicious for a university system, this kind of anomaly can only be

captured when application semantics are used.

Application-aware ID systems are the ones that understand and exploit application semantics. An application-

aware ID system should be able to adapt to application semantics. For each database application ����, an

ideal application-aware database ID system should be able to do the following things. (1) Automatically

extract (or mine) ����’s semantics from the specification of ����, the specification of the database, the

knowledge of the Application Manager, and the access history of the database. (2) Automatically compose

and deploy a specific set of trail collectors based on the semantics (extracted in Step 1) in such a way that the

trails collected can correctly capture the semantics. (3) Automatically use the extracted semantics to guide

selecting or composing the right ID algorithm which can achieve the maximum ID effectiveness for ����.

ITDB takes the first steps towards application-aware ID, although at this stage, the ITDB’s processes of se-

mantics extraction, trail-collector deployment, and ID algorithm selection are still not completely automated.

In particular, first, ITDB not only allows the Application Manager to manually specify application semantics

using adhoc ID rules, but also allows the Application Manager to automatically mine semantics-based ID

rules from transaction trails using such classification-rule induction tools as RIPPER [10]. Second, ITDB

allows the Application Manager to flexibly deploy trail collectors. In particular, ITDB collects transaction

trails at three levels (although the current implementation does not handle OS level trails): OS level trails are

got from the OS audit file, SQL statement level trails are collected by the set of Trail Collectors and kept in

the Write Log, and session level trails are mainly got from the DBMS session audit table. ITDB implements

the Trail Collectors using triggers associated with each user table. Triggers can capture every write involved

in a Delete, Insert, or Update statement. Based on the application semantics, the Application Manager can

determine where to deploy triggers and what to audit by each trigger.

12

Third, ITDB uses a simple rule-based framework to enable the Application Manager to apply a variety

of ID algorithms. In ITDB, an ID rule has four parts: (1) Event, which includes such events as the commit

of a transaction; (2) Alarm, which indicates the suspicion level that should be reported if the condition is

satisfied; (3) Condition, and (4) Priority, which is used to pick the right rule when multiple rules are satisfied.

In ITDB, rules are not only used to plug in ID algorithms, but also used to capture application semantics. In

order to apply a variety of ID algorithms, ITDB tries to support any kind of conditions. For this purpose, the

condition clause of a rule is: � � �� � �� � ��� � ��, and �� � ��	
��
	���� ��� ���� ���. Here �� is actually

a C++ function, and �� can be any parameter acceptable to the C++ function. In this way, since every existing

anomaly technique can be implemented as a couple of C++ functions (given that the needed data are properly

prepared), ITDB can support almost every existing ID algorithm. To illustrate, first, ITDB can easily support

either adhoc threshold-based ID rules or RIPPER rules. Second, ITDB can support a statistical-profile-based

ID algorithm by implementing the algorithm as a couple of condition functions, by storing the profile in a

durable table, and by specifying the Alarm field of a rule also as a function.

To support the above rule-based framework, ITDB has a Rule Base, an interface for users to define and

register the rules they want to use in addition to the set of default rules, and an interface for users to define and

register the functions they need to use in the condition clauses of these user-defined rules. ITDB uses DLL

libraries to support online integration of new functions and new rules. No recompilation is needed. We have

implemented the ID component and tested it using some adhoc rules, and the results are encouraging [20].

Intrusion detection at the transaction level has several advantages. First, transactions are a good abstraction

to model the behavior of users and to collect trails. They enable ITDB to easily synthesize the suspicion levels

(or scores) of a sequence of SQL statements, a sequence of transactions, or a sequence of sessions for accuracy

of ID. Second, the atomicity property of transactions can enable ITDB to prevent the attacks of some malicious

long-duration transactions when they can be detect before they commit based on the SQL statements that they

have already executed, by simply aborting them.

5 Damage Assessment and Repair

Database recovery mechanisms do not address malicious attacks, except for complete rollbacks, which undo

the work of benign transactions as well as malicious ones, and compensating transactions, whose utility de-

pends on application semantics. Undo and redo operations can only be performed on uncommitted or active

transactions, and the durability property ensures that traditional recovery mechanisms never undo committed

transactions [7]. Although our approach is related to the notion of cascading abort [7], cascading aborts only

capture the read-from relation between active transactions, and in standard recovery approaches cascading

aborts are avoided by requiring transactions to read only committed data [25].

We trace damage spreading by capturing the affecting relationship among transactions. In a history, a

13

transaction �� is dependent upon another transaction �� , if there exists an object � such that �� reads � after

�� updates it, and there is no committed transaction that updates � between the time �� updates � and ��

reads �. The dependent upon relation indicates the path along which damage spreads. In particular, if a

transaction which updates an object � is dependent upon a malicious transaction which updates an object

�, we say the damage on � spreads to �, and we say � is damaged. Moreover, a transaction �� affects

transaction �� if the ordered pair ���� ��� is in the transitive closure of the dependent upon relation. Since the

notation of ‘affects’ captures both direct and indirect affecting relationship among transactions, identifying

the set of good transactions affected by the set of malicious transactions does the job of damage assessment.

To illustrate, consider the following history over (��� ��� ��� ��� ��) where �� is malicious and others are

innocent. Note that �� and �� are affected by ��, but �� and �� are not. When �� commits, ��� �� are not

damaged, but ��� �� �� are. When �� commits, � is damaged. Note also that undoing ��, ��, are �� cleans

the database and the work of �� and �� is saved.

�� � ���
������

������
������

���
��
���

������
������

������
���
��

���
���

���
������

���
��
���

���
��
���

������
������

������
������

���
��

To identify affected transactions, we need to know which transactions are committed, the serial orders

among them, their writes, and their reads. The first three pieces of information can be got from the log used

by (almost) every “off-the-shelf” DBMS. However, since the DBMS on top of which ITDB is built has a

confidential log structure, ITDB uses triggers and the transaction proxy (a part of the PEM) to collect these

information. Unfortunately, no “off-the-shelf” DBMS logs reads, and triggers are unable to capture reads

either. Making a DBMS capture reads is very expensive. ITDB takes the approach of extracting reads from

SQL statement texts. In particular, ITDB assumes each transaction belongs to a transaction type, and the

profile (or source code) for each transaction type is known. For each transaction type ���, ITDB extracts a

read set template from ���’s profile. The template specifies the kind of objects that transactions of type ���

could read. Later on when a transaction �� is executed, the template for �������� will be materialized to

produce the read set of �� using the input arguments of ��. We say a read set template covers a transaction

type if any transaction � of that type, when executed, will have a real read set contained by the materialized

read set template. ITDB currently supports only canned transactions. ITDB can be extended to support adhoc

SQL statements using an on-the-fly statement analyzer, which is out of the scope of this paper.

