
Multi-Version Attack Recovery for Workflow Systems

Meng Yu, Peng Liu, Wanyu Zang
School of Information Sciences and Technology, Pennsylvania State University, 16801

yumeng@psu.edu

Abstract

Workflow systems are popular in daily business process-
ing. Since vulnerabilities cannot be totally removed from a
system, recovery from successful attacks is unavoidable. In
this paper, we focus on attacks that inject malicious tasks
into workflow management systems. We introduce practi-
cal techniques for on-line attack recovery, which include
rules for locating damage and rules for execution order.
In our system, an independent Intrusion Detection System
reports identified malicious tasks periodically. The recov-
ery system detects all damage caused by the malicious tasks
and automatically repairs the damage according to depen-
dency relations. Without multiple versions of data objects,
recovery tasks may be corrupted by executing normal tasks
when we try to run damage analysis and normal tasks con-
currently. This paper addresses the problem by introduc-
ing multi-version data objects to reduce unnecessary block-
ing of normal task execution and improve the performance
of the whole system. We analyze the integrity level and per-
formance of our system. The analytic results demonstrate
guidelines for designing such kinds of systems.

1. Introduction

Increasingly, workflow management systems are being
used as the primary technology for organizations to per-
form their daily business processes (workflows). A work-
flow consists of a set of tasks that are related to each other
in terms of the semantics of a business process. Each task
represents a specific unit of work that the business needs to
do (e.g., a specific application program, a database trans-
action). A consistent and reliable execution of workflow is
crucial for all organizations. However, it is well known that
system vulnerabilities cannot be totally eliminated and such
vulnerabilities can be exploited by attackers who penetrate
the system.

In this paper we mainly consider those intrusions that in-
ject malicious tasks into the workflow management system
instead of the attacks that only crash the workflow manage-

ment system. These intrusions happen when attackers ac-
cess a system with stolen (guessed, calculated, etc.) pass-
words or when some defense mechanisms, such as access
control, are broken by the attackers. Under such intrusions,
some tasks in a workflow may be forged or corrupted. Even
worse, these malicious tasks will ultimately spread mislead-
ing information or damage to more tasks and nodes, gen-
erating more trash data in the workflow management sys-
tem. The attack recovery on which we focus in this paper
attempts to remove the malicious effects of the intrusions
and to provide reasonable on-line recovery services. A mo-
tivating example for the attack recovery is illustrated in Fig-
ure 1.

G

G − good tasks
I − innocent tasks
U − unexecuted tasks

A − infected tasks
Executed path
Unexecuted path
Data dependence
Excuting path after re−excuting the bad task

B A

I
A

U

G

T1
T2

T3

T5

T4

T6

G

Processor 2 Processor 3Processor 1

Workflow A

Workflow B
T7 T8 T9 T10

A A

B − bad tasks

Figure 1. A Workflow

In the example, there are two workflows processed by
three processors. Branches in the figure are not for paral-
lel tasks but for selections of executing paths. P1 : T1 →
T2 → T3 → T4 → T6 and P2 : T1 → T2 → T5 → T6 are
two different executing paths, which are selected by task T2

in a specific execution. In this example, P1 is the execut-
ing path led by attacks and P2 is the normal executing path
without attacks.

In the example, task T1 marked with “B” is the only ma-
licious task that is damaged directly by the attacker and is
identified by the IDS. Due to reading dirty data from task
T1, task T2, T4, T8 and T10 calculate wrong results. They
are marked by “A”, indicating infected tasks. Furthermore,
task T2, based on dirty data it reads from T1, makes a wrong
decision to execute tasks on path P1. In fact task T3 and task
T4 would not have been executed at all if T1 were not dam-
aged.

From this example, we learn that the IDS is unable to dis-
cover all damage to the system. The damage directly caused
by the attacker will be spread by executing normal tasks
without being detected by the IDS.

The example in Figure 1 shows how complex an at-
tack recovery can be even for simple workflows with a sin-
gle malicious task. We use it to explain our techniques in
this paper. The example seems simple while it is complex
enough to include all situations where a workflow can be
affected by attacks. It is also powerful enough to demon-
strate all aspects of our attack recovery theories.

Therefore, when attacks happen, we need to identify
tasks that were affected and need to be undone. Then we
need to identify tasks that need to be redone. In this pa-
per, we will show that in some circumstances certain tasks
that compute correctly need to be undone (e.g., task T3 and
task T6) and some affected tasks may not need to be redone
(e.g., task T4), which is contrary, at least to some extent,
to common knowledge on recovery. In addition, we need to
execute recovery tasks and new workflow tasks in correct
executing order in order to guarantee the correctness of at-
tack recovery. Existing techniques do not effectively and ef-
ficiently solve the problem.

Within this paper, we introduce the fundamental theories
for workflow attack recovery, which guarantee the correct-
ness of recoveries. We propose an architecture and a sched-
uler algorithm for workflow attack recovery based on our
theories. According to the set of malicious tasks reported
by the IDS, our approach identifies all directly and indi-
rectly infected tasks and repairs them with as little cost as
possible. We break restrictions caused by dependency rela-
tions to achieve better performance. The performance and
integrity level of our system are analyzed.

The rest of the paper is organized as follows. In Sec-
tion 2 we introduce some definitions and notions used in
this paper. Theories of multi-version data object based re-
covery are described and proved in Section 3. Our theories
include the rules and conditions to find tasks affected by
attacks and to guarantee the recovery correctness. We in-
troduce an architecture and related algorithms in Section 4
based on our recovery theories. The performance and in-
tegrity level are analyzed in Section 5. We compare related
work with ours in Section 6 and our conclusions are pre-
sented in Section 7.

2. Preliminaries

2.1. Set and Partial Orders

During the execution of workflow tasks and recovery
tasks, there are some specific partial orders that need to be
satisfied. In this section, we introduce some set and partial
order relations related to our theories.

