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Abstract

Android multitasking provides rich features to enhance
user experience and offers great flexibility for app de-
velopers to promote app personalization. However, the
security implication of Android multitasking remains
under-investigated. With a systematic study of the com-
plex tasks dynamics, we find design flaws of Android
multitasking which make all recent versions of An-
droid vulnerable to rask hijacking attacks. We demon-
strate proof-of-concept examples utilizing the task hi-
jacking attack surface to implement Ul spoofing, denial-
of-service and user monitoring attacks. Attackers may
steal login credentials, implement ransomware and spy
on user’s activities. We have collected and analyzed over
6.8 million apps from various Android markets. Our
analysis shows that the task hijacking risk is prevalent.
Since many apps depend on the current multitasking de-
sign, defeating task hijacking is not easy. We have noti-
fied the Android team about these issues and we discuss
possible mitigation techniques in this paper.

1 Introduction

In the PC world, computer multitasking means multiple
processes are running at the same period of time. In
Android systems, however, multitasking is a unique and
very different concept, as defined in Android documenta-
tion: “A rask is a collection of activities that users interact
with when performing a certain job” [1]. In other words,
a task contains activities [4] (UI components) that may
belong to multiple apps, and each app can run in one or
multiple processes. The unique design of Android multi-
tasking helps users to organize the user sessions through
tasks and provides rich features such as the handy ap-
plication switching, background app state maintenance,
smooth task history navigation using the “back’ button,
etc. By further exposing task control to app developers,
Android tasks have substantially enhanced user experi-

ence of the system and promoted personalized features
for app design.

Despite the merits, we find that the Android task man-
agement mechanism is plagued by severe security risks.
When abused, these convenient multitasking features can
backfire and trigger a wide spectrum of task hijacking at-
tacks. For instance, whenever the user launches an app,
the attacker can condition the system to display to the
user a spoofed UI under attacker’s control instead of the
real Ul from the original app, without user’s awareness.
All apps on the user’s device are vulnerable, including
the privileged system apps. In another attack, the mal-
ware can be crafted as one type of ransomware, which
can effectively “lock” the tasks that any apps belong to
on the device (including system apps or packages like
“Settings” or “Package Installer”), i.e. restricting user
access to the app Uls and thus disabling the functionality
of the target apps; and there is no easy way for a normal
user to remove the ransomware from the system. More-
over, Android multitasking features can also be abused
to create a number of other attacks, such as phishing and
spyware. These attacks can lead to real harms, such as
sensitive information stolen, denial-of-service of the de-
vice, and user privacy infringement, etc.

However, the Android multitasking mechanism and
the underlying feature provider, the Activity Manager
Service (AMS), haven’t been thoroughly studied before.
In this paper, we take the first step to investigate the secu-
rity implications behind the multitasking design and the
AMS in Android. At the heart of the problem, although
the Android security model renders different apps sand-
boxed and isolated from one another, Android allows the
UI components (i.e., activities) from different apps to co-
reside in the same task. Given the complexity of task dy-
namics, as well as the vagaries of additional task controls
available to developers, the attacker can play tricky ma-
neuvers to let malware reside side by side with the victim
apps in the same task and hijack the user sessions of the
victim apps. We call this task hijacking.



Attacks Consequences Vulnerable
Types q system & apps
Spoofing Sensitive info stolen all; all

Restriction of use access

Denial-of-service .
to apps on device

all; all

Monitoring User privacy infringement | Android 5.0.x; all

Table 1: Types of task hijacking attacks presented in this paper (sys-
tem versions considered - Android 3.x, 4.x, 5.0.x).

It becomes important to study Android multitasking
behaviors in a systematic way. We approach this topic
by projecting the task behaviors into a state transition
model and systematically study the security hazards orig-
inated from the discrepancies between the design as-
sumptions and implementations of Android tasks. We
find that there is a plethora of opportunities of task hi-
jacking exploitable to create a wide spectrum of attacks.
To showcase a subset of the attack scenarios and their
consequences, we implement and present a set of proof-
of-concept attacks as shown in Table 1.

We do vulnerability assessment to the task hijacking
threats and discover that all recent Android versions, in-
cluding Android 5, can be affected by these threats, and
all apps (including all privileged system apps) are vul-
nerable to most of our proof-of-concept attacks on a vul-
nerable system. By investigating the employment of task
control features by app developers based on 6.8 million
apps in various Android markets, we find that despite the
serious security risks, the “security-sensitive” task con-
trol features are popular with developers and users. We
have reported our findings to the Android security team,
who responded to take a serious look into the issue. We
summarize our contributions below:

* To the best of our knowledge, we are the first to sys-
tematically study the security implications of An-
droid multitasking and the Activity Manager Ser-
vice design in depth.

* We discover a wide open attack surface in Android
multitasking design that poses severe threat the se-
curity of Android system and applications.

* Base on our vulnerability analysis over 6.8 million
apps, we find that this problem is prevalent and can
be used by attackers to cause a variety of serious
consequences.

* We provide mitigation suggestions towards a more
secure Android multitasking sub-system.

2 Background

Android Application Sandbox: The Android security
model treats third-party apps as untrusted and isolates
them from one another. The underlying Linux kernel en-
forces the Linux-user based protection and process iso-
lation, building a sandbox for each app. By default, the

components of one app run in the same Linux process
with an unique UID. Components from different apps
run in separate processes. One exception is that differ-
ent apps can run in one process only if they are from the
same developer (granted the same UID), and the devel-
oper explicitly specifies this in the manifest file. This
Linux sandbox provides the foundation for app security
in Android. In addition, Android provides a permission
model [12, 19] to extend app privileges based on user
agreement, and offers an inter-component communica-
tion scheme guarded by permissions for inter-app com-
munication.

Activity: Activity is a type of app component. An ac-
tivity instance provides a graphic UI on screen. An app
typically has more than one activities for different user
interactions such as dialing phone numbers and reading
a contact list. All activities must be defined in an app’s
manifest file.

Intent: To cross process boundaries and enable com-
munication between app components, Android provides
an inter-component communication (ICC) scheme sup-
ported by an efficient underlying IPC mechanism called
binder. To perform ICC with other components, an com-
ponent use intent, an abstract description of the oper-
ations to be performed. An intent object is the mes-
sage carrier object used to request an action from another
component, e.g., starting an activity instance by calling
startActivity () function. Intent comes in two fla-
vors. Explicit intent specifies the component to start ex-
plicitly by name. Implicit intent instead encapsulates a
general type of action, category or data for a component
to take. The system will launch a component “capable”
of handling this intent. If more than one target activi-
ties exist in the system, the user is prompted to choose a
preferred one.

Activity Manager Service (AMS): AMS is an Android
system service that supervises all the activity instances
running in the system and controls their life cycles (cre-
ation, pause, resume, and destroy). The interaction
and communication protocols between activities and the
AMS are implemented by the Android framework code,
which is transparent to app developers, leaving devel-
opers focusing on the app functionality. While Win-
dow Manager Service (WMS) manages all windows in
the system and dispatches user inputs from the windows,
AMS organizes all the activities in the system into tasks,
and is responsible for managing the tasks and support-
ing the multitasking features as will be described in Sec-
tion 3.

In addition, AMS is in charge of supervising ser-
vice components, intent routing, broadcasting, content
providers accesses, app process management, etc., mak-



ing itself one of the most critical system services in the
Android system.

3 Android Tasks State Transition Model

3.1 Task and Back Stack

In Android, a fask [1] is a collection of activities that
users have visited in a particular job. The activities in a
task are kept in a stack, namely back stack, ordered by
the time the activities are visited, such that clicking the
“back” button would navigate the user back to the most
recent activity in the current task. The activities in the
back stack may be from the same or different apps.

The activity displayed on the screen is a foreground
activity (on the top of the back stack) and the task as-
sociated with it is a foreground task. Therefore, there is
only one foreground task at a time and all other tasks are
background tasks. When switched to the background,
all activities in a task stop, and remain intact in the back
stack of the task, such that when the users return they can
pick up from where they left off. This is the fundamental
feature that Android multitasking offers to users.

3.2 A Tasks State Transition Model

The status of tasks in a system keeps changing as a re-
sult of user interaction or app program behaviors. To
understand the complex task dynamics and its behind se-
curity implications, we view the task transitions through
time as a state transition model. The model is described
by (S,E,A,—), where S denotes a set of task states; E
and A are sets of events and conditions respectively; and
— indicates a set of feasible transactions allowed by the
system under proper events and conditions.

1. Task state (s € S): represents the state of all tasks
(specifically, the back stacks) in the system and their
foreground/background statuses. In other words,
the tasks in the system remain in one state if f the
activity entries and their orders in the back stacks
stay the same, and the foreground task remains to
be the same task.

2. Event (¢ € E): denotes the event(s) it takes to
trigger the state transition, for example, pressing
the “back” button or calling startActivity ()
function.

3. Condition (A € A): the prerequisites or configura-
tions (usually default) that enable a state transition
under certain events. We denote A%/ a5 the sys-
tem default conditions in this paper.

4. Transition (—): stands for a feasible state transi-
tion. Not all task transitions are feasible, e.g., the
order of activities in back stack cannot be changed
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Figure 1: A simple task state transition example.

arbitrarily (only push and pop are viable operations
over the stack). A viable transaction is also repre-
sented as s; — s7, or (s1,52,e,4), where s1,s2 € S.

3.3 A Task State Transition Example

Given the state transition model, we depict a simple task
state transition example in Figure 1. The figure shows
three task states, and the state transitions reflect the pro-
cess in which the user first launches an app from the
home screen (sg — s1), visits an additional activity Ul
in the app (s; — s») and return to the home screen by
pressing the “back” button twice (s — 51 — s0)-

In each task state, we show all existing tasks and their
back stacks. For example, s¢ is a task state in which no
task, except the launcher task, is running in the system.
The launcher task has only one activity in its back stack -
the home screen from which users can launch other apps.

In (s, s1,e"", A"k "3 new app task is created and
brought to the foreground in the resulting state s1. %"
represents the event that startActivity () is called
by the home activity in the launcher task. This event
could happen when the user clicks the app’s icon on the
home screen. Amewtask specifies a special condition, i.e.,
the FLAG_ACTIVITY_NEW_TASK flag is set to the in-
put intent object to startActivity () function. This
flag notifies the AMS the intention of creating a new task
to host the new activity. Note that in this example most
state transitions are under default conditions, indicated
by Adefaull " while here sy — s| is an exception because
the launcher app customizes the condition (A"¢"'%5%) for
its own valid design purpose: when the user launches an
new app, start the app in a brand new task. This is an ex-
ample where app developers can customize certain con-
figurable conditions to implement helpful app features.
However, condition like A"¢"%5 can be abused in a task
hijacking attack, as discussed in Section 4.

Next, (s, s2,e"®", A defaulty is triggered by event %
again (this time called by activity A instead) but under
the default condition. By default, AMS pushes the new
activity instance B on top of the current back stack as
shown in s,. The previous activity A is stopped and its
state is retained. In (s,sq,ePeck, Adefaulty  ghack repre.
sents the event of user pressing the “back” button. As ex-
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Figure 2: Data structures of tasks, activities and back stacks in the
Activity Manager Service.

pected by the user, the next activity A on stack is brought
back to the screen, and its original state is resumed. Ac-
tivity B is popped from the back stack and destroyed by
the system. The initial state sy is finally restored through
(51,50, eP%k L defaulty when the user presses “back” but-
ton again. The app’s task is destroyed because when the
popped activity is the last activity in the back stack, the
activity is destroyed together with the “empty” task.

Note that activities from different apps can co-reside
in the same task (e.g. activity A and B in this exam-
ple). In other words, although activities from different
apps are isolated and protected within their own process
sandboxes, Android allows different apps to co-exist in
a common task. This creates opportunities for malicious
activities to interfere with other activities once they are
placed in the same task, and the system passes the pro-
gram control to the malicious activities.

In reality, the amount of possible task states in a sys-
tem is big, and the state transitions can be complex, e.g.,
each state may again have numerous incoming and out-
going transitions connecting with other states. In Sec-
tion 4, we discuss what may go wrong during the com-
plex task state transitions.

3.4 Android Implementation

AMS maintains Android tasks and activities in a hier-
archy shown in Figure 2. AMS uses TaskRecord and
ActivityRecord objects to represent tasks and activ-
ities in the system respectively. A TaskRecord main-
tains a stack of ActivityRecord instances, which is
the back stack of that task. Similar to the activities in a
back stack, tasks are organized in a stack as well, main-
tained by a ActivityStack object, such that when
a task is destroyed, the next task on stack is resumed
and brought to the foreground. There are usually two
ActivityStack containers in the system - one con-
taining only the launcher’s tasks and the other holding
all remaining app tasks.

4 Task Hijacking in Android

In this section, we first discuss an example showing how
an attacker could manipulate the task state transitions to
his advantage, causing task hijacking attacks. We then
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Figure 3: Task state transition of spoofing attack (A: task state tran-
sition by system-default. B: Hijacking state transition).

explore the extent of different task hijacking methods and
how they can be used for other various attack goals.