To illustrate, consider a simple banking database that has two tables: the Account table that keeps the

current balance of each customer account, and the Money Transaction table that keeps the trails of every

deposit or withdraw. The Account table has two fields: Account ID that is the primary key, and Balance. The

Money Transaction table has four fields: (1) Money Transaction ID, the primary key; (2) Account ID; (3)

Amount; (4) Date; and (5) Teller ID. A deposit transaction can contain the two SQl statements shown in the

following. Statement List table. Here Seq No indicates the execution order of statements.

14

Trans ID SQL Type Statement Seq No

4.91.6240 INSERT INSERT INTO Money Transaction (Money Transaction ID, 1

Account ID, Amount, Date, Teller ID)

VALUES (2833, 1591766, 500, ‘21-Mar-00’, ‘Teller-1’);

4.91.6240 UPDATE UPDATE Account SET Balance = Balance+500 2

WHERE Account ID = 1591766;

Assume the read set template of Deposit transactions is shown in the following Read and Write Set Template

Table.

Trans Type Template Type Table Name Record ID Field

Deposit Read Account AccID Balance

The template tells us which table or column is read, but does not tell us which records or fields are read.

Hence we need materialization. In particular, ITDB gets the input arguments of the transaction also from SQL

statements with the help from the Input Argument Extraction table, which is shown as follows.

Trans Type Identifier Var Statement Pattern After Before

Deposit AccID ‘UPDATE’ ‘Account ID =’ ‘;’

This table says that for a deposit transaction the value of the Record ID variable AccID (an input argument)

is the number after the string “Account ID =” and before the char ‘;’ within the SQL statement that starts

with “SELECT”. Therefore, here the value of AccID is 1591766. Note that since a transaction could exe-

cute different sets of statements based on different input arguments and database states, Seq No sometimes

can identify a wrong statement. Then based on the template table, ITDB knows the transaction has read

only one record, which can be denoted as Account.1591766, and only one field, which can be denoted as

Account.1591766.Balance. Then this read will be recorded in the Read Log. Moreover, ITDB uses the Trans-

action Type table to help identify the type of transaction 4.91.6240 by pattern matching.

In this paper, we justify the feasibility of this approach using TPC-C benchmark [16] which simulates a

practical inventory management database application handling millions of records. The results of our study,

namely the read (and write) set templates of TPC-C profiles, are shown in Appendix B. Our study shows

that good templates can be got from real world applications such as TPC-C. Our study also shows that for

statements with a simple structure, this approach works very well. However, for some complicated SQL

statements that contain nested structures, extracting reads is not a easy job and sometimes it may only restore

an approximate read set. In [2], some general guidelines are given for extracting reads from nested statements.

In order to guarantee that approximate read sets will not affect the correctness of ITDB, we need to ensure

that every read set templates covers the corresponding transaction type.

Since ITDB keeps reads and writes in two logs, ITDB needs to synchronize the Write Log and the Read

Log in order to correctly identify every affected transaction. Since the commit order kept in the Write Log

indicates an equivalent serial order of the history, ITDB needs not to know the exact order between reads and

15

writes, and approximate synchronization should work. In particular, ITDB scans the Write Log in sequential

order (so a lot of searching time can be saved). Only when a commit record is scanned will ITDB retrieve

the whole read set of the transaction from the Read Log, and use the reads to determine whether or not the

transaction is affected.

After an affected transaction �� is identified, ITDB repairs the damage caused by �� using a simple clean-

ing transaction. Compared with the approach of cleaning each object damaged by �� separately, a cleaning

transaction cleans multiple objects within one transaction.

In contrast with traditional database undo operations which are performed backwardly, ITDB executes

cleaning transactions forwardly for two reasons: (1) to reduce the repair time; (2) to not block new transactions

which could spread damage. Then it is possible that an object cleaned by a previous cleaning transaction

is damaged by a later on cleaning transaction if the cleaning transaction of every transaction just restores

each object updated by the transaction to the value before the update. To avoid this problem, ITDB, when

composing a cleaning transaction, only handles the objects that are damaged and are not under cleaning.

Another key challenge is termination detection. Since as the damaged objects are identified and cleaned

new transactions can spread damage if they read a damaged but still unidentified object, so ITDB faces two

critical questions. (1) Will the repair process terminate? (2) If the repair process terminates, can we detect

the termination? However, as shown in Section 7 later on, the right answer is dependent on the mechanism of

damage containment. In particular, if ITDB enforces multi-phase damage containment, then since multi-phase

damage containment can guarantee that after the containment phase no damage will spread, so the answers to

the above questions are simply “YES”. On the other hand, if ITDB enforces one-phase damage containment,

then new transactions can continuously spread damage during damage assessment and repair. In this case, with

respect to question 1, when the damage spreading speed is quicker than the repair speed, the repair may never

terminate. (In this case, to ensure that the repair will terminate, ITDB can slow down the damage spreading

speed by slowing down the execution of new transactions.) Otherwise, the repair process will terminate. With

respect to question 2, under the following three conditions we can ensure that the repair terminates: (1) the

cleaning transaction for every malicious transaction has been committed; (2) every identified damaged item

is cleaned; (3) further scans will not identify any new damage. When conditions 1 and 2 are satisfied, in

order to ensure that condition 3 is also satisfied, ITDB reports termination only after the records for every

user operation that is executed before any damaged object is cleaned are scanned. Please refer to [2] for more

details about termination detection.

Finally, it should be noticed that ITDB can easily handle each newly identified malicious transaction

during the repair process of a set of (previously identified) malicious transactions. The details are omitted for

space reason.

16

6 Isolation

The idea of isolation is very simple: redirecting the access of a user when he or she is found suspicious (i.e.,

very likely to cause damage later on). Later on, if the user is proved malicious, his or her updates can be

discarded without harming the database. If the user turns out to be innocent, (usually most of) his or her

updates can be merged back to the real database. Isolation immunized the database from the damage caused

by suspicious users without sacrificing substantial availability.

Similar to detecting malicious users, ITDB uses a specific suspicion level to identify suspicious users. The

suspicion level is determined based on several factors, for example, the probability that users reaching this

suspicion level will evolve into an intruder, the number of users that need to be isolated, the corresponding

isolation cost, etc. This suspicion level is also dynamically reconfigured by the Self-Stabilization Manager.

See Section 8 for more details.

There are three major strategies to isolate a suspicious user: in complete isolation, no new writes of

trustworthy users will be disclosed to the user, and vice versa; in one-way isolation, new writes of trustworthy

users will be disclosed to the user, but not vice versa; in partial isolation, new writes of trustworthy users can

be disclosed to the user, but vice versa. ITDB chooses one-way isolation for the merit of more availability and

(potentially) less merging lost.

