
Self-Healing Workflow Systems under Attacks
Meng Yu, Peng Liu and Wanyu Zang

School of Information Sciences and Technology, Pennsylvania State University

Abstract— Workflow systems are popular in daily business
processing. Since vulnerability cannot be totally removed from a
workflow management system, successful attacks always happen
and may inject malicious tasks or incorrect data into the work-
flow system. Referring to the incorrect data will further corrupt
more data objects in the system, which comprises the integrity
level of the system. This problem cannot be efficiently solved by
existing defense mechanisms, such as access control, intrusion
detection, and checkpoints. In this paper, we propose a practical
solution for on-line attack recovery of workflows. The recovery
system discovers all damages caused by the malicious tasks that
the intrusion detection system reports and automatically repairs
the damages based on data and control dependencies among
workflow tasks. We analyze the behaviors of our attack recovery
system based on the Continuous Time Markov Chain model.
Finally, we address how to design a practical recovery system
step by step based on the analytical results.

I. INTRODUCTION

Increasingly, workflow management systems become the
primary technology for organizations to perform their daily
business processes (workflows). A workflow consists of a
set of tasks that are related to each other in terms of the
semantics of a business process. Each task represents a specific
unit of work that the business needs to do (e.g., a specific
application program, a database transaction). A consistent and
reliable execution of workflow is crucial for all organizations.
However, it is well known that system vulnerabilities cannot
be totally eliminated, and such vulnerabilities can be exploited
by attackers who penetrate the system.

In this paper, we focus on those intrusions that inject
malicious tasks into the workflow management system instead
of the attacks that only crash the workflow management
system. These intrusions can happen in many situations, for
example, when attackers access a system with stolen (guessed,
calculated, etc.) passwords or when some defense mechanisms,
such as access control, are broken by the attackers. Under
such intrusions, tasks and data in a workflow may be forged
or corrupted. For one example, an attacker may forge bank
transactions to steal money from accounts of others, thereby
generating malicious workflow tasks. For another example,
the attacker may schedule a travel with forged credit card
information that carries incorrect data in workflow tasks.

Even worse, these malicious tasks will ultimately spread
misleading information or damage to more tasks and pro-
cessing nodes, generating more trash data in the workflow
management system. To correct the situation, the malicious
tasks must be removed from the workflow system, and all
affected tasks must be repaired.

A motivating example for workflow attack recovery is
illustrated in Figure 1. In the example, two workflows are
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Fig. 1. An example of workflows

processed by three processors. Branches in the figure are not
for parallel tasks, but rather they are for choices of execution
paths. P1 : t1t2t3t4t6 and P2 : t1t2t5t6 are two execution
paths, but in each execution (or instance), only one path can
be selected by t2. In this example, P1 is the execution path
led by an attack, and P2 is the normal execution path without
corruption.

In the example, task t1 marked with “B” is the only
malicious task that is damaged directly by the attacker and
is identified by the Intrusion Detection System (IDS) [1]. Due
to reading corrupted data from task t1, tasks t2, t4, t8, and t10
calculate wrong results. They are marked with “A”, indicating
infected tasks. Furthermore, task t2, based on the corrupted
data it reads from t1, makes a wrong decision to execute tasks
on path P1. In fact task t3 and task t4 would not have been
executed at all if t1 were not damaged.

From this example, we learn that the IDS is unable to trace
damage spreading and cannot locate all damages to the system.
The damages directly caused by the attacker may be spread
by the execution of normal, legitimate tasks without being
detected by the IDS.

The checkpoint [2] techniques do not work either for
efficient workflow attack recovery. A checkpoint rolls back the
whole workflow system to a specific time. All work, including
both malicious tasks and normal tasks, after the specific time
will be lost, especially when the delay of the IDS is very long.
In addition, checkpoints introduce extra storage cost.

When attacks happen, we need to identify the tasks that



were affected and need to be undone. Then we need to identify
the tasks that should be redone. In this paper, we will show
that in some circumstances certain tasks that compute correctly
may need to be undone (e.g., task t3 and task t6) while some
affected tasks may not need to be redone (e.g. task t4), which
is contrary, at least to some extent, to common knowledge
on recovery. Finally, we need to execute recovery tasks and
new workflow tasks in correct order. The example in Figure 1
shows how complex an attack recovery can be even for simple
workflows with a single malicious task.

Existing techniques cannot effectively and efficiently solve
the problem. In this paper, we propose a practical solution for
on-line attack recovery of workflows. Our main contributions
are as follows. First, we present the fundamental theories for
workflow attack recovery. Given the set of malicious tasks
reported by the IDS, our approach is able to identify all
directly or indirectly damaged tasks and repair them on-line.
Second, we propose a software architecture to implement
the attack recovery system. Third, we build a Continuous
Time Markov Chain model to evaluate the performance of
the proposed attack recovery system. The analytical results
indicate that our system is practical. Finally, we introduce
guidelines for designing a effective recovery system.

The rest of the paper is organized as follows. In Section II,
we introduce some definitions and notions used in this paper.
Our theories of attack recovery are described in Section III,
including the rules to find affected tasks and the rules to
determine execution orders of tasks. We present the attack
recovery system architecture in Section IV based on our
recovery theories. The behaviors of the system are analyzed
in Section V. We summarize our analysis and address how to
design a practical attack recovery system in Section VI. We
compare related work with ours in Section VII and conclude
our work in Section VIII.

II. PRELIMINARIES

A. Execution paths, the system log, and traces

A workflow can be specified by a directed graph 〈V,E〉,
where V is the set of vortex (tasks), and E is the set of directed
edges (immediate precedence relations). If (ti, tj) ∈ E, then
tj should be executed subsequently to ti.

