
Pragmatic XML Access Control using Off-the-shelf RDBMS

Bo Luo, Dongwon Lee, and Peng Liu

The Pennsylvania State University

Abstract

As the XML model gets more popular, new needs arise to specify access control within XML model.
To meet these needs, various XML access control models and enforcement methods have been proposed
recently. However, by and large, these approaches either assume the support of security features from
XML databases or use proprietary tools outside of databases. Since there are currently few commercial
XML databases with such capabilities, the proposed approaches are not yet practical. Toward this
problem, therefore, we explore the question of “Is is possible to fully support XML access controls using
RDBMS?” By formalizing XML and relational access control models using the deep set operators, we
show that the problem of XML access control atop RDBMS is amount to the problem of converting
XML deep set operators into equivalent relational deep set operators. We show the conversion alge-
bra and identify the properties to ensure the correct conversion. Finally, we present three practical
implementations of XML access controls using off-the-shelf RDBMS and their performance results.

1 Introduction

The XML model [9] has emerged as the de facto standard for storing and exchanging information in the
Internet Age. As more information is exchanged and processed over the Web, the issues of security become
increasingly important. Such issues are diverse, spanning from data level security to network level security
to high-level access controls. In this paper, in particular, our focus is on how to support access controls for
XML data.

Current access control research can be categorized into two groups: access control modeling and ac-
cess control enforcement mechanisms. Table 1 illustrates the current development of access control model
research. First row refers to (research-oriented) access control models developed for XML and relational
models, respectively, while second row refers to state-of-art open-source or commercial products for each
model. In general, not all the features proposed by modeling research community (first row) are implemented
in existing access control enforcement approaches. For instance, to our best knowledge, most industrial or
open source XML database products do not have supports for fine-grained XML access controls yet (to be
elaborated in Section 3).

Recently, many access control methods extending the XML model to incorporate security aspects have
been proposed (e.g., XACML [23], [12], [3], [55]). To the lesser or greater extent, however, XML access
control enforcement mechanisms proposed in the research community neglect the fact that the most XML
data still resides in RDBMS behind the scenes. In the scenario of RDBMS-backed XML database systems
(hereafter XRDB), XML data is shredded into relations and stored in RDBMS; query-answering is conducted
through a conversion layer so that users interact with the system as if it is native XML. In the scenario
of XML publishing, relational data is compiled into XML format for distribution and exchange; users
receive documents as if they were originated from XML model. For both scenarios, we enjoy the benefit
of XML model while taking advantage of the maturity of the off-the-shelf RDBMS. In both scenarios, it is
desirable to natively specify access controls on the XML side (upper-left quadrant of Table 1), but they need
to be enforced on the RDBMS side (lower-right quadrant). We believe that current XML access control

Table 1: The overview of XML and Relational access control model supports.
XML Relational

XML Access Control Models (e.g.,
[12], [3])

Relational Access Control Models
(e.g., [25])

Models

XML Databases (e.g., Galax [53],
Tamino [51])

Relational Databases (e.g., Oracle,
DB2, SQL Server)

Products

1

enforcement mechanism research is in a sense re-inventing wheels without utilizing existing relational access
control models (i.e., upper-right quadrant) or leveraging on security features that are readily available in
relational products (i.e., lower-right quadrant). In short, therefore, our goal in this paper is to answer the
following question in Table 1:

When is it (not) possible to support the upper-left quadrant (i.e., XML access
controls) using the lower-right quadrant (i.e., RDBMS)? Why? How?

As illustrated in Figure 1(a), in an XRDB system: XML data DX are first converted into DR and stored
in RDBMS; user issues XML query QX (XPath or XQuery) using published XML schema; QX is then
converted into QR (in SQL) and evaluated against DR; relational answer AR is finally converted back to
XML answer AX and returned to user.

Challenges. First, the major challenges of supporting XML access controls in XRDB systems stem from
the inherent discrepancy of XML and relational data models. Relational data model features a structure
of two-dimensional table, while XML features a hierarchical data model. When XML data are shredded
into relational data model by some transformation algorithms, not all transformation algorithms can fully
preserve structural properties of XML model [1]. Therefore, the inherent incompatibility of two data models
leads to the fundamental discrepancy between two access control models. Second, relational access control
policies define authorized actions of “cells,” where each cell is an impartible element and whose accessibility
is explicitly expressed. However, XML nodes are hierarchically nested, and XML data model inherently
takes “answer by subtree model” (e.g., querying for //foo yields the whole subtree rooting at node <foo/>).
Therefore, for any XML node, an action could be: authorized (or unauthorized) to the whole subtree, or
partially authorized. The later case does not occur in relational access control model. Finally, in XML
model, we can control the access right of each individual node. In traditional relational model, the smallest
granularity that one may control is a column via GRANT/REVOKE. Therefore, one needs to employ more
recent developments of RDBMS access controls (e.g., Oracle VPD) to enable row/cell level access control.

Key contributions. (1) To our best knowledge, this work is the first one to algebraically formalize XML
access control in both native XML (XDB) and XRDB environment. (2) This work takes the first steps
to define the equivalent objects and equivalent operations between native XML and XRDB systems. With
this concept, we can migrate all the exciting features of native XML systems into XRDB by converting the
atomic operations into equivalent relational counterparts. In this paper, we take the feature of fine-grained
XML access control for a pilot study, and the results are encouraging. (3) This work shows for the first
time that the “security” of XRDB can be achieved by finding the “equivalent” relational operators for three
specific deep-set operators. This finding provides a viable way to build secure XRDB systems. (4) Finally,
this work proposes several practical approaches to implement the viable way “discovered” by our theory.

RDBMS-supported XML database system

XML Document
DX

XML Query
QX

Relational Document
DR

Relational Query
QR

Relational
Answer

AR

XML
Answer

AX

X
M

L-R
elational

C
onversion (C

)

R
everse

C
onversion (C

-1)

1

2

3
4

5

6

A’R

A’R

QX DXACRX

QX DXACRX

Q’X

Q’R DR A’R

QX DXACRX

Q’R DR A’R

QRACRR

QXDX ACRX

QXDX ACRX

AX

DR ARQR

A’X

A’X

A’XA’X

A’X QXDX ACRX

A’RDR ARQR

A’X

ACRR

1 2 3

1' 2' 3'

DXACRX

DXACRX

VX

VR

DXACRX

VR

DRACRR

QX

QX

QR

QX

QR

View-based approach Preprocessing approach Post-processing approach

N
ative X

M
L

System
s

R
D

B
M

S-supported X
M

L
system

s (X
M

L side)
R

D
B

M
S-supported X

M
L

system
s (R

D
B

M
S side)

RDBMS-supported XML database system

XML Document
DX

XML Query
QX

Relational Document
DR

Relational Query
QR

Relational
Answer

AR

XML
Answer

AX

X
M

L-R
elational

C
onversion (C

)

R
everse

C
onversion (C

-1)

1

3

2

(a) Overview (b) XMark DTD

Figure 1: Overview architecture and an example XML schema.

2

Table 2: Notations used throughout the paper.
Symbol Definition

QX/QR An XPath (resp. SQL) query
ACRX/ACRR Access control rule set in XML (resp. relational) security model

RX/RR An individual access control rule in XML (resp. relational) model
VX/VR An XML (resp. relational) view
R+/R− Positive/negative access control rule

Q〈D〉 or 〈Q〉 The answer of the query Q against data D (D can be omitted if clear)
SA Safe answer where no part of them violates access control policy
X2R XML-2-Relational

C()/C−1() X2R conversion algorithm such as XRel, XParent, or inlining (resp. reverse
algorithm)

XRDB(C) RDBMS-supported XML database (i.e., XRDB) using a conversion algorithm C

2 Related Work

2.1 XML and Relational Access Control

First, on the model side, several authorization-based XML access control models are proposed. Starting
with [48] for HTML documents, [13, 12] provides access controls and their enforcement by associating an
authorization sheet to each XML document or DTD. Among comparable proposals, in [3], access control
environment for XML documents and techniques to deal with authorization priorities and conflict resolution
issues are proposed. [29] introduced provisional authorization model and XACL. [21] formalizes the way of
specifying objects in XML access control using XPath. Finally, recall that the use of authorization priorities
with propagation and overriding is an important issue in XML access controls, similar to that in OODB
[18].

Most of the proposals adopt either role-based access control (e.g. [56]) or credential-based access control
(e.g. [4]). The major difference between them is the way they identify users. Credential-based access
control is more flexible and powerful in this aspect. However, in the research of access control enforcement
mechanisms, people tend to choose a relatively simple access control model (e.g. [40, 8, 35, 46, 44, 46, 41])
to avoid distraction.