Preceding relations Given two tasks Ti and Tj , if task Ti

is executed before Tj according to a workflow specification,
or Ti occurs earlier than Tj in the system log, then Ti pre-
cedes Tj by definition, which is denoted by Ti ≺ Tj .

Relation ≺ is a preceding relation defined by both work-
flow specification and system log. If Ti and Tj are tasks in
the same workflow and they have not been executed, their
relation is defined by the workflow specification. Otherwise,
the relation is defined by their occurring sequence in the
system log. If two tasks are within different workflows and
have not been executed, then they have no defined ≺ rela-
tion.

In the example shown in Figure 1, a solid directed edge
indicates a preceding relation. For example, T1 ≺ T2,
T2 ≺ T3, T7 ≺ T8 and T8 ≺ T9. Relation ≺ is transi-
tive. We can get T1 ≺ T3 from T1 ≺ T2 and T2 ≺ T3. The
relation ≺ is a partial order because some tasks have no pre-
ceding relations among them, such as T4 and T5 in the ex-
ample.

When tasks of are executed in the workflow system, they
have realistic preceding relations that are determined by the
task scheduler. We use Ti ≺s Tj to denote that task Ti runs
before Tj by scheduling, which we say task Ti precedes task
Tj by scheduling.

Given any two tasks in the same workflow, if Ti ≺ Tj

then Ti should be scheduled before Tj , namely Ti ≺s Tj ,
and Ti will occur earlier than Tj in the system log. For two
tasks within two different workflows and without a ≺ rela-
tion, or at least one of these two tasks is a recovery task,
they will ultimately be scheduled by the scheduler and they
will have ≺s relations. Before they are done and commit-
ted, they are neither defined by the same workflow specifi-
cation nor in the system log. Therefore they have only ≺s

relation, which is the difference between ≺ and ≺s relation.
Assuming that ≺ is a relation on set S then we define

minimal(S,≺) = x where x ∈ S ∧ @x′ ∈ S, x′ ≺ x. If
S is a set including all tasks in Figure 1 then minimal(S,≺
) = T1. Note that there may be more than one result qual-
ified to the definition of minimal(S,≺). For example, if
S = {Ti, Tj , Tk}, Ti ≺ Tk and Tj ≺ Tk, then both Ti

and Tj are qualified results for minimal(S,≺). In cases like
these, we randomly select one qualified result as the value
for minimal(S,≺).

Data dependency and multi-version data objects We use
R(T) and W (T) to denote the reading set and the writing

set of task T . For example, given a task Tx : x = a + b,
R(Tx) = {a, b} and W (Tx) = {x}.

We introduce some concepts that are usually discussed
in the field of parallel computing. Given two tasks ti ≺ tj ,

• If (W (ti) −
⋃

ti≺tk≺tj

W (tk)) ∩ R(tj) 6= φ, then tj is

flow dependent on ti, which is denoted by ti →f tj .

• If R(ti) ∩ (W (tj) −
⋃

ti≺tk≺tj

W (tk)) 6= φ, then tj is

anti-flow dependent on ti, which is denoted by ti →a

tj .

• If (W (ti) −
⋃

ti≺tk≺tj

W (tk)) ∩ W (tj) 6= φ, then tj is

output dependent on ti, which is denoted by ti →o tj .

Intuitively, if ti →f tj , then tj reads some data objects
written by ti. If ti →a tj , then tj modifies some date ob-
jects after ti reads them. If ti →o tj , then ti and tj have
some common data objects that they modify.

Consider another task Tb : b = x − 1, where Tx ≺
Tb, R(Tb) = {x} and W (Tb) = {b}, we have Tx →f Tb

and Tx →a Tb. All the relations →f ,→a and →o are data
dependency relations and are not transitive. From the well
known results of parallel computing, if a task Tj is data de-
pendent on another task Ti then they cannot run in paral-
lel and Tj should be executed after executing Ti, otherwise
we will get wrong results.

With a single version of each data object, Tx must be ex-
ecuted before Tb to get the correct result. The order can be
changed by introducing multiple versions of data objects.
Suppose b1 is one version of b with revision number 1, and
b2 is another version of b with revision number 2, and so
on. The anti-flow dependency among Tx and Tb can be bro-
ken by revising Tx : x = a + b1 and Tb : b2 = x − 1.
Even if Tb is executed before Tx, Tx still gets correct re-
sults by reading b1. Multi-version data objects also can be
used to break output dependencies.

By introducing multi-version data objects, restrictions
caused by anti-flow and output dependencies are removed.
Note that executing orders determined by flow dependen-
cies are not changed by multiple-version data objects.

Control Dependency Given two tasks Ti ≺ Tj within the
same workflow, if the execution of task Tj is decided by task
Ti, then we say Tj is control dependent on Ti, which is de-
noted by Ti →c Tj . A control dependency relation is tran-
sitive. If Ti →c Tj and Tj →c Tk then Ti →c Tk. In the
example shown in Figure 1, T2 →c T3, T2 →c T4 and
T2 →c T5.

We use → to denote data or control dependency when
the concrete type of dependency does not matter to our dis-
cussion. If there exist such tasks T1, T2, . . . , Tn, n ≥ 2 that
T1 → T2 →, . . . ,→ Tn, then T1 →∗ Tn.

If Ti →c Tj then there are two possibilities about the ex-
ecution of Tj : Tj should be executed or should not. We de-
fine two sets to describe these possibilities.

ST (Ti) is a set of x, where Ti →∗

c x and x should be
executed according to the executing result of Ti.

SF (Ti) is a set of x, where Ti →
∗

c x and x should not be
executed according to the executing result of Ti.

ST (Ti) is the set of task Ti’s true successors and SF (Ti)
is the set of task Ti’s false successors.