A workflow G(V,E) has a start node with 0-indegree, and
some end nodes with 0-outdegree. Any path from the start
node to the end node is an execution path. Please note that
a task may be repeated in a execution path because there
may be circles in the workflow. Different visits to the same
node in a path are different instances of the task, which
are distinguished by superscripts, such as t1i , t

2
i , and so on.

For example, t1t2t3t4t6, t1t2t5t6, and t1t
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executing paths in Figure 1 .
In the workflow system, a task does not take effect until it

is committed to the system. We assume that the committing
time is distinguishable. The system log is a sequence of tasks
t1, t2, . . . , tn, where ti, 1 ≤ i < n is committed earlier than

ti+1. We denote the system log by L. The system log in
Figure 1 could be L1 = t1t7t2t8t3t4t9t6t10.1

The trace of a workflow is the subsequence of the system
log consisting of tasks in the workflow. In the trace of a
workflow, only one execution path is completed. Given a trace
t1t2 . . . titi+1 . . . tn, we define succ(ti), ti’s successors set, as
{tk | i + 1 ≤ k ≤ n}. For example, succ(t2) is {t3, t4, t6},
which also indicates that another execution path t1t2t5t6 was
not selected in the instance of the workflow.

B. Precedence relations

In the system log, if ti appears earlier than tj , ti is a
predecessor of tj , which is denoted by ti ≺ tj . Note that
two tasks in two different workflows may have a precedence
relation defined by the system log. For example, t1 ≺ t8 in
L1.

Although the precedence is defined by the system log, given
two tasks in the same workflow, we can know their possible
precedence relation before executing them: for example, t1 ≺
t2, t2 ≺ t4, t2 ≺ t5, and ti2 ≺ tj2, where i < j, and so on.

Please note that t2 ≺ t4 and t2 ≺ t5 cannot hold
simultaneously since in one execution of the workflow, only
one execution path is chosen.

Relation ≺ is transitive and asymmetric. We can get t1 ≺ t3
from t1 ≺ t2 and t2 ≺ t3. The relation ≺ is a partial order
because some tasks have no precedence relations among them,
such as t4 and t5 in the example.

Assume ≺ is a relation on set S then we define
minimal(S,≺) = x where x ∈ S ∧ @x′ ∈ S, x′ ≺ x. If S is a
set including all tasks in Figure 1 then minimal(S,≺) = t1.
Note there may be more than one result qualified by the
definition of minimal(S,≺). For example, S = {ti, tj , tk},
ti ≺ tk and tj ≺ tk, then both ti and tj are qualified results
for minimal(S,≺). In cases like these, we randomly select
one qualified result as the value of minimal(S,≺). The task
scheduler is supposed to choose the minimal(S,≺) to execute.

C. Data dependency

We use R(T ) and W (T ) to denote the reading set and the
writing set of task T . For example, given two tasks tx : x =
a + b, and tb : b = x − 1. R(tx) = {a, b}, W (tx) = {x},
R(tb) = {x}, and W (tb) = {b}.

We introduce some concepts that are usually discussed in
the field of parallel computing.

Definition 1: Given two tasks ti ≺ tj ,
• If (W (ti)−

⋃
ti≺tk≺tj

W (tk))∩R(tj) 6= φ, then tj is flow

dependent on ti, which is denoted by ti →f tj .
• If R(ti)∩ (W (tj)−

⋃
ti≺tk≺tj

W (tk)) 6= φ, then tj is anti-

flow dependent on ti, which is denoted by ti →a tj .
• If (W (ti) −

⋃
ti≺tk≺tj

W (tk)) ∩ W (tj) 6= φ, then tj is

output dependent on ti, which is denoted by ti →o tj .

1Since the workflow could be processed in a distributed style, the system
log may be stored in segments. But it does not affect our discussion.



Intuitively, if ti →f tj , then tj reads some data objects written
by ti. If ti →a tj , then tj modifies some date objects after ti
reads them. If ti →o tj , then ti and tj have some common data
objects to modify. Consider tasks tx and tb, where tx ≺ tb,
and there does not exist such tk, that tx ≺ tk ≺ tb. We have
tx →f tb and tx →a tb.

All the relations →f ,→a and →o are data dependence
relations and are not transitive. From the well known results
of parallel computing, if a task tj is data dependent on another
task ti, then they cannot run concurrently, and tj should
be executed after executing ti, otherwise we will get wrong
results.

D. Control Dependency

If a node exists in all execution paths, it is a unavoidable
node. If a node tj is not an unavoidable node, any node ti

whose outdegree is larger than 1 in the path from the start node
to tj is a dominant node of tj , and tj is control dependent
on ti, which is denoted by ti →c tj . In the example shown
in Figure 1, t2 →c t3, t2 →c t4 and t2 →c t5. Control
dependence relation is transitive. If ti →c tj and tj →c tk
then ti →c tk.

We use → to denote data or control dependency when
the concrete type of dependencies does not matter to our
discussion. If there exist such tasks t1, t2, . . . , tn, n ≥ 2 that
t1 → t2 →, . . . ,→ tn, then t1 →∗ tn.

III. THEORIES OF RECOVERY

A. Axioms and Correctness Criteria

When attackers inject malicious tasks into the workflow
management System, the malicious tasks generate or corrupt
some data objects directly. In addition, the data dependence re-
lations and the control dependence relations among workflow
tasks can further spread the damage to other data objects. We
identify corrupted data objects, incorrect data objects, based
on the following axiom.

Axiom 1: A task will generate incorrect data if, and only
if, any of the following conditions is true.

1) The task codes are malicious or the task should not be
executed.

2) The data objects that the task reads are incorrect.
The following definition describes the correctness criteria

for our workflow attack recovery scheme.
Definition 2: Given normal tasks and recovery tasks, the

recovery is strict correct if and only if the following conditions
hold.

1) (Completeness of recovery) No incorrect data exists after
the recovery.