XML access control enforcement mechanisms in native XML environment have been intensively studied
in recent years. Generally speaking, they are categorized into four classes: (1) engine level mechanisms
implement node-level security check inside XML database engine; they tag each XML node with a label
[14, 11, 58] or an authorization list [60, 28], and enforce security check at query processing. (2) view based
approaches build security views that only contain access-granted data [54, 17, 30]. 1(3) pre-processing
approaches check user queries and enforce access control rules before queries are evaluated, such as the
static analysis approach [40, 41], QFilter approach [35], function-based approach [46], access condition table
approach [44] policy matching tree[45], secure query rewrite (SQR) approach [38], etc. (4) [8] considers
access control of streaming XML data and apply security check at client side, using a filtering mechanism.
[19, 37]. Moreover, [5, 10] focus on XML access control policies and enforcement as well as encryption issues
in information pushing or brokerage systems. More recently, protecting the privacy and security associated
with XML tree structure (instead of content) becomes an emergent topic [19, 39].

Relational access control models can be classified into two categories: multilevel security models [27, 57,
49] and discretionary security models (DAC). Most real world database systems implement a table/column
level DAC similar to the one implemented in System R [24]. View-based approaches is the traditional
method to enable row-level access control, while Oracle’s VPD is the most recent development. Finally,
some advanced access control models (e.g., [25, 26]) are proposed in a more theoretical manner.

1When a view-based approach implements virtual views without materializing them, it is inherently a pre-processing ap-
proach.

3

2.2 XML and Relational Conversion

Toward conversion between XML and relational models, an array of research has addressed the particular
issues lately. On the industry side, database vendors are busily extending their databases to adopt XML
types. Shredding and non-shredding are two major pathes that followed by commercial products. Oracle
provides both un-shredded (CLOB) and shredded storage options [42]. Microsoft supports XML shredding
and publishing through mid-tier approach in SQL Server 2000, and adds CLOB storage in SQL Server 2005
[47]. IBM proposes the first native XML storage in DB2 9, but shredded XML storage (through schema
decomposition) is still kept as an important feature [43, 6].

On the research side, various proposals have been made recently, mainly either schema-based (e.g., [16,
52, 31]) or schema-oblivious (e.g., [20, 59]) approaches. In terms of access control, some commercial products
apply existing column level access control of RDBMS on XML data stored in CLOB columns. None of these
approaches supports or discusses fine-grained access control. Finally, to our best knowledge, the only
work that is directly relevant to our proposal is [55]. [55] proposes an idea of using RDBMS to handle
XML access controls, in a rather limited setting. In our vision paper [32], we addressed some issues and
challenges of enforcing XML access control atop RDBMS. We provide the algebraic analysis and explore
practical solutions in this paper.

Our framework is not tied to a particular conversion method. Throughout this paper, we use shared-
inlining [52] and XRel [59] as the examples of schema-based and schema-oblivious conversion methods,
respectively. Briefly, XRel decomposes XML documents into document, element, attribute, text, and path
tables. The structure of the element and path table are: element(docID, elementID, parentID, depth,
pathID, st, ed, idx, reidx) and pth(pathID,pathexp), respectively. In this approach, each node is
stored as one record in the element table, and each distinct path is stored as one record in the pth table.
As a simple example, we decompose an XMark document using XRel and show part of element table in
Figure 2 (b). As we can see, element 252 is a node of path 164 (“/site/people”, as stored in the path
table); which starts from offset 33996 (byte) and ends at 36229 in the original XML document.

It uses pth.pathexp to keep the path expressions (similar to XPath), and element.st and element.ed
to mark the start and end offset of each node in the document.

Throughout the rest of this paper, we use the online auction DTD of XMark [50] as the exemplar schema,
shown in Figure 1(b). Table 2 summaries symbols used in this paper.

3 Preliminaries

3.1 XML Access Control Policy

Access control models define the semantics and syntax of access control policies. Although they could be
very complicated, the essential of access control models is to describe subjects, objects, actions and all the
variations around it. Fortunately, there is no discrepancy in identifying subjects and defining actions in
XML and relational environment, e.g., they both could adopt role-based access control to identify user’s
access rights; or both adopt credential-based access control that uses attributes to denote rights. As we
described in Section 1, shredding XML access control models into relational ones is a challenging task,
because of the fundamental discrepancies of XML and Relational data models. Therefore, challenges reside
in object-related components of access control models, while issues that only relate to subjects and actions
are trivial. Thus, our subsequent discussion focuses more on object part. In this paper, we adopt the model
proposed in [12] as the basis; other models like [40, 8, 35, 46] can be used as well with a reasonable change.

Definition 1 (XML Access Control Rule) An XML access control policy is specified by a set of 4-tuple
access control rules: RX = {subject,object,action, sign}, where subject is to whom an authorization
is granted (i.e., role), object is a set of XML nodes (in XPath) to which the policy is applied, action can be
either read, write, or update, and sign ∈ {+,−} refers to either access granted or denied, respectively. 2

In this model, access is prohibited by default. If conflict occurs between positive and negative rules,
negative rule takes precedence. Compared to the 5-tuple model of [12], we simplified it by eliminating the

4

type ∈ {LC, RC} that refers to either local check (LC) – authorization is only applied to nodes in context,
i.e., text child, or recursive check (RC) – authorization is propagated to all descendants, respectively. In
our model, all access controls are by default RC, complying with the XML semantics (i.e., projecting out a
node <foo/> yields the entire subtree rooting at <foo/>). LC rules are converted to an RC rule by adding
“/text()” to its object field.

3.2 XML to Relational Conversion

We model the X2R conversion algorithm (surveyed in Section 1) as follows:

Remark 1 A relational to XML conversion method contains: (1) CD() to convert XML to relational data,
(2) CQ() to convert XML query (XQuery or XPath) to SQL, and (3) C−1 to convert relational answer back
to XML. 2

That is, QR = CQ(QX), DR = CD(DX), and AX = C−1(AR). From this, the process of “evaluating
XML query on XRDB” can be modeled as the following Equation:

AX = C−1(AR) = C−1(QR〈DR〉) = C−1(CQ(QX)〈CD(DX)〉) (1)

Remark 2 An X2R conversion algorithm is lossless iff: (1) (lossless node conversion) ∀XML node xi, C
−1
D (CD(xi)) =

xi; (2) (lossless node set decomposition) ∀XML node set {x1, ..., xn}, C−1
D (CD({x1, ...xn})) = C−1

D ({CD(x1), ...CD(xn)}) =
{C−1

D (CD(x1)), ...C−1
D (CD(xn))}; and (3) (exclusive conversion) CD(x1) = CD(x2) only when x1 = x2, and

C−1
D (r1) = C−1

D (r2) only when r1 = r2. 2

Remark 3 An X2R conversion algorithm is correct iff: ∀ query Q and ∀ document X, Q〈X〉 = C−1(QR〈DR〉) =
C−1(CQ(QX)〈CD(X)〉). 2

Definition 2 (Soundness) An X2R conversion algorithm A is sound iff it is lossless and correct. 2

In the remainder of the paper, we assume that the conversion algorithm being used is sound. Finally,
we ignore the order of XML nodes when we compare the correctness, since this feature is not supported in
most X2R conversion algorithms.

In the research community, most X2R conversion algorithms only support a subset of XQuery/XPath.
For instance, many of them support parent-child (/), ancestor-descendant (//), wildcard (*) and predicates.
Later, we will show that our approach does not alter the query or data conversion algorithm. Therefore,
the query conversion totally depend on the X2R conversion algorithm; i.e. for a particular X2R conversion
method X, our algorithm supports everything that X supports. For ease of understanding, we do not use
predicates in the examples, however, we test queries with predicates in our experiments.

3.3 Deep set operators

In [36], we propose deep set operators for XML, as extensions of conventional set operators defined in
XPath [2] and XQuery [7]. Here, we briefly revisit them, and later demonstrate how they are used to
formalize XML access control.

Definition 3 (deep set operators) The deep-union operator (
D
∪) takes two node sequences 〈P 〉 and 〈Q〉

as operands, and returns a sequence of nodes (1) who exist as a node or as a descendant of the nodes in

“either” operand sequences, and (2) whose parent does not satisfy (1). Formally, 〈P 〉
D
∪ 〈Q〉 = {n|(n ∈

〈Pd〉 ∨ n ∈ 〈Qd〉) ∧ (n :: parent() 6∈ 〈Pd〉 ∧ n :: parent() 6∈ 〈Qd〉)} where Pd = P/descendant− or − self().

The deep-intersect operator (
D
∩) takes two node sequences 〈P 〉 and 〈Q〉 as operands, returns a sequence

of nodes (1) who exist as a node or as a descendant of the nodes in “both” operand sequences, and (2)

whose parent does not satisfy (1). Formally, 〈P 〉
D
∩ 〈Q〉 = {n|(n ∈ 〈Pd〉 ∧ n ∈ 〈Qd〉) ∧ (n :: parent() 6∈

5

〈Pd〉 ∨ n :: parent() 6∈ 〈Qd〉)}. Finally, the deep-except operator (
D
−) takes two node sequences 〈P 〉 and

〈Q〉 as operands, for each node 〈pi〉 in 〈P 〉, it remove 〈pi〉
D
∩X 〈Q〉 from the subtree of 〈pi〉 and return the

remaining. 2

For instance, (1) a query “ ∪ <a>” yields {, <a>}, but “
D
∪ <a>”

yields only <a>; (2) a query “ ∩ <a>” yields Null , but “
D
∩ <a>” yields

; and (3) a query “<a><c/></> − ” yields <a><c/></>, but “<a><c/></>
D
− ”

yields only <a/><c/></>.

3.4 XML access control in XDB and XRDB

The goal of XML access control is in a sense to ensure that only safe answer (SA) is returned to users. As
shown in [34, 36], safe answer of a query Q includes all the XML nodes n such that: (1) n is part of 〈Q〉,
(2) the access of n is granted by positive rules, and (3) the access of n is not denied by negative rules. That
is, the precise semantics of “safe XML answer,” SAX , can be modeled as:

SAX = 〈QX〉
D
∩X (〈ACR+〉

D
−X 〈ACR−〉) (2)

= 〈QX〉
D
∩X [(〈R+

X1
〉

D
∪X ...

D
∪X 〈R+

Xn
〉)

D
−X (〈R−

X1
〉

D
∪X ...

D
∪X 〈R−

Xm
〉)] (3)

Equation 1 models how XML query is evaluated in XRDB to return XML answer, AX . Similarly,
Equation 2 models how only safe XML answers, SAX , are returned. Therefore, we have:

Definition 4 (Secure XRDB) An XRDB is called secure iff ∀ access control rule set ACRX and ∀ query
QX , it always returns the safe answer AX :

AX ≡ SAX (4)

⇐⇒ C−1({CQ(QX)〈CD(DX)〉}′) ≡ 〈QX〉
D
∩X [(〈R+

X1〉
D
∪X ...

D
∪X 〈R+

Xn〉)
D
−X (〈R−

X1〉
D
∪X ...

D
∪X 〈R−

Xm〉)]
(5)
2

Note that {CQ(QX)〈CD(DX)〉}′ indicates that access control mechanism intervenes in relational query
processing. Our goal in this paper is to enforce XML access controls on RDBMS so that Equation 4 holds
in XRDB setting. In this way, we need to develop relational access control rules and relational deep set
operators that are equivalent to their corresponding XML access control rules and XML deep set operators.

4 XML Access Control in XRDB: The Theory

All entities of the 4-tuple XML access control model, except the object entity, can be directly adopted to
relational access control model. Since the object entity is specified in XPath, we may apply an X2R algorithm
C(RX .object) to get RR.object. As a result, we can convert XML access control rules to “equivalent”
relational access control rules:

RR = {RX.subject,C(RX.object),RX.action,RX.sign}

However, the converted relational access control rules cannot be directly enforced in XRDB – naive enforce-
ment of RR may not generate correct answer, or even leads to security leakage, as demonstrated in the
following example:

Example 1. Consider two rules of Figure 2(a) with XRDB(XRel) – that is, XML data are stored in RDBMS
using XRel [59] conversion algorithm. The “element” table is partly shown in Figure 2(b). Rule 1 indicates
that a user is allowed to access <person> nodes, i.e., nodes 293 and 299 (second and third record in Figure

6

1. {user, /site/people/person, read, +}
2. {user, /site/people/person/credicard, read, -}

DOCID ELEMENTID PATHID ST ED
0 252 164 33996 36229 <people>
0 293 165 35592 35826 <person>
0 299 165 35832 36217 <person>
0 303 188 35989 36032 <creditcard>

SELECT e0.DOCID, e0.ELEMENTID, e0.PATHID, e0.ST, e0.ED
FROM document d, element e0, pth p0
WHERE p0.pathexp LIKE '#%/people'
AND e0.pathid = p0.pathid AND d.docid = e0.docid(a)

(b)

SELECT e0.DOCID, e0.ELEMENTID, e0.PATHID, e0.ST, e0.ED
FROM document d, element e0, pth p0
WHERE p0.pathexp LIKE '#%/people#/person'
AND e0.pathid = p0.pathid AND d.docid = e0.docid

(c)

(d)

Figure 2: Examples of naive enforcement of “equivalent” relational rules leading to incorrect answer or
security leakage.

2 (b)), and rule 2 indicates that a user cannot access <credicard> nodes, i.e., node 303. Naive enforcement
of the rules will grant access to the record of element 293 and 299, and revoke the access to the element 303.

Now, a query “//people” is desired to yield an answer containing two <person> nodes, since they are
the descendants (that are accessible) of the requested node. However, the converted SQL query (Figure
2(c)) yields no answer since access to the record of element 252 is prohibited by default. Moreover, for a
query “//person”, the converted SQL (Figure 2(d)) returns both <person> nodes to the user (with the
unauthorized <creditcard> node). This is so because both records of element 293 and 299 are accessible,
while revoking access to element 303 does not affect its ancestor. 2

4.1 Object and Operation Equivalency

To solve the problem illustrated in Example 1, we propose our framework of supporting access control in
XRDB systems. First, we define object and operation equivalency between XML and relational.

Definition 5 (Object Equivalency) When both R = C(X) and X = C−1(R) hold for XML node set X
and relation R, we consider X and R equivalent w.r.t. C/C−1, and denote as X ≡ R. 2

Note that, when we talk about equivalency of X and R, we have to predefine the context, i.e., select the
X2R conversion algorithm C/C−1. For a XML node set X, C(X) may be different under different X2R
conversion algorithms.

Definition 6 (Operation Equivalency) Suppose X1 ≡ R1 and X2 ≡ R2 w.r.t. C/C−1. Then, an XML
operation OPX is equivalent to a relational operation OPR (denoted as OPX ≡ OPR) w.r.t. C and C−1 if:

C(X1 OPX X2) = C(X1) OPR C(X2) = R1 OPR R2 2

It is worth to note that XML operator takes two node sets as operands while its equivalent relational
counterpart may not take two generic relations as operands. Rather, each operand is the equivalent objects of
the corresponding XML node set, which may be tables, columns, records, or cells. Many relational operations
require operands to be domain compatible (e.g., intersect, union etc.). We loosen this requirement for OPR.

With the concept of operation equivalency, we can migrate all the exciting features of XML into XRDB
by converting the atomic operations into equivalent relational counterparts. Our problem of secure XRDB
is then articulated as follows:

Lemma 1. In XRDB(C), if we can find relational operators,
D
∪R,

D
∩R, and

D
−R, which are equivalent to

XML deep set operators,
D
∪X ,

D
∩X , and

D
−X , w.r.t. the X2R conversion algorithm C, we are able to enforce

XML access control in XRDB(C) such that Equation (4) always holds.

Proof. First, according to the definition of object and operation equivalency, we are looking for AX =

SAX ≡ SAR, which means: SAR = C(SAX). Since
D
∪R ≡

D
∪X ,

D
∩R ≡

D
∩X and

D
−R ≡

D
−X w.r.t. C() and

C−1(), according to the definition of equivalent operation, we have:

7

SAR = C(〈QX〉
D
∩X [(〈R+

X1〉
D
∪X ...

D
∪X 〈R+

Xn〉)
D
−X (〈R−

X1〉
D
∪X ...

D
∪X 〈R−

Xm〉)])

= C(〈QX〉)
D
∩R C([(〈R+

X1〉
D
∪X ...

D
∪X 〈R+

Xn〉)
D
−X (〈R−

X1〉
D
∪X ...

D
∪X 〈R−

Xm〉)])

= C(〈QX〉)
D
∩R [C(〈R+

X1〉
D
∪X ...

D
∪X 〈R+

Xn〉)
D
−R C(〈R−

X1〉
D
∪X ...

D
∪X 〈R−

Xm〉)]

= C(〈QX〉)
D
∩R [C(〈R+

X1〉)
D
∪R ...

D
∪R C(〈R+

Xn〉)
D
−R C(〈R−

X1〉)
D
∪R ...

D
∪R C(〈R−

Xm〉)]

Since we have QX ≡ QR, RXi ≡ RRi, therefore:

C(〈QX〉)
D
∩R [C(〈R+

X1〉)
D
∪R ...

D
∪R C(〈R+

Xn〉)
D
−R C(〈R−

X1〉)
D
∪R ...

D
∪R C(〈R−

Xm〉)]

= 〈QR〉
D
∩R [〈R+

R1〉
D
∪R ...

D
∪R 〈R+

Rn〉
D
−R 〈R−

R1〉
D
∪R ...

D
∪R 〈R−

Rm〉]

As a conclusion, we are able to compose a SAR within XRDB(C) such that SAR = C(SAX). Since all
steps above are reversible, we also have SAX = C−1(SAR). (q.e.d)

According to Lemma 1, in order to support access control in XRDB, we need to find equivalent operations

such that
D
∪R ≡

D
∪X ,

D
∩R ≡

D
∩X and

D
−R ≡

D
−X . Object and operation equivalency is based on specific X2R

conversion method, therefore, the existence and representation of relational deep set operators also heavily
depends on the particular conversion method C. Hereafter, we analyze the role of each deep set operator
in Equation 2 and the existence of its equivalent relational counterpart under different X2R conversion
algorithms.

4.2 On Equivalent Conversion of Deep Set Operators

Deep-union operator is used to integrate all the nodes that are defined accessible by individual positive
rules (also, all the nodes that are defined inaccessible by individual negative rules), as shown in Equation 2.

With the property P
D
∪Q ⊆ P ∪Q [36], Remark 1 is rewritten into:

〈P 〉
D
∪X 〈Q〉 = {n|(n ∈ 〈P 〉 ∨ n ∈ 〈Q〉) ∧ (n 6∈ 〈P//∗〉 ∧ n 6∈ 〈Q//∗〉)} (6)

Since n is an XML object and 〈P 〉, 〈Q〉, 〈P//∗〉, 〈Q//∗〉 are all sets of XML objects, when C/C−1 is
sound according to Definition 3, we have:

C(〈P 〉
D
∪X 〈Q〉) = {C(n)|[C(n) ∈ C(〈P 〉) ∨ C(n) ∈ C(〈Q〉)] ∧ [C(n) 6∈ C(〈P//∗〉) ∧ C(n) 6∈ C(〈Q//∗〉)]}

= {r|[r ∈ C(〈P 〉) ∨ r ∈ C(〈Q〉)] ∧ [r 6∈ C(〈P//∗〉) ∧ r 6∈ C(〈Q//∗〉)]}

Here, since we are to find
D
∪R such that C(〈P 〉)

D
∪R C(〈Q〉) = C(〈P 〉

D
∪X 〈Q〉):

C(〈P 〉)
D
∪R C(〈Q〉) = {r|[r ∈ C(〈P 〉) ∨ r ∈ C(〈Q〉)] ∧ [r 6∈ C(〈P//∗〉) ∧ r 6∈ C(〈Q//∗〉)]}

The condition of [r ∈ C(〈P 〉)∨ r ∈ C(〈Q〉)] is essentially the regular union. It is composed by set containment
and Boolean operations. In XRDB, set containment check is supported when the soundness requirement
in Definition 2 is fulfilled, and Boolean operation is generally supported in RDBMS. [r 6∈ C(〈P//∗〉) ∧ r 6∈
C(〈Q//∗〉)] tends to support deep semantics. It requires XRDB to be able to identify r ∈ C(〈P//∗〉) for
any given relational object r and set C(〈P 〉). This could be achieved in two ways: (1) directly calculate the
containment relationship between r and all elements of C(〈P 〉); or (2) enumerate all descendants of each
element of C(〈P 〉), and check if n is identical to any of them.

Lemma 2. To implement deep-union operator in XRDB(C), the X2R conversion algorithm C should: (1)
fulfil the soundness requirement stated in Definition 2; and (2) for given node n and node set 〈P 〉, it should
be able to check the containment condition of: C(n) ∈ C(〈P//∗〉), e.g., it should recognize if C(n) is a
descendant of any node C(pi);

8

At present, all X2R conversion algorithms (we are aware of) fulfill the above conditions.
If a naive implementation of XRDB access control fails to support deep-union, instead, it implements

regular union operator to arbitrarily collect “accessible nodes” and “forbidden nodes” into two sets; and
this will not cause any security leak. This is because the positive set does not contain extra node, and
the negative set does not miss any necessary node. However, this will cause duplicate nodes in the sets of
accessible nodes, and then possibly in the answers to queries.

Deep-intersect operator is used to calculate the exact overlapping of user requested data and accessible
data (i.e. 〈Q〉 and 〈ACR〉). Like deep-union, deep-intersect operator is defined as:

C(〈P 〉
D
∩X 〈Q〉) = {r|[r ∈ C(〈P 〉) ∧ r ∈ C(〈Q〉)] ∧ [r 6∈ C(〈P//∗〉) ∨ r 6∈ C(〈Q//∗〉)]} (7)

Therefore, any X2R conversion algorithm that supports deep-union is able to support deep-intersect.
That is, Lemma 2 could be directly extended to deep-intersect. On the other hand, if an XRDB fails to
implement deep-intersect operator, instead, it uses regular intersection, as a result: (1) if a query asks
for a descendant of an access-granted node, the whole node should be returned, but may be missed (i.e.,
mistakenly “jailed” by XRDB); (2) if a query asks for a node, where only part of its subtree is granted
access, the access-granted descendants should be returned, but might be missed (such as shown in Example
1).

Example 2. In Example 1, A query “//people” yields <people> nodes, i.e. element 252, as shown in Fig-
ure 2 (b) record 1. Meanwhile, object field of access control rule 1, “/site/people/person”, yields <person>
nodes, i.e. element 293 and 299, as shown in Figure 2 (b) record 2 and 3. In XRel, each XML node is marked
with a “start” and an “end” offset. Node containment is checked through a comparison of these offsets: for
two node p1 and p2, if (p1.start < p2.start) and (p1.end > p2.end), then p2 is an descendant of p1. In our ex-

ample, we can tell that node 293 and 299 are descendants of node 292. Therefore, “//people
D
∩X //person”

will yield node 293 and node 299. Comparing with Example 1, “//people ∩ //person” yields Null. 2

The operands of XML deep-union/intersect operators may contain different nodes. In RDBMS, where
domain compatibility is strictly enforced, their relational equivalent counterpart might be domain incompat-
ible (e.g. a row “intersect” a cell). This happens when schema-based X2R conversion methods (e.g. [16, 52])
are employed, where different XML nodes could be converted to tables, rows, or cells. To tackle this prob-
lem, we can employ new RDBMS techniques such as Oracle VPD (Virtual Private Database) to enable us
to fine-control relational tables to create relational views with any group of cells from a table.

Deep-except is used to remove inaccessible nodes from the answer. Recall that, in our XML access control
model, all nodes are inaccessible by default. When a user is prohibited to access a node, there is no need to
write a negative rule (R−) to revoke its accessibility unless the node is covered by positive rules (ACR+).
In this way, negative rules are only used to specify exceptions to global permissions, i.e. “revoke” access
proposed by ACR+. Deep except operator is used to enforce negative rules. Regarding whether deep except
could be implemented in XRDB with X2R conversion algorithm C, it depends upon the characteristics of
the negative rules contained in the access control policy. In particular, we distinguish two types of negative
rules, as shown below.

Definition 7 (Node elimination vs. Descendant elimination negative rules) A negative rule in ACR
restricts user from access a set of nodes {r−1 , ...r−n }. If none of the nodes is a descendant of the context
node of a positive rule, i.e.:

r−i 6∈ 〈R+//∗〉, ∀r−i ∈ {r−1 , ...r−n };∀〈R+〉 ∈ 〈ACR+〉
then it is called a node elimination (NE) negative rule. Else, if one of the nodes is a descendant of the
context node of a positive rule, i.e.:

r−i ∈ 〈R+//∗〉, ∃r−i ∈ {r−1 , ...r−n };∃〈R+〉 ∈ 〈ACR+〉
it is called a descendant elimination (DE) negative rule. 2

9

Intuitively, “Node elimination” negative rule removes context node from 〈ACR+〉, while “descendant
elimination” negative rule removes descendants from context node of 〈ACR+〉.

For XML nodes covered by node elimination negative rules 〈ACR−
1 〉, deep-except operator directly

removes them from 〈ACR+〉, without breaking any XML nodes in the original document or creating any
new nodes:

〈ACR+〉
D
−X 〈ACR−

1 〉 = {n|n ∈ 〈ACR+〉 ∧ n 6∈ 〈ACR−
1 〉}

Essentially, this is the regular except semantics. In this way, in XRDB, we have,

C(〈ACR+〉)
D
−R C(〈ACR−

1 〉) = C(〈ACR+〉
D
−X 〈ACR−

1 〉) = {r|r ∈ C(〈ACR+〉) ∧ r 6∈ C(〈ACR−
1 〉)}

To support deep except operator for node elimination negative rules only, the conditions described in
Lemma 2 still apply. However, it takes more burden to process descendant elimination negative rules, where
real “deep” semantics is required. That is,

〈ACR+〉
D
−X 〈ACR−

2 〉 = {deepRemove(n, n
D
∩X 〈ACR−

2 〉)|n ∈ 〈ACR+〉}
where deepRemove(p, 〈Q〉) takes a node and a set of its descendants as operands, removes the descendants
from the subtree of the node and return the remaining. This function may not be directly converted to
relational.

Lemma 3. When deep-except operator takes node specified by descendant elimination negative rules as the
second operand, it is implemented through deepRemove() operation. To implement deep-except operator
that supports descendant elimination negative rules in XRDB(C), the X2R conversion algorithm X should:
(1) fully satisfy Lemma 2; and (2) for any node n1 and its descendant n2, C(n2) should be part of C(n1);
and in the reverse conversion of n1 = C−1(C(n1)), node n2 in the subtree is entirely converted from C(n2).

Example 3. For instance, in Example 1, Rule 2 is a descendant elimination negative rule since it revoke
access towards descendants of Rule 1’s context node (<person>).

In XRDB(XRel) [59], descendants are converted to independent records that are stand alone from ances-
tors. As shown in Figure 2(b), <creditcard> node is converted to an individual record (i.e. elementID =
303), which is independent from it ancestor <person>. To reconstruct a <person> node, C−1

XRel() only takes
the record with elementID = 293 (ancestor node) and returns a full person node. Although the descendant
node <creditcard> is included in the answer, the record elementID = 303 is not touched by C−1

XRel().
In this way, XRel violates condition (2) of Lemma 3, so that we cannot directly implement deep-except
operator to support descendant elimination negative rules. When user requests for “//person”, we are not
able to revoke access towards <creditcard> child, unless we modify the relational data to the following
record for C−1

XRel():

DOCID ELEMENTID pathID st ed
0 NULL NULL 35832 35988
0 NULL NULL 36033 36217

However, this is not directly supported in relational algebra or any existing RDBMS.
In Shared-Inlining [52] approach, <person> nodes are translated into a table, with each row representing
a person, and <creditcard> nodes are stored in one of the columns, “person credicard”. The relational
schema is [33]:

Person(PersonId, ParentId, Person, Person_address, Person_address_city, Person_address_country,

Person_address_province, Person_address_street, Person_address_zipcode, Person_creditcard,)

Here, the ancestor-descendant relationship is kept such that each row represents a “person” node, and
each cell represents a child node. When C−1

Inlining() is called to reconstruct <person> nodes, the textual
contents of <credicard> descendants are retrieved from “person credicard” column. Therefore, to obtain

//person
D
−X//creditcard, we just mask “person creditcard” column in the table; and the reconstructed

XML tree of “person” node will not have corresponding child, i.e., “creditcard” node is removed from the
XML answer. 2

10

As a conclusion, there is a “semantic gap” between XML and relational data models. XML features a
tree structure, where nodes are hierarchically nested, while, relational model only defines a two-dimensional
structure. This fundamental difference makes us unable to directly maintain all structural information in
X2R conversion. Some conversion approaches store each XML node independently, such as XRel showed
above, where descendants are not utilized when converting an ancestor node back to XML. This is different
from XML data model, in which ancestor node inherently includes descendants. For those approaches like
XRel, descendant elimination negative rules could not be directly enforced through deep-except operator
since we have difficulties sweeping off descendants from given node(s). Fortunately, for many other X2R
conversion approaches (like shared-inlining), we are able to implement deep-except operator, and then
directly enforce descendant elimination negative rules. Moreover, in those approaches where descendant
elimination negative rules are not directly supported, we can still use post-processing filtering methods to
remove access denied contents from the reconstructed XML answer (more details are provided in the next
section).

5 XML Access Control Enforcement in XRDB

In the previous sections we show how XML access control semantics could be converted into relational
model to be used in XRDB. However, in real world applications, existing XML access control approaches
do not exactly implement the basic semantics shown in Equation 3. A general framework is proposed in
[34] to capture different XML access control approaches (as show in row 1 of Figure 3). Now, we extend
this framework into XRDB.

As shown in Figures 1 and 3, similar to

RDBMS-supported XML database system

XML Document
DX

XML Query
QX

Relational Document
DR

Relational Query
QR

Relational
Answer

AR

XML
Answer

AX

X
M

L-R
elational

C
onversion (C

)

R
everse

C
onversion (C

-1)

1

2

3
4

5

6

A’R

QX DXACRX QXDX ACRX

A’X

DXACRX

DXACRX

VX

VR

QX

QX

QR

View-based approach Preprocessing approach Post-processing approach

X
M

L D
B

X
R

D
B

 (X
M

L side)
X

R
D

B
 (R

D
B

M
S side)

RDBMS-supported XML database system

XML Document
DX

XML Query
QX

Relational Document
DR

Relational Query
QR

Relational
Answer

AR

XML
Answer

AX

X
M

L-R
elational

C
onversion (C

)

R
everse

C
onversion (C

-1)

1

3

2

1

A’R

A’XDXACRX

VR

DRACRR

QX

QR

4

QX DXACRX

Q’X

Q’R DR A’R

A’X

QX DXACRX

Q’R DR A’R

QRACRR

A’X

QXDX ACRX

AX

DR ARQR

A’X

QXDX ACRX

A’RDR ARQR

A’X

ACRR

2 3

5 6

Figure 3: Access control enforcement approaches in XML
DB and XRDB.

the framework in native XML databases, there
could be three categories of XML access con-
trol enforcement mechanisms in XRDB: (1)
view-based approach (1© 4© in Figures 1 and
3); (2) pre-processing approach (2© 5© in Fig-
ures 1 and 3); and (3) post-processing ap-
proach (3© 6© in Figures 1 and 3). These ap-
proaches enforce access control policy on the
document, query and answer, respectively. In
this section, we articulate the algebra of these
approaches using deep set operators. Then,
we briefly describe how they could be con-
verted to their relational counter parts in XRDB.

5.1 View-based approach

When access control is first enforced on XML documents to create views, it is the traditional view-based
approach. In this model, XML view VX (or safe document SD) is constructed to capture:

VX = [(〈R+
X1〉

D
∪X ...

D
∪X 〈R+

n 〉)
D
−X (〈R−

1 〉
D
∪X ...

D
∪X 〈R−

m〉)]

And query is evaluated against the view

SA = Q〈VX〉 = Q[(〈R+
X1〉

D
∪X ...

D
∪X 〈R+

n 〉)
D
−X (〈R−

1 〉
D
∪X ...

D
∪X 〈R−

m〉)]

To convert this approach into XRDB, a straightforward approach is to convert each XML view VX into
relational view VR = C(VX), as shown in 1© of Figure 3:

SA = C−1(QR〈VR〉) = C−1(QR〈C(VX)〉)

11

However, this approach suffers from several drawbacks: (1) since views for each role should be materialized,
the storage requirement is substantial; and (2) each relational view VR is independently stored, without any
connection to DR, thus synchronization is difficult to achieve, if not impossible.

Another solution is to employ view support from RDBMS to enforce access control on the relational side
of XRDB, as show in 4© of Figure 3:

SA = C−1(Q〈VR〉) = C−1(Q〈(C(〈R+
X1〉)

D
∪R ...

D
∪R C(〈R+

n 〉))
D
−X (C(〈R−

1 〉)
D
∪R ...

D
∪R C(〈R−

m〉))〉) (8)

In implementation of view based approaches, there are three factors to be considered:
Construction of VR: This issue includes two aspects: (1) the constructed VR should capture the exact
content of access control allowed data, i.e. VR ≡ VX , as we described in Section 4; and (2) this VR should be
legit to the underlying RDBMS. According to Lemma 3, some X2R conversion algorithms cannot directly
support descendant elimination negative rules. Therefore, in the corresponding XRDB systems, we cannot
directly employ relational view based approaches to enforce descendant elimination negative rules.
Evaluation of QR: Comparing Equation 8 with Equation 4, note that, in Equation 8 deep-intersect
operator is replaced by the query evaluation process. Then we need to consider whether query evaluation
process conducts the deep intersect semantics. In some XRDB such as XRDB(XRel), the original query
translation and evaluation process only conducts intersect semantics, as shown in Example 1. Therefore, we
cannot directly employ view based approach, or special treatment is required to implement the deep-intersect
semantics.
Reconstruction of SAX : We still need to mention that, no matter how we tailor DR into VR, we need to
ensure that the relational answers from VR is legit to C−1().

5.2 Pre-processing approach

In preprocessing model, safe query SQ is constructed as:

SQX = QX

D
∩X [(R+

X1

D
∪X ...

D
∪X R+

Xn)
D
−X (R−

X1

D
∪X ...

D
∪X R−

Xm)]

Safe answer is yielded by evaluating safe query against the original document: SAX = SQX〈DX〉. To
extend this approach to XRDB, we have two methods:

(1)XML Query Rewriting: as shown in 2© in Figure 3, this approach is to convert the safe XML query
into SQL, and follow the regular XRDB query evaluation process:

SAX = C−1(SQR〈DR〉) = C−1(C(SQX)〈DR〉)

In this approach, we can directly adopt the preprocessing of XML access control mechanisms, such as [35],
to generate SAX . We have to mention that, the generated SAX should be legit to the X2R conversion
algorithm, e.g. most X2R conversion algorithms can only process XPath queries, thus SAX should only
include XPath. However, this requirement may exceed the capability of XML access control mechanisms
since XML deep set operators are implemented as user defined functions of XQuery, which is not supported
in some X2R conversion algorithms. Therefore, when the safe XML query cannot be expressed as XPath,
one cannot directly adopt XML query rewritten approach to enforce access control.

(2)Relational Query Rewriting: As shown in 5© in Figure 3, this approach follows regular XRDB query
evaluation process to convert user XML query QX into SQL QR. Then, we conduct query rewriting on QR

to generate safe query SQR:

SQR = QR

D
∩R [(R+

R1

D
∪R ...

D
∪R R+

Rn)
D
−X (R−

R1

D
∪X ...

D
∪X R−

Rm)]

We present two approaches to implement this. First, develop an external query rewriting process, which
sits as a middle-ware between X2R query conversion and relational query evaluation. Since we have clearly
defined relational deep set operators, the implementation is straightforward, although the queries might be
complicated. For instance,

12

r C(//people//*)

r C(//name::self-or-descendant())

SELECT docID, pathid, elementID, st, ed FROM element
WHERE (elementID IN

(SELECT e0.elementID FROM document d, element e0, pth p0
 WHERE p0.pathexp LIKE '#%/people%' AND e0.pathid = p0.pathid AND d.docid = e0.docid)

AND elementID IN
(SELECT e0.elementID FROM document d, element e0, pth p0
 WHERE p0.pathexp LIKE '#%/name%' AND e0.pathid = p0.pathid AND d.docid = e0.docid))

AND (NOT elementID IN
(SELECT e0.elementID FROM document d, element e0, pth p0
 WHERE p0.pathexp LIKE '#%/people#/%' AND e0.pathid = p0.pathid AND d.docid = e0.docid)

OR NOT elementID IN
(SELECT e0.elementID FROM document d, element e0, pth p0
 WHERE p0.pathexp LIKE '#%/name#/%' AND e0.pathid = p0.pathid AND d.docid = e0.docid))

r C(//people::self-or-descendant())

r C(//name//*)

D

SELECT e0.docID, e0.elementID, e0.st, e0.ed FROM demo.document d, demo.element e0, demo.pth p0
WHERE ((p0.pathexp LIKE '#%/people%' AND e0.pathid = p0.pathid AND d.docid = e0.docid)
AND (p0.pathexp LIKE '#%/name%' AND e0.pathid = p0.pathid AND d.docid = e0.docid))
AND ((NOT p0.pathexp LIKE '#%/people#/%' AND e0.pathid = p0.pathid AND d.docid = e0.docid)
OR (NOT p0.pathexp LIKE '#%/name#/%' AND e0.pathid = p0.pathid AND d.docid = e0.docid))

(a) SQL query for: //people ∩ //name

(b) optimized SQL query
Figure 4: Enforcing XML access control via external pre-processing

Example 4. Let use revisit the previous examples: we manage XMark document in XRDB(XRel). Suppose
we have access control rule (user, //people, read, +), and user submits query //name. Figure 4(a)

shows the relational query for C(//people)
D
∩R C(//name), which is implemented according to the definition

in Equation 7 (we marked up all the sub-queries). Moreover, this query could be further optimized, as
shown in Figure 4(b). 2

Second method is to use Oracle VPD. Oracle version 8.1.5 introduces a new security feature supporting
non-view-based fine-grained access control, namely Row Level Security or Virtual Private Database. It
allows users to control accessibility towards row/cell level. In VPD, to restrict users’ access to rows, a
policy function is defined to generate additional predicates and attach them to the WHERE clause of the
user query. Moreover, VPD allows user to “mask” individual cells to support cell level access control. Other
access control mechanism through SQL rewriting or relational views can only work on relations. However,
with VPD, we are able to tailor relational data into any shape we want.

To utilize VPD for access control in XRDB, we first construct relational predicates from the converted
relational access control rules ACRR, then define a VPD policy to enforce the predicates on converted SQL
queries. Moreover, cell level access control capability of VPD is of special importance to XRDB systems
that use schema-based X2R conversion algorithm, such as Inlining. In those XRDB systems, XML nodes
are converted to different types of relational objects: tables, rows and cells. In this way, 〈ACR〉 may not
be conventional relations, e.g. it could be arbitrary combinations of columns, rows and/or individual cells.

5.3 Post-processing based approach

In native XML DB, access control through post-processing described as:

SAX = ACR〈AX〉 = ACR〈QX〈DX〉〉 = [(R+
X1

D
∪X ...

D
∪X R+

Xn)
D
−X (R−

X1

D
∪X ...

D
∪X R−

Xm)]〈QX〈DX〉〉

In XRDB, this approach could be conducted through: (1) XML answer filtering (3© in Figure 3); or (2)
relational answer filtering (6© in Figure 3). (1) is similar to the postprocessing approach described in [34],
while (2) evaluates relational query QR to obtain unsafe relational answer, and process ACRR against the
answers:

SAX = C−1(SAR) = C−1(ACRR〈AR〉) = C−1(ACRR〈QR〈DR〉〉)

However, the post-processing filters often require the intermediate answers (〈AR〉 or 〈AX〉) to retain addi-
tional information of the original paths for ACR to operate on. As an example of this approach, [8] check
streaming XML data against both query and ACR at the same time. Since it works in the streaming data

13

environment, full paths are retained. As an counter example, let us look at an XRDB in information pull
model. Suppose a user asks for “//name”, but she is only authorized to access person names, not item
names. To enforce access control on 〈AR〉 or 〈AX〉, we need to be able to distinguish these two types of
<name> nodes, i.e. recognize the original full path. Unfortunately, as designed in most X2R conversion al-
gorithms, the intermediate answer AR or AX does not contain such information. Therefore, postprocessing
approaches are not suitable for all applications.

5.4 Descendant elimination negative rules

As we described in Section 3, enforcing descendant elimination negative rules needs the conversion of deep-
except operator. Due to the semantic gap between XML and Relational data models, this may not be
feasible in all XRDB systems. E.g., in XRel, to enforce descendant elimination negative rules, we need
to block access to a descendant node in the element table. However, users are still able to retrieve the
whole ancestor node (including the “blocked” descendant) since it is stored as an independent record. To
avoid security leak, we need to manage these conversion algorithms with extra treatment: an external post
processing to enforce DE access control rules.

Let us revisit Example 3 again. Upon user query “//person”, elements 293 and 299 shown in Figure
2 are included in the relational answer. After the reverse conversion, segments with offsets (35592, 35826)
and (35832, 36217) from the XML documents are returned to the user. However, rule 2 restricts access to
//person/creditcard nodes, thus this answer is not safe. To remove the restricted node from the answer,

we first request 〈QR〉
D
∩R 〈ACR−

R〉 from RDBMS, to yield element 303. Then we remove this segment, i.e.
(35989, 36032) from the XML answer.

6 Experimental Validation

To show that the proposed theory and implementations are practical yet efficient, we show our preliminary
experimental results.

6.1 Settings

An XML document with 8517 nodes are generated by XMark [50], mimicking online auction scenario. Part
of its schema structure is shown in Figure 1. We use XRDB(XRel) [59]2, with Oracle 10g as underlying
RDBMS; i.e. we convert XML document into relations using XRel, and manage them in Oracle 10g.

We design five (5) roles, abbreviated as A (administrator), M (manager), RU (registered user), S (sales)
and U (unregistered user), respectively. Roles have different levels of accessibility, e.g. U is able to access
5% of total nodes, RU is able to access 40%, and A could access all.

According to Lemma 3, XRDB(XRel) cannot directly handle descendant elimination negative rules, thus
we only have positive and node elimination negative rules. As a reference, we also test situations where no
access control is enforced – user could access everything.

As we described before, the types of queries that we support totally depend on the X2R conversion
algorithm. XRel supports a subset of XPath, with parent-child (/), ancestor-descendant (//) axes, wildcards
(*) and predicates. We generate four groups of synthetic XPath queries, each has a different setting of
wildcards and predicates.

6.2 Experimental Results

In the XRDB(XRel) environment described above, we convert all access control rules into relational, and
enforce them through views and VPD. For a comparison, we also enforce same rule sets on the same XML
document in native XML environment. We enforce XML access control rules using QFilter [35], and answer
XML queries using Galax. In all the experiments, we use the query processing time as an evaluation metric.

2We choose XRel because of its available implementations of both Query and Data convertor.

14

Figure 5: Query processing time for four sets of queries.

Figure 5 shows the result of our experimentation. Comparing both view-based and VPD-based ap-
proaches with the reference (no security enforcement), our approaches do not add much overhead for fine-
grained access control. Meanwhile, the size of accessible data tends to get smaller after security enforcement.
Therefore, querying on smaller set of records is even faster than that on no-security case. XRDB query
processing speed is significantly slower for Query Sets 3 and 4. This is because the XML queries have
predicates, and they are converted to nested SQL queries under XRel.

With access control enforced, performance of XML querying in XRDB systems or native XML database
systems (with QFilter security enforcement) is similar. Note that comparison with Galax is not perfectly fair
since Galax is just an XQuery implementation, and does not have storage management or cache. Therefore,
Galax take more time to load XML documents from disk to memory. It is just used as a reference.

7 Conclusion
In this paper, we propose a generic analysis to the access control problem in XRDB. We first analyze XML
control models to propose a formal description of XML access control using deep set operators. Then we
articulate the problem of XML access control in XRDB as essentially the problem of XML/Relational object
and operation equivalency and conversion. We show that, equivalent counterparts of deep set operators in
relational model are needed to fully implement XML access control in XRDB. We analyze the definition and
semantics of each operator, and show how they can be converted to XRDB through two lemmas. Although
detailed conversion implementation is connected with the specific X2R conversion algorithm used in XRDB,
we propose an algebraic description of these operators.

Moreover, we study possible implementations of XML access control in XRDB. We categorize them into
three approaches, and formally describe the semantics of each approach using deep set operators. We also
discuss the features and considerations of each approach. Finally, we show the validity of our approaches
using experiment results.

We have carefully explored the problem space, proposed theocratical solutions, and discussed implemen-
tation approaches. However, there are still open questions in XRDB access control, especially the questions
connected with particular implementation methods. E.g. how to enforce XML access control with minimal
overhead and alternation upon underlying RDBMS? We leave these as our our future research topics.

15

References

[1] D. Barbosa, J. Freire, and A. O. Mendelzon. “Designing Information-preserving Mapping Schemes for XML”.
In VLDB, pages 109–120, Trondheim, Norway, 2005.

[2] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernndez, M. Kay, J. Robie, and J. Simeon. “XML Path Language
(XPath) 2.0”. W3C Working Draft, Nov. 2003. http://www.w3.org/TR/xpath20.

[3] E. Bertino and E. Ferrari. “Secure and Selective Dissemination of XML Documents”. ACM Trans. on Infor-
mation and System Security (TISSEC), 5(3):290–331, Aug. 2002.

[4] Elisa Bertino, Silvana Castano, and Elena Ferrari. Securing xml documents with author-x. IEEE Internet
Computing, 5(3):21–31, 2001.

[5] Elisa Bertino, Elena Ferrari, and Loredana Parasiliti Provenza. Signature and access control policies for xml
documents. In Einar Snekkenes and Dieter Gollmann, editors, ESORICS, volume 2808 of Lecture Notes in
Computer Science, pages 1–22. Springer, 2003.

[6] Kevin Beyer, Fatma Ozcan, Sundar Saiprasad, and Bert Van der Linden. DB2/XML: designing for evolution.
In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international conference on Management of data,
pages 948–952, New York, NY, USA, 2005. ACM Press.

[7] S. Boag, D. Chamberlin, M. F. Fernndez, D. Florescu, J. Robie, and J. Simeon. “XQuery 1.0: An XML Query
Language”. W3C Working Draft, Nov. 2003. http://www.w3.org/TR/xquery.

[8] L. Bouganim, F. D. Ngoc, and P. Pucheral. “Client-Based Access Control Management for XML Documents”.
In VLDB, Toronto, Canada, 2004.

[9] T. Bray, J. Paoli, and C. M. Sperberg-McQueen (Eds). “Extensible Markup Language (XML) 1.0 (2nd Ed.)”.
W3C Recommendation, Oct. 2000. http://www.w3.org/TR/2000/REC-xml-20001006.

[10] Barbara Carminati, Elena Ferrari, and Elisa Bertino. Securing xml data in third-party distribution systems. In
CIKM ’05: Proceedings of the 14th ACM international conference on Information and knowledge management,
pages 99–106, New York, NY, USA, 2005. ACM Press.

[11] S. Cho, S. Amer-Yahia, L. V.S. Lakshmanan, and D. Srivastava. “Optimizing the Secure Evaluation of Twig
Queries”. In VLDB, Hong Kong, China, Aug. 2002.

[12] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. “A Fine-Grained Access Control
System for XML Documents”. ACM Trans. on Information and System Security (TISSEC), 5(2):169–202, May
2002.

[13] E. Damiani, S. De Capitani Di Vimercati, S. Paraboschi, and P. Samarati. “Design and Implementation of an
Access Control Processor for XML Documents”. Computer Networks, 33(6):59–75, 2000.

[14] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, and Pierangela Samarati. Securing
xml documents. In Carlo Zaniolo, Peter C. Lockemann, Marc H. Scholl, and Torsten Grust, editors, EDBT,
volume 1777 of Lecture Notes in Computer Science, pages 121–135. Springer, 2000.

[15] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, and Pierangela Samarati. Xml ac-
cess control systems: A component-based approach. In DBSec 00: Proceedings of the IFIP TC11/ WG11.3
Fourteenth Annual Working Conference on Database Security, pages 39–50, Deventer, The Netherlands, The
Netherlands, 2001. Kluwer, B.V.

[16] A. Deutsch, M. F. Fernandez, and D. Suciu. “Storing Semistructured Data with STORED”. In ACM SIGMOD,
Philadephia, PA, Jun. 1998.

[17] Wenfei Fan, Chee-Yong Chan, and Minos Garofalakis. Secure xml querying with security views. In SIGMOD
’04: Proceedings of the 2004 ACM SIGMOD international conference on Management of data, pages 587–598,
New York, NY, USA, 2004. ACM Press.

[18] E. Fernandez, E. Gudes, and H. Song. “A Model of Evaluation and Administration of Security in Object-
Oriented Databases”. IEEE Trans. on Knowledge and Data Engineering (TKDE), 6(2):275–292, 1994.

[19] B Finance, S Medjdoub, and P Pucheral. The case for access control on xml relationships. In CIKM ’05:
Proceedings of the 14th ACM international conference on Information and knowledge management, pages 107–
114, New York, NY, USA, 2005. ACM Press.

[20] D. Florescu and D. Kossmann. “Storing and Querying XML Data Using an RDBMS”. IEEE Data Eng. Bulletin,
22(3):27–34, Sep. 1999.

16

[21] Irini Fundulaki and Maarten Marx. Specifying access control policies for xml documents with xpath. In SACMAT
’04: Proceedings of the ninth ACM symposium on Access control models and technologies, pages 61–69, New
York, NY, USA, 2004. ACM Press.

[22] Alban Gabillon and Emmanuel Bruno. Regulating access to xml documents. In DBSec 01: Proceedings of the
fifteenth annual working conference on Database and application security, pages 299–314, Norwell, MA, USA,
2002. Kluwer Academic Publishers.

[23] S. Godik and T. Moses (Eds). “eXtensible Access Control Markup Language (XACML) Version 1.0”. OASIS
Specification Set, Feb. 2003. http://www.oasis-open.org/committees/xacml/repository/.

[24] P. P. Griffiths and B. W. Wade. “An Authorization Mechanism for a Relational Database System”. ACM
Trans. on Database Systems (TODS), 1(3):242–255, Sep. 1976.

[25] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. “Flexible Support for Multiple Access Control
Policies”. ACM Trans. on Database Systems (TODS), 26(2):214–260, Jun. 2001.

[26] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. “A Unified Framework for Enforcing Multiple
Access Control Policies”. In ACM SIGMOD, pages 474–485, May 1997.

[27] S. Jajodia and R. Sandhu. “Toward a Multilevel Secure Relational Data Model”. In ACM SIGMOD, May 1990.

[28] Mingfei Jiang and Ada Wai-Chee Fu. Integration and efficient lookup of compressed xml accessibility maps.
IEEE Transactions on Knowledge and Data Engineering, 17(7):939–953, 2005.

[29] M. Kudo and S. Hada. “XML Document Security Based on Provisional Authorization”. In ACM Conf. on
Computer and Communications Security (CCS), 2000.

[30] Gabriel Kuper, Fabio Massacci, and Nataliya Rassadko. Generalized xml security views. In SACMAT ’05:
Proceedings of the tenth ACM symposium on Access control models and technologies, pages 77–84, New York,
NY, USA, 2005. ACM Press.

[31] D. Lee and W. W. Chu. “Constraints-preserving Transformation from XML Document Type Definition to
Relational Schema”. In Int’l Conf. on Conceptual Modeling (ER), pages 323–338, Salt Lake City, UT, Oct.
2000.

[32] D. Lee, W.-C. Lee, and P. Liu. “Supporting XML Security Models using Relational Databases: A Vision”. In
XML Database Symp. (XSym), Berlin, Germany, Sep. 2003.

[33] H. Lu et al. What makes the differences: benchmarking xml database implementations. ACM Trans. on Internet
Technology (TOIT), 5(1):154–194, 2005.

[34] B. Luo, D. Lee, W.-C. Lee, and P. Liu. “A Flexible Framework for Architecting XML Access Control Enforce-
ment Mechanisms”. In VLDB Workshop on Secure Data Management in a Connected World (SDM), Toronto,
Canada, Aug. 2004.

[35] B. Luo, D. Lee, W.-C. Lee, and P. Liu. “QFilter: Fine-Grained Run-Time XML Access Control via NFA-based
Query Rewriting”. In ACM CIKM, Washington D.C., USA, Nov. 2004.

[36] B. Luo, D. Lee, W.-C. Lee, and P. Liu. Deep set operators for xquery. In ACM SIGMOD Workshop on XQuery
Implementation, Experience and Perspectives (XIME-P), Baltimore, MD, USA., 2005.

[37] Sriram Mohan, Jonathan Klinginsmith, Arijit Sengupta, and Yuqing Wu. Acxess - access control for xml
with enhanced security specifications. In ICDE ’06: Proceedings of the 22nd International Conference on Data
Engineering (ICDE’06), page 171, Washington, DC, USA, 2006. IEEE Computer Society.

[38] Sriram Mohan, Arijit Sengupta, and Yuqing Wu. Access control for xml: a dynamic query rewriting approach. In
CIKM ’05: Proceedings of the 14th ACM international conference on Information and knowledge management,
pages 251–252, New York, NY, USA, 2005. ACM Press.

[39] Sriram Mohan and Yuqing Wu. Ipac: an interactive approach to access control for semi-structured data. In
VLDB’2006: Proceedings of the 32nd international conference on Very large data bases, pages 1147–1150. VLDB
Endowment, 2006.

[40] M. Murata, A. Tozawa, and M. Kudo. “XML Access Control using Static Analysis”. In ACM Conf. on Computer
and Communications Security (CCS), Washington D.C., 2003.

[41] Makoto Murata, Akihiko Tozawa, Michiharu Kudo, and Satoshi Hada. Xml access control using static analysis.
ACM Trans. Inf. Syst. Secur., 9(3):292–324, 2006.

17

[42] Ravi Murthy, Zhen Hua Liu, Muralidhar Krishnaprasad, Sivasankaran Chandrasekar, Anh-Tuan Tran, Eric
Sedlar, Daniela Florescu, Susan Kotsovolos, Nipun Agarwal, Vikas Arora, and Viswanathan Krishnamurthy.
Towards an enterprise XML architecture. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 953–957, New York, NY, USA, 2005. ACM Press.

[43] Matthias Nicola and Bert van der Linden. Native XML support in DB2 universal database. In VLDB ’05:
Proceedings of the 31st international conference on Very large data bases, pages 1164–1174. VLDB Endowment,
2005.

[44] Naizhen Qi and Michiharu Kudo. Access-condition-table-driven access control for xml databases. In Pierangela
Samarati, Peter Y. A. Ryan, Dieter Gollmann, and Refik Molva, editors, ESORICS, volume 3193 of Lecture
Notes in Computer Science, pages 17–32. Springer, 2004.

[45] Naizhen Qi and Michiharu Kudo. Xml access control with policy matching tree. In ESORICS 2005, 10th
European Symposium on Research in Computer Security, pages 3–23, 2005.

[46] Naizhen Qi, Michiharu Kudo, Jussi Myllymaki, and Hamid Pirahesh. A function-based access control model
for xml databases. In CIKM ’05: Proceedings of the 14th ACM international conference on Information and
knowledge management, pages 115–122, New York, NY, USA, 2005. ACM Press.

[47] Michael Rys. XML and relational database management systems: inside Microsoft SQL Server 2005. In
SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pages
958–962, New York, NY, USA, 2005. ACM Press.

[48] P. Samarati, E. Bertino, and S. Jajodia. “An Authorization Model for a Distributed Hypertext System”. IEEE
Trans. on Knowledge and Data Engineering (TKDE), 8(4):555–562, 1996.

[49] R. Sandhu and F. Chen. “The Multilevel Relational (MLR) Data Model”. ACM Trans. on Information and
System Security (TISSEC), 1(1), 1998.

[50] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey, and R. Busse. “The XML
Benchmark Project”. Technical Report INS-R0103, CWI, April 2001.

[51] H. Schoning. Tamino - a dbms designed for xml. In IEEE ICDE, pages 149–154, Washington, DC, USA, 2001.

[52] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton. “Relational Databases for
Querying XML Documents: Limitations and Opportunities”. In VLDB, Edinburgh, Scotland, Sep. 1999.

[53] J. Simeon and M. Fernandez. “Galax V 0.3.5”, Jan. 2004. http://db.bell-labs.com/galax/.

[54] Andrei Stoica and Csilla Farkas. Secure xml views. In Ehud Gudes and Sujeet Shenoi, editors, DBSec, volume
256 of IFIP Conference Proceedings, pages 133–146. Kluwer, 2002.

[55] K.-L. Tan, M. L. Lee, and Y. Wang. “Access Control of XML Documents in Relational Database Systems”. In
Int’l Conf. on Internet Computing (IC), Las Vegas, NV, Jun. 2001.

[56] Jingzhu Wang and Sylvia L. Osborn. A role-based approach to access control for xml databases. In SACMAT
’04: Proceedings of the ninth ACM symposium on Access control models and technologies, pages 70–77, New
York, NY, USA, 2004. ACM Press.

[57] M. Winslett, K. Smith, and X. Qian. “Formal Query Languages for Secure Relational Databases”. ACM Trans.
on Database Systems (TODS), 19(4):626–662, 1994.

[58] Yan Xiao, Bo Luo, and Dongwond Lee. “Security-Conscious XML Indexing”. In Int’l Conf. on Database Systems
for Advanced Applications (DASFAA), Bangkok, Thailand, 2007.

[59] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. “XRel: A Path-Based Approach to Storage and
Retrieval of XML Documents using Relational Databases”. ACM Trans. on Internet Technology (TOIT),
1(2):110–141, Nov. 2001.

[60] T. Yu, D. Srivastava, L. V.S. Lakshmanan, and H. V. Jagadish. “Compressed Accessibility Map: Efficient
Access Control for XML”. In VLDB, Hong Kong, China, Aug. 2002.

18