Please note the definition of these two sets are specific to
concrete executions of workflows (or workflow instances).
For the same task, these two sets may have different con-
tents in different executions. If Tj ∈ ST (Ti), then Tj is on
the executing path according to the current execution. Oth-
erwise Tj is not on the executing path according to the cur-
rent execution. So, if there are more than two branches go-
ing out of task Ti within the workflow specification, only
tasks on one branch belong to ST (Ti) in a specific execu-
tion. Others belong to SF (Ti). Consider the example in Fig-
ure 1, in the attacked execution ST (T2) = {T3, T4} and
SF (T2) = {T5}. After we carry out the undo tasks and
redo(T2), it is another story. That is, ST (redo(T2)) = {T5}
should be in the recovered execution. Therefore, ST (Ti)
may be different from ST (redo(Ti)), which indicates that
the recovered workflow may go through a different path
from the previous path executed.

2.2. Workflows, recovery schemes and the system
log

Based on the above definitions, workflows can be repre-
sented by 〈T ,≺,→c〉, where T is the set of all workflow
tasks, ≺ is the preceding relation on T and →c is the con-
trol dependency relation on T . Consider the example in Fig-
ure 1, T = {Ti | 1 ≤ i ≤ 10}, ≺= {(T1, T2), (T2, T3),
(T3, T4), (T2, T5), (T4, T6), (T5, T6), (T7, T8), (T8, T9),
(T9, T10)} and →c= {(T2, T3), (T2, T4), (T2, T5)}. We do
not limit our definition to a single workflow, here the set T
may consist of tasks from more than one workflow.

Given workflows, data dependencies →f ,→a and →o

can be calculated from T while relations ≺ and →c are de-
fined only by workflows.

Similarly, we define a recovery scheme as 〈R,≺s,→c

〉, where R is the set of recovery tasks that consists of
undo and redo tasks, ≺s is the scheduled preceding rela-
tion among the recovery tasks, and →c is the control depen-
dency relation among the recovery tasks.

Finally, given workflows 〈T ,≺,→c〉, the system log is
represented as 〈L,≺〉, where L ⊆ T is the set of tasks that
are completed and committed.

3. Theories of Multi-Version Data Object
based Recovery

This section starts by introducing the concept of a revi-
sion history, which keeps all versions of data objects, then
introduces rules for generating correct recovery schemes.

3.1. Revision History

For any data object x written at time tm, we associate tm
with x as its reversion number. We do not call it a times-
tamp since we do not perform recovery in real time. We as-
sume that any two ti and tj , where i 6= j, are distinguish-
able in the system.

Each data object has a revision history with the form
〈xv1 , xv2 , · · · , xvn〉, where each vi, 1 ≤ i ≤ n is a revi-
sion number of x and vj is later than vi if j > i. If we know
that xvk is corrupted by the attacker than any task that reads
xvk get wrong results.

Please note that it is possible that in x’s revision history,
there is only a specific version that is corrupted. For exam-
ple, x is generated periodically by a trustable task T and
an attacker only corrupts a specific version of x, e.g., xvk .
Therefore, we cannot conclude if xvj , where j > k, is dirty
without further analysis.

For a specific version xvk , when it has a value that it is
not supposed to have, it is dirty. For example, when xvk is
created by an attacker or computed based on dirty data ob-
jects, it is dirty. Otherwise, it is clean.

3.2. Operations on the Revision History

A normal task reads data objects with the highest revi-
sion number, and it writes data objects with the highest re-
vision number in their revision histories. So, a revision his-
tory does not change dependency relations among normal
tasks. It operates just as if multiple versions did not exist.

A recovery task, whether it is an undo or redo task, op-
erates on data objects with the same revision numbers as
it used the first time it executed. For example, a undo(Ti)
is implemented by removing all specific versions from re-
vision histories of data objects written by Ti. A redo(Ti)
will generate data objects with the same revision number
as it executed first time. A revision history does not change
dependency relations among recovery tasks either. We can
consider that recovery tasks are for revising part of the his-
tory of the system.

When we find a dirty version xvk , there are two possi-
ble ways that the dirty version was generated. One possi-
bility is that xvk should not exist at all, e.g, it was created
by the attacker. Any task that reads xvk is supposed to read
xvk−1 instead of xvk . Another possibility is that xvk has a
dirty value and needs to be recomputed by a redo task. Any

task that reads xvk needs to wait until the redo task has com-
pleted to get a correct value of xvk . In this case, we mark
xvk as xvk

b to block possible reading until the redo task is
complete.

Multi-version data objects break dependency relations
among recovery tasks and normal tasks, which enable us to
run the recovery tasks and normal tasks concurrently. Ac-
cording to the structure of the revision history, operations
on old versions happen as “in the past.” Therefore, execu-
tion of normal tasks does not corrupt recovery tasks.

Please note that flow dependencies cannot be broken,
which guarantees that the semantics of execution are cor-
rect. From the point of view of recovery tasks (or normal
tasks), there is only a single version for each data object to
ensure correct semantics.

3.3. Axioms and Correctness Criteria

When attackers inject malicious tasks into the workflow
management system the malicious tasks generate or corrupt
some data objects directly. In addition, the data dependency
relations and the control dependency relations among work-
flow tasks can further spread the damage to other data ob-
jects. We identify corrupted data objects, dirty data objects,
based on the following two axioms.

Axiom 1 (Generated Dirty Data Objects) Data ob-
jects generated by the tasks that should not have been
executed are dirty.

Axiom 2 (Spread Dirty Data Objects) If a task computes
using dirty data objects, the results are dirty.

Concluded from the two axioms, Theorem 1 describes
what kind of data should be cleaned within the workflow
management system.

Theorem 1 A data object is dirty if, and only if, it was gen-
erated in any of the following ways

1. Generated directly by a malicious task or corrupted di-
rectly by attackers

2. Calculated based on dirty data

3. Generated by a task that should not have been exe-
cuted

4. Generated by a task that references data that is cre-
ated by tasks that should have been executed, but did
not

Theorem 1 describes all possible patterns of damage
spreading. In this paper we use the term bad task to rep-
resent a task that generates dirty data. Bad tasks consist of
malicious tasks and affected tasks.