2) (Safety of recovery) No incorrect data is generated while
executing recovery tasks.

3) (Safety of normal services) No incorrect data is gener-
ated while executing normal tasks.

4) (Consistency to the workflow specification) The execu-
tion of normal tasks and recovery tasks does not violate
the specification of workflow.

A correct recovery scheme is not isolated from the workflow
management system. When we are carrying out the recov-
ery, there definitely exist some scheduled preceding relations
between the recovery tasks and the normal workflow tasks.
Condition 3 describes that execution of normal tasks should
be clean. In other words, if a new task tries to read corrupted
data from some unrecovered tasks, it should be suspended until
the data is clean.

Note that Condition 1 does not imply Condition 2 and
Condition 3. Condition 1 requires that the recovery should
be complete while it implies nothing about the procedure of
the recovery.

In this paper, we assume that if a task ti is corrupted, we
can remove its effects in the workflow system by executing a
task undo(ti), which can be implemented by reading the last
version of the data objects before the attack from the log of
the workflow management system. To recover affected tasks,
we need to re-execute them. We denote the re-execution of
task ti by redo(ti). ti and redo(ti) are different executions of
the same task. redo(ti) refers to the execution when carrying
out the attack recovery.

B. Recovery Tasks

This section describes how to find undo and redo tasks.
From Axiom 1 we can get the following theorem for undo
tasks.

Theorem 1 (Undo tasks): Assume that B is the set of ma-
licious tasks already known. Task tj generates incorrect data
and needs to be undone if, and only if, any of the following
conditions are satisfied.

1) tj ∈ B
2) ∃ti ∈ B, tj ∈ L, ti →

∗
c tj , and tj /∈ succ(redo(ti))

3) ∃ti ∈ B, ti →∗
f tj

4) ∃ti ∈ B,∃tk /∈ L, ti →∗
c tk, tk →∗

f tj , and tk ∈
succ(redo(ti))

PROOF SKETCH: 1) Sufficient condition. In the first two condi-
tions, tj should not have been executed. It satisfies condition 1
of Axiom 1. In the third condition, tj reads corrupted data. In
the fourth condition, tj reads some data objects that are not
up to date. Thus, the last two conditions satisfy condition 2
of Axiom 1. Therefore, tj generates incorrect data objects
and should be undone. 2) Necessary condition. If a task tj

generates incorrect data objects, then its codes are malicious,
it should not have been executed, or it reads incorrect data
objects. In a workflow system, we can enumerate all possible
conditions listed in the theorem. �

We explain the theorem by Figure 1. Task t1 marked with
’B’ was corrupted directly by attackers and is reported by the
IDS, B = {t1}. The data that t1 generates is corrupted, and t1
needs to be undone, as indicated by condition 1 in Theorem 1.

In the figure, task t1 →f t2, where t1 ∈ B. t2 is infected by
task t1 because it reads corrupted data from t1 and then creates
wrong results. Tasks t4, t8, and t10, as described by condition 3
also create wrong results. Now, B = {t1, t2, t4, t8, t10}.

The situation described in condition 2 is shown by task t3.
The execution of task t3 is based on the executing result of



task t2, where t2 ∈ B. Since task t2 is affected by t1, it is
possible that the choice of execution path is wrong. We must
redo task t2 and then check whether t3 is still on the execution
path: check if t3 ∈ succ(redo(t2)) in the recovery. If t3 /∈
succ(redo(t2)) is in the recovery, then the data t3 generated
before is corrupted, and t3 needs to be undone, although the
computing of t3 is correct.

For the last case described in Theorem 1, please refer to the
execution of task t6. t6 is flow dependent on task t5 which
was not executed in the attacked execution. When we redo
task t2, the workflow is executed along a new execution path
that continues with t5. Then t5 may generate different data
from what t6 has read in the attacked execution. Thus t6 will
get different results in the recovery execution. Therefore, t6
got a wrong result in the attacked execution, and the data that
it generated was corrupted.

We call the tasks described by condition 2 and condition 4
as candidate undo tasks because we do not know if they really
should be undone until redo(ti) is executed. If they need to
be undone, then they are added to B.

The tasks that have already been undone and are still on
the re-executing path should be redone. We have the following
theorem for redo tasks.

Theorem 2 (Redo tasks): Assume that B is the set of bad
tasks already known and ti ∈ B, then ti should be redone if
and only if any of the following conditions are satisfied.

1) @tj ∈ B, tj →∗
c ti

2) ∃tj ∈ B, tj →∗
c ti, ti ∈ succ(redo(tj))

PROOF SKETCH: In both cases, ti has been damaged and is
on the re-executing path. Thus, ti needs to redo to meet the
specification of workflows. �

We call the tasks described by condition 2 candidate redo
tasks because we do not know if they really should be redone
until redo(tj) is executed.

In Figure 1, task t1, t2, t6, t8, and t10 need to be undone.
Since they are not control dependent on any bad task, they
need be redone, as stated in case 1 of Theorem 2. Since
neither task t3 nor task t4 is on the re-executing path of
the workflow, they do not need to be redone according to
Theorem 2. Redoing them does not meet the specification of
the workflow because redoing them will generate corrupted
data.

C. Partial Orders Caused by Dependence Relations

Since undo and redo tasks are not defined by the original
Workflow, we must create partial orders among these tasks
and normal workflow tasks to guarantee that our recovery is
strict correct.

Theorem 3 (Partial orders among recovery tasks): Given
any two tasks ti and tj and the system log L, the recovery is
strict correct only if the partial orders of the recovery tasks
are derived by the following rules.

1) ti ≺ tj ⇒ redo(ti) ≺ redo(tj)
2) ti → tj ⇒ redo(ti) ≺ redo(tj)
3) ∀ti, undo(ti) ≺ redo(ti)
4) ti →a tj ⇒ undo(tj) ≺ redo(ti)

5) ti →o tj ⇒ undo(tj) ≺ undo(ti)
6) ti →c tj , tj ∈ succ(ti) ⇒ redo(ti) →c redo(tj) ∧

redo(tj) ∈ succ(redo(ti))
7) ti →c tj , tj /∈ succ(ti) ⇒ redo(ti) →c redo(tj) ∧

redo(tj) /∈ succ(redo(ti))
8) ti ∈ B, tj ∈ L, ti →∗

c tj and tj /∈ succ(redo(ti)) ⇒
redo(ti) →c redo(tj) ∧ undo(tj) ∈ succ(redo(ti))

9) ti ∈ B,∃tk /∈ L, ti →∗
c tk, tk →∗

f tj and tk ∈
succ(redo(ti)) ⇒ redo(ti) →c undo(tj) ∧ undo(tj) ∈
succ(redo(ti))

10) ti ∈ B,∃tj ∈ B, tj →∗
c ti, ti ∈ succ(redo(tj)) ⇒

redo(ti) →c redo(tj) ∧ redo(tj) ∈ succ(redo(ti))
PROOF: See appendix.

In order to run both the recovery tasks and normal workflow
tasks concurrently, we introduce partial orders among recovery
tasks and normal tasks.

Theorem 4 (Partial orders about normal tasks): Given
normal workflow tasks N and the system log L, if every data
object has only one copy, say, the value of a data object will
be lost after writing, the recovery is strict correct only if then
precedence relations are derived by the following rules.

1) (ti →f tj) ∨ (ti →a tj) ∨ (ti →o tj) ∨ (ti →c tj), tj ∈
N ⇒ undo(ti) ≺ redo(ti) ≺ tj

2) ti →
∗
c tk, tk →∗

f tj , tk /∈ L ∪N , tj ∈ N ⇒ undo(ti) ≺
redo(ti) ≺ tj

PROOF: See appendix.
The results of Theorem 4 is pretty reasonable. For example,

we cannot expect a task that refers to the corrupted x to get
correct results before x is repaired. If there exists such task, it
should wait until x is recovered. Similarly, if a recovery task
redo(ti) needs to read from y to repair x, then a normal task
that writes to y is supposed to wait until redo(ti) is done.
Otherwise, the recovery task redo(ti) will be corrupted.

Theorem 4 indicates that, to guarantee the strict correctness
of recovery, a normal task cannot be executed before all
recovery tasks are figured out. Unfortunately, we do not know
the set of recovery tasks until the analysis of recovery tasks is
complete. In other words, we cannot run any normal task until
all malicious tasks reported by the IDS have been processed,
which may cause temporary delay to process normal tasks
when the attacking rate is high and the system is busy
analyzing damages.

If no partial order is defined between two tasks, they can
be run in any sequence without comprising the correctness of
the execution results.

D. Recovery Strategies

When we build a recovery system, there are three possible
strategies for recovery.

Strict correctness. Do the recovery while guaranteeing the
correctness of executing both the recovery and normal tasks.
We may delay normal tasks while damages are analyzed. In
this paper, we adopt this strategy, in order to guarantee the
correctness and termination of the recovery.

Obtain concurrency while taking risks of corrupting tasks.
In this strategy, the system executes a task before knowing
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all dependence relations. However, as we mentioned before,
both recovery tasks and normal tasks may be corrupted and
we need to repair them again. This strategy in fact introduces
more recovery tasks and costs, because the more tasks are
executed, the more tasks may be corrupted. Even worse, we
cannot guarantee the system will be repaired, since we cannot
guarantee the recovery is correct and terminable.

Obtain concurrency while taking risks of corrupting only
normal tasks. Theorem 4 is derived from the assumption that
every data object has one copy. Multiple versions of data
objects can break anti-flow and output dependence relations.
If every data object has multiple versions, normal tasks can be
executed without blocking while we guarantee the correctness
of recovery. However, since the recovery is not complete,
we cannot guarantee the correctness of executing normal
tasks. Furthermore, multiple versions for each data object
also introduce extra storage costs. We discuss this strategy
in another paper.

IV. RECOVERY SYSTEM AND STATE TRANSITION MODEL

A. Architecture of the Recovery Systems

The structure of the recovery system is shown in Figure 2.
Our recovery system consists of an independent IDS to iden-
tify attacks, a recovery analyzer to evaluate damages of the
system, and a scheduler to schedule both recovery tasks and
normal tasks.

In the system, the IDS periodically reports intrusions to
the system by putting ‘IDS Alerts’ in a queue. The recovery
analyzer generates recovery tasks, works out related partial
orders, and puts them in the queue of recovery tasks. The
task scheduler schedules both recovery tasks and normal tasks
according to their partial orders.
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B. Implementation Issue

Our theories depend on data and control dependence re-
lations that can be calculated when compiling workflows.
Another important data structure is the system log, which
exists in all workflow management systems. It is not difficult to
design algorithms for the scheduler and the recovery analyzer.
Thus, our system model is easy to implement and is practical.

C. State Transition of the System

The state transition graph (STG) of the system is shown
in Figure 3. In the figure, we denote by ‘N’ the NORMAL
state. ‘S:n’ represents the SCAN state with n IDS alerts in the
queue, and ‘R:n’ represents the RECOVERY state with n units
of recovery tasks in the queue, where 1 unit of recovery tasks
corresponds to a set of tasks for repairing damages caused by
1 attack.

There are three categories of states of the attack recovery
system: ‘NORMAL’, ‘SCAN’, and ‘RECOVERY’.

In the NORMAL state, there is no intrusions reported in the
system. The recovery analyzer does nothing and the scheduler
executes normal tasks.

In the SCAN states, intrusions are reported, and the queue
of IDS Alerts is not empty. The recovery analyzer analyzes
damages to the system, and generates recovery tasks and
partial orders among them. As we mentioned before, recovery
may redo some tasks to repair damaged data objects. The redo
tasks may read some data objects that new IDS alerts try to
mark as damaged data objects, which in turn will corrupt
recovery tasks. Therefore, in the SCAN state, recovery tasks
may not be executed.

In the RECOVERY states, the queue of IDS alerts is empty.
All damages of the system are identified. The scheduler
schedules recovery tasks and new tasks according to their
partial orders.

Although the structure in Figure 2 looks like a queuing
network, according to the restrictions that the system does not
execute recovery tasks in the SCAN state, which leads to that



the scan and the recovery cannot run in parallel, the system
cannot be modeled by a queuing network.

The recovery system starts form the state NORMAL. It
transits to the SCAN states whenever there are IDS alerts
arrived. After all IDS alerts have been processed, the system
goes to the RECOVERY states. The system returns to the
NORMAL state when all recovery tasks have been executed.

If there are no further intrusions, the recovery will definitely
be terminated because the system will transit to the RECOVERY
states after all damages are analyzed, then transit to the
NORMAL state after all recovery tasks are executed.

D. Parameters of the System

It is well known that intrusions occur sporadically, with long
time periods where there are no successful attacks, interspersed
with short bursts of multiple attacks. However, there is still no
agreement about what probability distribution best describes
the intrusions.

To obtain reasonable analytical results, we consider the
continuous rate of intrusions to learn the response of our
system when intrusions happen.

In our model, we assume that the arriving of IDS alerts is
Poisson distribution. The probability of n IDS alerts arrived
in [0, t) is Pn(t) = (λt)n

n! e−λt. In other words, any S:n state
transits to S:n + 1 with transition rate λ. The distribution
function of IDS alerts is F (t) = 1−e−λt. Thus, the probability
density function of inter-arrival times of the IDS alerts is
given by f(t) = λe−λt, which is exponential distribution
with parameter λ. Since an IDS alert causes one unit of
recovery tasks, the transition direction always directs to the
right side. We assume the processing time of IDS alerts and
recovery tasks are exponential distribution with parameter µk

and ξk, 1 ≤ k ≤ ∞, respectively, where µk = f(µ1, k) and
ξk = g(ξ1, k). µk and ξk can also be considered as transition
rates among states.

Since both the analyzer and scheduler need to check depen-
dence relations to all items in queues, the more items in the
queues, the more time will be spent. Say, µ1 ≥ µ2 ≥ · · · ≥
µk · · ·, and ξ1 ≥ ξ2 ≥ · · · ≥ ξk · · ·, where 1 ≤ k ≤ ∞.
We use function f and g to simulate the degradation of
performance when the number of items in queues increases.
Given λ, µ1, ξ1, f and g, a model is solely determined.

Although the recovery system can find more damages than
the IDS, the recovery still depends on the accuracy of the IDS.
However, we assume that all corrupted tasks will ultimately be
identified by the administrator of the system, even if they are
not identified by the IDS. Since our system does not depend
on timely reporting from the IDS, the delay of identifying a
malicious task is not a problem. Therefore, we do not consider
parameters of the IDS, such as false alarm rate and delay in
this paper.

E. Fit Infinite States to a Real System

Our model has infinite states, which is not practical in the
real world. A real system has limited resources so its buffer
size for queues is limited. Therefore, the number of states of a

real attack recovery system is limited. In fact, when a queue is
full, no further state transition about the queue can be made.
Hence, the number of total states is restricted.

Based on the assumptions about parameters and the above
discussion, the state transition of our model becomes a finite
states Continuous-Time Markov Chain (CTMC) [3], [4] that
can be characterized by a generator matrix Q = (qi,j) and
initial state probability vector π(0), where qi,j is the transition
rate from i to j and qi,i = −

∑
j 6=i

qi,j .

There are two important queues in the system: the queue
of recovery tasks, and the queue of IDS alerts. The queue
size of recovery tasks is critical to the performance of the
system. Once the buffer of recovery tasks is full, no new IDS
alerts can be processed because there is no space to store new
recovery tasks. For example, let the buffer size of recovery
tasks be 4. The STG for the system will look like the STG in
Figure 3 except all parts beyond row 4 would be eliminated.
When the buffer of recovery tasks is full (number of IDS alerts
is 4), any new arrival IDS alerts cannot be processed. The
recovery analyzer is simply blocked. As long as the recovery
analyzer keeps on blocking, the queue of IDS alerts will fill
up. After the queue of IDS alerts is full, it will lose IDS
alerts. Therefore, all parts beyond column 4 are not helpful for
improving the overall performance of the system. However, a
larger buffer for IDS alerts can help to cache peak traffic. As
long as the mean rate of the IDS alerts remains stable, the
system can handle the situation of some peak traffics with a
larger buffer of IDS alerts.

According to our discussion, the buffer size of recovery
tasks determines the overall performance of a system. In this
paper, an n size buffer of recovery tasks is modeled by a n
rows by n columns STG.

As long as the queue of recovery tasks is full, the system
will be at states at the right edge of STG, indicating that the
system has limits, beyond which IDS alerts are lost by the
recovery system. When and how long a system stays at the
right edge of STG describes how many IDS alerts could be
lost by the system. Given a probability distribution among all
states of a STG, we define loss probability as follows.

Definition 3: Given an n states STG, a vector of probability
distribution π = (p1, p2, · · · , pn), and a set E of states at the
right edge of STG, the loss probability of the STG with respect
to π is lpπ =

∑
i∈E

pi.

Loss probability describes whether a system reaches its limits
under given condition π. If lpπ is very small, the system is
prone to working very well. Otherwise, the system is prone to
losing IDS alerts and failing to work efficiently.

Definition 4: If a system exists a steady state whose prob-
ability distribution is given by π, where lpπ = ε, we say the
system is ε-convergence.
ε-convergence describes how many IDS alerts could be lost at
the steady state of a system. It is more practical for introducing
features of a real system. A 1-convergence system is the
worst system in theory and is useless in practice. The goal
of designing a system is to let the ε as small as possible.



V. EVALUATION

In this section, we evaluate the recovery system while the
attacks are on-the-fly. We focus on the state probability of the
system, and the loss probability of the IDS alerts, because
both of them reflect performance features of the system.
For example, if the probability that the system stays at the
NORMAL states is 0.1, the system will be busy in recovery
and the system is not able to effectively process normal tasks.
For example, if the probability that the system stays at the
NORMAL states is 0.9, the system will spend little time on the
recovery and spend more time on processing normal tasks. We
evaluate not only the steady states, but also the transient states
of the system. Therefore, the system responses to attacks in
both sustained and burst fashion can be obtained from our
analysis.

A. Steady-State Behaviors

The steady state of a system is the state that all features
of the system do not change any more after running a long
period of time. It may not exist at all for a specific CTMC.
Fortunately, most real systems do have their steady states.
Once a n by n generator matrix Q is given, the steady-state
probability vector π is determined by Equation 1.

πQ = 0,
∑

1≤i≤n

πi = 1. (1)

1) Impacts on the loss probability with different buffer size,
f and g:

Case 1: λ = 1, µ1 = 15, and ξ1 = 20, buffer size changes
from 2 to 30. The results are shown in Figure 4 with different
f and g.
Remark: If the speed of degradation of µk and ξk is very slow
while k increases, loss probability can be reduced significantly
by increasing the buffer size of IDS alerts, as shown in
Figure 4(a). The condition does not hold in most real systems.
The analyzer needs to check all dependence relations among
existing recovery tasks to generate a correct recovery scheme
after new IDS alert arrives. The checking time will be a
function of the number of existing recovery tasks. It is more
realistic that µk and ξk decreases while k increases. When the
attenuation of µk and ξk is very quick and there are too much
items in queues to process, the steady state of the system is
prone to higher loss probability. Intuitively, when the buffer
size increases not too much and the attenuation of µk and ξk

is not too much, the loss probability decreases. If we allow the
queues to be too large, the loss probability will increase due
to significant degradation of processing speed, which can be
found in Figure 4(b) and Figure 4(c). When µk decreases faster
than ξk, the results are better than the contrary case, which can
be found in Figure 4(d) comparing with Figure 4(c).

2) Impacts on steady-state probability with different λ, µ
and ξ: For simplicity of comparison, we stick to the condition
of µk = µ1/k, ξk = ξ1/k and buffer size is 15 in this section.

Case 2: µ1 = 15, ξ1 = 20, λ changes from 0 to 4. The
probability distribution is shown in Figure 5(a). The expected
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Fig. 5. Impacts on steady-state probability with different λ, µ and ξ

values of number of items in queues are shown in Figure 5(b)2.
Remark: When the arrival rate of IDS alerts λ is less than 1, the
system has high probability (> 0.8) to stay at the NORMAL
state. The loss probability is very low. The expected values
are also less than 1. The system can handle the situation very
well. When λ is larger than 1, especially larger than 1.5, the
loss probability and the probability of staying at the SCAN
state increase very quickly, indicating that the system cannot
handle all intrusions, and consequently, the performance of
processing normal tasks degrades almost 100%. We can also
observe that the queue of recovery tasks is full even though the
expected number of IDS alerts is 1. The system cannot accept
new IDS alerts to generate more recovery tasks although the
buffer of IDS alerts is almost empty. Therefore, the buffer
size of recovery tasks is a critical parameter for system
performance. By checking the expected number of IDS alerts
in the queue, we can reduce the buffer size for IDS alerts
without compromising the loss probability of the system. In
fact, we observed that the probability distribution on states that
are near the right up conner of the STG usually are zeros if

2In Figure 5(b), Figure 5(d) and Figure 5(f) the loss probability is also
drawn in the figures for reference. Please note that the value of loss probability
is between 0 and 1, and it is not an expected value as read from label of y
axis.
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the system has low loss probability (< 1%).
Case 3: λ = 1, ξ1 = 20, µ1 changes from 0 to 20. The

probability distribution is shown in Figure 5(c). The expected
number of items in queues are shown in Figure 5(d).

Case 4: λ = 1, µ1 = 15, ξ1 changes from 0 to 20. The
probability distribution is shown in Figure 5(e). The expected
number of items in queues are shown in Figure 5(f).
Remark: Case 3 and Case 4 show that µ1 and ξ1 have similar
effects on the system behaviors. When they are large enough,
e.g. > 15, the system has high probability (> 0.8) to stay
at the NORMAL state, which indicates that the degradation
of performance for new arrival tasks is less than 20%. After
exceeding a specific value, e.g. 15, µ1 and ξ1 has no significant
impacts on improving the steady probability of the NORMAL.
There exists a cost effective range of µ1 and ξ1, which can
be observed in Case 3 and Case 4. Given a value of λ, the
µ1 and ξ1 are supposed to be in the cost effective range for
designing a new system.

B. Transient Behaviors

A transient state of a system is the state of the system at a
specific time. The evaluation of transient states shows how
quickly a system goes to its steady state, how much time
is spent on each state, how many IDS alerts have been lost
before the system enters its steady state, and so on. In fact,
a system may satisfy us with its steady states, but disappoint
us with its transient behaviors, e.g. taking too long to go to
the steady states or loosing too many IDS alerts before it can
effectively handle them. Transient behaviors also tells us what
may happen if a system suffers a short term of high attacking
rate.

Given a generator matrix Q and initial state probability vec-
tor π(0), transit state probability π(t) at time t is determined
by Equation 2.

d

dt
π(t) = π(t)Q (2)

Cumulative time l(t) spent on each state at time t is given by
Equation 3.

d

dt
l(t) = l(t)Q + π(0) (3)

In this section, we stick to the condition of µk = µ1/k, ξk =
ξ1/k and buffer size = 15.

Case 5: λ = 1, µ1 = 15, ξ1 = 20 and the system starts
from the NORMAL state. We observe the behaviors of the
system for 4 time-units. The probability distribution is shown
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Fig. 6. Transient state probability

in Figure 6(a). Cumulative time spent on each state is shown
in Figure 6(b).
Remark: Case 5 shows what a good system looks like after
it starts. Such systems enter their steady state very quickly
and remain both low degradation of performance and low loss
probability of IDS alerts in its steady state. Its loss probability
of IDS alerts is almost not noticeable, given its proximity to
the x axis and cannot be distinguished from the x axis in
Figure 6(a). A system that has similar properties to Case 5
spends most of its time on executing normal tasks. Attacks
are handled effectively and cost little time of the system. A
real system is supposed to be designed in this style.

Case 6: λ = 1, µ1 = 2, ξ1 = 3 and the system starts from
the NORMAL state. We observe the behaviors of the system
for 100 time-units. The probability distribution is shown in
Figure 6(c). cumulative time spent on each state is shown in
Figure 6(d).
Remark: Case 6 demonstrates what a system will be a given
times during a period of rush hour attacks, or when the
attacking rate is much higher than the value that a system
is designed for. Under such conditions, the degradation of
performance will be almost 100%, and there is no chance



to serve new arrival tasks. The loss probability goes up very
quickly (< 30 time-units) and remains at the range from 0.9
to 1. Moreover, such systems spend most of their time on
analysis and recovery. By observing time spent on the right
edge of STG in Figure 6(d), the system spent about 80% time
on the right edge of STG, indicating that the queue of recovery
tasks is full.

An interesting fact is that µ1 = 2 and ξ1 = 3 is already
good enough for a small λ, such as λ = 0.1. If the system
is designed for λ = 0.1 we cannot say the system shown
in Figure 6(c) is a poor system simply based on results in
Case 6. Since the attacking rate to the system is 9 times
larger than the goal of its design. But we can learn transient
behaviors of the system from Case 6 when attacking rate is
much higher than what it is designed for. In the case, the
system can resist such high attacking rate about 5 time-units
if it is at the NORMAL state when the attacks start. After 5
time-units, the loss probability goes up. The results show how
long the system can resist to a specific high attacking rate
without compromising its loss probability.

VI. GUIDELINES FOR DESIGNING A SYSTEM

We summarize results of our evaluation and give guidelines
for designing an attack recovery system with target parameter
λ and ε step by step, where λ is the expected attacking
rate that the system is designed to handle and the system
is ε-convergence. In our analysis, we found that when the
loss probability is low, the system always has a good state
distribution probability. So, consider the loss probability is
enough.

First, design and evaluate the performance degradation of
analyzing algorithm and scheduling algorithm. Evaluate µk

and ξk, where 1 ≤ k ≤ n and n is the maximum buffer
size of recovery tasks that we want to try, e.g. n = 30. The
performance degradation while k increases should be designed
as slow as possible. Otherwise, the loss probability is very
sensitive to the change of buffer size of recovery tasks.

Second, increase the buffer size of recovery tasks from 2
to n, or until the loss probability begins to increase. Check if
ε can be satisfied in the range of low loss probability. If so,
choose a buffer size for recovery tasks. Otherwise, redesign
all algorithms and repeat the procedure.

There are totally two ways to reduce the loss probability of
a system. One way is to improve µ1 and ξ1, say, the speed of
processing recovery tasks and IDS alerts when there are only
one IDS alert and one unit of recovery tasks in buffers. The
other way is to improve algorithms with less complexity to
slow down the decreasing speed of µk or ξk or both while k
increases, and increase corresponding buffer size. Select the
one which costs less.

Finally, the buffer size of IDS alerts may be less than the
buffer size of recovery tasks according to its expected value.
But we do not recommend to do so since the expected value
is for considering a long period of time. The buffer of IDS
alerts may be overflowed by a transient high attacking rate.

To reduce the buffer size of IDS alerts is worthless since it
saves little space.

Bigger buffer size of IDS alerts may help the system to
handle transient high attacking rates, but, it is not a long
term solution. After the queue of recovery tasks is full, the
queue of IDS alerts will fill up very quickly if the system
suffers a long term of high attacking rate. Therefore, design
the buffer size of IDS alerts according to the peak rate the
system wants to handle. This could be achieved by inspecting
transient behaviors of the system while applying desired peak
attacking rate to its steady state.

VII. RELATED WORK

The work most similar to ours handles malicious trans-
actions in the database system, as discussed in [5]. When
intrusions have been detected by the IDS, the database system
isolates and confines the impaired data. Then, the system
carries out recovery for malicious transactions. This work is
different from ours in that they consider little about relations
among transactions.it is unable to trace damage spreading and
cannot locate all damages to the system. In contrast, we show
that to guarantee the correct recoveries of workflow ,we need
all data and control dependence relations among transactions.
Otherwise, both recoveries and newly executed transactions
could be corrupted.

The failure handling of workflow has been discussed in
recent work [6], [7], [8]. Failure handling is different with
attack recovery in two aspects. On one hand, they have
different goals. Failure handling tries to guarantee the atomic
of workflows. When failure happens, their work find out
which tasks should be aborted. If all tasks are successfully
executed, failure handling does nothing for the workflow.
Attack recovery has different goals, which need to do nothing
for failure tasks even if they are malicious because failure
malicious tasks have no effects on the workflow system. Attack
recovery focuses on malicious tasks that are successfully
executed. It tries to remove all effects of such tasks. On the
other hand, these two systems active at different times. Failure
handling occurs when the workflows are in progress. When
the IDS reports attacks, the malicious tasks usually have been
successfully executed. Failure handling can do nothing because
no failure occurred. Attack recovery is supposed to remove the
effects of malicious tasks after they are committed.

Rollback recovery, e.g. [9], [10], is surveyed in [11]. It
focuses on the relationship of message passing and considers
temporal sequences based on message passing. In contrast
to their research, we focus on data and control dependence
relations inside workflow tasks. In fact, message passing is a
kind of data dependence relation but not vice versa (e.g., a
data dependence relation caused by more than one message
passing steps or by sharing data). We also observed that
in workflow recovery an execution path may change due
to control dependence, causing different patterns of message
passing. In addition, our methods exploit more detail in de-
pendence relations than the methods that are message passing
based; therefore our method is more effective and efficient



for workflow recovery. Our method also better matches the
workflow model.

De-centralized workflow processing is becoming more and
more popular. In distributed workflow models, workflow spec-
ifications cannot be accessed in a center node. They are carried
by workflow itself or stored in a distributed style. In either
case, our theories are still practical. We need to process the
specifications of workflow in a distributed style.

In some work such as [12], security and privacy is Impor-
tant, and the whole specification of workflows avoids being
exposed to all processing nodes to protect privacy. Our theories
are based on the dependence relations among tasks. The
specification can be best protected by exposing only dependent
relations to the recovery system.

VIII. CONCLUSIONS

We described fundamental theories for on-line attack recov-
ery of workflows. While an independent IDS reports malicious
tasks periodically, our techniques find all damages caused
by the malicious tasks and repair them automatically. We
described the architecture of the recovery system and analyzed
its performance when intrusions happen. Both steady states
and transient states are analyzed. The analytical results show
that our system is practical.
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APPENDIX

Proof of Theorem 3
1) Comes directly from criterion 4 of Definition 2.
2) Derived from rule 1 and the definition of relation →
3) By contradiction. If redo(Ti) ≺ undo(Ti) then the effects

of task Ti will be undone, which violates criterion 4 of
Definition 2.

4) By contradiction. Assume redo(Ti) ≺ undo(Tj). Since
Ti →a Tj , R(redo(Ti)) = R(Ti) and W (undo(Tj)) =
W (Tj), so R(redo(Ti)) ∩ W (undo(Tj)) 6= φ. More-
over, W (undo(Tj)) is corrupted before undo(Tj). There-
fore redo(Ti) reads corrupted data from R(redo(Ti)) ∩
W (undo(Tj)) then generates corrupted data, which violates
criterion 2 of Definition 2.

5) By contradiction. From Ti →o Tj we have Ti ≺ Tj and
W (Ti) ∩ W (Tj) 6= φ. Then in the system log W (Ti) has
older version than W (Tj) for W (Ti)∩W (Tj). If undo(Ti) ≺
undo(Tj) then W (Ti) ∩ W (Tj) was not undone for Ti. In
other words, Ti was not undone completely, which violates
criterion 1 of Definition 2.

6) Comes directly from criterion 4 of Definition 2.
7) Comes directly from criterion 4 of Definition 2.
8) Comes directly from condition 2 of Theorem 1.
9) Comes directly from condition 4 of Theorem 1.

10) Comes directly from condition 2 of Theorem 2. �

Proof of Theorem 4
1) Comes directly from criterion 4 of Definition 2.
2) undo(Ti) ≺ redo(Ti) come directly from rule 3 of Theorem 3.

If Tj is data dependent on Ti we prove the result by con-
tradiction. Since R(redo(Ti)) = R(Ti) and W (redo(Ti)) =
W (Ti) so if Ti → Tj then redo(Ti) → Tj . There are three
cases.

• redo(Ti) →f Tj . When Tj reads data from
W (redo(Ti)) ∩ R(Tj) the redo(Ti) has not created it.
So the task Tj gets wrong data and be corrupted.

• redo(Ti) →o Tj . After executing Tj , redo(Ti) writes
W (redo(Ti))∩W (Tj) again. So the executing results of
redo(Ti) in W (redo(Ti))∩W (Tj) is lost. Therefore the
task redo(Ti) is corrupted.

• redo(Ti) →a Tj . redo(Ti) will read data that Tj writes
in R(redo(Ti))∩W (Tj). But according to the definition
of workflow, redo(Ti) should read data that exists in
R(redo(Ti)) ∩ W (Tj) before executing Tj . So the task
redo(Ti) is corrupted.

In these cases, either the new task Tj is corrupted, which vio-
lates criterion 3 of Definition 2, or the recovery task redo(Ti)
is corrupted, which violates criterion 2 of Definition 2.
If Tj is control dependent on Tj then the execution of Tj

depends on the executing result of Ti. If Tj ≺ redo(Ti) then it
is possible that Tj /∈ succ(redo(Ti)) after redo(Ti) is done. In
this case, Tj creates corrupted data according to the Theorem 1
therefore the execution of Tj violates both criterion 3 and
criterion 4 of Definition 2.

3) undo(Ti) ≺ redo(Ti) come directly from the rule 3 of
Theorem 3.
We prove redo(Ti) ≺ Tj by contradiction. Since redo(Ti) ∈
R is not done we do not know if Tk ∈ succ(redo(Tj)).
Assume Tj ≺ redo(Ti). After the redo(Ti) is done, it is pos-
sible that Tk ∈ succ(redo(Tj)). According to condition 4 of
Theorem 1, Tj should be undone because it creates corrupted
data, which violate criterion 3 of Definition 2. �


