SILVER: Fine-grained and Transparent
Protection Domain Primitives in Commodity OS
Kernel

Xi Xijong and Peng Liu

Penn State University

Abstract. Untrusted kernel extensions remain one of the major threats
to the security of commodity OS kernels. Current containment approaches
still have limitations in terms of security, granularity and flexibility, pri-
marily due to the absence of secure resource management and commu-
nication methods. This paper presents SILVER, a framework that offers
transparent protection domain primitives to achieve fine-grained access
control and secure communication between OS kernel and extensions.
SILVER keeps track of security properties (e.g., owner principal and in-
tegrity level) of data objects in kernel space with a novel security-aware
memory management scheme, which enables fine-grained access control
in an effective manner. Moreover, SILVER introduces secure primitives
for data communication between protection domains based on a unified
integrity model. SILVER’s protection domain primitives provide great
flexibility by allowing developers to explicitly define security properties
of individual program data, as well as control privilege delegation, data
transfer and service exportation. We have implemented a prototype of
SILVER in Linux. The evaluation results reveal that SILVER is effective
against various kinds of kernel threats with a reasonable performance
and resource overhead.

Keywords: Protection domain, OS kernel, Virtualization

1 Introduction

As commodity operating systems are becoming more and more secure in terms
of privilege separation and intrusion containment at the OS level, attackers have
an increasing interest of directly subverting the OS kernel to take over the entire
computer system. Among all avenues towards attacking the OS kernel, untrusted
kernel extensions (e.g., third-party device drivers) are the most favorable tar-
gets to be exploited, as they are of the same privilege as the OS kernel but much
more likely to contain vulnerabilities. From the security perspective, these un-
trusted extensions should be treated as untrusted principals in the kernel space.
In order to prevent untrusted extensions from subverting kernel integrity, many
research approaches [7,12,25,31] are proposed to isolate them from the OS
kernel. These approaches enforce memory isolation and control flow integrity
protection to improve kernel security and raise the bar for attackers. However,

Xi
Highlight

in many situations, strong isolation along is still inadequate and inflexible to se-
cure interactions between OS kernel and untrusted principals, for the following
reasons:

First, in commodity OSes such as Linux, kernel APIs (i.e., kernel functions
legitimately exported to extensions) are not designed for the purpose of safe
communication. Thus, even if untrusted extensions are memory-isolated and
constrained to transfer control to OS kernel only through designated kernel func-
tions, attackers can still subvert the integrity of the OS kernel by manipulating
parameter inputs of these functions. For example, an untrusted extension could
forge references to data objects that it actually has no privilege to access. By
providing such references as input of certain kernel functions, attackers could
trick the OS kernel to modify its own data objects in undesired ways.

Second, either OS-based or VMM-based memory protection mechanism can
only enforce page-level granularity on commodity hardware, which provides av-
enues for attackers exploiting such limitation. For example, attackers can lever-
age buffer/integer overflow attacks to compromise data objects of OS kernel by
overflowing adjacent data objects from a vulnerable driver in the same mem-
ory slab. It is difficult for a page-level access control mechanism to address this
problem for its inability to treat data objects on the same page differently.

Finally, current isolation techniques are limited to support sharing and trans-
fer of data ownership in a flexible and fine-grained manner. Considering situa-
tions that the OS kernel would like to share a single data object with an untrusted
device driver, or accept a data object prepared by a driver, in case of strong iso-
lation, it often requires the administrator to manually provide exceptions/mar-
shaling to move data across isolation boundaries. Although there are clean-slate
solutions such as multi-server IPCs in micro-kernels [18] and language-based
contracts [13] to address this problem, these approaches are difficult to apply to
commodity systems, for the reason that they both require developers to change
the programming paradigm fundamentally.

To address these shortcomings, we have the following insight: beside isola-
tion, protection systems should provide a clear resource management of kernel
objects, as well as a general method for secure communication. In OS-level access
control mechanism such as Linux security modules (LSM), the kernel maintains
meta-information (e.g., process descriptors and inodes) for OS-level objects like
processes, files and sockets, and it also provides run-time checks for security-
sensitive operations. Such mechanism enables powerful reference monitors such
as SeLinux [3] and Flume [17] to be built atop. In contrast, there is little secu-
rity meta data maintained for kernel-level data objects, nor security checks for
communication between OS kernel and untrusted kernel principals.

This paper presents the design and implementation of SILVER, a framework
that offers transparent protection domain primitives to achieve fine-grained ac-
cess control and secure communication between OS kernel and extensions. To
the best of our knowledge, SILVER is the first VMM-based kernel integrity pro-
tection system which addresses the above challenges. SILVER’s key designs are
two-fold: (1) SILVER manages all the dynamic kernel data objects based on

Xi
Highlight

Xi
Highlight

their security properties, and achieves fine-grained access control with the sup-
port of memory protection and run-time checks; (2) Communication between
OS kernel and various untrusted kernel extensions is governed and secured by
a set of unified primitives based on existing information flow integrity models
without changing programming paradigm significantly. Protection domains in
SILVER are enforced by the underlying hypervisor so that they are transparent
to kernel space programs. Hence, from the perspective of kernel developers, the
kernel environment remains as a single shared address space, and developers can
still follow the conventional programming paradigm that uses function calls and
reference passing for communication. Kernel program developers could utilize
SILVER to ensure neither the integrity of their crucial data would be tampered
nor their code would be abused by untrusted or vulnerable kernel extensions,
thus prevent attacks such as privilege escalation and confused deputy.

SILVER employs several novel designs to enable our protection domain mech-
anism. First, in SILVER, protection domains are constructed by leveraging
hardware memory virtualization to achieve transparency and tamper-proof. The
hypervisor-based reference monitor ensures that security-sensitive cross-domain
activities such as protection domain switches will eventually be captured as
exceptions in virtualization. Second, we propose a new kernel slab memory al-
locator design, which takes advantages of SILVER’s virtualization features such
as page labeling and permission control, with a new organization and allocation
scheme based on object security properties. The new memory management sub-
system exports API to developers to allow them managing security properties of
its allocated objects, and enforce access control rules throughout their life time.
Finally, SILVER introduces two new communication primitives: transfer-based
communication and service-based communication for securing data exchange and
performing reference validation during cross-domain function calls.