In Figure 1, task T1 marked with ’B’ was corrupted
directly by attackers. So data that T1 generates are dirty,
which is indicated by item 1 in Theorem 1.

According to our definition of flow dependency, if Tj

reads data that task Ti writes then Ti →f Tj . In Figure 1,
task T2 marked with ’A’ is data dependent on task T1. T2 is
affected by bad task T1 because it reads dirty data from T1

then creates wrong results which are also dirty. So does task
T4, which reads dirty data from T2. T8 and T10 fall in the
same case, which is described by item 2.

The third situation described in item 3 is shown by task
T3 marked by ’I’ in Figure 1, which is ’innocent’. In Fig-
ure 1 the execution of task T3 is based on the executing re-
sult of task T2. Since task T2 is affected by T1, it is possi-
ble that the selection of executing path is wrong. We need
to redo task T2 and then check whether T3 is still a true suc-
cessor of redo(T2) in the recovered execution. If it is a false
successor of redo(T2) in the recovered execution, then the
data T3 generated before are dirty and T3 needs to be un-
done, although the calculating results of T3 are correct.

For the last case described in Theorem 1, please refer
to the execution of task T6 marked by ’G’ in Figure 1. T6 is
flow dependent on task T5 which was not executed in the at-
tacked execution. When we redo task T2, the workflow may
be executed along a new path that continues with T5. Then
T5 may generate different data from what T6 has read in the
attacked execution. Thus T6 will get different results in the
recovered execution. Therefore task T6 produced a wrong
result in the attacked execution and the data it generated are
dirty.

The following definition describes the correctness crite-
ria for our workflow attack recovery scheme.

Definition 1 Given a set N of normal tasks, the recovery
scheme 〈R,≺s,→c〉 is correct if, and only if, the following
conditions hold.

1. No dirty data exists after executing 〈R,≺s,→c〉

2. No dirty data is generated by executing 〈R,≺s,→c〉

3. The execution of normal tasks in N should not gener-
ate dirty data and should not have corrupted recovery
tasks

4. The execution of tasks in N and R do not violate the
definition of a workflow

A correct recovery scheme is not isolated from the work-
flow management system. When we are carrying out the re-
covery there definitely exist some scheduled preceding re-
lations between the recovery tasks and the normal workflow
tasks. Condition 3 states that the execution of normal tasks
should be clean. In other words, if a new task tries to read
dirty data from some unrecovered tasks, it should be sus-
pended for future execution until the data it tries to read are
clean.

3.4. Generate Recovery Tasks

This section describes how to find undo and redo tasks.
Since damage is spread by flow-dependencies and control
dependencies, which are not affected by the revision his-
tory, we do not bother with different versions of a specific
data object in this section.

From Theorem 1 and Definition 1 we can directly get the
following theorem for undo tasks.

Theorem 2 (Undo tasks) Assume B is a known set of bad
tasks that need be undone. The correctness criteria will not
be violated if, and only if, the following Ti and Tj are un-
done.

1. ∀Ti, Ti ∈ B

2. ∃Ti ∈ B, Ti →
∗

f Tj

3. ∃Ti ∈ B, Tj ∈ L, Ti →
∗

c Tj , and Tj ∈ SF (redo(Ti))

4. ∃Ti ∈ B,∃Tk /∈ L, Ti →∗

c Tk, Tk →∗

f Tj , and Tk ∈
ST (redo(Ti))

PROOF SKETCH: The objective of undo tasks is to re-
move the dirty data in the workflow system. Each item in
the theorem is exactly the formal description of the tasks
that are described within the same numbered item in Theo-
rem 1. �

We call the tasks described by condition 3 and condi-
tion 4 candidate undo tasks because we do not know if they
really should be undone until redo(Ti) is executed.

Consider the problem in Figure 1 again. At the begin-
ning, B = {T1}. Thus T1 should be undone according to
condition 1. T2, T4, T8 and T10 should be undone because
there exists T1 ∈ B, T1 →f T2, T2 →f T4, T1 →f T8

and T8 →f T10 (condition 2). At this point we
know B = {T1, T2, T4, T8, T10}. T3 should be un-
done because ∃T2 ∈ B, T3 ∈ L, T2 →c T3 and
T3 ∈ SF (redo(T2)), which is specified by the condi-
tion 3. Now B = {T1, T2, T3, T4, T8, T10}. Based on condi-
tion 4, task T6 should be undone due to the fact that T2 ∈ B,
T5 /∈ L, T2 →c T5, T5 →f T6 and T5 ∈ ST (redo(T2)). Fi-
nally, we have B = {T1, T2, T3, T4, T6, T8, T10}.

The tasks that have already been undone and are still on
the re-executing path should be redone to meet the specifi-
cation of the workflow. Regarding redo tasks, we have the
following theorem.

Theorem 3 (Redo tasks) Assume B is a known set of bad
tasks, Ti ∈ B, then Ti should be redone if, and only if, any
of the following conditions are satisfied.

1. @Tj ∈ B, Tj →∗

c Ti

2. ∃Tj ∈ B, Tj →∗

c Ti, Ti ∈ ST (redo(Tj))

PROOF SKETCH: In both cases, Ti has been damaged
and is on the re-executing path. Thus Ti needs to be redone
to meet the specification of the workflow. �

We call the tasks described by condition 2 candidate
redo tasks because we do not know if they really should
be redone until redo(Tj) is executed.

In Figure 1 task T1, T2, T6, T8 and T10 need to be un-
done. Since they are not control dependent on any bad task,
they need to be redone, as stated in case 1 of Theorem 3.
Since neither task T3 nor task T4 meets the requirements of
Theorem 3, they do not need to be redone. They are sim-
ply not on the re-executing path of the workflow. Redoing
them will generate dirty data because redoing them does not
meet the specification of the workflow.