4.1 Motivating Example

Suppose attacker’s goal is to launch an UI spoofing at-
tack. Specifically, when the user launches a victim app
from the home screen, a spoofing activity with an Ul
masquerading the victim app’s main activity (e.g. the lo-
gin screen of a bank app) shows up instead of the original
activity.

Figure 3 shows the task state transitions of the UI
spoofing attack. Initially in sg, the home screen is dis-
played to the user while a malware task waits in the back-
ground. Like the task state transition example just shown
in Section 3.3, when the user launches the victim app
from the launcher, state transition A is supposed to occur
by default, i.e. a new task is created and the app’s main
activity is displayed on screen. However, as shown in
state transition B, the malware can manipulate the task
state transition conditions such that the system instead
display the spoofing UI of activity “mal-main” by relo-
cating “mal-main” from the background task to the top of
victim app’s back stack. The user has no way detecting
the spoofing Ul since the original activity Ul is not shown
on screen at all, and the mal-main” activity appears to
be part of the victim app’s task (perceivable in recent task
list). By this means, the victim task is smoothly hijacked
by the malware activity from launch time, and all user
behaviors within this task are under malware’s control.

In this example, the attacker launches the attack
by abusing some task state transition conditions, i.e.
taskAffinity and allowTaskReparenting.
We will introduce them together with other exploitable
conditions/events in Section 4.5 and 4.6.

4.2 Adversary Model

We assume the user’s Android device already has a mal-
ware installed (similar assumptions are made in [8, 25,
34, 38]). The malware pretends to seem harmless, requir-



Conditions

(FL AglieAnéfFrﬁ/gISTY_*) Activity Attribute
NEW_TASK
SINGLE_TOP launchMode
CLEAR_TOP allowTaskReparenting
REORDER_TO_FRONT taskAffinity
NO_HISTORY allowTaskReparenting
CLEAR_TASK documentLaunchMode (API 21)
NEW_DOCUMENT (API 21) finishOnTaskLaunch
MULTIPLE_TASK
Events
Callback Function Framework APIs
startActivity()
onBackPressed() startActivities()

TaskStackBuilder class

Table 2: Task control knobs - configurable task state transition
conditions and events provided by Android.

ing only a minimum set of widely-requested permissions
such as INTERNET permission. The attacker’s goal is
clear: blend the malicious activities with the target app’s
activities in one task, and intercept the normal user oper-
ations to achieve malicious purposes.

4.3 Hijacking State Transition

A hijacked task state is a desirable state to attackers, in
which at least one task in the system contains both ma-
licious activities (from malware) and benign activities
(from the victim app). The task state sl1 in the spoof-
ing attack is an example of hijacked task state. A hijack-
ing state transition (HST) is a state transition which turns
the tasks in the system to a dangerous hijacked task state,
e.g., the task state transition B in the previous example.
Conceptually, there are two types of HSTs:

1. The malicious activity gets pushed onto the victim
task’s back stack (malware=-victim);

2. The victim app activity is “tricked” by mal-
ware and pushed on the malware’s back stack
(victim=-malware).

4.4 The Causes of HSTs

Android provides a rich set of task control features, i.e.,
task state transition conditions and events. We call these
features as rask control knobs. The task control knobs
provide app developers with broad flexibility in control-
ling the launch of new activities, the relocation of ex-
isting activity to another task, “back” button behaviors,
even the visibility of a task in the recent task list (a.k.a
overview screen), etc. Table 2 lists such conditions and
events in four categories: activity attribute, intent flags,
call-back functions, and framework APIs. All these con-
trol flexibility further complicates task state transitions.

Due to HST’s potential threats to app and system se-
curity, understanding the extent of HSTs in the complex
task state transitions becomes important. To achieve this,
we simulate the task state transitions in a Android system
and try to capture all possible HSTs and hijacked task
states that occur during the state transitions.

In theory, there are a huge number of possible task
states (each app may have a number of activities, and an
activity can be instantiated for multiple times). We con-
fine the number of task states to more interesting cases
by adding two constraints: (1) each app only has two ac-
tivities - the main activity and another public exported
activity (can be invoked by other apps), and (2) each ac-
tivity can only be instantiated once. In the simulation,
we specify three apps in the system - namely, Alice, Bob
and Mallory (the malware) - as it covers most HST cases.

Given the task states, the task state transition graph
is generated by connecting pairs of states with directed
edges. For instance, state s; and s, are connected only
if de € E,A € A, such that (s1,s2,e,A) or (s3,51,¢,4)
are valid transitions, where E denotes all feasible events
and A represents all possible conditions in Table 2. After
constructing the task state transition graph, all hijacked
states and HSTs are highlighted. We show a sub-graph of
the resulting task state transition graph in Figure 4(a) and
visualize the task states in Figure 4(b). For clarity of the
presentation, we only show the interesting branches of
the over-sized graph and have skipped many duplicated
HST cases. Moreover, we zoom in each of the HSTs and
show their detailed information in Table 3, including the
conditions and events that trigger the HSTs. We manu-
ally verify all presented HSTs on real systems and these
HSTs are proven to be exploitable to launch real attacks
(indicated in the last column in Table 3) as we will see in
Section 5.

We make two important observations from our result.
First, once exploited, the hijacked states shown in Fig-
ure 4(a) could result in serious security hazards. For ex-
ample, HST#3 is the task state transition of our exam-
ple attack discussed earlier. As a result of this HST, the
screen is under attacker’s control in state s14. As another
example, in HST#2, the benign activity B2 is tricked to
be put into Mallory’s task instead of Alice’s task during
start-up. This can also lead to spoofing attack or GUI
confidentiality breaches.

Second, compared with the HST triggered by the
system-default conditions and events (e.g., HST#I1),
more HST scenarios are produced under the configurable
conditions and events (HST#2-6) . It means that, by
abusing the flexible task control “knobs” readily offered
by the Android system, the attacker can actively create a
plethora of HSTs that harm other apps. In Figure 4(a),
we only show several typical HST cases, yet there are
much more HST instances of these types in the complete
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Figure 4: (a) A sub-graph of the over-sized task state transition graph for a simulated system with three apps. The sub-graph shows
the typical cases of HSTs (red edges with HST indexes) and the resulting hijacked task states (red nodes). sp represents the initial
state, i.e., no tasks except the launcher task exists in the system. (b) Visualization of task states of all nodes in figure (a). A, B and
M represent the activities from Alice, Bob and Mallory (the malware) respectively. We skip showing the launcher task in the task
states. Hijacked states are highlighted as red boxes. F and B denote foreground and background tasks respectively.