We have implemented a prototype of SILVER for the Linux kernel. Our sys-
tem employs a two-layer design: a VMM layer for enforcing hardware isolation,
reference monitoring and providing architectural support for page-level secu-
rity labeling, as well as an OS-subsystem for achieving the high-level protection
mechanism and offering APIs to kernel programs. We have adapted real-world
Linux device drivers to leverage SILVER’s protection domain primitives. The
evaluation results reveal that SILVER is effective against various kinds of kernel
threats with a reasonable impact on performance.

2 Approach Overview

In this section we first present several examples of kernel threats to illustrate
shortcomings stated in Section 1. We then describe our threat model, and give
an overview of our approach.

2.1 DMotivating Examples

Kernel heap buffer overflow. Jon [2] illustrates a vulnerability in the Linux
Controller Area Network (CAN) kernel module which could be leveraged to trig-

Xi
Highlight

ger controllable overflow in the SLUB memory allocator and eventually achieve
privilege escalation. The exploit takes advantage of how dynamic data are or-
ganized in slab caches by the SLUB allocator. In specific, the attack overflows
a can_frame data object allocated by the CAN module and then overwrites a
function pointer in a shmid kernel object, which is owned by the core kernel
and placed next to the can_frame object. Although there are many ways to mit-
igate this particular attack (e.g., adding value check and boundary check), the
fundamental cause of such kind of attack is that the OS kernel is not able to dis-
tinguish data objects with different security properties. In this case, data object
shmid _kernel is owned by OS kernel principal, and it is of high integrity because
it contains function pointers that OS kernel would call with full privilege. On
the other hand, data object can_frame is created and owned by the vulnerable
Controller Area Network kernel module principal with a lower integrity level.
Unfortunately, Linux kernel does not manage the owner principal and integrity
level of dynamic data objects, which results in placing these two data objects on
the same kmalloc-96 SLUB cache with the vulnerability.

Kernel API attacks. As mentioned in Section 1, even with strong isolation
and control flow integrity protection, untrusted extensions can still subvert the
integrity of OS kernel through manipulating kernel APIs. For example, let us
consider a compromised NIC device driver in Linux which has already been
contained by sandboxing techniques such as hardware protection or SFI. Due
to memory isolation, the untrusted driver cannot directly manipulate kernel
data objects (e.g., process descriptors) in kernel memory. However, the attacker
could forge a reference to a process descriptor and cast it as struct pci_dev *
type, which he would use as a parameter to invoke a legitimate function (e.g.,
pci_enable_device). By carefully adjusting the offset, the attacker could trick
the OS kernel to modify that particular process descriptor (e.g., change the
uid of the process to be zero to perform privilege escalation) and misuse its
own privilege. We consider such threat as a confused deputy problem caused
by insufficient security checks in Linux kernel APIs. Thus, to ensure kernel API
security, upon receiving a reference from caller, a kernel function should dis-
tinguish the security principal that provides the reference, as well as determine
whether that principal has the permission to access the data object associated
with the reference.

2.2 Threat Model

In SILVER, kernel developers leverage protection domain primitives to protect
the integrity of OS kernel in case that untrusted extensions are compromised by
attackers. A compromised extension may attempt to subvert a protection do-
main in many different ways, which may include: (1) directly modifying code/-
data via write instruction or DMA; (2) control flow attacks that call/jump to
unauthorized code in kernel; (3) memory exploits such as stack smashing or
buffer overflows; (4) confused deputy attack via reference forgery; (5) tampering
architectural state such as crucial registers. We discuss how SILVER is designed
to defend against or mitigate these attacks throughout the rest of the paper.

Xi
Highlight

In this paper, we primarily focus on the protection of integrity. Although we
are not seeking for a comprehensive secrecy protection against private informa-
tion leakage, SILVER could indeed prevent untrusted principals directly read
crucial data (e.g., crypto keys) from a protection domain.

SILVER employs a VMM for reference monitoring and protecting the in-
tegrity of its components in the OS subsystem. Hence we assume that the VMM
is trusted and cannot be compromised by the attacker.

2.3 Protection Domain in SILVER

In this section, we give an overview of key features of protection domain in
SILVER.

Data management based on security properties. SILVER maintains se-
curity metadata for dynamic data objects in the kernel to keep track of their
security properties such as owner principal and integrity level. Moreover, kernel
data objects are managed based on these security properties, and the organi-
zation scheme takes advantage of labeling and memory protection primitives
provided by SILVER’s hypervisor. Such organization guarantees that security-
sensitive events will be completely mediated by the reference monitor, which
would make security decisions based on security properties of principal and data
objects. In this way, SILVER achieves data object granularity in protection do-
main construction and security enforcement, and addresses challenges stated
in Section 1. In Section 4.3, we demonstrate in detail how could these designs
prevent various kernel integrity compromises stated in 2.1.

Security controlled by developers. SILVER allows kernel program devel-
opers to control security properties of its own code and data in a flexible and
fine-grained manner. Security decisions are controlled by developers in the fol-
lowing ways: (1) by leveraging extended allocation APIs, developers can specify
which data objects are security-sensitive while others can be globally shared
with untrusted principals by assigning integrity labels to its data objects; (2)
developers could control the delegation of data object ownership and access
permissions with other principals by relying on SILVER’s transfer-based com-
munication primitive; (3) developers could ensure data integrity when providing
service to or requesting service from other principals by using the service-based
communication primitive; (4) developers can control which services (functions)
to be exported to which principals by creating entry points both statically and at
run-time; (5) developers could use endorsement functions and reference checking
primitives to validate received data and reference; (6) developers (and system
administrators) could accommodate trust relationships with protection domain
hierarchy.