3.5. Partial Orders Caused by Dependency Rela-
tions

Since undo and redo tasks are not defined by workflow
specifications we must create partial order relations among
these tasks and normal workflow tasks to guarantee the cor-
rectness of recovery. The following two theorems give the
partial order relations among recovery tasks and new work-
flow tasks.

As we mentioned before, in order to guarantee correct
semantics, from the point of view of recovery tasks, there
is only a single version for each object, so all data depen-
dency relations are not broken among recovery tasks.

Theorem 4 (Partial ordering of recovery tasks) Given
the recovery tasks R and the system log 〈L,≺〉 the follow-
ing rules derive scheduled precedence orders between any
two tasks in R.

1. Ti ≺ Tj ⇒ redo(Ti) ≺s redo(Tj)

2. Ti → Tj ⇒ redo(Ti) ≺s redo(Tj)

3. ∀Ti, undo(Ti) ≺s redo(Ti)

4. Ti →a Tj ⇒ undo(Tj) ≺s redo(Ti)

5. Ti →o Tj ⇒ undo(Tj) ≺s undo(Ti)

6. Ti →c Tj , Tj ∈ ST (Ti) ⇒ redo(Ti) →c redo(Tj) ∧
redo(Tj) ∈ ST (redo(Ti))

7. Ti →c Tj , Tj ∈ SF (Ti) ⇒ redo(Ti) →c redo(Tj) ∧
redo(Tj) ∈ SF (redo(Ti))

8. Ti ∈ B, Tj ∈ L, Ti →∗

c Tj and Tj ∈ SF (redo(Ti))
⇒ redo(Ti) →c redo(Tj)∧undo(Tj) ∈ ST (redo(Ti))

9. Ti ∈ B,∃Tk /∈ L, Ti →∗

c Tk, Tk →∗

f Tj and Tk ∈
ST (redo(Ti))
⇒ redo(Ti) →c undo(Tj)∧undo(Tj) ∈ ST (redo(Ti))

10. Ti ∈ B,∃Tj ∈ B, Tj →∗

c Ti, Ti ∈ ST (redo(Tj)) ⇒
redo(Ti) →c redo(Tj) ∧ redo(Tj) ∈ ST (redo(Ti))

PROOF: See appendix.
Usually we prefer not to stop the services of the work-

flow system while carrying out the recovery. For the pur-
pose of running both the recovery tasks and normal work-
flow tasks concurrently, let us see what will happen when

using a single copy of data objects, which means an old
value will be lost after writing.

We have the following theorem using the assumption of
single-version data objects.

Theorem 5 (Partial ordering of normal tasks) Given the
recovery tasks R, new workflow tasks N , and the system
log 〈L,≺〉, if every data object has only one copy, the fol-
lowing rules derive scheduled preceding orders for any two
tasks in R∪N .

1. Ti ≺ Tj , Ti, Tj ∈ N ⇒ Ti ≺s Tj

2. (Ti →f Tj) ∨ (Ti →a Tj) ∨ (Ti →o Tj) ∨ (Ti →c

Tj), Tj ∈ N ⇒ undo(Ti) ≺s redo(Ti) ≺s Tj

3. Ti →∗

c Tk, Tk →∗

f Tj , Tk /∈ L ∪N , Tj ∈ N ⇒
undo(Ti) ≺s redo(Ti) ≺s Tj

PROOF: See appendix.
Theorem 5 shows that normal tasks cannot be executed

before the generation of a recovery scheme is complete. In
other words, we can run normal tasks if, and only if, all
malicious tasks reported by the IDS have been processed,
which may cause temporary delay of services when attack-
ing rate is high.

Theorem 5 is derived from the assumption that every
data object has one copy. If the data object was changed
the value would be lost. Theorem 5 tells us that achiev-
ing no stop service cannot without multiple copies (ver-
sions) of data objects and full information about possible
normal tasks and recovery tasks. Multi-version data objects
can solve the problem.

In Theorem 5, rule 1 states that the execution of nor-
mal tasks should abide by the specification of workflows.
Rule 2 and rule 3 describe restrictions of executing orders
among recovery tasks and normal tasks. With the use of re-
vision histories, anti-flow and output dependencies are bro-
ken while flow and control dependencies are not. From the
proof of Theorem 5 we know that running recovery tasks
and normal tasks in parallel with their corresponding revi-
sion history will not corrupt recovery tasks while we must
take the risks of corrupting normal tasks. Since we can still
chase damage spreading by dependency relations, corrup-
tion of normal tasks is not a problem and damage can be re-
paired later.

4. The Recovery System

4.1. Revision History

A revision history can be built at the system level or ap-
plication level. In fact, it does exist in the system log or ap-
plication level. For example, some system logs record dif-
ferent versions of data objects written at different times. A
history of a bank account is also a revision history.

Besides the revision history, the system needs to record
which versions a specific task reads and which versions the
task writes, recording this information is also implemented
in modern workflow systems.

4.2. Architecture

The architecture of an attack recovery system for work-
flows is shown in Figure 2.

Intrusion Alerts

...

... ...

Recovery tasks Scheduler

Recovery Analyzer

New tasks

IDS

Figure 2. Processing Structure of an Attack
Recovery System

In this architecture, there are two independent processing
parts, the recovery analyzer and the task scheduler. An inde-
pendent Intrusion Detection System (IDS) reports malicious
tasks to the system by periodically putting IDS alerts in a
queue. The recovery analyzer processes IDS alerts one by
one. It determines the amount of damage and generates re-
covery tasks. The recovery tasks are sorted and put into an-
other queue. The tasks scheduler schedules recovery tasks
and normal tasks concurrently.

