
Emulating sequential scanning worms on the DETER testbed ∗

L. Li, I. Hamadeh, S. Jiwasurat, G. Kesidis, P. Liu and C. Neuman
Pennsylvania State University, University Park, PA 16802

lli,pliu@ist.psu.edu, hamadeh,soranun@cse.psu.edu, kesidis@engr.psu.edu

University of Southern California, ISI

bcn@isi.edu

Abstract

Internet worm security threats have increased with their more
advanced scanning strategies and malicious payloads. In this
article, we extend our existing KMSim worm model to account
for the self-destructive or removal/death behavior of worms.
The modified model is then used to simulate the Witty and
Blaster worms. Also in this paper we describe our experi-
ence of running worm emulation experiments on a clustered
network testbed (DETER) and introduce the associated exper-
iment specification and visualization tool (ESVT). The virtual
node approach of network scaling-down and the design of In-
ternet scan injection problem are presented with the exam-
ple of the Blaster worm. Preliminary experimental results of
Blaster enterprise network emulation are reported as well.

1. Introduction
The objectives of DETER (The Cyber Defense Technology

Experimental Research) project together with EMIST (Evalu-
ation Methods for Internet Security Technology) project are
to “build an effective experimental and testing environment
and to develop a corresponding experimental methodology, for
Internet security issues and defense mechanisms” [1, 2]. A
testbed supplies a flexible environment with which researchers
can configure arbitrary network topologies and test new proto-
cols or security defense technologies, which also can be used
for the purpose of worm simulation and emulation. The cur-
rently deployed DETER testbed has more than 200 experimen-
tal nodes, which are connected by fast switches locally and a
high-speed link between ISI and Berkeley sites. Node connec-
tions are formed by a LAN or link which is actually constructed
using the VLAN feature of the switch. Basic static routing is
supported and more advanced routing can be implemented by
running special routing software on the intermediate nodes. In
[8], we reported our enterprise Slammer worm emulation re-
sults from experiments running on the DETER testbed.

Scanning worm defenses are expected to be deployed in pe-
ripheral enterprise networks [11, 13]. Several detection and re-
sponse strategies for defense against and containment of such

∗This work is supported by both the NSF and DHS of the United States
under NSF grant number 0335241.

Figure 1. Simulation set-up for a worm defense DUT

worms have been proposed, e.g., [20, 21, 22, 23]. Evalua-
tion of such defenses could involve a simulation set-up such as
that depicted in Figure 1 wherein: intra-network worm spread
could be recreated using actual malware (on the DETER test-
bed [1, 2]), background traffic would need to be generated
to accurately estimate false positives [24], and external attack
traffic H representing scanning activity from outside directed
at the network would need to be realistically modeled. Previ-
ous work on this specific problem in the context of the Slam-
mer worm includes [12, 9, 8]. In this paper, we will extend
this model in order to capture characteristics of other worms
such as Witty and Blaster. The emphasis here is on the aspect
of worm death or removal, the last chain of the Susceptible-
Infection-Removal (SIR) model. Slammer was benign to its
host but Witty, also a single-packet UDP worm, attempted to
crash its host after 20,000 scans by overwriting a sector of its
host’s disk. The Blaster worm propagated via TCP, infected
many more hosts, but scanned at a much slower rate per host.
Blaster powered down its host and generally spread slowly
enough to allow time for significant human counter-measures
prior to its peak infection state.

In this paper, we also describe our experience emulat-
ing TCP worms using our virtual node framework (model-
ing packet transmission timing of TCP) together with UDP
packet/message exchange on the testbed. This extends our



work reported in [8], which we will briefly review here. We
will go on to argue the advantage of using a UDP platform to
emulate a TCP worm and report the results of our approach for
the case of Blaster [7].

This paper is organized as follows. Section 2 is the related
work. In section 3 the existing KMSim worm model is ex-
tended to incorporate the worm removal/death characteristics.
The extended model then is used to simulate the Witty worm
and Blaster worm. In section 4, we will explain how to run
a network simulation or emulation experiment on the DETER
testbed and the tools (ESVT-Experiment Specification and Vi-
sualization Tools) developed to accommodate such experimen-
tal activities. Section 5 details our design rationale for using
UDP protocol to emulate a TCP based worm and the design of
Internet scan injection program. The Blaster worm emulation
results and the visualization tools are presented in section 6.
In the final section we conclude the paper and list some future
research topics.

2. Related Work
The success of the simple Kermack-McKendrick epidemic

model for certain Internet worms, e.g., Code Red, was demon-
strated in [17, 6, 4, 5, 18]. The limitation of Kermack-
McKendrick model when dealing with Internet worms having
special characteristics is further made evident in [6]. Its au-
thors then propose a two-factor worm model with two mod-
ifications. The first is the decreased infection rate caused by
network congestion as the worm propagates, and the other is
the removal of susceptible together with infected hosts. The
similar emphasis on the removal of infected hosts, together
with infection delay and the re-infection of patched or inoc-
ulated infected hosts, are the topics discussed in [16]. In [5],
a new detection idea, which monitors the trend of scan traffic
change instead of simple scan rate change to detect worms, is
proposed and argued to be able to detect a worm attack ear-
lier. The algorithm proposed in that paper can also be used
to predict the overall vulnerable population size with observa-
tion data on a small fraction of the IP space. In [17] the true
possibility of the emergence of an ideal hypothetical worm
that propagates most efficiently and rapidly and defies most
advanced defense scheme is demonstrated and its implication
is discussed. In [9], a variation of the Kermack-McKendrick
mathematical model that could account for the access-link sat-
uration caused by Slammer’s scanning traffic is reported.