To save resources, ITDB does not use completely replicated databases to do isolation, instead, ITDB

maintains extra data versions only for the object that are updated (including object creation) by an isolated

transaction. In particular, when a suspicious user is isolated, for each (real database) table �� that the user

wants to write, ITDB maintains one extra table with the same structure, called a suspicious version of ��

(denoted ��), only during the isolation period. �� keeps all and only the writes of the user on ��. Hence, the

size of �� should be much smaller than �� in most cases.

Enforcing one-way isolation is not an easy task. When an isolated user issues a SQL statement to access

a table ��, according to one-way isolation, a record � in �� can be read only if � does not have a version

in ��, and only �� can be modified. To achieve this, changing the way SQL statements are executed, i.e.,

using templates, can cause substantial overhead, however, executing the SQL statement solely on �� can

generate invalid results, so the only practical way is to rewrite the SQL statement. ITDB rewrites every

Select, Insert, Delete, and Update statement in a slightly different way. ITDB assumes each statement can

access multiple tables, and can have nested subqueries. Each rewriting algorithm has three steps: (1) build the

virtual database for the isolated user; (2) execute the statement; (3) restore the real database. To illustrate, the

rewriting algorithm for Insert statements is shown in Figure 2. Note that the algorithm is with respect to an

Oracle Server. Readers can refer to [30] for the other rewriting algorithms. The limitation of SQL statement

rewriting is that for some complicated SQL statements the isolated user can suffer a significant delay.

When an isolated user is proved malicious, all the suspicious versions of the user are discarded. When an

isolated user is proved innocent, we need to merge the updates of the user back into the real database. Since

17

Start

if the table (denoted ��) the SQL statement wants to insert data into

has not a suspicious version (denoted ��) for the suspicious user

� create ��;

if the SQL statement has no subqueries in the values clause

� rewrite the Insert statement in such a way that �� is replaced by ��;

� forward the rewritten Insert statement to the Oracle Server;

else assume the subquery of the SQL statement accesses tables ���, ..., ���

� for each ��� that has some records that are deleted from ��� , delete these records from ���

and keeps these records in memory;

� for each ��� that has some records that are not in ���, insert these records into ��� ;

� rewrite the Insert statement in such a way that the string “INSERT INTO table name” is removed;

� rewrite the Select statement generated from the previous step as

(�����, �����, �����, �����, ..., �����, �����, 	
�� �
�
,
����,
����, ...,
����). Here 	
�� �
�
 is the

Select statement. ����� is “SELECT * INTO � � FROM ��� WHERE ���.primary key IN (SELECT

���.primary key FROM ���);”. Here � � is a bind array to tentatively keep all the rows that are selected.

����� is “UPDATE ��� a SET (all fields) = (SELECT * FROM ��� b WHERE a.primary key =

b.primary key) WHERE ���.primary key IN (SELECT ���.primary key FROM ���);”.
���� is

“UPDATE ��� SET (all fields) = (the corresponding record of � �) WHERE � �� .primary key IN � �;”;

� forward the sequence to the Oracle server for execution, assume the result is denoted To Insert;

� delete every record that has been inserted into � ��, ..., ���;

� for the records that have been deleted from � ��, ..., ���, re-insert them into these tables;

� for each record in To Insert, insert it into the corresponding � �� ;

End

Figure 2: Rewriting Algorithm for Insert Statements

18

a data object can be independently updated by both a trustworthy transaction and a suspicious transaction,

the real database and the isolated database can be inconsistent. In [33], a specific graph, denoted precedence

graph, which illustrates the serial order that should be among the transactions in the merged history, is used

to identify and resolve the inconsistencies. [33] shows that if the precedence graph is acyclic, then the real

database and the isolated database are consistent. ITDB uses the same approach. For completeness, the

conflict identification and resolution algorithm is summarized in Appendix C.

To build the precedence graph, ITDB needs to know the read and write sets of each transaction, and the

read-from relationship between the trustworthy history and the suspicious history, which are denoted as read

edges in the graph. ITDB gets writes from the Write Log, however, getting reads from the Read Log may not

work because for an isolated user the reads are extracted from his or her original statements before rewriting.

ITDB double-checks each object in the read set of an isolated transaction, if the object is in a suspicious

table ��, the identifier of the object (in the read set) will be changed. If not, ITDB captures the read edge

by searching the write log after the corresponding isolated transaction commits to find the latest trustworthy

transaction that updates the object. Note that this search should be done before any new trustworthy transaction

is executed.

To resolve the inconsistencies, some transaction may have to be backed out. To reduce the impact of the

backed out transactions on other being isolated transactions, ITDB backs out only (once) isolated transactions.

The back-out cost is typically very small. For instance, the simulation done in [12] shows that for a database

with 1000 objects, when the number of the transactions involved in the merging is 100, the percentage of the

transactions backed out is around 5%. When the database becomes bigger, the percentage will usually be even

smaller. After the inconsistencies are resolved, ITDB forwards the updates of the isolated user back into the

real database using an update forwarding transaction. To prevent the updates of new transactions from being

overwritten by the update forwarding transaction, ITDB denies the access of new transactions to the tables

involved in the merging during the merging period.

7 Damage Containment

Traditional damage containment approaches are one-phase. An object � will not be contained until the Dam-

age Assessor identifies it as damaged. However, significant assessment latency can cause the damage on � to

spread to many other objects before � is contained. To overcome this limitation, ITDB uses a novel technique

called multi-phase damage containment as an alternative. This approach has one containing phase, which in-

stantly contains the damage that might have been caused by an intrusion as soon as the intrusion is identified,

and one or more later on uncontaining phases, denoted containment relaxation, to uncontain the objects that

are mistakenly contained during the containing phase.

ITDB models the containing phase as a simple estimation problem. When a malicious transaction �� is

19

detected, the containing phase gets the set of objects to contain by ‘estimating’ which objects in the database

may have been damaged. This set is called a containment set, denoted �	 . Accurate damage assessment is

not possible in this phase, since our approach requires the containing phase be finished in a very short period

of time so that the damage can be contained before any new transaction is executed (to possibly spread the

damage), and the Damage Assessor usually needs a much longer period of time to do accurate assessment.

Assume at this moment the set of objects that are really damaged is �
, then the relation between �	 and

�
 is of four types: (1) �	 � �
 (exact estimation); (2) �	 � �
 (over estimation); (3) �	 � �

(not enough estimation); (4) �	 � �
 �� �	 , and �	 � �
 �� �
 (approximate estimation). Although some

approximate estimation approaches are also investigated, ITDB currently performs over-estimation using time

stamps. ITDB lets the transaction proxy tag each record with a time stamp, which is kept in the time stamp

columns of each table, to time the latest write on the record. To maintain time stamps in a transparent manner,

ITDB rewrites SQL statements. For example, an Insert statement “INSERT INTO tablename (...) VALUES

(...)” will be rewritten to “INSERT INTO tablename (..., timestamp) VALUES (..., SYSDATE)”. When ��

is identified, the containing phase is simply done by denying any new access to the objects that are updated

between the time �� starts and the time this containing control is enforced. The part of the history executed

during this period of time is denoted the contained subhistory.

ITDB models each later on uncontaining phase as a process to transform one containment set to another.

Hence the whole multi-phase containment process can be modeled by a sequence of confinement sets, denoted

�	� ��� ��� ������ �
 . �	 indicates the result of the containing phase. ��, � � � � 	, indicates the result of

an uncontaining phase. The goal of the uncontaining phases is to converge the sequence to �
. The sequence

can be converged to �
 in many different ways. The way ITDB takes is that �	 � ��, �� � �� for � � �,

and �� � �
. It should be noticed that the above discussion does not take into account the objects that are

cleaned during each uncontaining phase. Typically the objects cleaned during uncontaining phase � should be

removed from ��.

ITDB has three uncontaining phases, which are processed one by one, but can have some overlaps. ITDB

uncontains an object by inserting it into the Uncontainment Set table. The PEM will allow access to the

objects kept in this set in spite of their time stamps. For this purpose, when a SQl statement � arrives, the PEM

will first check �’reads, which are extracted from � on-the-fly, before allowing � to be executed. Uncontaining

phase I exploits the dependency relationship among transaction types. A transaction type ��� is dependent

upon ��� if the intersection of ���’s write set template and ���’s read set template is not empty. The rational

is that in the corresponding type history of the contained subhistory, if (��������, ��������) is not in the

transitive closure of the dependent upon relation, then �� is not affected by ��, and ��’s write set should be

uncontained.

However, even if (��������, ��������) is in the transitive closure of the dependent upon relation, ��

could still be unaffected, since the granularity of an object (type) kept in a template is usually very large. To

20

uncontain the writes of such �� , in uncontaining phase II, ITDB materializes the read and write set templates

of each transaction in the contained subhistory and uses the materialized read and write sets to identify the

transactions that are not affected. Their writes are then uncontained. In uncontaining phase III, the Damage

Assessor puts the write sets of the contained transactions that are not affected into the Uncontainment Set

table. Note that in general uncontaining phase I is much quicker than phase II, and phase II is much quicker

than phase III. ITDB uses multiple uncontaining phases for quicker uncontainment and more availability.

Finally, it should be noticed that after a repair terminates, the time-stamp based containment control should

be dismissed, and the Uncontainment Set table should be reset to be empty. Moreover, it should be noticed

that when multiple malicious transactions are simultaneously contained, some previously uncontained objects

may need to be contained again. ITDB has developed a technique which can guarantee the correctness of

simultaneous damage containment. Readers can refer to [34] for more details about this technique.

Multi-phase damage containment causes no damage leakages during the assessment latency. So the work

of the Damage Assessor and the Repairer can be bounded within the contained subhistory and be significantly

simplified. The drawback is that since some undamaged objects can be mistakenly contained, some availability

can be temporarily lost. This indicates that under the situations where damage spreading during the assessment

latency is not serious, multi-phase damage containment may be too expensive. Therefore, in these situations

ITDB should instead enforce one-phase damage containment.

8 Self-Stabilization

The ITDB components we have presented so far can behave in may different ways. For one example, the

Intrusion Detector can use different suspicion levels to raise alarms. For another example, either one-phase or

multiphase damage containment could be enforced. At one point of time, the resilience of an ITDB system is

primarily affected by four factors: (a) the current attacks; (b) the current workload; (c) the current system state;

and (d) the current defense behavior of the system. It is clear that on the same system state, attack pattern,

and workload, two ITDB systems with different behaviors can yield two very different levels of resilience.

To achieve the maximum amount of resilience, ITDB systems must adapt their behaviors to the environment

(determined by factors a, b, and c).

The goal of self-stabilization is to adapt ITDB to the environment in such a way that the data integrity and

availability levels can be stabilized. In particular, ITDB uses four resilience metrics to measure the effective-

ness of adaptation operations: (1) level of data integrity, denoted �� , which is indicated by the percentage of

the damaged data objects (among all the data objects); (2) level of data availability from the perspective of

containment, denoted ���, which is indicated by the percentage of the data objects contained by the Damage

Container; (3) level of data availability from the perspective of false alarms, denoted ���, which is indicated

by the percentage of the good transactions that are mistakenly rolled back due to false alarms; (4) level of

21

data availability from the perspective of isolation, denoted ���, which is indicated by the percentage of the

innocent transactions that are backed-out during the merge processes.

To achieve this goal, the Self-Stabilization Manager (SSM) monitors the environment, especially the four

resilience metrics, closely; analyzes the reasons for each significant degradation of data integrity or availability

levels; enforces agile ITDB reconfiguration to adjust the behaviors of the ITDB components in a way such that

the adjusted system behavior is more (cost) effective than the old system behavior in the changed environment.

In addition to the four resilience metrics, ITDB has identified around 20 additional environment parameters

such as �� (Number of Affected Transactions) and ��� (Transaction Response Time).

Almost every ITDB component is reconfigurable and the behavior of each such component is controlled

by a set of a parameters. For example, the major control parameters for the Intrusion Detector are ���, the

threshold suspicion-level for reporting malicious transactions, and ���, the threshold for suspicious trans-

actions. The major control parameter for the Damage Container is the amount of allowed damage leakage,

denoted ��. When �� � �, multi-phase containment is enforced; when there is no restriction on ��,

one-phase containment is enforced. The major control parameter for the PEM is the transaction delay time,

denoted �� . When �� � �, transactions are executed in full speed; when �� is not zero, transaction

executions are slowed down. At time �, we call the set of control parameters (and the associated values) for

an intrusion-tolerance component ��, the configuration (vector) of �� at time �, and the set of configurations

for all the ITDB components, the configuration of ITDB at time �. In ITDB, each reconfiguration is done by

adjusting the system from one configuration to another configuration.

To do optimal reconfiguration, we want to find the best configuration (vector) for each (new) environ-

ment. However, this is very difficult, if not impossible, since the adaptation space of ITDB systems con-

tains an exponential number of configurations. To illustrate, the simplest configuration of an ITDB system

could be ����� ��������� �, then the size of the adaptation space is !
"#�	�����	 !
"#�	�����	

!
"#�	���� 	 !
"#�	��� �, which is actually huge. Moreover, we face conflicting reconfiguration crite-

ria, that is, resilience and cost conflict with each other, and integrity and availability conflict with each other.

Therefore, we envision the problem of finding the best system configuration under multiple conflicting criteria

a NP-hard problem.