Note that although SILVER’s primitive could help both participating security
principals to achieve secure communication, the security of a protection domain
does not rely on other domain’s configuration or security status. For example, as
long as the OS kernel programmer properly use SILVER’s primitives to enforce
isolation and secure communication, the integrity of OS kernel would not be

Xi
Highlight

Xi
Highlight

compromised by any untrusted extension which may either fail to use SILVER’s
primitives correctly or be totally compromised by attacker.

2.4 Abstract Model

In this section we present an abstract model, describing our approach in a few
formal notations. The basic access control rules of our model follow existing
integrity protection and information flow models [6,17] with a few adaptations.
In our model, a kernel protection domain is defined as a three-tuple: S =<
p,D,G >, where: (1) p is the principal associated with the domain. For each
protection domain S in kernel, p is unique and immutable so that it can be used
as the identifier of the protection domain. Thus, we denote a protection domain
with principal p as S,. (2) D is the set of data object owned by the principal.
Every data object is associated with an integrity level, which can be either high,
low or global shared. We denote the subset of high integrity data objects as DT
and the subset of low integrity data objects as D~ so that D = {D*, D~ }. (3) G
is the set of entry point objects, which are essentially entrance addresses through
which a principal could transfer its control to another principal. Entry points
are specified by the developer on a per-principal basis, yet some of them can
also be declared as global shared. For the global shared data objects and entry
points, SILVER virtually organizes them in to a global low-integrity protection
domain denoted as S_. We define the set of rules that govern protection domain
activities as follows:

Data creation. A principal p can create data objects of either integrity level
in its own protection domain. p can also degrade any high integrity data object
de Dp+ to low integrity level so that d € D).

Integrity protection. A data object can only be possessed by only one princi-
pal at any time. A principal p can write to a data object d iff d € D,,. p can read
from d iff d € Dp+. While p cannot read d € D,,~ directly, p has the capability
to increase the integrity level of d via an endorsement API provided by SILVER.
Data communication. In SILVER, data communications are achieved by mov-
ing data objects from one protection domain to another. In order to send data
to another principal ¢, p can move its data object d € D), to low integrity part
of domain S, so that d € D,”. However, to ensure that d is safe in regard to
the integrity of g, d is kept to be in low integrity and cannot be read by ¢ until
q sanitizes and endorses the input data and render d high integrity (d € Dq+).
Cross-domain calls. Another important method for inter-domain communica-
tion is through calling remote functions exported by other principals. Exporting
functions to a principal ¢ is achieved by creating entry point objects in ¢’s do-
main. To prevent the abuse of code of a protection domain principal, SILVER
guarantees that calling through entry points granted by p is the only way to
transfer control to principal p. Data transfers through cross-domain calls must
obey the previous data communication rules.

Protection domain hierarchy. Besides mutually untrusted principals, SIL-
VER introduces protection domain hierarchy to accurately express one-way trust

Xi
Highlight

Xi
Highlight

Xi
Highlight

in practice (e.g., OS kernel and untrusted extensions). In such case, parent prin-
cipal has full privilege of its child protection domain in terms of object access
and creation.

3 System Design and Implementation

3.1 Overall Design

l Protection domain check l
object le———= Sp
registry domain
APT
os
Kernel
(other
part) X S,
f— Kernel v
memory allocator APT
page label/
0S Kernel Layer permission
VMM Layer
stack/DMA HAP i Reference
protection Tables Monitor

Fig. 1. The architecture of the SILVER framework.

To design a run-time system which enforces our model stated in Section 2.4,
SILVER exploits several architectural (hardware and virtualization) features to
achieve strong isolation and a coarse-grained, OS-agnostic access control mecha-
nism based on page permissions. On top of these facilities, we design a subsystem
for Linux kernel to achieve accountability and fine-grained security control. The
kernel subsystem includes a specifically designed kernel memory allocator imple-
menting the core functionality of protection domain primitives, a kernel object
registry for accounting kernel objects and supporting reference check, and a set
of kernel APIs exported to principals for controlling security properties of their
data, performing secure communication and granting capability to other princi-
pals. Figure 1 illustrates the overall design of SILVER’s architecture, with the
components of SILVER in gray. The entire framework is divided into two layers:
the VMM layer and OS subsystem layer, respectively. The reference monitor
and architectural-related mechanisms are placed in the VMM layer to achieve
transparency and tamper-proof.

3.2 The VMM Layer Design

The VMM layer components consist the bottom-half of the SILVER architecture.
These components are responsible for enforcing hardware protection to establish
protection domain boundaries, as well as providing architectural-level primitives

Xi
Highlight

Xi
Highlight

(e.g., page permission control, control transfer monitoring) for upper-layer com-
ponents in the OS-subsystem.

Principal isolation. In SILVER, each principal is confined within a dedi-
cated, hardware-enforced virtual protection domain realized by the hypervisor.
The protection domain separation is achieved by creating multiple sets of HAP
(hardware-assisted paging) tables for memory virtualization, one table dedicated
for each virtual protection domain. Upon a protection domain transfer, instead
of modifying HAP table entries of the current domain, the hypervisor switches to
a different HAP table with preset permissions. Using such layer of indirection,
each principal could have its own restricted view of the entire kernel address
space, while the shared address space paradigm is still preserved. Furthermore,
by leveraging IOMMU tables, the VMM enables a principal to control DMA
activities within its protection domain by explicitly exporting DMA-write per-
mission to other principals and designating DMA-writable pages in its address
space. The VMM prohibits any other DMA writes to the protection domain.
Finally, to prevent untrusted code tampering with the architectural state (e.g.,
control registers, segment selectors, and page table pointer) of other protection
domains or the OS kernel, the hypervisor saves all the corresponding hardware
state of one protection domain before the control transfers to another subject,
and restores the saved invariant values once the control is switching back.

Mapping security labels to page permissions. The hypervisor in SILVER
also provides a page-based access control mechanism using hardware virtualiza-
tion. In specific, it exports a small hypercall interface to the OS subsystem of
SILVER, allowing it to associate security labels to kernel physical pages. The
low-level access control primitives are implemented by mapping security labels to
page permissions (i.e., read, write, execute) in each principal’s HAP table, which
defines whether certain pages can be accessed by the principal via which per-
missions. In section 3.3, we further describe how SILVER achieves fine-grained
data access control on top of these page-based mechanisms.