As for the simulation of worms, in [15], proprietary worm
simulations are done but only coarse-grained global worm
propagation activities are simulated with very high level ab-
straction of the worm propagation environment. In [18],
SSFNet is used to simulate realistic network worm traffic for
worm warning system design and testing, but only at an ab-
stract network level.

Several worm simulation/emulation experiments have al-
ready been conducted on DETER and the need for advanced
worm experiment utilities is identified. In [12], the idea of us-
ing scale-down to explore worm dynamics is investigated via

DETER simulations. In [14], a hybrid quarantine defense is
proposed and validated by both NS2 simulations and DETER
emulations. The preliminary experiments show that reproduc-
ing enterprise worm propagation in a testbed environment us-
ing emulation and simulation is feasible and can yield detailed
results that simulation alone cannot accomplish.

3. Worm Modeling
As in [8, 9], let:

• J be the number of different groups of peripheral enter-
prise networks in the Internet,

• σ ji represent the total scanning rate out of the enterprise
to the rest of the Internet of a group- j enterprise network
with i infectives (i.e., infection-level i)

• y j,i(t) be the number of group- j enterprises with
infection-level i,

• C( j) be the maximum infection level of group- j enter-
prises, and

• the total scan rate to the Internet of the worm be

S(t)≡
J

∑
j=1

C( j)

∑
i=1

σ j,iy j,i(t).

The likelihood that a particular susceptible is infected by a
scan is η = 2−32 (purely random scanning in the 32-bit IPv4
address space). The likelihood, therefore, that a scan causes
an enterprise in state i at time t to transition to state i + 1 is
(C( j)− i)η because there are C( j)− i susceptible but not in-
fected nodes in the enterprise at time t. Thus, define the infec-
tion “rate” of an enterprise in state i by

β j,i ≡ S(t)η(C( j)− i).

The time-evolutions of the states y j,i are governed by the
following coupled Kermack-McKendrick equations: For times
t ≥ 0,

ẏ j,C( j)(t) = β j,C( j)−1y j,C( j)−1(t), (1)
ẏ j,i(t) = (β j,i−1y j,i−1(t)−β j,iy j,i(t)) i ∈ [1,C j) (2)

ẏ( j,0)(t) = −β j,0y j,0(t). (3)

The total number of worms (infectives) at time t is clearly

J

∑
j=1

C( j)

∑
i=1

iy j,i(t). (4)

Thus, the scan-rate per worm (per infective) is

∑
J
j=1 ∑

C( j)
i=1 σ j,iy j,i(t)

∑
J
j=1 ∑

C( j)
i=1 iy j,i(t)

. (5)



The dynamics given at the end of Section 3 of [9] can be
generalized to account for “removals/deaths” by modifying:

dy j,i/dt −= δiy j,i

dy j,i−1/dt + = δiy j,i

where the removal/death rate is δ > 0 and δi ≡ iδ .
In the next step, we will use the modified model to simulate

Witty and Blaster worms.

3.1. Witty Computational Simulation

The Witty worm, which exploits a buffer overflow vulner-
ability in several security products, broke out on March 19,
2004 and caused considerable damage to the Internet and in-
fected computers. It stands out from other recent wide-spread
worms by its distinctive features such as a malicious payload
and the shortest interval between the publishing of security
vulnerability and worm release [3]. We study the Witty worm
here for its marked self-destructive behavior and relatively
well-documented propagation trace (manifested by a number
of trace logs by a number of network telescopes and blackhole
monitors) so we can compare our simulation results with them.

We added a removal module into the KMSim simulation
program according to the mathematical model in the last sec-
tion. The code can be expressed in the following pseudo-code.
1

Algorithm 1 Removal/Death of the Infected and Susceptible
1: for j do
2: newdeath⇐ δ ∗ ce j ∗ y j,ce j ∗dt
3: death j+ = newdeath
4: y j,ce j−= newdeath
5: for i = ce j −1 downto 1 do
6: y j,i+ = newdeath
7: newdeath⇐ δ ∗ i∗ (y j,i−newdeath)∗dt
8: y j,i−= newdeath
9: end for

10: end for

Before running the KMSim simulation program to simulate
a specific worm, we need to determine the number of different
groups of peripheral enterprise networks in the Internet j, the
maximum infection level in each enterprise group C( j), the
number of enterprise networks in each group ne( j), and the
scanning rate of enterprise network in each infection level σ j,i.
The signature of bandwidth-limited worm can be simply simu-
lated by setting the σ j,i to be a constant or with an upper limit,
e.g., bandwith/packetsize in the case of Slammer. Finally we
need to set the removal/death rate of the worm to make the
modified worm model to be effective.