HST " Attacks
# HST Type Conditions Events in Section 5
1 malware=>victim Default Al: startActivity(M1) phishing I
L M1:taskAffinity=B2 . .. o
2 vietim=malware NEW_TASK intent flag set or B2:launchMode=""singleTask” A2: startActivity(B2) phishing II
. M2:taskAffinity=A1; M2:allowTaskReparenting="true” . ..
3 malware=-victim NEW TASK intent flag set launcher: startActivity(A1l) spoofing
.. . . L. denial-of-use;
4 victim=>malware M1 :taskAffinity=A1; NEW_TASK intent flag set launcher: startActivity(Al)
ransomware;
spyware
.. . e e Ty - e, startActivities([M 1, M2]) .
5 victim=-malware MI:taskAffinity=B2; B2:allowTaskReparenting="true or use TaskStackBuilder phishing III
. M2:taskAffinity=A1 . ..
6 malware=victim NEW_TASK intent flag set or M2:launchMode=""singleTask” MI: startActivity(M2) )

Table 3: Detailed information of the HSTs (red edges with HST indexes in Figure 4). E.g., condition “M1:taskAffinity=B2”
indicates that the taskAffinity attribute of activity M1 is set to that of B2; Event “launcher:startActivity(A1)” means that activity

Al is started by the launcher.

state transition graph.

The HST cases and their conditions/events summa-
rized in Table 3 may now look mysterious. We will de-
mystify these conditions and events in the rest of this sec-
tion.

4.5 Exploiting Conditions

In Table 3, HSTs #2, #4, #6 are similar with respect
to their state transition conditions, i.e. all three HSTs
occur by virtue of customized activity launch mode
(by setting launchMode attribute or NEW_TASK in-
tent flag). HSTs #3, #5 are similar as they both use
allowTaskReparenting attribute to enable activity
re-parenting.

4.5.1 Activity Attributes

One can define the attributes [2] of an activity in the
<activity> element in manifest file. The attributes
not explicitly defined are set to default values.

Task Affinity: Task affinity declares what task an activ-
ity prefers to belong to. It is a hard-coded string defined

as <android:taskAffinity="affinity">,
where affinity is the task affinity string that can be
defined arbitrarily. By explicitly declaring a task affinity,
an activity is able to actively “choose” a preferable task
to join within its life cycle. If not explicitely specified
in the manifest, the task affinity of an activity is the app
package name, such that all activities in an app prefer
to reside in the same task by default. The affinity of a
task is determined by the task affinity of the task’s root
activity (the activity on the bottom of back stack).

Task affinity is a crucial condition used in most of
the HSTs in Table 3. There are two occasions in
which an activity can “choose” its preferred host task:
(1) when an activity attempts to be started as a new
task (i.e., “singleTask” launch mode or NEW_TASK
intent flag as in HST#2, #4, #6), and (2) if the
allowTaskReparenting activity attribute is set to
true, and another task with the same task affinity is
brought to the foreground (as in HST#3, #5). We explain
the above two cases in detail in the following paragraphs.

Launch Mode: Activity launch mode defines how an



activity should be started by the system. Based on the
launch mode, the system determines: (1) if a new ac-
tivity instance needs to be created, and (2) if yes, what
task should the new instance be associated with. The
launch mode can be either statically declared by spec-
ifying <android:launchMode="value"> in the
manifest file or dynamically defined using intent flags
discussed in Section 4.5.2.

By default, launchMode="standard". In this
mode, the AMS would create a new activity instance and
put it on top of the back stack on which it is started. It’s
possible to create multiple instances of the same activ-
ity and those instances may or may not belong to the
same task. With launchMode="singleTask", the
decision-making of activity start-up is more complex.
An investigation into Android source code reveals three
major steps the AMS takes towards starting an activity.
First, if the activity instance already exists, Android re-
sumes the existing instance instead of creating a new one.
It means that there is at most one activity instance in the
system under this mode. Second, if creating a new ac-
tivity instance is necessary, the AMS selects a task to
host the newly created instance by finding a “matching”
one in all existing tasks. An activity “matches” a task
if they have the same rask affinity. After finding such a
“matching” task, the AMS puts the new instance into the
“matching” task. This explains why in HST #2 and #6,
the newly-started and foreground activities (B2 and M2)
are put on other “matching” tasks (with the same task
affinity) instead of the tasks who start them. Third, with-
out finding a “matching” task, the AMS creates a new
task and makes the new activity instance the root activity
of the newly created task.

Task Re-parenting: By default, once an activity starts
and gets associated with a task, such association per-
sists for the activity’s entire life cycle. However, setting
allowTaskReparenting to true breaks this restric-
tion, allowing an existing activity (residing on an “alien”
task) to be re-parented to a newly created “native” task,
i.e., a task having the same task affinity as the activity.

For example, in HST#3 (the spoofing attack exam-
ple), M2 is supposed to stay on Mallory’s task at all
time. However, M2 hasits al lowTaskReparenting
set to true, and taskAffinity set to Alice’s pack-
age name, such that when Alice’s task is started (Al
as the root activity) by the launcher, M2 is re-parented
to Alice’s new task and the user sees M2 on screen in-
stead of Al. In this process, Al is never brought to the
screen at all. Likewise, HST #5 occurs due to similar rea-
son, except that this time the benign activity B2 (with its
allowTaskReparenting set to true) is re-parented
to the malware task.

The above activity attributes offer attackers with great

flexibility. The attackers can put their malicious activ-
ities to a preferred hosting tasks under certain events,
e.g., singleTask launch mode during an activity start-
up and allowTaskReparenting during a new task
creation. Furthermore, an activity is free to choose any
app as their preferred task owner (including the privi-
leged system apps) by specifying the target app’s pack-
age name as their task affinity. These conditions lead to
a bulk of HSTs in the simulation, and these HSTs can be
very useful to launch powerful task hijacking attacks as
we will see in Section 5.

4.5.2 Intent Flags

Before sending an intent to start an activity, one could
set intent flags to control how the activity should
be started and maintained in the system by calling
intent.setFlags (flags). intent is the intent
object to be sent, and flags is an int value (each bit
indicates a configuration flag to the AMS).

Noticeably, the FLAG_ACTIVITY_ NEW_TASK in-
tent flag, if set, lets an activity be started as if its
launchMode="singleTask", i.e. the system goes
through the same procedures as explained in launch
mode to find a “matching” task or create a new task for
the new activity instance. This is the dynamic way of set-
ting activity’s launch mode. Launcher app always uses
this flag to start an app in a new task as in HST#4.

4.6 Exploiting Events

4.6.1 Callback Function

Android framework provides a variety of callback func-
tions for activities to customize their behaviors under
particular events, e.g., activity life cycle events (start,
pause, resume or stop), key pressing events, system
events, etc.

onBackPressed () is a callback function defined
in Activity class, and is invoked upon user pressing
the “back” button. The default implementation in frame-
work code simply stops and destroys the current activ-
ity and resumes the next activity on top of the current
back stack, as we have seen in Section 3.3. However, an
attacker can override this callback function for its mali-
cious activity and arbitrarily define a new behavior upon
“back” button pressing, or simply disable the “back” but-
ton by providing an empty function. As a result, once the
malicious activity is brought to the foreground, pressing
the “back” button triggers the code of attacker’s control.

4.6.2 Framework API

Android framework provides APIs to create new
tasks with established back stacks. For example,



TaskStackBuilder is a utility class that allows an
app developer to construct a back stack with specified
activities, and to start the back stack as a brand new task
in the system at a later time (e.g. using a PendingIntent).
Similarly, startActivities () inActivity class
achieves the same thing except that it builds and starts the
tasks in one API function call. These framework APIs
are helpful for attackers to build and launch new tasks
containing designated back stacks without explicitly dis-
playing all activities in the back stacks on screen.

5 Task Hijacking Attack Examples

In this section, we demonstrate more attack examples uti-
lizing exploitable HSTs in Table 3. These attacks can
breach the integrity, availability and confidentiality of
victim apps’ Uls respectively. We have tested these at-
tacks on Android 3.x, 4.x and 5.0.x.

5.1 Breaching UI Integrity

The Ul integrity here means the “origin/source integrity”
of the victim app’s activities, instead of the “data in-
tegrity”. That is, instead of modifying the original ac-
tivities of the victim app, attackers deceive the user by
spoofing Uls, which can prevent the original Uls from
being displayed on screen.

5.1.1 Spoofing Attack

As we have already seen in Section 4.1 and 4.5,
by manipulating allowTaskReparenting and
taskAffinity, an attacker can successfully hijack
a new task with a spoofing activity. This attack affects
all apps on device including the most privileged system
apps (e.g., Settings). The attacker can even target
multiple apps on user device at the same time, as long as
the background malware tasks (targeting different task
affinity) are started in advance.

Stealthiness: In order to make the spoofing attack more
stealthy, the attacker could take advantage of other task
transition conditions and events to achieve this. For
example, the attacker can make its background mal-
ware tasks absent from the recent task list by setting
the activity attribute excludeFromRecents to true.
As another example, the user may accidentally resume
the app’s original activity (the root activity of victim
app’s task) by clicking the “back” button from the on-
screen spoofing activity. To prevent users from observ-
ing this abnormal app behavior, the attacker can override
onBackPressed () of the spoofing activity, bringing
the home screen back to the foreground, such that it gives
the user an illusion that it is in coherence with the sys-
tem’s default "back” behavior.
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Figure 6: Tasks state transition diagrams of “Back Hijacking”
attacks. Figure (a) and (b) shows method I and II respectively.

5.1.2 Phishing Attack - “Back Hijacking”

The back button is popular with users because it allows
users to navigate back through the history of activities.
However, attackers may abuse the back button to mislead
the user into a phishing activity.

We devise three phishing attack methods that target the
same banking app, and demonstrate two of them here.
Figure 5 shows the screen shots of the phishing attack
process. The phishing Uls show up when the user returns
from the video playing, and the user unwittingly believes
that he/she has returned to the original bank activity.

Figure 6 shows the state transition diagrams of two

attack methods. The two attack methods differ in that,
user chooses a malicious video player in the first attack,
while in the second attack, even though the user chooses
a benign player, the bank task can still be hijacked when
the user launches the video player.
Method I: Figure 6(a) shows the state transition diagram
of the first attack method. We skip the unrelated task(s)
(e.g. launcher) in the system and only show tasks of in-
terest. In 51, the bank app task contains activities A and
B, in which B is the login activity. The HST occurs in
s1 — $p, triggered by the event that the user clicks the
tutorial video from the login UI, sending out a implicit
intent to look for an exported activity in the system capa-
ble of playing the tutorial video. Unfortunately, the user
selects the malicious video player activity “mal-player”
from the system pop-up and this results in the hijacked
state sp. After user finishes watching the video, sy — 53
is triggered by user pressing the “back” button. How-
ever, the “back”-pressing event is modified by overrid-
ing onBackPressed () in “mal-player” activity. That
is, instead of resuming activity B, a new malicious task
is created using TaskStackBuilder, and brought to
front in s3 after the “back”-pressing. As can be seen, the
HST takes place under default conditions as in HST#1
(in Table 3).

The user session is hence hijacked by the malicious
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Figure 5: “Back Hijacking” phishing attack to a well-known bank app. (a) the main activity of the bank app, with a tutorial video
link for new users; (b) A system dialog showing available video players after clicking the video link; (c) video player activity, user
clicks “back” button to quit the video and “goes back” to the original main activity; (d)-(e) the back button directs the user to the
phishing Uls, which steal users’ bank account information, then quit after user clicks “Sign On”; (f) The original main activity is
resumed, with a log-in failure error message left by the malware on screen.

player activity to the malware task, which contains “mal-
A” and the foreground “mal-B” phishing activities. Note
that in this attack, the malware need to camouflage as a
useful app (e.g. a video player in this case) that users are
likely to use.

Method II: As shown in Figure 6(b), the same phishing
attack can succeed even when the user selects a benign
video player. In 51, a malware task with two phishing ac-
tivities lurks in the background. Similarly, HST occurs in
s1 — 52, when the user launches a benign video player.
However, as shown in the resulting state s, instead of
joining the banking task, the new video player activity is
pushed in the malware task’s back stack, such that press-
ing the “back” button after the video play resumes the
phishing activity “mal-B”.

This HST is similar to HST#2 in Table 3 in that the
benign video player attempts to be started as a new task,
either because of the NEW_TASK flag set in the intent by
the bank activity, or the “singleTask” launch mode set by
the video player. Furthermore, the existing malware task
has its taskAffinity maliciously set to the benign
video player.

Stealthiness: We employ similar methods in the previ-
ous spoofing attack to ensure the stealthiness of the back-
ground malware tasks in both phishing attack methods.
Moreover, we disable the animation of task switching,
producing an illusion to the user that the screen transi-
tion is within the same task/app.

5.2 Breaching UI Availability

Task hijacking can also be leveraged to restrict the avail-
ability of an app’s UI components, or in other words, to
prohibit user access to part or all functionality of an vic-
tim app.

5.2.1 Preventing Apps from Being Uninstalled

In this example, the attacker is able to completely prevent
apps from being uninstalled.

Ways to Uninstall An App: There are generally three
ways for a user to uninstall an app from the device: (1)
uninstall from the system Settings app; (2) dragging the
app icon to the “trash bin” on home screen; or (3) unin-
stall with the help of a third-party app, e.g. an anti-virus
app. In these scenarios, the Settings, Launcher, and the
third-party apps will respectively generate an request to
uninstall the app. Such a request eventually reaches the
system package installer, which has the exclusive privi-
lege to install/uninstall apps. Upon receiving the request,
package installer pops up a dialog for the user to con-
firm. The dialog itself is an activity (namely uninstaller
activity) from the system package installer and is pushed
in the back stack of whoever is making the request (e.g.
s4 in Figure 7). No app can be uninstalled without user
confirmation on the uninstaller activity.

Attack Method: The attacker can prevent app un-
installation by restricting user access to the uninstaller
activity when it shows up on screen. In this attack, once
the uninstaller is found to be in the foreground, a mali-
cious activity is immediately pushed on top of the unin-
staller activity in the same back stack, such that the unin-
staller is “blocked” and can even be destroyed by the
foreground malicious activity.

Figure 7 shows the state transition diagram of this at-
tack targeting Settings app. Similar methods can be eas-
ily adopted to block app un-installation from the launcher
or the anti-virus apps (e.g. when malware is detected).

In 51, a task with only one root activity (“mal-
root”) from the malware is waiting in the background,
with its taskAffinity set to the Settings app
(com.android.settings). The HST occurs in s; — 7, trig-
gered when the user opens up the Settings from the home
screen (we skip Launcher task in the figure). In s, in-
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Figure 7: Tasks state transition diagram of application unin-
stall prevention attack.

stead of hosting the newly-created “setting” activity in a
new task, “setting” activity is pushed on top of the mal-
ware’s back stack because the it is started by the launcher
with a NEW_TASK flag. As a result, upon start-up, the
privileged Settings app is unwittingly “sitting” on a task
owned by the malware. This is similar to HST#4 in Ta-
ble 3.

The user then goes through a few more sub-setting
menus to find the app (as shown in s3) and clicks
the uninstall button, after which the uninstaller activity
shows up for user confirmation (as shown in s4). Once
this happens, a malicious activity namely “mal-blocker”
is immediately (even without user awareness of the unin-
staller dialog) launched by a malicious background ser-
vice, which keeps monitoring the foreground activity.
The “mal-blocker” activity, started by a NEW_TASK
flagged intent and with the same task affinity as the Set-
tings app, is thus pushed in the same task, and effectively
blocks the uninstaller as shown in s5. The “mal-blocker”
activity has its “back” button disabled, such that the user
has no way to access the uninstaller activity right below
it in the back stack whatsoever, and thus cannot confirm
the app uninstalling operation.

In fact, the “back” button of “mal-blocker” is
not only disabled, but is also augmented with a
new event that triggers ss — Sg: invoking (call
startActivity ()) the “mal-root” activity with an
intent having CLEAR_TOP flag set, which results in the
killing of the uninstaller and Settings activities in the
task.

Preventing Un-installation from adb: An advanced
user may resort to Android Debug Bridge (adb), a client-
server program used to connect Android devices from a
computer, and uninstall the malware from adb. However,
in order to use adb, the user needs to first enable USB de-
bugging in the Settings. The malware can block it in the
Settings using similar technique and prevent the use of
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adb, as long as the USB debugging is not enabled before
the attack (which is the case for most normal users).

5.2.2 Ransomware

Ransomware blackmails people for money in exchange
of their data, and it has recently hit Android in a large
scale [5]. The attackers may use UI hijacking to imple-
ment ransomware.

The malicious background service mentioned above
takes the following two responsibilities and is difficult
to be completely stopped. (1) Assure the malicious root
activity (“mal-root”) is alive: it re-creates a new root
activity once the activity is found to be destroyed; and
(2) monitor the foreground activity: if the target activity
shows up, it immediately starts “mal-blocker” to block
user access to the target activity, as we have seen in
s4 — ss5. To prevent itself from being killed, the ser-
vice registers itself in the system alarm service, who fires
a pending intent in every given fixed time interval, re-
launching the service if it is found to be killed.

By this mean, the ransomware is able to restrict user
access to any target apps of attacker’s choice, and can po-
tentially render the Android device completely useless.

5.3 Breaching Ul Confidentiality

The attack method in Section 5.2 can also be deployed
to devise a new spyware, namely “TaskSpy” capable of
monitoring the activities within any tasks in the newest
Android 5.0.x systems (API 21), without requiring any
permissions.

In Android, the system regards the owner of the root
activity in a back stack to be the owner of the correspond-
ing task. Android 5.0 allows an app to get the informa-
tion of the caller app’s own tasks (including the activities
in the tasks) without requiring any permission. It means
that, if a spyware can “own” the tasks of all the apps
it intends to spy on, it is able to get the information of
these tasks that in fact contain the victim apps’ activi-
ties. Task hijacking is especially useful to “TaskSpy” in
this case. In other words, “TaskSpy” can use the HST
presented in Section 5.2 to “own” the tasks of any victim
apps and thus stealthily spy on their activities without us-
ing any permission. Chen et. al. have achieved the same
goal in their work [8] by monitoring and interpreting the
shared VM information via public side channels. Com-
pared with their attack, task hijacking can do this in a
more direct and reliable way on Android 5.0.x.

6 Evaluation

We first seek to understand the extent of vulnerable sys-
tems and apps to the attacks we have presented in Sec-



Vul. | Atk o % of | Tol. %
Vul. conditions
app # vul. of vul.
I Send implicit 1¥1tf=,r.1t for 93.9
exported activities
\Y% Send implicit intent for 93.9
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II exported activities and use
intent flag NEW_TASK
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- 14.2
I activity and 144
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allowTaskReparenting="true”

Table 4: Percentage of vulnerable victim apps (V) and “ser-
vice” apps (S) to the “Back Hijacking” phishing attacks respec-
tively, among 10,985 most popular Google Play apps.

tion 5. By doing large-scale app analysis across various
markets, we then provide the current use status of the task
control knobs in real implementations. Base on our in-
sights from the result, we provide mitigation suggestions
to defend against task hijacking threats in Section 7.

6.1 Vulnerability Analysis

Vulnerable Android Versions: We say an Android ver-
sion is vulnerable to a particular attack if a malware can
successfully launch the attack to a victim app on the sys-
tem. Since the unique multitasking is part of Android de-
sign and most features have been introduced early in An-
droid’s evolution, we find that recent Android versions,
including 3.x, 4.x and 5.0.x, are vulnerable to all our
presented attacks, except the “TaskSpy” attack. As dis-
cussed in Section 5.3, “TaskSpy” relies on specific APIs
introduced from API 21, and therefore, only affects the
newest Android 5.0.x systems.

Apps Vulnerable to Task Hijacking Attacks: As sum-
merized in Table 1, all the apps installed on a vulnerable
Android system (including the privileged system apps)
are vulnerable to all the attacks presented in this paper,
except the “Back Hijacking” phishing attacks, which re-
quire certain prerequisites for an app to be vulnerable.
Despite the prerequisites, the “Back Hijacking” phishing
attacks are extremely stealthy, can be easily crafted and
can cause serious consequnces. We try to further under-
stand the scale of apps vulnerable to the “Back Hijack-
ing” phishing attack by analyzing the most popular apps
in Google Play.

Apps Vulnerable to “Back Hijacking”: In a phishing
attack, the attacker would be likely to target the most
popular and valuable apps. Therefore, we focus our vul-
nerability analysis on the most popular 10,985 apps from
Google Play, i.e., apps with over 1 million installs.

We indicate a vulnerable app in the phishing attacks
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Figure 8: (a) Breakdown of vulnerable victim apps in security-
sensitive app categories. (b) Breakdown of vulnerable “ser-
vice” apps in the most widely useful app categories.

to be of either one or both of the following two types:
(1) victim app - the target victim app of the phishing
attack (e.g. the bank app); and (2) “service” app - the
benign app that provides publicly exported activities and
is exploitable by the attacker to conduct user phishing
on the victim apps (e.g. the benign video player). We
do static analysis on the apps. Specifically, we perform
inter-procedural analysis to identify all implicit intents
(without permissions guarded) and the associated flags,
and conduct manifest scan to find all activity attributes
and public exported activities (excluding the main activ-
ities which are always exported). Table 4 lists the vul-
nerability conditions, and shows the percentages of both
vulnerable victim apps and “service”apps to each and all
the attack methods respectively.

As can be seen, 93.9% of the most popular apps in
Google Play are vulnerable. This is partially because
most apps would send out implicit intents (without per-
missions guided), which could potentially invoke a mal-
ware activity as in attack I. By taking a closer look at the
results, among these apps, a majority (65% of apps) are
vulnerable to attack II, i.e., they are vulnerable to phish-
ing attack even if users launch trusted benign “service”
apps from these apps. Moreover, 14.36% “service” apps
can be exploited to “help” attack the apps who invoke
these “service” apps, even if the apps being attacked may
not be vulnerable by themselves.

The consequence and severity of a phishing attack de-
pend on the content and sensitivity of the stolen informa-
tion. To have a rough idea of the potential consequences
caused by the “Back Hijacking” phishing attacks, we se-
lectively show in Figure 8(a) the population of vulner-
able victim apps in a few security-sensitive app cate-
gories. Noticeably, We observe that a significant num-
ber of security-sensitive apps are vulnerable, including
the financial apps like banking and credit card payment
(e.g., Citibank, Chase, Google Wallet), the most popu-
lar communication and social media apps (e.g. Google
Hangouts, facebook), and shopping apps from the ma-
jor electronic commerce companies (e.g. Ebay, Amazon
Shopping), etc. Similarly, in Figure 8(b), we show the
statistics of a few app categories in which the vulnerable
“service” apps and their functionality are most widely
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allow TaskReparenting="“true” 0.80 NEW_TASK 79.42 com.android.settings 492
launchMode="singleTask” 24.63 CLEAR_TOP 37.59 com.android.camera 325
launchMode= other non-default modes | 24.75 || EXCLUDE_FROM_RECENTS | 10.08 com.android.update 279
taskAffinity= own pck. name 2.36 com.tencent.mm 273

task Affinity= other 1.60 Events com.gau.go.launcherex | 237
excludeFromRecents="true” 12.45 onBackPressed() 62.00 com.fractalist 194
alwaysRetainTaskState="true” 2.03 TaskStackBuilder 7.27 com.android.activity 158
startActivities() 5.47 com.xiaomi.payment 147

Table 5: Percentage of 6.8 million market apps that use each of the “security-

sensitive ” task control knobs.

used, including the most famous photo editing tools, doc-
ument editors, and file sharing services, etc.

6.2 Market-scale Study on the Use of Task
Control Knobs

Due to the task hijacking threats, we have a pressing
need for a defense strategy that can mitigate these threats
while minimizing the side effects on Android multitask-
ing features. To this end, it is important to first under-
stand the current status about the use of Android mul-
titasking features in real implementation, especially the
use of “security-sensitive” task control knobs.

We analyzed 6.8 million Android apps from a vari-
ety of markets including Google Play and other 12 popu-
lar third-party app markets worldwide (e.g., from China).
The analysis does not include duplicated apps (apps with
same package name, public key certificate and app ver-
sion number) distributed across multiple markets.

Table 5 shows the percentage of apps that use each of
the task control knobs respectively. As shown in the ta-
ble, a majority of the task control features are popular
with app developers and users. For example, “single-
Task” launch mode and NEW_TASK intent flag are used
in a significant portion of apps to control the association
of new activities with tasks. The flexibility of “back”
button customization is widely adopted (as high as 62%
apps). One reason is that the onBackPressed () call-
back function is heavily used by ad libs (which embed
ads in app activities) for data clean-up before the activi-
ties are destroyed. In addition, a significant portion of ac-
tivities can hide their associated tasks from the overview
screen (by defining “excludeFromRecents” attribute or
setting EXCLUDE_FROM_RECENTS intent flag).

Case Study - Task Affinity: Since task affinity can be
abused in the most dreadful attacks, we are particularly
interested in its use. 3.96% apps we studied explicitly
declare task affinity. A considerable portion (1.6% of all
apps) set their activities’ taskAffinity string without con-
taining their own package names. It means that, if there
are task affinity conflicts, these 1.6% apps (totally 109
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Table 6: Top package names specified as
the task affinity by other apps

thousand apps) may interfere with the multitasking be-
haviors of one another. They may even affect other apps
if the task affinity attributes are intentionally set to the
package name of other apps (recall that the taskAffin-
ity string can be set arbitrarily). We are especially inter-
ested in the latter case, and in our analysis, we find a total
of 3293 apps of this kind. Table 6 lists the top package
names designated as task affinity by these apps.