Securing control flow transfer. By setting up NX (execution disable) bits on
corresponding HAP table entries representing pages owned by other principals,
the hypervisor is able to intercept all control transfers from/to a protection
domain through execution exceptions. Therefore, the reference monitor is fully
aware which principal is currently being executed by the processor and uses
this information to authenticate principals for the OS subsystem. The reference
monitor then validates the <initiating principal, exception address> against the
control transfer capability and the set of entry points designated by the owner
principal of the protection domain, and denies all the illegal control transfers. To
ensure the stack isolation and data safety during cross-domain calls, whenever
a call is made by the protected code to an untrusted principal, the hypervisor
forks a private kernel stack from the current kernel stack for untrusted execution,
and it changes the untrusted principal’s HAP table mapping of the stack pages
to point to the new machine frames of the private stack. Since both virtual
address and (guest) physical address of the stack are kept the same, untrusted

Xi
Highlight

Xi
Highlight

code will have the illusion that it operates on the real kernel stack so that
the original kernel stack semantics are preserved. After the call finishes, the
hypervisor joins the two stacks by propagating legit changes from the private
stack to the real kernel stack frames, guaranteeing that only modifications to its
own stack frames are committed. In this way, SILVER enforces that all principals
have read permission to the entire kernel stack, but only have write permission
to their own stack frames.

3.3 OS Subsystem Design

The OS subsystem is responsible for achieving fine-grained protection domain
mechanism and providing APIs to kernel programs. It leverages the architectural
primitives provided by the VMM layer by issuing hypercalls to the VMM.

Kernel memory allocator The kernel memory allocator in SILVER is re-
sponsible for managing dynamic kernel objects according to the rules defined
in Section 2.4, as well as providing primitives to kernel principals for control-
ling security properties of their data objects. It leverages the hypercall interface
provided by the VMM layer for labeling physical page frames and manipulat-
ing page permissions for different principals. Based on these mechanisms, the
allocator achieves the following key functionality: (1) it allows principals to dy-
namically create objects within specified protection domain and integrity levels.
(2) It enables a principal to endorse or decrease the integrity level of its objects
at run time; (3) It allows a principal to transfer its data objects to be a low-
integrity data object in a contracted protection domain for passing data; (4) It
restricts principals from accessing the global name space (i.e., kernel virtual ad-
dress) to refer objects outside of its domain and provide access control according
to the rules.

Our design is an extension to the SLUB allocator [4] of Linux, which manages
the dynamic allocation and deallocation of kernel objects. The SLUB allocator
maintains a number of cached objects, distinguished by size for allocation effi-
ciency. Physical pages for cache are named slabs, which are initialized to have
multiple instances of a specific type of objects. Each slab has a freelist pointer
for maintaining a list of available objects. A slab can have four allocation states:
cpu_slab (the current active slab for a given cpu), partial_slab (portion of the
objects are used), full_slab (slab objects fully used) and new_slab (all objects
are available).

Organization. SILVER enhanced the Linux SLUB allocator by introducing
heterogeneity to slabs for SLUB caches. In SILVER, each slab is associated with
an extra label <principal, integrity>, and according to the label, it is restricted
to contain kernel objects of the specified integrity level owned by the principal.
The memory allocator achieves the slab access control by issuing hypercalls to
the VMM layer, labeling and setting up page permissions. Figure 2 illustrates the
organization of two partial_slabs from the same SLUB cache but with different
owner principal and integrity levels. Their heterogeneous labels will eventually

10

freelist artial_list\
metagia \\ ‘|
B
Label: Free Used Free Used
<p, high>| Object Object Object Object \\
" A \
R i - \
@ slab perm, Principal p: rw- \
fork§ sjoin principal q: --- 1
freelist [!
metadata . B
v " /
Label: Free Free Used Free 4
<q, low>] Object Object Object Object
@
I principal p: -

slab perm. (can create object)
principal q: rw-
(read by endorsement func.)

Fig. 2. The layout of two slabs of the same slub cache involved in a service-based
communication.

result in different page permissions in principals’ HAP table, preventing princi-
pals from accessing objects that are disallowed by the access control rules.

Allocation and Deallocation. The kernel memory allocator in SILVER pro-
vides a family of secure allocation APIs (e.g., kmalloc_pd()) for protection do-
main principals. These APIs follow the similar semantics of kmalloc family
functions in Linux, except for having two extra parameters to designate the
principal ID and integrity level of the object allocation. The work flow of the
allocation procedure is described in Algorithm 1. During slab selection, SILVER
must guarantee to pick the slab that matches the security model rather than
to choose the first available objects from cpu_slab or partial_slabs. Once a
new slab is created, SILVER must register the label to the VMM to establish
principal access control before using it. The deallocation procedure is similar as
the SLUB allocator, with extra permission checks on the requested slab. The
memory allocator also provides APIs to principals for changing the integrity
level of their objects as building blocks for data communication.

Support for secure communication As a major task, the OS subsystem in
SILVER is responsible for offering secure primitives to principals for exchanging
data, with the strong guarantee of integrity. The data communication is governed
by the rules defined in Section 2.4. According to the model, using direct memory
sharing to pass high-integrity data is prohibited in SILVER. Instead, SILVER
provides primitives for two primary types of data communication: transfer-based
communication and service-based communication. In transfer-based communi-
cation, a principal p sends one of its own data object d to another principal q.
After that, d will become a (low-integrity) data object of S,, and can no longer
be accessed by p.

In SILVER’s implementation, The data object transfer is conducted by the
memory allocator by moving data object from one slab to another. In this case,
principal p will invoke the API call pd_transfer_object, providing its object and
¢’s principal id as input. The memory allocator locates the particular slab (label:
< p, high/low >) that contains d, removing d from that slab, and copying d to a

11

Algorithm 1 The procedure for handling allocation requests from a protection
domain principal

1: if label < principal,integrity > of current cpu_slab matches <
requesting_principal, integrity > of the requested object and freelist is
not empty then
return the first available object in the freelist
end if
Try to find a partial_slab with the matching label
if partial_slab found then
Activate this partial_slab as the current cpu_slab
return the first available object in the freelist
else
Allocate and initialize a new_slab from the page frame allocator
Associate label <requesting_principal, integrity> to the slab’s page struct
Issue a hypercall to SILVER’s hypervisor to label the corresponding physical
pages and set up permissions in principals’ HAP tables
Activate this new_slab and return object as of Line 6-7
: end if

— =

— =
LN

slab with the label < ¢, low > of the same SLUB cache. The API call will return
a new object reference which p could pass to ¢ (but p can no longer dereference
to d due to slab access control). Upon receiving the reference, ¢ will leverage
SILVER’s reference validation primitives (described in Section 3.3) to ensure
that the reference is legal, and finally endorse d to complete the transfer. Note
that in transfer-based communication, since the object ownership is surrendered,
the sending principal must release all the references to the object before calling
the pd_transfer_object, the same way as it is calling the kfree function.

Service-based communication represents the semantic that a principal re-
quests another principal to process its data object, rather than giving up the
ownership permanently. In service-based cross-domain call, the original stored
location of the data object is not released during the transfer process, instead,
a shadow copy of the object is created to be used by the domain that provides
the service. After the service call is completed, the updated value of the object
is copied back to the original location. SILVER also implements service-based
communication based on the SLUB allocator: when a principal p is requesting
another principal ¢ to process its own object d, SILVER will first fork object d
from its current slab to a new object d* in a < ¢, low > slab in the same SLUB
cache, and then use the reference of the forked object as the parameter of the
cross-domain call. Before the call returns, all the references of d in S, would
dereference to the original d in p’s slab. Once the call returns, SILVER will join
the d* with d if d* can be endorsed, committing changes made by ¢, and free d*
from ¢’s slab. Figure 2 shows the procedure of the corresponding slab operations.
Note that in most cases there is no extra hypervisor operation involved during
the communication procedure, since both two slabs are pre-allocated so that no
labeling /relabeling is required.

Xi
Highlight

Xi
Highlight

12

Reference validation and object accounting In commodity OS kernel like
Linux, fetching data from another principal is usually achieved by obtaining a
reference (i.e., pointer of virtual address) to the particular data object. Object
references can be passed between principals through function call parameters,
function call return values, and reading exported symbols.

As stated in Section 2.1, the absence of reference validation in function pa-
rameters could leave avenues for attackers. In order to support reference valida-
tion, SILVER must be able to track security information of kernel data objects at
run-time so that given any reference, SILVER could identify the object that the
reference points to. To further support type-enforcement and bound checking,
the type and size information of protected objects must also be known at run-
time. By extending the SLUB tracking mechanism, we implemented an account-
able resource management layer named object registry, for managing protected
objects. The object registry maintains additional metadata for each protected
object, and updates metadata upon allocation, deallocation, and communication
events. The metadata include allocation principal, owner principal, object size,
integrity level, object type and the time of allocation. The object type can be
obtained because the SLUB allocator follows a type-based organization, and for
generic-sized types, we use the allocation request function/location (the function
that calls kmalloc) as well as the object size to identify the type of the object.

SILVER ensures that references passed through the
pd-transfer_object API and service-based communication functions through
designated parameters must be owned by the sender principal. In addition, the
object registry offers basic primitives to principals for implementing their own
reference validation schemes.

4 Evaluation

In this section, we first describe the implementation of our prototype, then we
show how to apply SILVER to existing kernel programs for establishing protec-
tion domains. In Section 4.3, we demonstrate SILVER’s protection effectiveness
using security case studies of different kernel threats. We evaluate the perfor-
mance of SILVER in Section 4.4.

4.1 Prototype Implementation

We have built a proof-of-concept prototype of SILVER. The VMM layer is an
extension of the Xen-based HUKO hypervisor [31], with a few hypercalls and
exception handling logic added. The OS subsystem is based on Linux kernel
2.6.24.6, and deployed as a Xen guest in HVM mode. Protection domain meta-
data are maintained in various locations. For each security principal we main-
tain a security identifier prid in the module struct, and we encode the slab label
<principal, integrity> as additional flags in the corresponding page_struct. The
object registry is organized in a red-black tree with the object address as the key
value. In addition, to facilitate monitoring for the administrator, we export the

Xi
Highlight

13

run-time status of protection domains in the kernel, including object information
and exported functions, to a virtual directory in the /proc/ file system.

4.2 Protection Domain Deployment

In this section we describe how to adapt existing kernel programs to leverage
primitives provided by SILVER. The first step is to establish the protection
by declaring a specific LKM as a domain principal using the pd_initialize()
routine, which will return an unique principal id. The module text range will be
used to authenticate the principal during protection domain transition. Entry
points of this domain need to be initialized by pd_ep_create API.

The second step involves modifying the declaration or creation of security-
sensitive program data. There are four kinds of data object associated with a
kernel program: global object, stack object, heap object and page object. For
static data and stack data, SILVER could automatically recognize them and treat
them private to their principal so that modification by other principals must be
carried out by calling wrapper functions. For heap and page objects, developers
could specify their security property to control how they could be accessed by
other principals through calling kmalloc_pd and __get_free pages_pd API with
an integrity label. For example, unprotected memory sharing of low integrity
data could be declared using the GB_LOW flag. Note that this process could be
performed incrementally and selectively.