One method to get such parameters is to use collected worm
scanning logs by those network telescopes and blackhole mon-

1Note that the code is only for the illustration of the calculation of re-
moval/death and corresponding parameter adjustment, not the actual simula-
tion code itself.

itors. But two reasons make these scanning/trace logs not
directly usable. First, there are considerable discrepancies
among these logs, which were reported and analyzed in [7].
Second, the numbers of infectives in those categories of en-
terprise networks in the logs are cumulative numbers, instead
of point values which can be directly plugged into the model.
For these reasons, we employed a simple method to estimate
the number of susceptible hosts and scanning rates, based on
those scanning logs.

• The total number of susceptible hosts. It is impossible
to know exactly how many hosts were vulnerable to the
Witty worm. We used the number 12,000 from CAIDA
[3] as the maximum number of the susceptible hosts.

• j, C( j), and ne( j). To make the simulation simple, we
set the number of enterprise groups j to be 1, i.e., there
is only one group of peripheral enterprise networks. Fur-
ther, the maximum number of infection level C(1) is set
to be 4, which is based on the belief that there is limited
installation of Witty target application–firewall products.
So the number of enterprises ne(1) can be derived to be
12000/4 = 3000.

• Scan rate σ j,i. The Witty worm is a typical bandwidth-
limited worm, which means every infective sends out
scanning packets as fast as its network connection pos-
sibly permits. According to [3], we decided to set the
enterprise network scan speed to be linearly distributed
between 1800pps and 2400pps, which correspond respec-
tively to the case of one single infective and that of full
infection.

• Removal/death rate δ . The removal/death rate of the
Witty worm can be estimated by using the decreased
number of infectives in the trace logs divided by the time
interval. But again, this method generates inconclusive
results. In the actual simulation, we tried a number of dif-
ferent rate values and chose one whose simulation result
fit best with the trace data.

Using this modified KMSim simulation program we run
a simulation of the Witty worm. The simulation result was
drawn together with the actual infection data reported by
CAIDA in Figure 2. We can see that the modified KMSim
worm model can replay the Witty worm propagation in high
fidelity and the peak value of infective number by KMSim sim-
ulation is only slightly higher than the real number.

Figure 3 is the zoomed view of the overall worm propaga-
tion curve. Since the Witty worm reached its peak infection
level 4000 seconds after its inception, it is worth perusing its
behavior in the beginning stage of its overall life cycle. We
can see from the figure that the actual propagation curve is at
the left of the simulated curve, which means the real worm
spreads faster than that simulated by the KMSim model. We
believe that the reason for this difference is that in the KMSim
model, for the purpose of generality, we set the initial num-
ber of infected to be one, while the real Witty worm “used



Figure 2. The Witty Worm Simulation Result

Figure 3. Witty Simulation Result: Zoomed view

either a hitlist or previously compromised vulnerable hosts to
start the worm.” [3] When we change the number of initial
“seed” worms in the KMSim model to a larger one, the simu-
lated curve will move left and match the actual Witty curve.

3.2. Blaster Characteristics and Modeling
Next we use this modified model to simulate the Blaster

worm. Blaster infected more hosts than Slammer and Witty
did and caused more severe damage to the affected enterprise
networks. It exploits the DCOM RPC vulnerability of Win-
dows and targets only machines installed with Windows 2000
and Windows XP. The Blaster worm has a more “advanced”
propagation strategy than those of Slammer and Witty worms.
It chooses its initial target address that is within the same local
/16 with 40% probability or a random address within the whole
IPV4 space with the other 60% probability. After the ini-
tial address is decided, the worm begins scanning sequentially
from that address in batches of twenty IPs a time. Though its
propagation algorithm is not completely random, researchers

have been able to model its propagation using simple epidemic
models. [5]

Since the Blaster worm sends probing packet to a well-
known target of vulnerabilities–TCP port 135, which was
blocked by many network telescope operators during the time
of its spread, there is little detailed report or no consensus on
those parameters we are interested such as the susceptible pop-
ulation size, scan rate, etc. We made efforts to model Blaster
using the modified KMSim model as best as possible.

• The total number of susceptible hosts. The number of
infected hosts was estimated from 30,000 to several hun-
dred thousands. Based on Symantec estimate [19], we set
the total susceptible host number to 200,000.

• j, C( j), and ne( j). The number of classes of enterprise
networks was again set to 1. Because Blaster targets Win-
dows XP and Windows 2000 machines, the number of
susceptible hosts in each enterprise network should be
larger than that of Witty. So the maximum number of
infection level C(1) was set to be 20. The number of en-
terprise networks ne(1) was 10,000.

• Scan rate σ j,i. Blaster may be bandwidth-limited if there
was a pretty large percentage of hosts vulnerable to the
Blaster worm in the enterprise network. Repeated reboot-
ing of infected hosts and OS “patching” by humans may
have alleviated such effect, however. We know from the
worm code that it sends out 20 scan attempts a time and
sleeps 1.8 seconds between two batches. And the rate
of scan per single infective should be roughly equal to
10pps. Since an unsuccessful attack of the Blaster worm
causes the host machine to crash and/or reboot, the actual
scan speed may be slower than 10 in average. So we set
the scan rate of enterprise network to be between 5 and
110, corresponding to the various infection levels. 2

• Removal/death rate δ . The removal/death (or patching,
for this case) rate of Blaster is difficult to estimate. We
used a small number 1.034e-08.

Plugging these parameters into the KMSim model, we got
the simulation result showed in Figure 4. This simulation
shows that the worm reached its peak at about 10 hours, and in-
fected about 190,000 hosts at that time. After that, the number
of infected hosts decreased slowly.

4. Testbed Emulation Set-up And Virtual Node
Design

In [8], we reported our virtual node approach to leverage
limited testbed resource to emulate worm propagation in a
large enterprise network. Here we briefly review this approach
and other necessary steps to run an emulation/simulation ex-
periment on the DETER testbed. At the same time and in the
following sections, we will introduce how to use our ESVT

2A more careful simulation will consider the effect of local scan rate.



Figure 4. The Blaster Worm Simulation Result

graphical interface tool to help finish these jobs and analyze
the experimental results.

4.1. Experiment Topology

We want to conduct a detailed worm propagation experi-
ment using emulation & simulation method to gain first-hand
knowledge of such propagation on enterprise networks. The
results and experience of this experiment will be the solid
foundation for the following worm detection and defense ex-
periments. We decided to choose a 1000-node network (Ore-
gon State university network as the prototype) as our experi-
ment topology to conduct this enterprise network worm exper-
iment on DETER. There are six internal routers, one central
switch, and one border switch in this topology.

4.1.1. Setup the Experiment Using ESVT Tools. ESVT
GUI supplies an integrated environment to conduct this inter-
active worm experiment. It is a component based topology
editor, script generator, worm experiment designer, and a vi-
sualization tool of experiment results. At the first step it can
be used to draw the topology based on the prototype network.
The toolbox of program includes network components such
as computer/host node, switch, router node, network/Internet
interface, and link. Components have configurable properties
such as bandwidth and link latency, which can be modified by
simple mouse clicks and field editing. Computer node can be
defined as susceptible or non-susceptible. A number of conve-
nient features like “copy & paste” and “component finder” are
developed to help design this rather large network topology.

Figure 5 is a screen-shot of this topology overview. In the
topology, the node indexed 983 is the Internet interface node,
and the two nodes indexed 942 and 955 respectively are dark
address scan detectors or honeypots, which monitor worm’s
scan attempts to those “unused” IP addresses. To observe the

Figure 5. Finished network topology by ESVT

worm’s propagation in a network with high susceptible den-
sity, we set the population size of susceptible nodes to be 50%
of the total hosts.

To request network resource from testbed and apply net-
work topology on the testbed, a NS (network simulator) style
TCL script file needs to be submitted to the testbed control
plane. For people unfamiliar with TCL language or specific
testbed requirements, writing such a script is not an easy job.
ESVT GUI has TCL script generation function that can out-
put network topology into NS or DETER TCL script to sim-
plify this task. The basic procedure of topology conversion
is that every node (except virtualized LAN segment) in GUI
topology is mapped to one node in the testbed. Links between
non-switch nodes including computer node, router node, and
Internet node in GUI topology are still links in the TCL file,
while links connecting switch nodes and other nodes in GUI
will be replaced by TCL LAN-making script make-lan which
takes all LAN nodes as parameters. Script generator also in-
serts additional experiment configuration script specifically for
worm experiments, which are translated from user definitions
on the GUI. Some specialities of this script generator are:

• Virtual sub-network nodes. LAN segment (level 1 or level
2 switch node and LAN connected with it) that is marked
to be virtualized during topology drawing will become
one node in the generated final script file. On this node
a specific virtual LAN program designed by us will run
and the virtualized sub-network topology information and
host susceptibility information can be read from the GUI
generated map file (One such example in Figure 6) during
the program start-up time.

• Internet interface. A special program will be run on this
node to simulate the rest of the Internet. The simplest im-
plementation of such program will be a traffic sink that
only receives packets. A specific Internet interface de-
sign utilizing our worm simulation result is described in
Section 5.

• Normal and vulnerable nodes. Background traffic gener-
ator will be run on normal, non-susceptible nodes. For



Figure 6. Virtual LAN topology data file: Each line repre-
sents one virtualized node (with exception of bandwidth
and extra lines), five columns are switch node index, line
type, computer node susceptibility, computer node index,
and last byte of node IP address.

vulnerable nodes specially designed program will simu-
late vulnerable service and wait to be “attacked”.

• Bandwidth, latency, addresses, OS. Those host and link
properties specified by the experimenter will be translated
to the TCL file as best as possible. Currently there are
FREEBSD, RedHat Linux, etc., that can be chosen in the
DETER testbed. For our experiment, we used the default
FREEBSD for the experimental nodes.

When composing this script we consider some technical
challenges as well. For example, to alleviate TCPDUMP prob-
lems (To collect the network traffic data we need to run traffic
collecting program such as TCPDUMP on experimental nodes.
But TCPDUMP may not be able to log every packet that actu-
ally flows through if the traffic volume is high or the CPU is
busy during the experiment.), faster computers are allocated to
packet forwarding nodes that are expected to carry heavy traf-
fic load while other nodes that need less computing power are
given slower machines. The priority of TCPDUMP process
may be adjusted to run at a higher rank.

4.2. Virtual Node Design
Employing a one-to-one emulation approach entails sub-

stantial resources that a normal testbed cannot support. Both
the Emulab and DETER testbeds have about 200 nodes. To
emulate our 1000-node enterprise network using those test-
beds, we need some kind of scale-down or virtualization while
keeping the fidelity level high. In [8], we compared our virtual
node design with other kinds of virtualization methods such
as VMWare and Emulab VM and concluded that the perfor-
mance of the virtual node design in realistic LAN simulation is
comparable with the all-real-node scenario, while consuming
much less resource than other virtualization approaches. In the
following, we will briefly introduce our virtual node design.

4.2.1. A Virtual Node for a Peripheral LAN. Figure 7
shows the programming layout of virtual node model. The vir-
tual node, a multi-threading application on a single CPU, con-
sists of a virtual switch, a number of virtual end-systems, and

Figure 7. Programming layout of virtual node model

a background traffic generator. The virtual switch is simply
a token bucket traffic regulator. Virtual end-systems are im-
plemented by threads, and each is attached with a background
traffic generator. In addition, user can attach a user-defined
worm code to a susceptible virtual end-system in order to gen-
erate scanning traffic.

4.2.2. End-system Threads. Both a background traffic gen-
erator and user-defined worm procedures are functions that are
assigned to and constantly executed by end-system threads to
generate normal and worm scanning traffic. The background
traffic sending rate is limited to 10% of the upstream link band-
width of each end-system. The design of Blaster worm thread
is given in the next section.

4.2.3. Address Mapping. There are two types of addresses
used in the virtual node program, namely a virtual IP address
of an end-system and an actual IP address of a DETER experi-
mental node. The virtual IP address is an identifier of a virtual
end-system on a virtual LAN while the actual IP address is
a physical IP address of a experimental node in the DETER
network. A unique IPv4 address is assigned to each virtual
end-system, and the network addresses of virtual end-systems
are mapped with the DETER experimental node IP addresses
and kept in an intra-enterprise address mapping table. Figure
8(a) shows an example of an intra-enterprise address mapping
table.

Traffic among DETER experimental nodes is communi-
cated by the actual IP addresses. But virtual IP addresses are
only known to the virtual node program, not to the other DE-
TER emulated-network devices. Therefore, a virtual IP ad-
dress has to be translated into a testbed IP address according
to the intra-enterprise address mapping table so that the scan-
ning traffic can be sent across the DETER network. In Figure
8(b), we show where both virtual and actual IP addresses are
located in an IP packet.

The length field contains the size of packet, not includ-
ing the actual IP header. The Type field indicates whether
the packet is a worm packet or a normal packet. Finally, the



(a) An intra-enterprise address mapping table

(b) A virtual node IP packet structure

Figure 8. Address mapping and IP packet structure

variable-length Pad field is used to fill up the payload to create
a packet according to the virtual header length field.

4.2.4. Traffic Shaping for a switched LAN. We used a sim-
ple mathematical model for shaping traffic of a switched LAN
in our virtual node model. The throughput of a switched LAN
is bounded by only the upstream link bandwidth capacity. If
we assume that n end-systems are transmitting at full rate R,
the throughput is bounded by a nondecreasing R ·n. Therefore,
the traffic volume on the upstream link of a switched LAN is
determined by taking the minimum of its upstream link band-
width C and the aggregate throughput of the end-systems it
connects.

In order to send a packet, a virtual end-system has to acquire
a token (mutex). Let P represents a sending packet size, and
C is the outbound sending speed of the upstream link band-
width. When the token is not available, the packet from the
virtual end-system will be dropped and the virtual end-system
thread will be stalled for P/R time-unit before it sends a new
packet. However, if the sending virtual end-system success-
fully acquires the token, the packet will be sent out, the token
will be hold by the sending end-system for P/C time-unit, and
the virtual end-system thread will be stalled for P/R time be-
fore sending a new packet.

5. Design for Blaster Emulation
In this section, we present our design rationale for using

UDP to emulate the TCP based Blaster worm and the design
of Internet scan injection program.

5.1. Using UDP to Emulate the Blaster Worm
Different from the Slammer worm which accomplishes

both the target probing and infection by one UDP packet,
Blaster communicates with potential targets by TCP protocol.
A successful infection has to go through the procedure of con-
nection set-up by three-way hand shake, malicious code trans-
fer, and connection tearing-down. (The actual procedure is
more complicated which involves more than one TCP conver-
sations.) But the virtual node program was written to support
UDP communication only, so we faced a choice between TCP
and UDP when we planed to utilize the existing virtual node

program to emulate the Blaster worm. The following consid-
erations were weighted in our decision process.
� The objective of emulation. Our objective is not to study
the exploitation itself, i.e., how the worm probes the vulner-
ability of a real host application and compromises it. We are
interested in how the worm spreads itself in a typical enterprise
network by means of target selection, stealth or rapid scanning,
or in other words, emphasis on the propagation. For such pur-
pose, the emulation of Blaster using UDP packet exchange is
appropriate and sufficient to get the data we want.
� Extent of Fidelity. With the worm propagation as the prin-
cipal emulation objective, the extent of matching between em-
ulation and real world situation in such aspects as traffic vol-
ume, round trip time, etc., is not of most dominant concern any
more, as long as the emulation does not distort the actual traf-
fic dynamics in the process of worm propagation so much that
the worm’s spreading behavior begins to deviate from the real
case. We believe in the case of Blaster where the aggregated
traffic is not high enough to congest the enterprise network, the
use of UDP platform will not violate this principle.
� The limitation of testbed resource. As stated in the previ-
ous section, our virtualization approach uses one single test-
bed machine to simulate a LAN with up to 255 virtual hosts.
At the same time, each TCP connection, including its initial-
ization and maintenance, consumes lots of CPU and memory
resource: large sending and receiving buffers, numerous sta-
tus variables, several transmission timers, etc. If we used TCP
protocol to emulate Blaster in our virtual node program, the
program would have had to open thousands of TCP connec-
tions at any time (worm scan&infection and background traf-
fic), which will probably overwhelm the slower testbed ma-
chines with CPU speed as low as 733MHZ. On the other hand,
UDP protocol is stateless and consumes much less resource,
which will exert little stress on the testbed machines and guar-
antee a smooth emulation.
� Design of virtual node program. Using UDP also makes
the design of the virtual node program easier because we can
inherit the existing design and make fewer changes. Otherwise
we have to implement a NAT-like mechanism to support TCP
conversation.

After these considerations, we decided to use UDP plat-
form to emulate the Blaster worm, or a hypothetical sequential
scanning UDP worm. Algorithm 2 of active worm thread in
the virtual node program is an illustration of such design.

5.2. Design of the Internet Scan Injection
The problem of Internet interface design is to recreate the

scanning traffic of the Blaster worm directed to the enterprise
network under test by the rest of the Internet. Since there is
no easily available total scan-rate data of Blaster from network
telescopes, we decided to use the simulation results from our
modified KMSim model.

Suppose that the total scan rate, S(t), of a worm is obtained,
under the assumption of a uniform distribution, the scan-rate
from the Internet directed at the enterprise under simulation



Algorithm 2 Sequential Scanning Worm Body
repeat

2: for j = 1 to 20 do
Calculate Next IP tip j

4: pkt.destinationIP = tip j
Send UDP packet

6: end for
Sleep 1.8 seconds

8: for j = 1 to 20 do
if tip j is infected then

10: pkt.payloadlenth = BLASTERSIZE
pkt.destinationIP = tip j

12: for l = 0 to 8 do
Send UDP packet {Simulate the actual worm in-
fection}

14: SendingDelay = (wormpacketsize+28)∗80;
Delay SendingDelay

16: end for
Sleep 1 second

18: end if
end for

20: until Program Is Active

could be approximated as (A/232)S(t), where A is the size of
the address space of the enterprise network. For a random scan
worm, the target of individual scans directed to the enterprise
network could be easily chosen at random. But to maintain or
replay the salient feature of the Blaster worm, in which every
infected victim scans sequentially from the initial IP forever,
we have to craft both the source (scanning) IPs and the desti-
nation IPs carefully.

First, we divide the total infective count by 216 (the total
number of hosts in the /16 network) to get the number of ac-
tive scanners that send scan traffic into the enterprise in the
current emulation time. Then, each scanner will send scan traf-
fic based on the scan per second input from KMSim model. If
the scan per second of a scanner is less than 20, i.e., the origi-
nal scanning rate of Blaster victims, we use a random function
to select target addresses so that the number of scans actually
sent out is scan per second, while the target IP addresses still
increase by the rate of 20 per cycle. Note that this mechanism
is just for sending probing or SYN packets. For the worm data
packets, they will be sent if only the host at the target address is
deemed infected (by UDP message feedback or simple global
status table look-up). The number of scanners and the scan rate
of each scanner per time cycle are adjusted based on the input
of KMSim simulation results. If the target IP address of any
active scanner goes outside the address space of the enterprise
network, that scanner will be removed from the scanner table
and a new one will be generated with the source IP chosen
randomly from the IPV4 space and an initial target IP chosen
randomly from the /16 address space.

Figure 9. Experiment Topology Viewed in DETER

6. Testbed Emulation Results
With the topology and experiment specification TCL file,

virtual node program, and the Internet interface program ready,
we run the enterprise Blaster propagation experiment on the
testbed. The actual testbed resource utilization and topology
view can be seen in Figure 9.

The Blaster worm spreads much slower than the Slammer
worm: it took it at least 10 hours to reach the peak point ac-
cording to our simulation. We cannot run an emulation ex-
periment to last that long on the testbed. On the other hand,
we need not do so because it only takes a few minutes for the
worm to infect the majority of a single enterprise network, de-
pending on the distribution of the susceptible hosts and the
network topology. We configured the emulation to run for 600
seconds, and chose the data window between the 89400th sec-
ond and the 90000th second from the simulation result as the
scanning data feed for the Internet scan injection program.

6.1. Visualize the results using the ESVT toolkit
The traffic log and worm infection log files after each ex-

periment are rather formidable: more than 1,400 files (One
TCPDUMP log file for each node/IP and one infection log file
for each infected node.) with a total size at about 1 to 4 Giga-
bytes. How to present these data in a straightforward way is a
big challenge. We believe that visualization gives a special and
powerful perspective on worm analysis that any other methods
can not equal at. There is such effort in EMIST GUI program
development.

The GUI reads network traffic flow and worm infection dy-
namics from experiment log files and uses different animations
or histogram charts to replay the worm propagation process
and traffic dynamics. Step time of animation (data window)
can be adjusted from 1 millisecond to 1 minute. The pro-



Figure 10. Blaster’s propagation in the enterprise net-
work

gram scans all TCPDUMP files and finds the earliest packet
time stamp. It then uses this time minus two steps’ time as the
starting time for the following calculation and statistics. The
animation refreshes every second and each snapshot is a view
which shows node infection status and summarizes the average
traffic rate during the past time interval.

In every time step each host node will change its display
color to update its current worm infection status. Gray node
is non-susceptible, green node is susceptible not yet infected,
and red one is infected. So the effect of worm propagation can
be seen as the number of infected red nodes increases. The
color of links as the representation of traffic volume changes
categorically from gray color, which means trivial traffic below
one percent of link bandwidth, to red color, representing heavy
traffic above thirty percent. If a user is interested in detailed
traffic change on one particular link, a bar chart view can be
chosen to show the histogram of traffic flow on that link. An-
other view – worm traffic pie chart – uses simple rules to sin-
gle out worm traffic and visualizes the comparison of worm vs.
non-worm traffic by a colored pie. Animation can be paused
and fast forwarded or rewound to a desired time so the anima-
tion can be skipped or replayed.
6.2. Discussion on the Infection and Traffic

We had run the same 10 minute experiment for a number of
times and the extent of worm propagation varied. The rate of
scanning from the Internet interface node s was about 6 scans
per second per source IP, and the average number of simulta-
neously scanning IP n is 3. The total scan attempts in the 600
second experiment from the Internet was 6∗3∗600 = 10800.
So it is not surprising if the experiment resulted no infection in
the /16 network. But once one susceptible host was infected,
its neighbors would likely be infected as well and itself would
begin sending scanning traffic rapidly. That was the case for
the experiment from which the data in Figure 10 and Figure 11
came.

Figure 11. Traffic change observed on the Internet inter-
face: the number of scanning packets increases

From Figure 10, we see that the first infection happened at
about the 11th second, and at the 300th second, about 83% per-
cent of total susceptible hosts were all infected. The majority
of them were infected between the 120th second and the 180th
second.

The traffic pattern seen at the Internet access link in Figure
11 roughly matched the infection change in Figure 10: we see
a rapid traffic increase between the 110th and the 200th sec-
ond, reflecting the increasing number of infectives scanning to
the Internet. The average number of scan attempts per infec-
tive after the 300th second was about 4500/420 = 11. (The
exact number should be lower because the background traf-
fic is not excluded.) The outliers or the sudden-drop-points in
the figure are probably the results of TCPDUMP anomalies we
mentioned earlier.

6.3. Placement of Dark Address Scan Detector

A honeypot is an effective way to monitor and collect in-
trusion attack behavior and information about a network since
the traffic targeting these “dark addresses”, i.e., unused IP ad-
dresses, is very likely malicious or at least suspicious. In our
enterprise emulation experiment, we configured two virtual
nodes (node 942 and 955 in Figure 5) to simulate the hon-
eypots (/24) that passively gather scanning traffic from both
outside (scans from Internet interface node) and inside (scans
from infected nodes). On these honeypot nodes, Both TCP-
DUMP and application level traffic collecting programs (a
modified version of virtual node program to log the real IP ad-
dresses stored in the packet payload) were set up to receive any
traffic to these two /24 network segments. Virtual node pro-
grams recognize the existence of “dark addresses” by reading
the complete topology map file so that the background traffic
will skip these addresses and only worm packets will be di-



rected to these nodes. 3

Though under the concept of network telescope it is feasible
to estimate the worm threat to the global network by monitor-
ing the scanning activities in a limited IP space, our experience
from the experiments shows that monitoring only segments of
the network is not an effective way for enterprise worm early
detection. In our experiment the first host was infected at the
11th second and more than 400 hosts were infected after 400
seconds, but the “honeypot” received the first scan packet at
the 360th second. Admittedly, the placement of such dark ad-
dress scan monitors is important. But unless they are placed at
every LAN segment or all the scanning traffic is redirected to
them with the help of other devices, it is not as valuable and
can not be solely relied upon for early detection.

7. Summary and Future Work
In this article, we extended our existing KMSim worm

model to incorporate the removal/death behavior of worms.
The modified model was then used to simulate the Witty and
Blaster worms. The simulation shows much improved results
in the case of the Witty worm. The modified KMSim2 program
will be released soon in our EMIST project web page.

Also in this paper we described our experience of running
worm emulation experiments on a clustered network testbed–
DETER and introduced how to use the specifically designed
experiment specification and visualization tools for such ex-
periments. The preliminary experimental results of Blaster en-
terprise network emulation were reported as well.

In the next step, we will continue to extend our model to
those worms that had (and will have) more complex scanning
strategies than those of Slammer and Witty. We will consider
the “hit-list” worm or more stealth worm behaviors in the fu-
ture. Utilizing our simulation framework and the testbed to test
various worm containment strategies is on the agenda as well.

We thank CAIDA for their analysis of the Witty worm and
data.

References
[1] T. Benzel, B. Braden, D. Kim, C. Neuman, A. Joseph,

K. Sklower, R. Ostrenga, and S. Schwab. Experience with DE-
TER: A Testbed for Security Research. in the 2nd IEEE Con-
ference on testbeds and Research Infrastructures for the Devel-
opment of Networks and Communities, Spain, 2006.

[2] EMIST Project. http://emist.ist.psu.edu
[3] C. Shannon, D. Moore. The Spread of the Witty Worm, Avail-

able at http://www.caida.org/analysis/security/witty/
[4] Z. Chen, L. Gao and K. Kwait. Modeling the spread of active

worms”, In Proc. IEEE INFOCOM, San Francisco, 2003.
[5] C. Zou, L. Gao, W. Gong and D. Towsley. Monitoring and Early

Warning for Internet Worms. In Proceedings of the 10th ACM
Conference on Computer and Communication Security, October
2003.

3The line with a ’D’ value in the second field marks the “dark address”
space in the virtual LAN topology file.

[6] C. Zou, W. Gong and D. Towsley. Code Red Propagation Mod-
eling and Analysis. In Proceedings of the 9th ACM Conference
on Computer and Communication Security, 2002.

[7] E. Cooke, M. Bailey, Z. Mao, D. McPherson. Toward Under-
standing Distributed Blackhole Placement. Proceedings of the
2004 ACM WORM Workshop, Washington, DC.

[8] L. Li, S. Jiwasurat, P. Liu, G. Kesidis. Emulation of Single
Packet UDP Scanning Worms in Large Enterprises. In Proc.
19 International Teletraffic Congress (ITC19), August, Beijing,
China, 2005.

[9] G. Kesidis, I. Hamadeh, and S. Jiwasurat. Coupled kermack-
mckendrick models for randomly scanning and bandwidth sat-
urating Internet worms. In Proc. QoS-IP, Catania, Sicily, Feb.
2005. Springer-Verlag.

[10] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver. Inside the Slammer worm. IEEE Security and Pri-
vacy, 2004.

[11] D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet
quarantine: Requirements for containing self-propagating code.
In Proc. IEEE INFOCOM, San Francisco, 2003.

[12] N. Weaver, I. Hamadeh, G. Kesidis, and V. Paxson. Preliminary
results using scale-down to explore worm dynamics. In Proc.
ACM WORM, Washington, DC, Oct. 2004.

[13] N. Weaver, S. Staniford, and V. Paxson. Very fast containment
of scanning worms. In Proc. 13th USENIX Security Symposium,
Aug. 2004.

[14] P. Porras, L. Biesemeister, K. Levitt, J. Rowe, K. Skinner, and
A. Ting. A Hybrid Quarantine Defense. In Proc. ACM WORM,
Washington, DC, Oct. 2004.

[15] A. Wagner, T. Dubendorfer, B .Plattner and R .Hiestand. Expe-
riences with worm propagation simulations. ACM CCS WORM
Workshop, 2003.

[16] Y. Wang, C. Wang. Modeling the Effects of Timing Parameters
on Virus Propogation. ACM CCS WORM Workshop, 2003.

[17] S. Staniford, V. Paxson, and N. Weaver. How to own the Internet
in your spare time. In Proc. USENIX Security Symposium, pages
149–167, Aug. 2002.

[18] M. Liljenstam, D.M. Nicol, V.H. Berk and R.S. Gray, Simulat-
ing Realistic Network Worm Traffic for Worm Warning System
Design and Testing. In Proc. ACM WORM, Washington, DC,
Oct. 2003.

[19] Update: Blaster worm infections spreading rapidly. Available at
http://www.networkworld.com/news/2003/0812blastinfect.html

[20] M. Williamson. Throttling viruses: Restricting propagation to
defeat malicious mobile code. In Annual Computer Security Ap-
plications Conference, 2002.

[21] J. Jung, V. Paxson, A. Berger and H. Balakrishnan. Fast
Portscan Detection Using Sequential Hypothesis Testing. in
Proc. IEEE Symposium on Security and Privacy 2004, Oakland,
CA, May. 2004.

[22] X. Chen and J. Heidemann. Detecting early worm propagation
through packet matching. Technical report, ISI-TR-2004-585,
2004.

[23] D. Whyte, E .Kranakis, and P. Oorschot. DNS-based Detection
of Scanning Worms in an Enterprise Network. in NDSS’05, San
Diego, CA, February, 2005.

[24] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and R. Sommer.
Building a Time Machine for Efficient Recording and Retrieval
of High-Volume Network Traffic. in Proc. Internet Measure-
ment Conference 2005, Berkeley, CA, Oct, 2005.