ITDB thus focuses on near optimal heuristic adaptation algorithms which can have much less complexity.

In particular, the SSM uses normal ECA (Event-Condition-Action) rules to do heuristic adaptations. ITDB

cares about such events as the arriving of a report from the Damage Assessor, the arriving of a report about

the false alarm rate, and the arriving of a report about the effectiveness of isolation. ITDB cares about such

conditions as �� changes and ��� changes. Actions in rules correspond to the reconfiguration operations.

For example, a rule can be:

Event: a report from the Damage Assessor arrives;

Condition: the integrity level decreases to 80% & the new transaction submission rate goes

22

(a) Medium Transaction Size (b) Large Transaction Size

Figure 3: Average Repair Time

beyond 3 per second & the current containment mechanism is one-phase;

Action - asks the PEM to slow down the execution of new transactions by 20% &

changes one-phase containment to multi-phase.

In some cases, cost should be taken into account for better cost-effectiveness. For example, a rule can be:

Event: a report from the Isolation Manager arrives;

Condition: more than 50% of isolated users are innocent &

the average back-out cost is beyond 4;

Action: asks the Intrusion Detector to increase the suspicion level threshold for

suspicious transactions by 25%.

The current design of the SSM is limited in several aspects. First, the approach is responsive but not

proactive. Second, the SSM cannot do automatic quantitative, cost-effectiveness-analysis-based reconfigura-

tion. Third, the SSM cannot learn reconfiguration rules by itself. Improving the SSM is one of the focuses of

our ongoing research.

9 Security and Survivability of ITDB

ITDB components should certainly be secure and attack resilient by themselves, because otherwise the at-

tacker can attack the database through attacking these components. For example, a faked cleaning transaction

(message) can instruct the PEM to roll back the work of a benign, unaffected transaction. To secure ITDB,

first, a firewall is used to prevent outsiders from accessing ITDB components. Second, software protection

techniques can be used to protect ITDB code [5, 11]. Third, cryptography can be applied to protect ITDB data

structures and messages.

23

(a) Small Transaction Size (b) Large Transaction Size

Figure 4: Average Response Time

Making ITDB attack (and failure) resilient is more challenging. For this purpose, first, we distribute ITDB

components to multiple nodes and try to minimize the dependency of one ITDB component upon another.

For example, when the Damage Container is broken, the rest of ITDB can still work well by asking the PEM

to do containment only based on the reports from the Damage Assessor, or by asking the PEM to transfer

from multi-phase containment to one-phase. However, ITDB has single points of failures, i.e., the Intrusion

Detector. Second, distributing the database to multiple sites could help. For example, with respect to trusted

recovery, when one site is disabled, the rest of the database may still be able to be continuously repaired

(maybe in a degraded manner). Third, some kinds of replication can help. For example, if we have two

Intrusion Detectors working in parallel, then when one is down, the other can take over. Currently, none of

the above techniques is implemented by ITDB except component distribution.

10 ITDB Prototype

This section describes the state of the ITDB prototype as of September 2002 and presents some preliminary

testing results. Although these results are preliminary and although we expect future tuning to substantially

improve absolute cost-effectiveness, they suggest that when the accuracy of the intrusion detector is satisfac-

tory, ITDB can effectively locate and repair damage on-the-fly with reasonable performance penalty.

10.1 Prototype Status

The prototype implements all the ITDB components we have described so far. Moreover, we have imple-

mented two database applications to evaluate ITDB: one for credit card transaction management, the other

for inventory management (based on TPC-C). However, it should be noticed that the implementations of the

Intrusion Detector and the SSM are still preliminary.

24

10.2 Test Environment

For our testbed, we use Oracle 8.1.6 Server to be the underlying DBMS (Note that ITDB is in general DBMS

independent.) The Oracle Server, the Trail Collectors, and the Intrusion Detector are running on a DELL dual

Pentium 800MHZ CPU PC with 512MB memory. The PEM, the Isolation Manager, the Damage Container,

and the SSM are running on a Gateway PC with a 500MHZ Pentium CPU and 192MB memory. The Damage

Assessor and Repairer and the Read Extractor are running on a Gateway PC with a 600MHZ Pentium CPU

and 128MB memory. These three PCs run Windows NT 4.0 and are connected by a 10Mbps switched-LAN.

The current version of ITDB has around 30,000 lines of (multi-threaded) C++ code and Oracle PL/SQL

code. Each ITDB component is implemented as a set of C++ objects that have a couple of CORBA calling

interfaces through which other components can interact with the component and the reconfiguration can be

done. We use ORBacus V4.0.3 as the ORB. Finally, ITDB assumes applications use OCI calls, a standard in-

terface for Oracle, to access the database, and ITDB proxies transactions at the OCI call level. The reason that

ITDB does not proxy transactions at the TCP/IP or the SQL*NET level, which are more general, is because

the exact packet structure of SQL*NET is confidential.

10.3 Testing Results

This section presents a set of preliminary testing results for ITDB. In particular, our testing is three-folds: first,

we test the functionality of ITDB using the two database applications we have implemented, and the results

show that ITDB meets its design requirements. Second, we evaluate the effectiveness of ITDB using several

micro-benchmarks launched by a set of specific transaction simulators. Third, we evaluate the (database)

performance overhead of ITDB using another set of micro-benchmarks. Since currently we do not have real

database intrusion data, the Intrusion Detector is not evaluated. Instead, we let the Intrusion Detector function

as a “simulator” which can detect intrusions with different detection latency.

These testing results are preliminary. We focus on the damage assessment and repair aspect of ITDB

and simply assume that (a) one-phase containment is enforced, (a) no user is isolated, and (c) the SSM does

no adaptations. Although the impact of isolation, multiphase containment, and self-stabilization remains

to be evaluated, we do not expect these additions to significantly impact the results presented here, since

the percentage of isolated transactions is usually very small, the PEM enforces multiphase containment in a

concurrent manner, and the SSM does not adjust the way of assessment and repair. However, thorough future

investigation will be needed to evaluate the merits of the three ITDB components and their impact on the

proxying delay, which is a major overhead of ITDB.

Also the current prototype implementation suffers from two inefficiencies, all of which we will tackle in

the future. One is that ITDB is currently implemented on top of a commercial DBMS. This hurts performance

because the log cannot be exploited and transactions have to be proxyed. To fix this limitation, we plan to

25

move ITDB into the DBMS kernel, for example, integrating ITDB into the kernel of TDB [40]. The other

inefficiency is that we have done little tuning. As we do so, we expect to find and fix inefficiencies. As a

result, the absolute performance is much less than we expect for the in-kernel ITDB. The in-kernel ITDB

should have a throughput similar to a prevention-centric DBMS.

From the damage assessment and repair perspective, the effectiveness of ITDB is measured by the average

repair time of a damaged object. The micro-benchmarks use a database (table) of 10,000 records (each record

has 140 bytes), and assume that only one malicious transaction is involved in each repair. Note that our

transaction simulators can easily inject malicious transactions into the micro-benchmarks. The repair time of

a damaged object is defined by the duration between the time when the malicious transaction is identified and

the time when the object is cleaned. In this way, the detection latency has no impact on the average repair

time.

We simulate damage spreading by having a set of dependency degrees among transactions. When transac-

tion �� is dependent upon transaction �� , the size of the intersection of ��’s write set and ��’s read set is called

the dependency degree of �� upon �� . Each micro-benchmark is a sequence of transactions with a specific

probabilistic dependency degree (between each pair of adjacent transactions) and a specific transaction size,

and each micro-benchmark runs three times using different transactions. Figure 3 shows the impact of trans-

action size and dependency degree on the average repair time. In addition, for large-size transactions around

15 out of 200 transactions are affected. Here the dots on the lines indicate the average of the measurements of

three runs. Here large size transactions have 15 reads and 10 writes, and medium size ones have 8 reads and

4 writes. It is clear that large size transactions are more sensitive to the dependency degree than medium size

ones. The main reason is that more statements are needed to repair large size transactions. See that the repair

time is reasonable even if the speed to the Database Server is only 10Mbps.

The performance penalty, which is mainly caused by the proxying latency, is evaluated by comparing the

throughput or the average response time of a set of transactions when the ITDB is enforced with the throughput

of the same set of transactions when ITDB is not enforced. Figure 4 shows that the average response time

increases by 11-20% for small size transactions (with 5 reads and 2 writes) and by 37-68% for large size

transactions. The main reason is that the micro-benchmarks use one statement for each read or write, thus

large size transactions have much more statements to proxy. In real world applications where many reads and

writes are usually done within one SQL statement, the response time delay should be much smaller than the

results here.

11 Conclusion and Future Work

Self-healing database systems can detect data corruption intrusions, isolate attacks, contain, assess, and repair

the damage caused by intrusions, in a timely manner such that the database will not be too damaged to be

26

useful. This approach has the potential to evolve a prevention-centric secure database system into a defense-

in-depth resilient database system. The ITDB prototype demonstrates the viability of building such resilient

database systems, and its initial performance results illustrate the potential of this approach.

We believe an important future work is to quantitatively investigate the influence of detection latency and

accuracy on the cost-effectiveness of self-healing database systesms. Although we believe that the techniques

proposed in this paper can build cost-effective, self-healing database systems under a variety of intrusion

detection effectivenesses (in terms of detection latency, detection rate, and false alarm rate), it is very desir-

able to identify quantitatively the kind of intrusion detectors that can support cost-effective, self-healing data

management.

References

[1] M. R. Adam. Security-Control Methods for Statistical Database: A Comparative Study. ACM Computing

Surveys, 21(4), 1989.

[2] P. Ammann, S. Jajodia, and P. Liu. Recovery from malicious transactions. IEEE Transactions on Knowl-

edge and Data Engineering, September 2002.

[3] P. Ammann, S. Jajodia, C.D. McCollum, and B.T. Blaustein. Surviving information warfare attacks on

databases. In Proceedings of the IEEE Symposium on Security and Privacy, pages 164–174, Oakland,

CA, May 1997.

[4] V. Atluri, S. Jajodia, and B. George. Multilevel Secure Transaction Processing. Kluwer Academic

Publishers, 1999.

[5] D. Aucsmith. Tamper resistant software: an implementation. In Proc. International Workshop on Infor-

mation Hiding, pages 317–333, Cambridge, UK, 1996.

[6] D. Barbara, R. Goel, and S. Jajodia. Using checksums to detect data corruption. In Proceedings of the

2000 International Conference on Extending Data Base Technology, Mar 2000.

[7] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database

Systems. Addison-Wesley, Reading, MA, 1987.

[8] Carter and Katz. Computer Crime: An Emerging Challenge for Law Enforcement. FBI Law Enforcement

Bulletin, 1(8), December 1996.

[9] C. Y. Chung, M. Gertz, and K. Levitt. Demids: A misuse detection system for database systems. In 14th

IFIP WG11.3 Working Conference on Database and Application Security, 2000.

27

[10] W. W. Cohan. Learning trees and rules with set-valued features. In Proc. 13th National Conference on

Artificial Intelligence, 1996.

[11] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and stealthy opaque con-

structs. In Proc. ACM Symposium on Principles of Programming Languages, pages 184–196, San Deigo,

CA, 1998.

[12] S. B. Davidson. Optimism and consistency in partitioned distributed database systems. ACM Transac-

tions on Database Systems, 9(3):456–581, September 1984.

[13] D. E. Denning. An intrusion-detection model. IEEE Trans. on Software Engineering, SE-13:222–232,

February 1987.

[14] T.D. Garvey and T.F. Lunt. Model-based intrusion detection. In Proceedings of the 14th National

Computer Security Conference, Baltimore, MD, October 1991.

[15] R. Graubart, L. Schlipper, and C. McCollum. Defending database management systems against infor-

mation warfare attacks. Technical report, The MITRE Corporation, 1996.

[16] J. Gray, editor. The Benchmark Handbook for Database and Transaction Processing Systems. Morgan

Kaufmann Publishers, Inc., 2 edition, 1993.

[17] P. P. Griffiths and B. W. Wade. An Authorization Mechanism for a Relational Database System. ACM

Transactions on Database Systems, 1(3):242–255, September 1976.

[18] P. Helman and G. Liepins. Statistical foundations of audit trail analysis for the detection of computer

misuse. IEEE Transactions on Software Engineering, 19(9):886–901, 1993.

[19] K. Ilgun. Ustat: A real-time intrusion detection system for unix. In Proceedings of the IEEE Symposium

on Security and Privacy, Oakland, CA, May 1993.

[20] S. Ingsriswang and P. Liu. Aaid: An application aware transaction-level database intrusion detection

system. Technical report, Dept. of Information Systems, UMBC, 2001.

[21] R. Jagannathan and T. Lunt. System design document: Next generation intrusion detection expert system

(nides). Technical report, SRI International, Menlo Park, California, 1993.

[22] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. A unified framework for enforcing multiple

access control policies. In Proceedings of ACM SIGMOD International Conference on Management of

Data, pages 474–485, May 1997.

[23] H. S. Javitz and A. Valdes. The sri ides statistical anomaly detector. In Proceedings IEEE Computer

Society Symposium on Security and Privacy, Oakland, CA, May 1991.

28

[24] J. Knight, K. Sullivan, M. Elder, and C. Wang. Survivability architectures: Issues and approaches. In

Proceedings of the 2000 DARPA Information Survivability Conference & Exposition, pages 157–171,

CA, June 2000.

[25] H.F. Korth, E. Levy, and A. Silberschatz. A formal approach to recovery by compensating transactions.

In Proceedings of the International Conference on Very Large Databases, pages 95–106, Brisbane, Aus-

tralia, 1990.

[26] T. Lane and C.E. Brodley. Temporal sequence learning and data reduction for anomaly detection. In

Proc. 5th ACM Conference on Computer and Communications Security, San Francisco, CA, Nov 1998.

[27] W. Lee and D. Xiang. Information-theoretic measures for anomaly detection. In Proc. 2001 IEEE

Symposium on Security and Privacy, Oakland, CA, May 2001.

[28] Wenke Lee, Sal Stolfo, and Kui Mok. A data mining framework for building intrusion detection models.

In Proc. 1999 IEEE Symposium on Security and Privacy, Oakland, CA, May 1999.

[29] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. Weber, S. Webster,

D. Wyschogrod, R. Cunningham, and M. Zissman. Evaluating intrusion detection systems: The 1998

darpa off-line intrusion detection evaluation. In Proc. of 2000 DARPA Information Survivability Confer-

ence and Exposition, Jan 2000.

[30] P. Liu. Dais: A real-time data attack isolation system for commercial database applications. In Proceed-

ings of the 17th Annual Computer Security Applications Conference, 2001.

[31] P. Liu, P. Ammann, and S. Jajodia. Rewriting histories: Recovery from malicious transactions. Dis-

tributed and Parallel Databases, 8(1):7–40, 2000.

[32] P. Liu and S. Jajodia. Multi-phase damage confinement in database systems for intrusion tolerance. In

Proc. 14th IEEE Computer Security Foundations Workshop, Nova Scotia, Canada, June 2001.

[33] P. Liu, S. Jajodia, and C.D. McCollum. Intrusion confinement by isolation in information systems.

Journal of Computer Security, 8(4):243–279, 2000.

[34] P. Liu and Y. Wang. The design and implementation of a multiphase database damage confinement sys-

tem. In Proceedings of the 2002 IFIP WG 11.3 Working Conference on Data and Application Security,

2002.

[35] P. Luenam and P. Liu. Odam: An on-the-fly damage assessment and repair system for commercial

database applications. Technical report, Dept. of Information Systems, UMBC, 2001. This paper is

submitted for publication.

29

[36] P. Luenam and P. Liu. The design of an adaptive intrusion tolerant database system. In Proc. IEEE

Workshop on Intrusion Tolerant Systems, 2002.

[37] T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali, H. S. Javitz, A. Valdes, P. G. Neumann, and

T. D. Garvey. A real time intrusion detection expert system (ides). Technical report, SRI International,

Menlo Park, California, 1992.

[38] Teresa Lunt and Catherine McCollum. Intrusion detection and response research at DARPA. Technical

report, The MITRE Corporation, McLean, VA, 1998.

[39] T.F. Lunt. A Survey of Intrusion Detection Techniques. Computers & Security, 12(4):405–418, June

1993.

[40] U. Maheshwari, R. Vingralek, and W. Shapiro. How to build a trusted database system on untrusted

storage. In Proceedings of 4th Symposium on Operating System Design and Implementation, San Diego,

CA, October 2000.

[41] J. McDermott and D. Goldschlag. Towards a model of storage jamming. In Proceedings of the IEEE

Computer Security Foundations Workshop, pages 176–185, Kenmare, Ireland, June 1996.

[42] D. Medhi and D. Tipper. Multi-layered network survivability - models, analysis, architecture, frame-

work and implementation: An overview. In Proceedings of the 2000 DARPA Information Survivability

Conference & Exposition, pages 173–186, CA, June 2000.

[43] B. Mukherjee, L. T. Heberlein, and K.N. Levitt. Network intrusion detection. IEEE Network, pages

26–41, June 1994.

[44] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of authorization for next-generation database

systems. ACM Transactions on Database Systems, 16(1):88–131, 1994.

[45] D. Samfat and R. Molva. Idamn: An intrusion detection architecture for mibile networks. IEEE Journal

of Selected Areas in Communications, 15(7):1373–1380, 1997.

[46] R. Sandhu and F. Chen. The multilevel relational (mlr) data model. ACM Transactions on Information

and Systems Security, 1(1), 1998.

[47] S. Sekar, M. Bendre, and P. Bollineni. A fast automaton-based method for detecting anomalous program

behaviors. In Proc. 2001 IEEE Symposium on Security and Privacy, Oakland, CA, May 2001.

[48] S.-P. Shieh and V.D. Gligor. On a pattern-oriented model for intrusion detection. IEEE Transactions on

Knowledge and Data Engineering, 9(4):661–667, 1997.

30

Warehouse

W

History

W*30k

District

W*10

Customer

W*30k
New-Order

W*9k

Order-Line

W*30k W*30k

Order

100k

Item

Stock

W*100k

10

3k

1

1

0-1

5-15

3W

100k

Figure 5: Entity-Relationship Diagram of the TPC-C Database

[49] S. Smith, E. Palmer, and S. Weingart. Using a high-performance, programmable secure coprocessor. In

Proc. International Conference on Financial Cryptography, Anguilla, British West Indies, 1998.

[50] V. Stavridou. Intrusion tolerant software architectures. In Proceedings of the 2001 DARPA Information

Survivability Conference & Exposition, CA, June 2001.

[51] S. Stolfo, D. Fan, and W. Lee. Credit card fraud detection using meta-learning: Issues and initial results.

In Proc. AAAI Workshop on AI Approaches to Fraud Detection and Risk Management, 1997.

[52] M. Winslett, K. Smith, and X. Qian. Formal query languages for secure relational databases. ACM

Transactions on Database Systems, 19(4):626–662, 1994.

[53] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H. Kiliccote, and P. K. Khosla. Survivable

information storage systems. IEEE Computer, (8):61–68, August 2000.

A TPC-C Databases and Transactions

The benchmark portrays a wholesale supplier with a number of geographically distributed sales districts and

associated warehouses. As the Company’s business expands, new warehouse and associated sales districts

are created. Each regional warehouse covers 10 districts. Each district serves 3000 customers. All warehouse

maintain stocks for the 100,000 items sold by the Company. Customers call the Company to place a new order

or request the status of an existing order. Orders are composed of an average of 10 order items.

The database has nine tables whose structures are omitted here(See [16] for the structures of these tables).

The entity-relationship diagram of the database is shown in Figure 5 where all numbers shown illustrate the

minimal database population requirements. The numbers in the entity blocks represent the cardinality of the

tables. The numbers next to the relationship arrows represent the cardinality of the relationships.

31

B Read and Write Set Templates of TPC-C Transactions

In TPC-C, the term database transaction as used in the specification refers to a unit of work on the database

with full ACID properties. A business transaction is composed of one or more database transactions. In

TPC-C a total of five types of business transactions are used to model the processing of an order (See [16]

for the source codes of these transactions). The read and write Set templates of these transaction types are as

follows.

 The New-Order transaction consists of entering a complete order through a single database transaction.

The template for this type of transaction is (‘+’ denotes string concatenation):

Input= warehouse number(w id), district number(d id),

customer number(c id); a set of items(ol i id),

supplying warehouses(ol supply w id), and

quantities(ol quantity)

Read Set= � Warehouse.w id.W TAX;

District.(w id+d id).(D TAX, D NEXT O ID);

Customer.(w id+d id+c id).(C DISCOUNT,

C LAST, C CREDIT); Item.ol i id.(I PRICE,

I NAME, I DATA); Stock.(ol supply w id+

ol i id).(S QUANTITY, S DIST xx, S DATA,

S YTD, S ORDER CNT, S REMOTE CNT) �

Write Set= � �=District.(w id+d id).D NEXT O ID;

New-Order.(w id+d id+�);

Order.(w id+d id+�);

��= � ol i id �;

Order-Line.(w id+d id+�+��) �

 The Payment transaction updates the customer’s balance, and the payment is reflected in the district’s

and warehouse’s sales statistics, all within a single database transaction. The templates for this type of

transaction are:

Input= warehouse number(w id), district number(d id),

customer number(c w id, c d id, c id) or customer

last name(c last), and payment amount(h amount)

Read Set= � Warehouse.w id.(W NAME, W STREET 1,

W STREET 2, W STATE, W YTD);

32

District.(w id+d id).(D NAME, D STREET 1,

D STREET 2, D CITY, D STATE, D ZIP, D YTD);

[Case 1, the input is customer number:

Customer.(c w id+c d id+c id).(C FIRST,

C LAST,C STREET 1, C STREET 2,

C CITY, C STATE, C ZIP, C PHONE,

C SINCE, C CREDIT, C CREDIT LIM,

C DISCOUNT, C BALANCE,

C YTD PAYMENT,

C PAYMENT CNT, C DATA);

Case 2, the input is customer last name:

Customer.(c w id+c d id+c last).(C FIRST,

C LAST,C STREET 1, C STREET 2,

C CITY, C STATE, C ZIP, C PHONE,

C SINCE, C CREDIT, C CREDIT LIM,

C DISCOUNT, C BALANCE,

C YTD PAYMENT,

C PAYMENT CNT, C DATA)] �

Write Set= � Warehouse.w id.W YTD;

District.(w id+d id).D YTD;

[Case 1, the input is customer number:

� Customer.(c w id+c d id+c id).(C BALANCE,

C YTD PAYMENT, C PAYMENT CNT);

History.(c id+c d id+c w id+d id+w id).* �

Case 2, the input is customer last name:

� Customer.(c w id+c d id+c last).(C BALANCE,

C YTD PAYMENT, C PAYMENT CNT);

History.(c d id+c w id+d id+w id).* �] �

 The Order-Status transaction queries the status of a customer’s most recent order within a single

database transaction. The templates for this type of transaction are:

Input= customer number(w id+d id+c id) or

customer last name(w id+d id+c last)

Read Set= � [Case 1, the input is customer number:

Customer.(w id+d id+c id).(C BALANCE,

33

C FIRST, C LAST, C MIDDLE);

Case 2, the input is customer last name:

Customer.(w id+d id+c last).(C BALANCE,

C FIRST, C LAST, C MIDDLE)] ;

�=Order.(w id+d id+c id).O ID;

Order.(w id+d id+c id).(O ENTRY D,

O CARRIER ID);

Order-line.(w id+d id+�).(OL I ID,

OL SUPPLY W ID, OL QUANTITY,

OL AMOUNT, OL DELIVERY D) �

Write Set= � �

 The Delivery transaction processes ten new (not yet delivered) orders within one or more database

transactions. The templates for this type of transaction are:

Input= warehouse number(w id), district number(d id),

and carrier number(o carrier id)

Read Set= � �� = New-Order.(w id+d id).NO O ID;

�� = Order.(w id+d id+��).O C ID;

Order.(w id+d id+��).(O CARRIER ID,

OL DELIVERY D, OL AMOUNT);

Customer.(w id+d id+��).(C BALANCE,

C DELIVERY CNT) �

Write Set= ��� = New-Order.(w id+d id).NO O ID;

�� = Order.(w id+d id+�).O C ID;

Order.(w id+d id+��).O CARRIER ID;

Customer.(w id+d id+��).(C BALANCE,

C DELIVERY CNT);

New-Order.(w id+d id+��);

Order-Line.(w id+d id+��).OL DELIVERY D �

 The Stock-Level transaction retrieves the stock level of the last 20 orders of a district. The templates

for this type of transaction are:

Input= warehouse number(w id), district number(d id),

Read Set = � � = District.(w id+d id).D NEXT O ID;

�� � ��� �� ���� � � �	� � � ���;

34

�� = Order-Line.(w id+d id+��+

OL NUMBER).OL I ID;

Stock.(w id+��).S QUANTITY �

Write Set= � �

C Conflict Identification and Resolution for Isolation

The conflict identification and resolution algorithm is as follows.

 Assume the history of the isolated user is ��; assume the suffix of the real database history after the

user is isolated is ��

 The precedence graph, denoted ��������, is built as follows

– Let �� and �� be two suspicious transactions or two trustworthy transactions that perform conflict-

ing operations on a data item. There is a directed edge �� � �� if �� precedes �� .

– If an update of a trustworthy transaction �� was disclosed to a suspicious transaction �� during

the isolation, then there is a directed edge �� � ��. This type of edge is called a read edge. We

add read edges to the traditional precedence graph to support one-way isolation.

– Let �� be a trustworthy transaction that reads a data item that has been updated by a suspicious

transaction ��, and there is no path from �� to ��, then there is a directed edge �� � ��.

– Let �� be a suspicious transaction that reads a data item that has been updated by a trustworthy

transaction ��, and there is no path from �� and �� that includes a read edge, then there is a

directed edge �� � �� .

 If�������� is acyclic, then the algorithm ends. If�������� has cycles, then first break all the cycle

by backing out some transactions, then end the algorithm. Although it is shown in [12] that just finding

the optimal back out strategy is NP-complete, the simulation results of [12] show that in many cases,

several back out strategies, in particular breaking two-cycles optimally, can achieve good performance.

 For each transaction �� that is backed out from ��, locate every active suspicious history which has a

read edge from �� , and for each such read edge, denoted �� � ��, back out �� and every transaction

that is affected by ��.