4.3. Algorithms

The recovery analyzer runs the following algorithm.

1. Wait until the queue of IDS alerts is not empty. Get one
IDS alert and continue.

2. Determine all damage caused by the attack that the IDS
reported and generate undo tasks according to Theo-
rem 2. Abort and block all running tasks that are de-
pendent on damaged tasks.

3. Generate redo tasks according to Theorem 3. For all
Ti : undo(Ti) ∈ R, if redo(Ti) /∈ R, mark undo(Ti)
as undo(Ti)b. Otherwise, mark redo(Ti) as redo(Ti)b.

4. Set up precedence orders among recovery tasks ac-
cording to Theorem 4.

5. Sort recovery tasks and put them into the queue of re-
covery tasks.

6. Goto step 1.

There is no special order that needs to be satisfied while
scheduling normal and recovery tasks. After a recovery task
Tb is done, release tasks that are blocking on it and provide

them data objects with revision number tm if the number
exists, otherwise with revision number tm−1.

5. Evaluation

5.1. Impacts on the System by the IDS

Our techniques do not depend on timely reporting by the
IDS. As long as the damage is reported, whether it is re-
ported by the IDS or the administrator of a system, our tech-
niques work out all affected tasks and repair them. However,
if the reporting delay is significant, more tasks in the system
will be affected before recovery, which leads to more time
being spent on recovery. Any system that has an IDS suffers
with this problem, except intrusion masking systems [15].

Since we cannot guarantee that an IDS is 100% accu-
rate, we have to depend on the administrator of a system to
compensate for the inaccuracy. The administrator may re-
vise the damaged-task set B according to further investiga-
tion. Consequently, the recovery system repairs the damage
newly reported by the administrator. Since our techniques
do not depend on timely reporting, the delay from the ad-
ministrator is acceptable.

5.2. Performance

There are two queues in the system. The analyzer and
the scheduler work independently if both queues are not
full. Suppose the arrival of IDS alerts has a Poisson distri-
bution with rate λ1, the time distribution of processing IDS
alerts is exponentially distributed with parameter µ1, and
the time distribution of executing recovery tasks is also ex-
ponentially distributed with parameter µ2. The system be-
haves like a tandem Jackson network.

We are interested in relationships among λ1, µ1 and µ2

while considering the loss probability of IDS alerts.
While µ2 ≤ µ1, the queue of recovery tasks becomes

the bottleneck of the system. The queue of recovery tasks
will be full and no further recovery tasks could be gener-
ated. Therefore, no further IDS alerts could be processed.
This situation should be avoided.

While µ1 < µ2, the queue of IDS alerts becomes the bot-
tleneck of the system. The loss probability of IDS alerts is
determined by the processing rate µ1. Consider the buffer
size of the queue is K. According to our assumptions the
queue becomes a M/M/1/K-queue [14, 12]. The steady
state probability for such a queue is given by:

p0 =
1 − ρ

1 − ρK+1
(1)

pk = p0ρ
k (2)

where 1 ≤ k ≤ K, ρ = λ1

µ1

, and pk indicates that there
are k IDS alerts in the queue. Let us assume λ1 < µ1 < µ2,
ρ < 1. We have

E[N] =

K∑

k=0

kpk =
ρ

1 − ρ
−

K + 1

1 − ρK+1
ρK+1 (3)

Thus,

E[T] =
E[N]

λ1

=
1

µ1 − λ1

−
K + 1

µ1 − λ1ρk
ρk (4)

5.3. Integrity Level

Suppose the expected delay time of IDS reports is E[T ′],
the total time an IDS alert exists in the system is E[T ′] +
E[T]. During that time, l = µ3(E[T ′] + E[T]) tasks have
been executed, where µ3 is the executing rate of normal
tasks. In fact, l is the number of tasks that the analyzer is
supposed to scan in the system log. The larger l is, the more
unidentified bad tasks there are, and the longer time the an-
alyzer takes to scan the log.

l describes the integrity level of the system. In other
words, how many tasks exist where it is unknown whether
they are infected or not. Although reducing µ3 improves in-
tegrity, it will enlarge the degradation of performance simul-
taneously. An extreme situation is where µ3 = 0, in other
words, stop service to normal tasks. Then no further dam-
age occurs. We can also reduce the delay time of IDS re-
ports and increase the processing speed of IDS alerts to im-
prove the integrity level of the system without sacrificing
the performance µ3, which is what we usually do.

Another parameter affecting the integrity level of the sys-
tem is loss probability of IDS alerts. The loss probability is
given by:

ploss = pK =
ρK − ρK+1

1 − ρK+1
(5)

The higher ploss is, the more unidentified malicious tasks
there are in the system.

The queue of recovery tasks is the second queue of the
tandem Jackson network. We assume that the probability
of its overflow [8] is relative small compared with the loss
probability of the first queue since µ1 < µ2.

5.4. A Case Study

A case study is more intuitive than equations. We set up a
case, where E[T ′] = 10,K = 20, µ1 = 5, λ1 = 2, µ3 = 4,
to investigate the integrity level of the system. When param-
eters change, the results are shown in Figure 3.

0 5 10 15 20
40

42

44

46

48

50

52

54

µ
1

N
um

be
r o

f s
us

pi
ci

ou
s

ta
sk

s

(a)

0 1 2 3 4 5
40

41

42

43

44

45

46

47

48

λ
1

N
um

be
r o

f s
us

pi
ci

ou
s

ta
sk

s

(b)

0 2 4 6 8 10
5

10

15

20

25

30

35

40

45

E[T
1
]

N
um

be
r o

f s
us

pi
ci

ou
s

ta
sk

s

(c)

5 10 15 20
40

60

80

100

120

140

160

180

200

220

µ
3

N
um

be
r o

f s
us

pi
ci

ou
s

ta
sk

s

(d)

0 5 10 15
40.5

40.6

40.7

40.8

40.9

41

41.1

41.2

41.3

41.4

K

N
um

be
r o

f s
us

pi
ci

ou
s

ta
sk

s

(e)

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

K

P
lo

ss

(f)

Figure 3. Impacts on the system with differ-
ent parameters

In this case, K has little effect on l after it is large
enough, e.g., > 5 in the figure. Both E[T ′] and µ3 have
linear impacts on l while µ3 has relatively more significant
impact on l. As for µ1 and λ1, as soon as ρ = λ1

µ1

is small
enough, their changes have little effect on l.