By reverse engineering a number of these apps, we
find that intentionally setting the task affinity as another
app is particularly useful in a class of “plug-in” apps,
i.e. apps that provide complementary features to exist-
ing (and usually popular) apps just like a web browser’s
plug-ins (except that here the “plug-in” itself is imple-
mented in a separate app). By being in the same task
with the popular app, the “plug-in” app can change nor-
mal user experience and fulfill its feature functionality
in the context of the app it serves. For example, an
phone call recorder app namely FonTel can display an
array of buttons on screen whenever there is a phone
call, letting users to control phone call recording. The
control buttons are contained in an mostly transparent
activity. By setting the task affinity of the activity to
com.android.phone, it can be pushed on top of the
Android telephony task when a phone call occurs, such
that users can access both the recording control buttons
and telephony activity at the same time.

In summary, despite the security risks, Android mul-
titasking features are popular with developers and even
become indispensable to the normal functions of a sig-
nificant number of apps that provide favorable features.

7 Defense Discussion

Given the pervasive use of the “security-sensative” task
control features, simply disabling these features would
greatly hurt app functions and user experience. Mitigat-
ing the task hijacking threats become a trade-off between
app security and multitasking features.



7.1 Detection in Application Review

Existing app vetting processes such as Bouncer [31] may
conduct a inspection over the “sensitive” task control
knobs, a light-weight defense strategy without signifi-
cantly affecting existing multitasking features.

However, specifying a guideline balancing the secu-
rity/feature trade-off is non-trivial. For example, a ten-
tative guideline could be: taskAffinity attribute
should be specified in a strict format, e.g., with app pack-
age name followed by developer-defined affinity name
(now task affinity can be any string); and the task affinity
should not contain any other app’s package name, except
that the two apps are from the same developer. This ef-
fectively eliminates a big portion of hijacking state tran-
sitions where a malicious activity specifies the victim app
as its preferred affinity. However, this rule also restricts
useful features and contradicts with an important princi-
ple of Android multitasking design - give an activity the
freedom to live in its preferred task even though they are
from different apps. This contradiction cannot be solved
by app review alone in this case. We need system sup-
port together with app review to achieve a good balance
of security/feature trade-off.

Moreover, detecting problematic events can be some-
times difficult for the app review. For instance, one
could confine the behaviors in onBackPressed (),
preventing it from generating potential hijacking tran-
sition event. However, discovering all possible pro-
gram behaviors using static analysis is an undecid-
able problem. A skillful attacker can replace class
methods (onBackPressed () method in Activity
class) with another method by changing Dalvik inter-
nals using native code during runtime, and static anal-
ysis does not know this by simply looking at the original
onBackPressed () method. Dynamic analysis is of
little help as well since this behavior can be triggered
only after passing the app review.

As aresult, completely mitigating task hijacking risks
and without affecting existing features in app review re-
mains challenging.

7.2 Secure Task Management

An alternative approach involves security enhancement
to the task management mechanism of Android system.
A more secure task management could introduce ad-
ditional security guides or logic, which draws develop-
ers’ awareness of the security risk and limits the attacker
surface. Take the above task affinity for example, an
additional boolean attribute can be introduced for each
app to decide if it allows the activities from other apps
to have the same affinity as the app. If the boolean is
“false” (also by default), the system would not uncondi-
tionally relocate the “alien” activities to the app’s task or
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vice versa, even though the “alien” activities declare to
have the same task affinity as the app. Likewise, a finer-
grained boolean attribute can be further employed for
allowParentReparenting attribute - determining
if to allow “alien” activities to be re-parented to the app’s
task (even though defining the same task affinity is per-
mitted). For other “security-sensative” features, we sug-
gest first consider the same approach. Considering the
serious security hazards that can be prevented, it is well
worth of making such changes. At the very least, en-
hanced security scheme like this has to be applied to as-
sure the security of the most privileged system apps.

Completely defeating task hijacking is not easy. As
we have discussed in the last section, it is difficult to
identify the exact behavior of pressing “back” in an ac-
tivity during app review phase. For these popular and
security-sensitive features, more powerful runtime mon-
itoring mechanism is required to fully mitigate task hi-
jacking threats.

In summary, we advocate future support for security
guidance and/or mechanism, which can protect Android
apps from task hijacking threats and bring along a both
secure and feature-rich multitasking environment for An-
droid users and developers.

8 Related Work

GUI security : GUI security has been extensively stud-
ied in traditional desktop and browser environments [14,
29], e,g., UI spoofing [9], clickjacking [3, 17], etc. An-
droid, on the other hand, is unique in the design of its
GUI sub-systems. It has been shown that the GUI confi-
dentiality in Android can be breached by stealthily taking
screen shots due to adb flaws [22], via embedded mali-
cious Uls [28, 24], or through side channels, e.g. shared-
memory side channel [8] or reading device sensors infor-
mation [25, 34]. In contrast to existing work, this paper
focuses on the fundamental design flaws of the task man-
agement mechanism (supported by the AMS), the control
center that organizes and manages all existing UI compo-
nents in the Android system.

Android Vulnerability: The security threats in the inter-
component communication (ICC) has been widely stud-
ied [13, 23, 10, 20, 32]. Moreover, there has been con-
siderable prior work on emerging Android vulnerabili-
ties and their mitigation measures in many aspects [38,
40, 18, 33, 27, 7, 30, 15, 21]. However, the critical An-
droid multitasking mechanism and the feature provider,
the AMS, have not been deeply studied before. This pa-
per fills in this gap by systematically studying the An-
droid multitasking and the security implications of this
design.

Android Malware: Many prior efforts focus on
large-scale detection of malicious or high-risk Android



apps [39], e.g., fingerprinting or heuristic-based meth-
ods [26, 41, 16], malware classification based on ma-
chine learning techniques [37, 6], and in-depth data flow
analysis for app behaviors [11, 35, 36, 6]. The attack sur-
face discovered in this paper can be easily employed by
attackers to create a wide spectrum of new malwares, as
discussed in Section 5. We report our threat assessment
based on over 6 million market apps and provide defense
suggestions in order to prevent the outburst of task hi-
jacking threats in advance.

9 Conclusion

This paper systematically investigated the security im-
plications of Android task design and task management
mechanism. We discover a plethora of task hijacking op-
portunities for attackers to launch different attacks that
may cause serious security consequences. We find that
these security hazards can affect all recent versions of
Android. Most of our proof-of-concept attacks are able
to attack all installed apps including the most privileged
system apps. We analyzed over 6.8 million apps and
found task hijacking risk prevalent. We notified the An-
droid team about these issues and we discussed possible
mitigation techniques.
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