The next step is to handle data communication. The major task is to convert
functions that handle exchange of high-integrity data to exploit transfer-based
and service-based communication primitives. The example code below is a frag-
ment of alloc_skb function that returns an allocated network buffer to NIC
driver using transfer-based communication. By adding five lines of code at the
end of the function, the owner principal of the sk_buff object changes accord-

ingly.

out:

- return skb;

+ if(is_protected(prid = get_caller prid()))

+ transfer skb = pd_transfer_object(skb, prid, PD_HIGH, sizeof (struct
sk_buff));

+ else

+ transfer_skb = pd_degrade_object(skb, GB_LOW);

+ return transfer skb;

Service-based communication is used in a similar manner, the data proxying is
accomplished by SILVER automatically, but the developer needs to register the
function signature and mark the transferring parameter at both the beginning
and the end of function using SILVER’s APIs. To support reference validation,
SILVER provides routine that automatically checks whether a designated pa-
rameter reference belongs to the caller principal.

Xi
Highlight

Xi
Highlight

14

We have converted a number of Linux kernel functions and extensions us-
ing SILVER’s primitive to secure their interactions. The extensions include the
Realtek RTL-8139 NIC driver, the CAN BCM module, a emulated sound card
driver, and two kernel modules written by us for attacking experiments. For all
cases, the total amount of modification incurs changing less than 10% lines of
original code.

4.3 Security

In this section we evaluate the effectiveness of security protection provided by
SILVER mechanism with both real-world and synthetic attacks.

Kernel SLUB overflow. In Section 2.1, we mention an exploit described by
Jon Oberheide (CVE-2010-2959) to the vulnerable CAN Linux kernel module
that achieves privilege escalation through overflowing dynamic data in the SLUB
cache and corrupting crucial kernel control data in the same SLUB cache. We
ported the vulnerable module to our Linux system, implemented and tested our
exploit based on the attack code provided by Jon Oberheide. We then tested
our attack in case the module is secured by SILVER’s primitives, placing it in
an untrusted domain separated from the Linux kernel. As result, dynamic data
(e.g., op—->frames) allocated by the CAN module are labeled with untrusted
principal. According to SILVER’s SLUB memory allocation scheme, these data
object are placed on dedicated slabs for the untrusted CAN module principal,
and they could never be adjacent to a high integrity kernel object shmid _kernel
in the SLUB cache, despite any allocation pattern carried out by the attacker.
For this reason, the attack can never succeed in our experiment. Moreover, in
case the attacker successfully compromise the vulnerable kernel module (e.g., be
able to execute injected code), it still cannot tamper the integrity of OS kernel
since the entire kernel module can only exercise permissions of an untrusted
principal.

Kernel NULL pointer dereference. The key idea of NULL pointer derefer-
ence is to leverage the vulnerability that a kernel module does not check whether
a function pointer is valid before invoking that function pointer. As the result,
the control will jump to the page at address zero, where the attacker maps a
payload page containing the malicious code from user space before hand. Once
get executed, the payload code could modify crucial kernel data or invoke kernel
functions to achieve malicious goals such as privilege escalation. Such vulner-
abilities are quite common in buggy extensions and even the core kernel code
(CVE-2009-2692, CVE-2010-3849, CVE-2010-4258).

In our experiment, dereferencing a NULL pointer in a buggy untrusted mod-
ule could not succeed in SILVER, primarily for two reasons. First, in SILVER,
executing user-level code by an untrusted principal is prohibited according to ac-
cess control rules. This is because NX bits are set for user pages in the untrusted
principal HAP table. Second, even if the attack code got executed, it is still ex-
ecuted on behalf of untrusted principal with restricted permissions. As a result,
attacking efforts such as privilege escalation (e.g., setting the task->uid, calling

Xi
Highlight

Xi
Highlight

15

the commit_creds function) would be intercepted by the reference monitor and
the integrity of core OS kernel is preserved.

Attacks through Kernel API. In Section 2.1, we show that even with pro-
tection schemes like memory isolation or SFI, attackers can still compromise
kernel integrity by launching confused deputy attacks over legitimated kernel
APIs. Note that this kind of attacks is very rare in practice, for the reason that
currently few Linux systems employ protection/sandboxing approaches inside
OS kernel so that kernel attackers do not need to resort to this approach at
all. To demonstrate SILVER’s protection effectiveness against kernel API at-
tacks, we implemented a kernel API attack module based on the RTL-8139 NIC
driver. The attacking module provides a crafted reference of struct pci_dev *
and uses it as input to the exported routine pci_enable_device. The reference
is actually pointing to a calculated offset of the current process descriptor. By
calling legitimate kernel API with such reference, the uid to current process will
be set to 0 (root). SILVER prevents such attack by looking up the security prop-
erty of the object referred by the actual pointer value. The reference monitor
then detected that the caller principal actually does not owned the data object
provided, and it raised an exception denying the attack attempt.

4.4 Performance Evaluation

In this section, we measure the performance overhead introduced by using SIL-
VER’s protection domain primitives. First, we would like to measure the time
overhead of calling the extended or new APIs of SILVER by relying on a set
of micro-benchmarks. Then we would like to use macro-benchmarks to measure
the overall performance impact on throughput when a kernel NIC driver is con-
tained. All experiments are performed on a HP laptop computer with a 2.4GHz
Intel i5-520M processor and 4GB of memory. The VMM layer is based on Xen
3.4.2 with a Linux 2.6.31 Dom0 kernel. The OS kernel environment was config-
ured as a HVM guest running Ubuntu 8.04.4 (kernel version 2.6.24.6) with single
core and 512MB memory.

Run-time performance. Table 1 reports the microbenchmark results of se-
lected APIs of SILVER. The first four rows denote the performance of the native
Linux kernel SLUB memory allocator running on unmodified Xen. The fast path
happens when the object requested is exactly available at the current cpu_slab.
The rest of rows shows the performance of SILVER’s dynamic data manage-
ment primitives. There are three major sources of overhead added by SILVER’s
run-time system: (1) “context switch” between protection domains, (2) label-
ing a physical page through hypercalls, and (3) updating the object registry
and data marshaling. Row 5 and 6 show the overhead of allocation and free
when the caller is kernel itself, which only incurs overhead caused by (3). Row
7-8 show the overhead of calling kmalloc_pd and kfree by protection domains
other than kernel. In this case, besides overhead (3), a protection domain switch
(1) is also involved, and page labeling (2) happens occasionally when a new slab

16

is required. The relatively expensive guest-VMM switches in (1) and (2) make
allocations/free operations by untrusted principals much more expensive.

To perform evaluation on application performance, we use SILVER to con-
tain a 8139too NIC driver, and leverage secure communication primitives to
protect all of its object creation and data exchanges (skb pipeline) with the
Linux kernel. We use the following macro-benchmarks to evaluate performance
impact of SILVER towards different applications: (a) Dhrystone 2 integer per-
formance; (b) building a Linux 2.6.30 kernel with defconfig; (c) apache ab (5
concurrent client, 2000 requests of 8KB web page) and (d) netperf benchmark
(TCP_STREAM, 32KB message size, transmit). Figure 3 illustrates the normalized
performance results compared to native Linux on unmodified Xen. We observed
that our current SILVER prototype has a non-negligible overhead, especially in
terms of throughput when system is loaded with saturated network I/O. This is
primarily caused by very frequent protection domain switches and transfer-based
communication. We measured protection domain switch rate of the apache test
to be around 32,000 per second. The overall performance also depends on how
much data are specified as security-sensitive, how often security-sensitive data
are created and the frequency of protected communication with untrusted prin-
cipals. With SILVER, many of these security properties are controlled by the
programmer so that she can manage the balance between security and perfor-
mance. Hence, we expect SILVER to have better run-time performance in case of
protecting only crucial data rather than the entire program. We also believe that
our prototype can be greatly improved by optimizing Xen’s VMEXIT and page
fault exception handling to create a specialized path for SILVER’s protection
domain switch to avoid the unnecessary cost of VM switches.

kmalloc SLUB fast path | 1.4us
kmalloc SLUB slow path | 7.7us
kfree SLUB fast path 0.7us
kfree SLUB slow path 6.2us

Linux (Xen)

SILVER kmalloc 16.2us
(called by kernel) |kfree 14.4ps
SILVER (called kmalloc_pd average 56.7us
by other principal)kfree average 64.1us

Table 1. Micro-benchmarks results for dynamic data management APIs of SILVER,
average of 1000 runs. The data object size of allocation is 192 bytes.

5 Limitations and Future Work

Our current prototype has several limitations. First, for a few functions, we found
difficulties in directly applying service-based communication on them, as they
move complex data structures across function calls instead of transferring a single

Xi
Highlight

17

1.0

Th

Dhrystone 2 Kernel build Apache ab Netperf TCP

Normalized performance

Fig. 3. Application benchmark performance, normalized to native Linux/Xen.

data object. Dealing with these functions may require us to manually write data
marshalling routines. Fortunately, most of these functions are provided by the
OS kernel, which usually configures as the parent domain of the caller principal
and can directly operates on these data structures without data marshalling.

Compared with language-based and other static isolation approaches, SIL-
VER’s run-time mechanism is more accurate in resource tracking than static
inference. However, our approach also has shortcomings for not providing veri-
fication and automatic error detection to programmers. For example, program-
mers must pay extra attention for not creating dangling pointers when using
object transfer and endorsement primitives of SILVER, since these operations
will release the original object in the same way as kfree function. We plan to in-
corporate kernel reference counting to help programmers manage their references
of protection domain data objects. Moreover, adapting kernel programs to use
SILVER requires certain understanding of security properties of their data and
functions, and the entire procedure might be complex for converting very large
programs. Hence, we also would like to explore automatic ways to transform an
existing program to use SILVER given a security specification.

6 Related Work

In practice, protection domains are widely used for addressing security problems
such as securing program extensions [11], privilege separation [29], implement-
ing secure browsers [27], safely executing native code in a browser [11,32] and
mobile application deployment [1]. In this section, we review previous research
efforts related to protection domains and OS kernel security, categorized by the
approach to achieve their goals.

One major mechanism to achieve protection is through software fault isola-
tion [7,12,26, 32], which rewrites binary code to restrict the control and data
access of the target program. XFI [12] leverages SFI to enable a host program to
safely execute extension modules in its address space by enforcing control flow
integrity (CFI [5]) and data integrity requirements. While these approaches are
efficient and effective for securing program extensions, they have difficulties for
inferring and verifying system-wide resource and multi-principal access control
rules in a static manner.

18

LXFTI [19] is probably the closest related work with SILVER. It addresses the
problem of data integrity and API integrity in SFI systems, using a completely
different approach (compiler rewriting) than SILVER. Compared to LXFI, SIL-
VER’s run-time approach is more resilient to attacks that fully compromise an
untrusted module and execute arbitrary code. Moreover, security enforcement of
SILVER is more tamper-proof since the isolation and access control are carried
out by the hypervisor.

Run-time protection approaches are mostly achieved by access control mech-
anisms to constrain the behavior of untrusted programs. Depending on the ab-
straction and granularity levels, these approaches mediate security-sensitive ab-
stractions ranging from segmentation [10, 14, 32] and paging protection [25],
to system call interposition [11,15]. These events are regulated by a set of
access control policies. Traditional mandatory access control systems such as
SELinux [3] are inflexible and difficult to configure fine-grained policies because
the internal state of an application is difficult to infer externally. In contrast,
capability-based systems [23,29] and DIFC systems [17, 33] delegate part of
security decisions to application developers, which eases the burden of adminis-
trators for setting up complex system policies externally and allows applications
to have its own control of data and communication security. Flume [17] provides
DIFC-based protection domain to user applications in Linux at the granularity
of system objects such as processes and files. SILVER’s security model follows a
similar spirit of these approaches, yet it enforces protection for kernel programs
at data object granularity.

Many research efforts are focused on improving the reliability of operating
system kernels. Micro-kernel OSes [8, 16, 18] removes device drivers from ker-
nel space and execute them as userspace server applications. However, as dis-
cussed in Section 1, despite their elegant design, it is generally difficult to retrofit
these approaches in commodity OSes. Mondrix [30] compartmentalizes Linux
and provides fine-grained isolation, but it requires a specific designed hardware.
Nooks [25] is a comprehensive protection layer that leverages hardware protec-
tion to isolate faulty device drivers within Linux kernel and recover them after
failures. Since its primary focus is fault resistance rather than security, it does
not address attacks such as manipulating architectural state. Also, Nooks does
not provide the flexibility to specify security properties of individual data.

SILVER leverages a VMM as another layer of indirection to mediate cross-
protection-domain activities. VMMs are also widely used for protection systems
to enhance the security of applications and the OS kernel. Overshadow [9] and
TrustVisor [20] protect the integrity and secrecy of an application even in case
that the OS kernel is compromised. SIM [24] uses hardware virtualization for
securely running an isolated and trusted monitor inside an untrusted guest.
Secvisor [22] and NICKLE [21] are hypervisor-based systems which guarantee
that any unauthorized code will not be executed in the operating system kernel.
Hooksafe [28] protects kernel control data (i.e., hooks) from being tampered by
kernel-level rootkits. In comparison, SILVER aims to provide a more compre-

Xi
Highlight

19

hensive protection with the integrity guarantee of both code, data and control
flows.

7 Conclusions

In this paper, we have described the design, implementation and evaluation of
SILVER, a framework to achieve transparent protection primitives that pro-
vide fine-grained access control and secure interactions between OS kernel and
untrusted extensions. We believe that SILVER is an effective approach towards
controlled privilege separation, by which developers could protect their programs
and mitigate the damage to OS kernel caused by attacks exploiting a vulnera-
bility in untrusted extensions.

Acknowledgements

We would like to thank our paper shepherd Andrea Lanzi, the anonymous re-
viewers and Trent Jaeger, for their helpful comments on earlier versions of this
paper. This work was supported by ARO W911NF-09-1-0525 (MURI), NSF
CNS-0905131, AFOSR W911NF1210055, and ARO MURI project ” Adversarial
and Uncertain Reasoning for Adaptive Cyber Defense: Building the Scientific
Foundation”.

References

1. Android: Security and Permissions. http://developer.android.com/guide/topics/security /security.html.
2. Linux kernel can slub overflow. http://jon.oberheide.org/blog/2010/09/10/linux-
kernel-can-slub-overflow/.

NSA. Security enhanced linux. http://www.nsa.gov/selinux/.

The SLUB allocator. http://lwn.net/Articles/229984/.

5. M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow Integrity. In CCS
"05, 2005.

6. K. J. Biba. Integrity Considerations for Secure Computer Systems. Technical
Report MTR-3153, The Mitre Corporation, 1977.

7. M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly,
P. Barham, and R. Black. Fast Byte-granularity Software Fault Isolation. In
SOSP 09, 2009.

8. J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing and Protection
in a Single-Address-Space Operating System. ACM Trans. Comput. Syst., 12:271—
307, 1994.

9. X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger,
D. Boneh, J. Dwoskin, and D. R. Ports. Overshadow: a Virtualization-based Ap-
proach to Retrofitting Protection in Commodity Operating Systems. In ASPLOS
08, 2008.

10. T.-c. Chiueh, G. Venkitachalam, and P. Pradhan. Integrating Segmentation and
Paging Protection for Safe, Efficient and Transparent Software Extensions. In
SOSP 99, 1999.

-~ w

Xi
Highlight

Xi
Highlight

Xi
Highlight

20

11

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Leveraging Legacy Code to
Deploy Desktop Applications on the Web. In OSDI’08, 2008.

U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula. XFI: Software
Guards for System Address Spaces. In OSDI ’06, 2006.

M. Fahndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R. Larus, and
S. Levi. Language Support for Fast and Reliable Message-based Communication
in Singularity OS. In FuroSys 06, 2006.

B. Ford and R. Cox. Vx32: Lightweight User-level Sandboxing on the x86. In
USENIX ATC, 2008.

T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A Delegating Architecture for
Secure System Call Interposition. In NDSS’04, 2004.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel.4:
Formal Verification of an OS Kernel. In SOSP ’09.

M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Mor-
ris. Information Flow Control for Standard OS Abstractions. In SOSP ’07, 2007.
J. Liedtke. On Micro-kernel Construction. In SOSP 95, 1995.

Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F. Kaashoek. Software
fault isolation with API integrity and multi-principal modules. In SOSP ’11, 2011.
J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. TrustVi-
sor: Efficient TCB Reduction and Attestation. In Proceedings of the 2010 IEEE
Symposium on Security and Privacy.

R. Riley, X. Jiang, and D. Xu. Guest-Transparent Prevention of Kernel Rootkits
with VMM-Based Memory Shadowing. In RAID ’08.

A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A Tiny Hypervisor to Provide
Lifetime Kernel Code Integrity for Commodity OSes. In SOSP ’07, 2007.

J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a Fast Capability System. In
SOSP ’99, 1999.

M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-vim monitoring using hard-
ware virtualization. In CCS 09, pages 477-487, New York, NY, USA, 2009. ACM.
M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the Reliability of Com-
modity Operating Systems. In SOSP ’03.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient Software-based
Fault Isolation. In SOSP ’93, 1993.

H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and H. Venter.
The Multi-principal OS Construction of the Gazelle Web Browser. In USENIX
Security 09, 2009.

Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering Kernel Rootkits with
Lightweight Hook Protection. In CCS ’09.

R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway. Capsicum: Practical
Capabilities for UNIX. In USENIX Security’10, 2010.

E. Witchel, J. Rhee, and K. Asanovié. Mondrix: Memory Isolation for Linux using
Mondriaan Memory Protection. In SOSP 05, 2005.

X. Xiong, D. Tian, and P. Liu. Practical Protection of Kernel Integrity for Com-
modity OS from Untrusted Extensions. In NDSS’11, 2011.

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar. Native Client: A Sandbox for Portable, Untrusted x86
Native Code. IEEE Symposium on Security and Privacy, 2009.

N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Maziéres. Making Information
Flow Explicit in HiStar. In OSDI ’06, 2006.

Xi
Highlight