6. Related Work

An Intrusion Detection System (IDS) [9] can detect
some intrusions. But, in a workflow system, the damages
directly caused by the attacker may be spread by execut-
ing normal tasks without being detected by the IDS. The
IDS is unable to trace damage spreading and cannot locate
all damage to the system.

The checkpoint [10, 11] techniques also do not work for
efficient workflow recovery. A checkpoint rolls back the
whole workflow system to a specific time. All work, includ-
ing both malicious tasks and normal tasks after the specific
time, will be lost, especially when the delay of the IDS is
very long. In addition, checkpoints introduce extra storage
cost.

The work most similar to ours handles malicious transac-
tions in a database system, as discussed in [1]. When intru-
sions have been detected by the IDS, the database system
isolates and confines the impaired data. Then, the system
carries out recovery for malicious transactions. This work
is different from ours in that they consider little about rela-
tions among transactions; the work is unable to trace dam-
age spreading and cannot locate all damage to the system.
In contrast, we show that to guarantee the correct recoveries
of a workflow, we need all data and control dependency re-
lations among transactions. Otherwise, both recovered and
newly executed transactions could be corrupted.

The failure handling of workflow has been discussed in
recent work [5, 4, 13]. Failure handling is different from
attack recovery in two aspects. On one hand, the two ar-
eas have different goals. Failure handling tries to guaran-
tee the atomicity of workflows. When failure happens, their
work finds which tasks should be aborted. If all tasks are
successfully executed, failure handling does nothing for the
workflow. Attack recovery has different goals, which need
to do nothing for failure tasks even if they are malicious, be-
cause malicious failure tasks have no effect on the workflow
system. Attack recovery focuses on malicious tasks that are
successfully executed. It tries to remove all effects of such
tasks. On the other hand, these two systems are active at dif-
ferent times. Failure handling occurs when the workflows
are in progress. When the IDS reports attacks, the mali-
cious tasks usually have been successfully executed. Fail-
ure handling is not applicable because no failure occurred.
Attack recovery is supposed to remove the effects of mali-
cious tasks after they are committed..

Rollback recovery, e.g. [7, 3], is surveyed in [6]. It fo-
cuses on the relationship of message passing and considers
temporal sequences based on message passing. In contrast
to their research, we focus on data and control dependency
relations inside workflow tasks. In fact, message passing is
a kind of data dependency relation but not vice versa (e.g.,
a data dependency relation caused by more than one mes-
sage passing step or by sharing data). We also observed that
in workflow recovery an execution path may change due
to control dependencies, causing different patterns of mes-
sage passing. In addition, our methods exploit more detail
in dependency relations than the methods that are message-
passing based; therefore our method is more effective and
efficient for workflow recovery.

Decentralized workflow processing is becoming more
and more popular. In distributed workflow models, work-
flow specifications cannot be accessed at a central node.
They are carried by the workflow itself or stored in a dis-
tributed manner. In either case, our theories are still practi-
cal. We need to process the specifications of workflows in a
distributed manner.

In some work such as [2], security and privacy are impor-

tant, and the whole specification of workflows avoids being
exposed to all processing nodes to protect privacy. Our theo-
ries are based on the dependency relations among tasks. The
specification can be best protected by exposing only depen-
dency relations to the recovery system.

7. Conclusions and Future Work

We described fundamental theories for on-line attack re-
covery of workflows. While an independent IDS reports ma-
licious tasks periodically, our techniques find all damage
caused by the malicious tasks and repair them automati-
cally. We introduced restrictions of executing order that ex-
ist in an attack recovery system. We partially removed the
restrictions by introducing multi-version data objects to re-
duce unnecessary blocks in order to reduce degradation of
performance while carrying out the recovery. We evaluated
the performance and integrity level of such systems. We
will compare our multi-version data-objects-based systems
with single-version data-objects-based systems in the near
future.

Acknowledgment

We thank LouAnna Notargiacom for her valuable and
insightful comments. She also polished this paper to im-
prove the presentation. Our thanks also to the anonymous
reviewers. This work was supported in part by DARPA and
AFRL, AFMC, USAF, under award number F20602-02-1-
0216, by NSF CCR-TC-0233324, and by Department of
Energy Early Career PI Award.

References

[1] P. Ammann, S. Jajodia, and P. Liu. Recovery from malicious
transactions. IEEE Transaction on Knowledge and Data En-
gineering, 2002.

[2] V. Atluri, S. A. Chun, and P. Mazzoleni. A chinese wall secu-
rity model for decentralized workflow systems. In Proceed-
ings of the 8th ACM conference on Computer and Communi-
cations Security, pages 48–57. ACM Press, 2001.

[3] Y. bing Lin and E. D. Lazowska. A study of time warp
rollback machanisms. ACM Transactions on Modeling and
Computer Simulations, 1(1):51–72, January 1991.

[4] Q. Chen and U. Dayal. Failure handling for transaction hi-
erarchies. In A. Gray and P.-Å. Larson, editors, Proceed-
ings of the Thirteenth International Conference on Data En-
gineering, April 7-11, 1997 Birmingham U.K, pages 245–
254. IEEE Computer Society, 1997.

[5] J. Eder and W. Liebhart. Workflow recovery. In Conference
on Cooperative Information Systems, pages 124–134, 1996.

[6] E. N. M. Elnozahy, L. Alvisi, Y. min Wang, and D. B. John-
son. A survey of rollback-recovery protocols in message-
passing systems. ACM Computing Surveys, 34(3):375–408,
September 2002.

[7] D. R. Jefferson. Virtual time. ACM Transaction on Program-
ming Languages and Systems, 7(3):404–425, July 1985.

[8] D. P. Kroese and V. F. Nicola. Efficient simulation of a tan-
dem jackson network. ACM Transactions on Modeling and
Computer Simulation, 12(2):119–141, April 2002.

[9] W. Lee and S. J. Stolfo. A framework for constructing
features and models for intrusion detection systems. ACM
Transactions on Information and System Security (TISSEC),
3(4):227–261, 2000.

[10] J.-L. Lin and M. H. Dunham. A survey of distributed
database checkpointing. Distributed and Parallel Databases,
5(3):289–319, 1997.

[11] J.-L. Lin and M. H. Dunham. A low-cost checkpointing
technique for distributed databases. Distributed and Paral-
lel Databases, 10(3):241–268, 2001.

[12] R. A. Sahner, K. S. Trivedi, and A. Puliafito. Performance
and Reliability Analysis of Computer Systems. Kluwer Aca-
demic Publishers, Norwell, Massachusetts, USA, 1996.

[13] J. Tang and S.-Y. Hwang. A scheme to specify and imple-
ment ad-hoc recovery in workflow systems. Lecture Notes in
Computer Science, 1377:484–??, 1998.

[14] H. C. Tijms. Stochastic Models. Wiley series in probability
and mathematical statistics. John Wiley & Son, New York,
NY, USA, 1994.

[15] M. Yu, P. Liu, and W. Zang. Intrusion masking for dis-
tributed atomic operations. In The 18th IFIP International
Information Security Conference, Athens Chamber of Com-
merce and Industry, Greece, 26-28 May 2003. IFIP Techni-
cal Committee 11, Kluwer Academic Publishers.

Appendix: Proof of theorems

Proof of Theorem 4

1. Comes directly from criterion 4 of Definition 1.

2. Derived from rule 1 and the definition of relation →

3. By contradiction. If redo(Ti) ≺s undo(Ti) then the ef-
fects of task Ti will be undone, which violates crite-
rion 4 of Definition 1.

4. By contradiction. Assume redo(Ti) ≺s undo(Tj).
Since Ti →a Tj , R(redo(Ti)) = R(Ti) and
W (undo(Tj)) = W (Tj), so R(redo(Ti)) ∩
W (undo(Tj)) 6= φ. Moreover, W (undo(Tj)) is
dirty before undo(Tj). Therefore redo(Ti) reads dirty
data from R(redo(Ti)) ∩ W (undo(Tj)) then gener-
ates dirty data, which violates criterion 2 of Defini-
tion 1.

5. By contradiction. From Ti →o Tj we have Ti ≺ Tj

and W (Ti) ∩ W (Tj) 6= φ. Then in the system log
W (Ti) has an older version than W (Tj) for W (Ti) ∩
W (Tj). If undo(Ti) ≺s undo(Tj) then W (Ti) ∩
W (Tj) was not undone for Ti. In other words, Ti was
not undone completely, which violates criterion 1 of
Definition 1.

6. Comes directly from criterion 4 of Definition 1.

7. Comes directly from criterion 4 of Definition 1.

8. Comes directly from the condition 3 of Theorem 2.

9. Comes directly from the condition 4 of Theorem 2.

10. Comes directly from the condition 2 of Theorem 3. �

Proof of Theorem 5

1. Comes directly from criterion 4 of Definition 1.

2. undo(Ti) ≺s redo(Ti) comes directly from the rule 3
of Theorem 4.

If Tj is data dependent on Ti we prove the re-
sult by contradiction. Since R(redo(Ti)) = R(Ti)
and W (redo(Ti)) = W (Ti) so if Ti → Tj then
redo(Ti) → Tj . There are three cases.

• redo(Ti) →f Tj . When Tj reads data from
W (redo(Ti)) ∩ R(Tj) the redo(Ti) has not cre-
ated it. So the task Tj gets wrong data and is cor-
rupted.

• redo(Ti) →o Tj . After executing Tj , redo(Ti)
writes W (redo(Ti)) ∩ W (Tj) again. So the ex-
ecuting results of redo(Ti) in W (redo(Ti)) ∩
W (Tj) is lost. Therefore the task redo(Ti) is cor-
rupted.

• redo(Ti) →a Tj . redo(Ti) will read data that Tj

writes in R(redo(Ti))∩W (Tj). But according to
the definition of workflow, redo(Ti) should read
data that exists in R(redo(Ti)) ∩ W (Tj) before
executing Tj . So the task redo(Ti) is corrupted.

In these cases, either the new task Tj is corrupted,
which violates criterion 3 of Definition 1, or the re-
covery task redo(Ti) is corrupted, which violates cri-
terion 2 of Definition 1.

If Tj is control dependent on Tj then the execution
of Tj depends on the executing result of Ti. If Tj ≺s

redo(Ti) then it is possible that Tj ∈ SF (redo(Ti)) af-
ter redo(Ti) is done. In this case, Tj creates dirty data
according to Theorem 1 therefore the execution of Tj

violates both criterion 3 and criterion 4 of Definition 1.

3. undo(Ti) ≺s redo(Ti) comes directly from rule 3 of
Theorem 4.

We prove redo(Ti) ≺s Tj by contradiction.
Since redo(Ti) ∈ R is not done, we do not know:
if Tk ∈ ST (redo(Tj)). Assume Tj ≺s redo(Ti).
After the redo(Ti) is done, it is possible that
Tk ∈ ST (redo(Tj)). According to the condition 4
of Theorem 2, Tj should be undone because it cre-
ates dirty data, which violates criterion 3 of Defini-
tion 1. �

